Export 479 results:
Filters: First Letter Of Last Name is B [Clear All Filters]
Simple Lie Algebras and Topological ODEs. Int. Math. Res. Not. 2016 ;2016.
. The Cauchy two–matrix model. Comm. Math. Phys. 2009 ;287:983–1014.
. Singular Value Decomposition of a Finite Hilbert Transform Defined on Several Intervals and the Interior Problem of Tomography: The Riemann-Hilbert Problem Approach. Comm. Pure Appl. Math. 2014 .
. The PDEs of biorthogonal polynomials arising in the two-matrix model. Math. Phys. Anal. Geom. 2006 ;9:23–52.
. The duality of spectral curves that arises in two-matrix models. Teoret. Mat. Fiz. 2003 ;134:32–45.
. Riemann–Hilbert approach to multi-time processes: The Airy and the Pearcey cases. Physica D: Nonlinear Phenomena [Internet]. 2012 ;241:2237 - 2245. Available from: http://www.sciencedirect.com/science/article/pii/S0167278912000115
. Correspondence between Minkowski and de Sitter quantum field theory. Phys. Lett. B. 1999 ;462:249–253.
. CORRIGENDUM: The dependence on the monodromy data of the isomonodromic tau function. [Internet]. 2016 . Available from: http://arxiv.org/abs/1601.04790
. Cubic string boundary value problems and Cauchy biorthogonal polynomials. J. Phys. A [Internet]. 2009 ;42:454006, 13. Available from: http://0-dx.doi.org.mercury.concordia.ca/10.1088/1751-8113/42/45/454006
. Meromorphic differentials with imaginary periods on degenerating hyperelliptic curves. Anal. Math. Phys. [Internet]. 2015 ;5:1–22. Available from: http://dx.doi.org/10.1007/s13324-014-0088-7
. Painlevé IV Critical Asymptotics for Orthogonal Polynomials in the Complex Plane. Symmetry, Integrability and Geometry. Methods and Applications. 2018 ;14.
. Biorthogonal Laurent polynomials, Töplitz determinants, minimal Toda orbits and isomonodromic tau functions. Constr. Approx. 2007 ;26:383–430.
. Strong asymptotics for Cauchy biorthogonal polynomials with application to the Cauchy two-matrix model. J. Math. Phys. 2013 ;54:043517, 25.
. Differential systems for biorthogonal polynomials appearing in 2-matrix models and the associated Riemann-Hilbert problem. Comm. Math. Phys. 2003 ;243:193–240.
. Warped products with special Riemannian curvature. Bol. Soc. Brasil. Mat. (N.S.). 2001 ;32:45–62.
. Maximal amplitudes of finite-gap solutions for the focusing Nonlinear Schrödinger Equation. Comm. Math. Phys. [Internet]. 2017 ;354:525–547. Available from: http://dx.doi.org/10.1007/s00220-017-2895-9
. Cauchy biorthogonal polynomials. J. Approx. Theory [Internet]. 2010 ;162:832–867. Available from: http://0-dx.doi.org.mercury.concordia.ca/10.1016/j.jat.2009.09.008
. Rogue waves in multiphase solutions of the focusing nonlinear Schrödinger equation. Proc. A. [Internet]. 2016 ;472:20160340, 12. Available from: http://dx.doi.org/10.1098/rspa.2016.0340
. Darboux Transformations and Random Point Processes. IMRN. 2014 ;rnu122:56.
. Semiclassical orthogonal polynomials, matrix models and isomonodromic tau functions. Comm. Math. Phys. 2006 ;263:401–437.
. Second and third order observables of the two-matrix model. J. High Energy Phys. 2003 :062, 30 pp. (electronic).
. On the location of poles for the Ablowitz-Segur family of solutions to the second Painlevé equation. Nonlinearity [Internet]. 2012 ;25:1179–1185. Available from: http://0-dx.doi.org.mercury.concordia.ca/10.1088/0951-7715/25/4/1179
. Frobenius manifold structure on orbit space of Jacobi groups. II. Differential Geom. Appl. 2000 ;13:213–233.
. Correlation functions of the KdV hierarchy and applications to intersection numbers over $\overline\CalM_g,n$. Phys. D [Internet]. 2016 ;327:30–57. Available from: http://dx.doi.org/10.1016/j.physd.2016.04.008
. .