Export 21 results:
Filters: Author is Davide Guzzetti [Clear All Filters]
Tabulation of Painlevé 6 transcendents. Nonlinearity, Volume 25, Issue 12, December 2012, Pages 3235-3276 [Internet]. 2012 . Available from: http://hdl.handle.net/1963/6520
. Stokes Matrices for Frobenius Manifolds and the 6 Painlevé Equation. In: Rokko Lectures in Mathematics, Vol 7 [Issue title: Perspective of Painleve equations], (2000), pages : 101-109. Rokko Lectures in Mathematics, Vol 7 [Issue title: Perspective of Painleve equations], (2000), pages : 101-109. Kobe University, Japan; 2000. Available from: http://hdl.handle.net/1963/6546
. Stokes matrices and monodromy of the quantum cohomology of projective spaces. Comm. Math. Phys. 207 (1999) 341-383 [Internet]. 1999 . Available from: http://hdl.handle.net/1963/3475
. Solving the Sixth Painlevé Equation: Towards the Classification of all the Critical Behaviors and the Connection Formulae. Int Math Res Notices (2012) 2012 (6): 1352-1413 [Internet]. 2012 . Available from: http://hdl.handle.net/1963/6093
. Solving PVI by Isomonodromy Deformations. In: Painlevé equations and related topics : proceedings of the international conference, Saint Petersburg, Russia, June 17-23, 2011 / Aleksandr Dmitrievich Briuno; Alexander B Batkhin. - Berlin : De Gruyter, [2012]. - p. 101-105. Painlevé equations and related topics : proceedings of the international conference, Saint Petersburg, Russia, June 17-23, 2011 / Aleksandr Dmitrievich Briuno; Alexander B Batkhin. - Berlin : De Gruyter, [2012]. - p. 101-105. SISSA; 2011. Available from: http://hdl.handle.net/1963/6522
. A Review on The Sixth Painlevé Equation. [Internet]. 2012 . Available from: http://hdl.handle.net/1963/6525
. A Review of the Sixth Painlevé Equation. [Internet]. 2014 . Available from: http://urania.sissa.it/xmlui/handle/1963/34658
. Poles Distribution of PVI Transcendents close to a Critical Point (summer 2011). Physica D: Nonlinear Phenomena, Volume 241, Issue 23-24, 1 December 2012, Pages 2188-2203 [Internet]. 2012 . Available from: http://hdl.handle.net/1963/6526
. Matching Procedure for the Sixth Painlevé Equation (May 2006). Journal of Physics A: Mathematical and General, Volume 39, Issue 39, 29 September 2006, Article numberS02, Pages 11973-12031 [Internet]. 2006 . Available from: http://hdl.handle.net/1963/6524
. On the Logarithmic Asymptotics of the Sixth Painleve\' Equation (Summer 2007). J.Phys.A: Math.Theor. 41,(2008), 205201-205247 [Internet]. 2008 . Available from: http://hdl.handle.net/1963/6521
. Local moduli of semisimple Frobenius coalescent structures. SISSA; 2018. Available from: http://preprints.sissa.it/handle/1963/35304
. Isomonodromy deformations at an irregular singularity with coalescing eigenvalues. Duke Math. J. [Internet]. 2019 ;168:967–1108. Available from: https://doi.org/10.1215/00127094-2018-0059
. Inverse problem for Semisimple Frobenius Manifolds Monodromy Data and the Painlevé VI Equation. [Internet]. 2000 . Available from: http://hdl.handle.net/1963/1557
. Inverse Problem and Monodromy Data for Three-Dimensional Frobenius Manifolds. Mathematical Physics, Analysis and Geometry 4: 245–291, 2001. 2001 .
. The elliptic representation of the sixth Painlevé equation. Théories asymptotiques et équations de Painlevé : [colloque], Angers, juin 2004 / édité par Éric Delabaere, Michèle Loday-Richaud. - Paris : Société mathématique de France, 2006. - Collection SMF. Séminaires et congrès. - page : 83-101 [Internet]. 2004 . Available from: http://hdl.handle.net/1963/6529
. The Elliptic Representation of the Painleve 6 Equation. Deformation of differential equations and asymptotic analysis / Yoshishige Haraoka. - Kyōto : Kyoto University, Research Institute for Mathematical Sciences, 2002. - RIMS kokyuroku, volume 1296 . - page: 112-123 [Internet]. 2002 . Available from: http://hdl.handle.net/1963/6530
. The Elliptic Representation of the General Painlevé 6 Equation. Communications on Pure and Applied Mathematics, Volume 55, Issue 10, October 2002, Pages 1280-1363 [Internet]. 2002 . Available from: http://hdl.handle.net/1963/6523
. On the Critical Behavior, the Connection Problem and the Elliptic Representation of a Painlevé VI Equation. Mathematical Physics, Analysis and Geometry 4: 293–377, 2001. 2001 .
. An asymptotic reduction of a Painlevé VI equation to a Painlevé III. J.Phys.A: Math.Theor. 44 (2011) 215203 [Internet]. 2011 . Available from: http://hdl.handle.net/1963/5124
. The Asymptotic Behaviour of the Fourier Transforms of Orthogonal Polynomials II: L.I.F.S. Measures and Quantum Mechanics. Ann. Henri Poincar´e 8 (2007), 301–336. 2007 .
. Analytic geometry of semisimple coalescent Frobenius structures. Random Matrices: Theory and Applications [Internet]. 2017 ;06:1740004. Available from: https://doi.org/10.1142/S2010326317400044
.