On viscosity solutions of Hamilton-Jacobi equations. Trans. Amer. Math. Soc. 361 (2009) 41-59 [Internet]. 2009 . Available from: http://hdl.handle.net/1963/3420
. Viscosity solutions of Hamilton-Jacobi equations with discontinuous coefficients. J. Hyperbolic Differ. Equ. 4 (2007) 771-795 [Internet]. 2007 . Available from: http://hdl.handle.net/1963/2907
. A Viscosity-driven crack evolution. Advances in Calculus of Variations 5 (2012) 433-483 [Internet]. 2012 . Available from: http://hdl.handle.net/1963/5130
. Viscous approximation of quasistatic evolutions for a coupled elastoplastic-damage model. Calculus of Variations and Partial Differential Equations [Internet]. 2016 ;55:17. Available from: https://doi.org/10.1007/s00526-015-0947-6
. Volume geodesic distortion and Ricci curvature for Hamiltonian dynamics. arXiv preprint arXiv:1602.08745. 2016 .
. . Vortex Partition Functions, Wall Crossing and Equivariant Gromov–Witten Invariants. [Internet]. 2014 . Available from: http://urania.sissa.it/xmlui/handle/1963/34652
. Warped products with special Riemannian curvature. Bol. Soc. Brasil. Mat. (N.S.). 2001 ;32:45–62.
. The wave equation on domains with cracks growing on a prescribed path: existence, uniqueness, and continuous dependence on the data.; 2015. Available from: http://urania.sissa.it/xmlui/handle/1963/34629
. WDVV equations and Frobenius manifolds. In: Encyclopedia of Mathematical Physics. Vol 1 A : A-C. Oxford: Elsevier, 2006, p. 438-447. Encyclopedia of Mathematical Physics. Vol 1 A : A-C. Oxford: Elsevier, 2006, p. 438-447. SISSA; 2006. Available from: http://hdl.handle.net/1963/6473
. Weak convergence of measures on spaces of semicontinuous functions. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 79 (1985), no. 5, 98-106 [Internet]. 1985 . Available from: http://hdl.handle.net/1963/463
. Weak formulation of elastodynamics in domains with growing cracks. SISSA; 2018. Available from: http://preprints.sissa.it/handle/1963/35328
. Weighted barycentric sets and singular Liouville equations on compact surfaces. Journal of Functional Analysis 262 (2012) 409-450 [Internet]. 2012 . Available from: http://hdl.handle.net/1963/5218
. Weighted Cheeger sets are domains of isoperimetry. Manuscripta Math. 2018 ;156:371–381.
. A weighted empirical interpolation method: A priori convergence analysis and applications. [Internet]. 2014 . Available from: http://urania.sissa.it/xmlui/handle/1963/35021
. Weighted quantile correlation test for the logistic family. [Internet]. 2014 . Available from: http://urania.sissa.it/xmlui/handle/1963/35025
. A weighted reduced basis method for elliptic partial differential equations with random input data. SIAM Journal on Numerical Analysis. 2013 ;51:3163–3185.
. Well-posed infinite horizon variational problems on a compact manifold. Proceedings of the Steklov Institute of Mathematics. Volume 268, Issue 1, 2010, Pages 17-31 [Internet]. 2010 . Available from: http://hdl.handle.net/1963/6458
. Well-posedness for general 2x2 systems of conservation laws. Mem. Amer. Math. Soc. 169 (2004), no. 801, x+170 pp. [Internet]. 2004 . Available from: http://hdl.handle.net/1963/1241
. The well-posedness issue for the density-dependent Euler equations in endpoint Besov spaces. Journal de Mathématiques Pures et Appliquées [Internet]. 2011 ;96:253 - 278. Available from: http://www.sciencedirect.com/science/article/pii/S0021782411000511
. Well-posedness of the Cauchy problem for n x n systems of conservation laws. American Mathematical Society; 2000. Available from: http://hdl.handle.net/1963/3495
. Wet and Dry Transom Stern Treatment for Unsteady and Nonlinear Potential Flow Model for Naval Hydrodynamics Simulations. Journal of Ship Research. 2017 ;61:1–14.
. Wetting of rough surfaces: a homogenization approach. Proc. R. Soc. Lon. Ser. A 461 (2005) 79-97 [Internet]. 2005 . Available from: http://hdl.handle.net/1963/2253
. Where best to place a Dirichlet condition in an anisotropic membrane?. SISSA; 2014. Available from: http://urania.sissa.it/xmlui/handle/1963/7481
. Wild quiver gauge theories. JHEP 02(2012)031 [Internet]. 2012 . Available from: http://hdl.handle.net/1963/5184
.