You are here


Export 39 results:
Filters: Author is Massimiliano Berti  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
Berti M, Bolle P. Sobolev periodic solutions of nonlinear wave equations in higher spatial dimensions. Archive for Rational Mechanics and Analysis. 2010 ;195:609-642.
Berti M. Variational methods for Hamiltonian PDEs. NATO Science for Peace and Security Series B: Physics and Biophysics. 2008 :391-420.
Berti M, Bolle P. Cantor families of periodic solutions for completely resonant wave equations. Frontiers of Mathematics in China. 2008 ;3:151-165.
Berti M, Matzeu M, Valdinoci E. On periodic elliptic equations with gradient dependence. Communications on Pure and Applied Analysis. 2008 ;7:601-615.
Berti M, Bolle P. Cantor families of periodic solutions of wave equations with C k nonlinearities. Nonlinear Differential Equations and Applications. 2008 ;15:247-276.
Berti M, Bolle P. Cantor families of periodic solutions for wave equations via a variational principle. Advances in Mathematics. 2008 ;217:1671-1727.
Berti M, Procesi M. Nonlinear wave and Schrödinger equations on compact Lie groups and homogeneous spaces. Duke Mathematical Journal. 2011 ;159(3).
Berti M, Biasco L, Procesi M. KAM for Reversible Derivative Wave Equations. Arch. Ration. Mech. Anal. [Internet]. 2014 ;212(3):905-955. Available from:
Berti M, Corsi L, Procesi M. An Abstract Nash–Moser Theorem and Quasi-Periodic Solutions for NLW and NLS on Compact Lie Groups and Homogeneous Manifolds. [Internet]. 2014 . Available from:
Berti M, Delort J-M. Almost global existence of solutions for capillarity-gravity water waves equations with periodic spatial boundary conditions.; 2017. Available from:
Berti M, Kappeler T, Montalto R. Large KAM tori for perturbations of the dNLS equation.; 2016. Available from:
Berti M, Feola R, Franzoi L. Quadratic Life Span of Periodic Gravity-capillary Water Waves. [Internet]. 2021 ;3(1):85 - 115. Available from:
Berti M, Franzoi L, Maspero A. Traveling Quasi-periodic Water Waves with Constant Vorticity. [Internet]. 2021 ;240(1):99 - 202. Available from:
Berti M, Maspero A, Murgante F. Local Well Posedness of the Euler–Korteweg Equations on $$\mathbb T}^d}$$. [Internet]. 2021 ;33(3):1475 - 1513. Available from:


Sign in