MENU

You are here

Publications

Export 1736 results:
2022
Hess MW, Rozza G. Model Reduction Using Sparse Polynomial Interpolation for the Incompressible Navier-Stokes Equations. 2022 .
Papapicco D, Demo N, Girfoglio M, Stabile G, Rozza G. The Neural Network shifted-proper orthogonal decomposition: A machine learning approach for non-linear reduction of hyperbolic equations. Computer Methods in Applied Mechanics and Engineering [Internet]. 2022 ;392. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85124488633&doi=10.1016%2fj.cma.2022.114687&partnerID=40&md5=12f82dcaba04c4a7c44f8e5b20101997
Scagliotti A, P. Franzone C. A piecewise conservative method for unconstrained convex optimization. [Internet]. 2022 ;81(1):251 - 288. Available from: https://doi.org/10.1007/s10589-021-00332-0
Girfoglio M, Quaini A, Rozza G. A POD-Galerkin reduced order model for the Navier–Stokes equations in stream function-vorticity formulation. [Internet]. 2022 :105536. Available from: https://www.sciencedirect.com/science/article/pii/S0045793022001645
Nonino M, Ballarin F, Rozza G, Maday Y. Projection based semi–implicit partitioned Reduced Basis Method for non parametrized and parametrized Fluid–Structure Interaction problems. 2022 .
Meneghetti L, Demo N, Rozza G. A Proper Orthogonal Decomposition approach for parameters reduction of Single Shot Detector networks. [Internet]. 2022 . Available from: https://arxiv.org/abs/2207.13551
Della Marca R, Loy N, Tosin A. An SIR–like kinetic model tracking individuals' viral load. Networks and Heterogeneous Media. 2022 :-.
Arndt D, Feder WBangerth M, Fehling M, Gassmöller R, Heister T, Heltai L, Kronbichler M, Maier M, Munch P, Pelteret J-P, et al. The \textttdeal.II Library, Version 9.4. Journal of Numerical Mathematics. 2022 .
Peschka D, Zafferi A, Heltai L, Thomas M. Variational Approach to Fluid–Structure Interaction via GENERIC. Journal of Non-Equilibrium Thermodynamics. 2022 .
Liu Z, McBride A, Saxena P, Heltai L, Qu Y, Steinmann P. Vibration Analysis of Piezoelectric Kirchhoff-Love shells based on Catmull-Clark Subdivision Surfaces. International Journal for Numerical Methods in Engineering. 2022 .

Pages

Sign in