Canonical structure and symmetries of the Schlesinger equations. Comm. Math. Phys. 271 (2007) 289-373 [Internet]. 2007 . Available from: http://hdl.handle.net/1963/1997
. The calibration method for the Mumford-Shah functional and free-discontinuity problems. Calc. Var. Partial Differential Equations 16 (2003) 299-333 [Internet]. 2003 . Available from: http://hdl.handle.net/1963/3051
. The calibration method for the Mumford-Shah functional. C. R. Acad. Sci. Paris Ser. I Math. 329 (1999), no. 3, 249-254 [Internet]. 1999 . Available from: http://hdl.handle.net/1963/1235
. The Calibration Method for Free-Discontinuity Problems on Vector-Valued Maps. J. Convex Anal. 9 (2002) 1-29 [Internet]. 2002 . Available from: http://hdl.handle.net/1963/3049
. The Calibration Method for Free Discontinuity Problems. European Congress of Mathematics. Volume I : Barcelona, July 10-14, 2000 / Carles Casacuberta .. [et al.], editors. , Boston : Birkhauser, 2001, p. 317-326. [Internet]. 2000 . Available from: http://hdl.handle.net/1963/1496
. Calculation of impulsively started incompressible viscous flows. Int. J. Numer. Meth. Fluids. 2004 ;46:877–902.
. BV solutions for a class of viscous hyperbolic systems. Indiana Univ. Math. J. 49 (2000) 1673-1714 [Internet]. 2000 . Available from: http://hdl.handle.net/1963/3194
. BV estimates for multicomponent chromatography with relaxation. Discrete Contin. Dynam. Systems 6 (2000) 21-38 [Internet]. 2000 . Available from: http://hdl.handle.net/1963/1336
. Buckling dynamics of a solvent-stimulated stretched elastomeric sheet. [Internet]. 2014 . Available from: http://urania.sissa.it/xmlui/handle/1963/34967
. On Bressan\\\'s conjecture on mixing properties of vector fields. Self-Similar Solutions of Nonlinear PDE / Ed. Piotr Biler and Grzegorz Karch. - Banach Center Publ. 74 (2006) 13-31 [Internet]. 2006 . Available from: http://hdl.handle.net/1963/1806
. Breaking the left-right symmetry in fluttering artificial cilia that perform nonreciprocal oscillations. [Internet]. 2024 . Available from: https://doi.org/10.1007/s11012-024-01765-7
. Branching points for a class of variational operators. J. Anal. Math. 76 (1998) 321-335 [Internet]. 1998 . Available from: http://hdl.handle.net/1963/3314
. Branching of Cantor Manifolds of Elliptic Tori and Applications to PDEs. Communications in Mathematical Physics. 2011 ;305:741-796.
. Boutroux curves with external field: equilibrium measures without a variational problem. Anal. Math. Phys. [Internet]. 2011 ;1:167–211. Available from: http://dx.doi.org/10.1007/s13324-011-0012-3
. Boundary-clustered interfaces for the Allen–Cahn equation. Pacific Journal of Mathematics 229 (2007), No. 2, 447–468 [Internet]. 2007 . Available from: http://hdl.handle.net/1963/5089
. The boundary Riemann solver coming from the real vanishing viscosity approximation. Arch. Ration. Mech. Anal. 191 (2009) 1-96 [Internet]. 2009 . Available from: http://hdl.handle.net/1963/1831
. Boundary interface for the Allen-Cahn equation. J. Fixed Point Theory Appl. 1 (2007) 305-336 [Internet]. 2007 . Available from: http://hdl.handle.net/1963/2027
. On the Boundary Control of Systems of Conservation Laws. SIAM J. Control Optim. 41 (2002) 607-622 [Internet]. 2002 . Available from: http://hdl.handle.net/1963/3070
. Boundary control and shape optimization for the robust design of bypass anastomoses under uncertainty. Mathematical Modelling and Numerical Analysis, in press, 2012-13 [Internet]. 2012 . Available from: http://hdl.handle.net/1963/6337
. Bound states of Nonlinear Schroedinger Equations with Potentials Vanishing at Infinity. J. Anal. Math. 98 (2006) 317-348 [Internet]. 2006 . Available from: http://hdl.handle.net/1963/1756
. Bound and ground states of coupled nonlinear Schrödinger equations. C. R. Acad. Sci. Paris, Ser. I 342 (2006) 453-458 [Internet]. 2006 . Available from: http://hdl.handle.net/1963/2149
. A Borel-Weil-Bott approach to representations of \rm sl\sb q(2,C). Lett. Math. Phys. 29 (1993) 215-217 [Internet]. 1993 . Available from: http://hdl.handle.net/1963/3538
. Blow-up solutions for the Schrödinger equation in dimension three with a concentrated nonlinearity. Ann. Inst. H. Poincare Anal. Non Lineaire 21 (2004) 121-137 [Internet]. 2004 . Available from: http://hdl.handle.net/1963/2998
. On the blow-up of GSBV functions under suitable geometric properties of the jump set. Advances in Calculus of Variations [Internet]. 2020 . Available from: https://doi.org/10.1515/acv-2019-0068
. On the Blow-up for a Discrete Boltzmann Equation in the Plane. Discrete Contin. Dyn. Syst. 13 (2005) 1-12 [Internet]. 2005 . Available from: http://hdl.handle.net/1963/2244
.