On a class of vector fields with discontinuity of divide-by-zero type and its applications. Journal of dynamical and control systems . 2012 ;18(1 ):135-158.
. A class of existence results for the singular Liouville equation. Comptes Rendus Mathematique 349 (2011) 161-166 [Internet]. 2011 . Available from: http://hdl.handle.net/1963/5793
. A class of absolute retracts of dwarf spheroidal galaxies. Proc.Amer.Math.Soc. 112 (1991), no.2, 413 [Internet]. 1991 . Available from: http://hdl.handle.net/1963/837
. Chern-Simons theory on L(p,q) lens spaces and Gopakumar-Vafa duality. J. Geom. Phys. 60 (2010) 417-429 [Internet]. 2010 . Available from: http://hdl.handle.net/1963/2938
. Chern-Simons forms on principal superfiber bundles. J.Math.Phys.31:45,1990 [Internet]. 1990 . Available from: http://hdl.handle.net/1963/590
. Chen-Ruan cohomology of ADE singularities. International Journal of Mathematics. Volume 18, Issue 9, October 2007, Pages 1009-1059 [Internet]. 2007 . Available from: http://hdl.handle.net/1963/6502
. The Cheeger constant of a Jordan domain without necks. Calc. Var. Partial Differential Equations. 2017 ;56:164.
. Characterization of the time course of changes of the evoked electrical activity in a model of a chemically-induced neuronal plasticity. BMC Research Notes (2009) 2:13 [Internet]. 2009 . Available from: http://hdl.handle.net/1963/3706
. Chaotic dynamics for perturbations of infinite-dimensional Hamiltonian systems. Nonlinear Anal. 48 (2002) 481-504 [Internet]. 2002 . Available from: http://hdl.handle.net/1963/1279
. On a certified smagorinsky reduced basis turbulence model. SIAM Journal on Numerical Analysis [Internet]. 2017 ;55:3047-3067. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85039928218&doi=10.1137%2f17M1118233&partnerID=40&md5=221d9cd2bcc74121fcef93efd9d3d76c
. Certified Reduced Basis VMS-Smagorinsky model for natural convection flow in a cavity with variable height. Computers and Mathematics with Applications [Internet]. 2020 ;80:973-989. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85085843368&doi=10.1016%2fj.camwa.2020.05.013&partnerID=40&md5=7c6596865ec89651319c7dd97159dd77
. Certified Reduced Basis Approximation for the Coupling of Viscous and Inviscid Parametrized Flow Models. Journal of Scientific Computing [Internet]. 2018 ;74:197-219. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85017156114&doi=10.1007%2fs10915-017-0430-y&partnerID=40&md5=023ef0bb95713f4442d1fa374c92a964
. A center manifold technique for tracing viscous waves. Commun. Pure Appl. Anal. 1 (2002) 161-190 [Internet]. 2002 . Available from: http://hdl.handle.net/1963/3075
. Cauchy-Laguerre two-matrix model and the Meijer-G random point field. Comm. Math. Phys. [Internet]. 2014 ;326:111–144. Available from: http://dx.doi.org/10.1007/s00220-013-1833-8
. The Cauchy two–matrix model. Comm. Math. Phys. 2009 ;287:983–1014.
. Cauchy biorthogonal polynomials. J. Approx. Theory [Internet]. 2010 ;162:832–867. Available from: http://0-dx.doi.org.mercury.concordia.ca/10.1016/j.jat.2009.09.008
. Categorial mirror symmetry for K3 surfaces. Comm. Math. Phys. 206 (1999) 265-272 [Internet]. 1999 . Available from: http://hdl.handle.net/1963/2887
. A case study in vanishing viscosity. Discrete Cont. Dyn. Syst. 7 (2001) 449-476 [Internet]. 2001 . Available from: http://hdl.handle.net/1963/3091
. Capacity theory for monotone operators. Potential Anal. 7 (1997), no. 4, 765-803 [Internet]. 1997 . Available from: http://hdl.handle.net/1963/911
. A capacity method for the study of Dirichlet problems for elliptic systems in varying domains. Rend. Sem. Mat. Univ. Padova 96 (1996), 257--277 [Internet]. 1996 . Available from: http://hdl.handle.net/1963/989
. Capacity and Dirichlet problems in varying domains. [Internet]. 1995 . Available from: http://hdl.handle.net/1963/950
. Cantor families of periodic solutions of wave equations with C k nonlinearities. Nonlinear Differential Equations and Applications. 2008 ;15:247-276.
. Cantor families of periodic solutions for wave equations via a variational principle. Advances in Mathematics. 2008 ;217:1671-1727.
. Cantor families of periodic solutions for completely resonant wave equations. Frontiers of Mathematics in China. 2008 ;3:151-165.
. Cantor families of periodic solutions for completely resonant nonlinear wave equations. Duke Math. J. 134 (2006) 359-419 [Internet]. 2006 . Available from: http://hdl.handle.net/1963/2161
.