MENU

You are here

Publications

Export 1593 results:
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
V
Dal Maso G, Giacomini A, Ponsiglione M. A variational model for quasistatic crack growth in nonlinear elasticity: some qualitative properties of the solutions. Boll. Unione Mat. Ital. (9) 2 (2009) 371-390 [Internet]. 2009 . Available from: http://hdl.handle.net/1963/2675
Racca S, Toader R. A variational model for the quasi-static growth of fractional dimensional brittle fractures. [Internet]. 2014 . Available from: http://hdl.handle.net/1963/6983
Dal Maso G. Variational problems in fracture mechanics.; 2006. Available from: http://hdl.handle.net/1963/1816
Musina R. Variational Problems with Obstructions. [Internet]. 1988 . Available from: http://hdl.handle.net/1963/5832
Bianchini S, Mariconda C. The vector measures whose range is strictly convex. J. Math. Anal. Appl. 232 (1999) 1-19 [Internet]. 1999 . Available from: http://hdl.handle.net/1963/3546
Cellina A, Zagatti S. A version of Olech\\\'s lemma in a problem of the calculus of variations. SIAM J. Control Optim. 32 (1994) 1114-1127 [Internet]. 1994 . Available from: http://hdl.handle.net/1963/3514
Bonelli G, Tanzini A, Jian Z. Vertices, vortices & interacting surface operators. JHEP 06(2012)178 [Internet]. 2012 . Available from: http://hdl.handle.net/1963/4134
Dubrovin B, Youjin Z. Virasoro Symmetries of the Extended Toda Hierarchy. Comm. Math.\\nPhys. 250 (2004) 161-193. [Internet]. 2004 . Available from: http://hdl.handle.net/1963/2544
Crasta G, Piccoli B. Viscosity solutions and uniquenessfor systems of inhomogeneous balance laws. Discrete Contin. Dynam. Systems 3 (1997), no. 4, 477--5 [Internet]. 1997 . Available from: http://hdl.handle.net/1963/969
Zagatti S. On viscosity solutions of Hamilton-Jacobi equations. Trans. Amer. Math. Soc. 361 (2009) 41-59 [Internet]. 2009 . Available from: http://hdl.handle.net/1963/3420
Coclite GM, Risebro NH. Viscosity solutions of Hamilton-Jacobi equations with discontinuous coefficients. J. Hyperbolic Differ. Equ. 4 (2007) 771-795 [Internet]. 2007 . Available from: http://hdl.handle.net/1963/2907
Racca S. A Viscosity-driven crack evolution. Advances in Calculus of Variations 5 (2012) 433-483 [Internet]. 2012 . Available from: http://hdl.handle.net/1963/5130
Crismale V, Lazzaroni G. Viscous approximation of quasistatic evolutions for a coupled elastoplastic-damage model. Calculus of Variations and Partial Differential Equations [Internet]. 2016 ;55:17. Available from: https://doi.org/10.1007/s00526-015-0947-6
Agrachev AA, Barilari D, Paoli E. Volume geodesic distortion and Ricci curvature for Hamiltonian dynamics. arXiv preprint arXiv:1602.08745. 2016 .
Paoli E. Volume variation and heat kernel for affine control problems. 2015 .
Bonelli G, Sciarappa A, Tanzini A, Vasko P. Vortex Partition Functions, Wall Crossing and Equivariant Gromov–Witten Invariants. [Internet]. 2014 . Available from: http://urania.sissa.it/xmlui/handle/1963/34652
W
Bertola M, Gouthier D. Warped products with special Riemannian curvature. Bol. Soc. Brasil. Mat. (N.S.). 2001 ;32:45–62.
Dal Maso G, Lucardesi I. The wave equation on domains with cracks growing on a prescribed path: existence, uniqueness, and continuous dependence on the data.; 2015. Available from: http://urania.sissa.it/xmlui/handle/1963/34629
Dubrovin B. WDVV equations and Frobenius manifolds. In: Encyclopedia of Mathematical Physics. Vol 1 A : A-C. Oxford: Elsevier, 2006, p. 438-447. Encyclopedia of Mathematical Physics. Vol 1 A : A-C. Oxford: Elsevier, 2006, p. 438-447. SISSA; 2006. Available from: http://hdl.handle.net/1963/6473
Dal Maso G, De Giorgi E, Modica L. Weak convergence of measures on spaces of semicontinuous functions. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 79 (1985), no. 5, 98-106 [Internet]. 1985 . Available from: http://hdl.handle.net/1963/463
Tasso E. Weak formulation of elastodynamics in domains with growing cracks. SISSA; 2018. Available from: http://preprints.sissa.it/handle/1963/35328
Carlotto A, Malchiodi A. Weighted barycentric sets and singular Liouville equations on compact surfaces. Journal of Functional Analysis 262 (2012) 409-450 [Internet]. 2012 . Available from: http://hdl.handle.net/1963/5218
Saracco G. Weighted Cheeger sets are domains of isoperimetry. Manuscripta Math. 2018 ;156:371–381.
Chen P, Quarteroni A, Rozza G. A weighted empirical interpolation method: A priori convergence analysis and applications. [Internet]. 2014 . Available from: http://urania.sissa.it/xmlui/handle/1963/35021
.Venturi L, Ballarin F, Rozza G. A Weighted POD Method for Elliptic PDEs with Random Inputs. Journal of Scientific Computing [Internet]. 2019 ;81:136-153. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85053798049&doi=10.1007%2fs10915-018-0830-7&partnerID=40&md5=5cad501b6ef1955da55868807079ee5d

Pages

Sign in