Export 475 results:
Filters: First Letter Of Last Name is B [Clear All Filters]
On Sobolev instability of the interior problem of tomography. Journal of Mathematical Analysis and Applications. 2016 .
. Moment determinants as isomonodromic tau functions. Nonlinearity. 2009 ;22:29–50.
. Cauchy-Laguerre two-matrix model and the Meijer-G random point field. Comm. Math. Phys. [Internet]. 2014 ;326:111–144. Available from: http://dx.doi.org/10.1007/s00220-013-1833-8
. Massless scalar field in a two-dimensional de Sitter universe. In: Rigorous quantum field theory. Vol. 251. Rigorous quantum field theory. Basel: Birkhäuser; 2007. pp. 27–38.
. Fredholm determinants and pole-free solutions to the noncommutative Painlevé II equation. Comm. Math. Phys. [Internet]. 2012 ;309:793–833. Available from: http://0-dx.doi.org.mercury.concordia.ca/10.1007/s00220-011-1383-x
. Partition functions for matrix models and isomonodromic tau functions. J. Phys. A. 2003 ;36:3067–3083.
. Universality of the matrix Airy and Bessel functions at spectral edges of unitary ensembles. Random Matrices Theory Appl. [Internet]. 2017 ;6:1750010, 22. Available from: http://dx.doi.org/10.1142/S2010326317500101
. Universality in the profile of the semiclassical limit solutions to the focusing nonlinear Schrödinger equation at the first breaking curve. Int. Math. Res. Not. IMRN [Internet]. 2010 :2119–2167. Available from: http://0-dx.doi.org.mercury.concordia.ca/10.1093/imrn/rnp196
. Frobenius manifold structure on orbit space of Jacobi groups. I. Differential Geom. Appl. 2000 ;13:19–41.
. A degeneration of two-phase solutions of the focusing nonlinear Schrödinger equation via Riemann-Hilbert problems. J. Math. Phys. [Internet]. 2015 ;56:061507, 17. Available from: http://dx.doi.org/10.1063/1.4922362
. Topological expansion for the Cauchy two-matrix model. J. Phys. A [Internet]. 2009 ;42:335201, 28. Available from: http://dx.doi.org/10.1088/1751-8113/42/33/335201
. Inversion formulae for the $\romancosh$-weighted Hilbert transform. Proc. Amer. Math. Soc. [Internet]. 2013 ;141:2703–2718. Available from: http://dx.doi.org/10.1090/S0002-9939-2013-11642-4
. Isomonodromic deformation of resonant rational connections. IMRP Int. Math. Res. Pap. 2005 :565–635.
. Boutroux curves with external field: equilibrium measures without a variational problem. Anal. Math. Phys. [Internet]. 2011 ;1:167–211. Available from: http://dx.doi.org/10.1007/s13324-011-0012-3
. Jacobi groups, Jacobi forms and their applications. In: Isomonodromic deformations and applications in physics (Montréal, QC, 2000). Vol. 31. Isomonodromic deformations and applications in physics (Montréal, QC, 2000). Providence, RI: Amer. Math. Soc.; 2002. pp. 99–111.
. Noncommutative Painlevé Equations and Systems of Calogero Type. Comm. Math. Phys. 2018 .
. On asymptotic regimes of orthogonal polynomials with complex varying quartic exponential weight. SIGMA Symmetry Integrability Geom. Methods Appl. [Internet]. 2016 ;12:Paper No. 118, 50 pages. Available from: http://dx.doi.org/10.3842/SIGMA.2016.118
. Mesoscopic colonization in a spectral band. J. Phys. A [Internet]. 2009 ;42:415204, 17. Available from: http://0-dx.doi.org.mercury.concordia.ca/10.1088/1751-8113/42/41/415204
. The partition function of the extended $r$-reduced Kadomtsev-Petviashvili hierarchy. J. Phys. A [Internet]. 2015 ;48:195205, 20. Available from: http://dx.doi.org/10.1088/1751-8113/48/19/195205
. Effective inverse spectral problem for rational Lax matrices and applications. Int. Math. Res. Not. IMRN. 2007 :Art. ID rnm103, 39.
. Universality for the focusing nonlinear Schrödinger equation at the gradient catastrophe point: rational breathers and poles of the \it Tritronquée solution to Painlevé I. Comm. Pure Appl. Math. [Internet]. 2013 ;66:678–752. Available from: http://dx.doi.org/10.1002/cpa.21445
. Mixed correlation functions of the two-matrix model. J. Phys. A. 2003 ;36:7733–7750.
. The Malgrange form and Fredholm determinants. SIGMA Symmetry Integrability Geom. Methods Appl. [Internet]. 2017 ;13:Paper No. 046, 12. Available from: http://dx.doi.org/10.3842/SIGMA.2017.046
. The dependence on the monodromy data of the isomonodromic tau function. Comm. Math. Phys. [Internet]. 2010 ;294:539–579. Available from: http://0-dx.doi.org.mercury.concordia.ca/10.1007/s00220-009-0961-7
. Decomposing quantum fields on branes. Nuclear Phys. B. 2000 ;581:575–603.
.