The calibration method for the Mumford-Shah functional. C. R. Acad. Sci. Paris Ser. I Math. 329 (1999), no. 3, 249-254 [Internet]. 1999 . Available from: http://hdl.handle.net/1963/1235
. A uniqueness result for the continuity equation in two dimensions. SISSA; 2011. Available from: http://hdl.handle.net/1963/4663
. Quasistatic evolution of sessile drops and contact angle hysteresis. Arch. Rational Mech. Anal. 202 (2011) 295-348 [Internet]. 2011 . Available from: http://hdl.handle.net/1963/4912
. Structure of level sets and Sard-type properties of Lipschitz maps. SISSA; 2011. Available from: http://hdl.handle.net/1963/4657
. Independence of synthetic curvature dimension conditions on transport distance exponent. Trans. Amer. Math. Soc. [Internet]. 2021 ;374:5877–5923. Available from: https://doi.org/10.1090/tran/8413
. IGA-Energetic BEM: An Effective Tool for the Numerical Solution of Wave Propagation Problems in Space-Time Domain. Mathematics. 2022 ;10(3).
. The geometry of Maximum Principle. Proceedings of the Steklov Institute of mathematics. vol. 273 (2011), page: 5-27 ; ISSN: 0081-5438 [Internet]. 2011 . Available from: http://hdl.handle.net/1963/6456
. A Gauss-Bonnet-like formula on two-dimensional almost-Riemannian manifolds. Discrete Contin. Dyn. Syst. 20 (2008) 801-822 [Internet]. 2008 . Available from: http://hdl.handle.net/1963/1869
. Introduction to Riemannian and sub-Riemannian geometry. SISSA; 2012. Available from: http://hdl.handle.net/1963/5877
. Optimal transportation under nonholonomic constraints. Trans. Amer. Math. Soc. 361 (2009) 6019-6047 [Internet]. 2009 . Available from: http://hdl.handle.net/1963/2176
. Quadratic cohomology. 2013 .
. On the local structure of optimal trajectories in R3. SIAM J. Control Optim. 42 (2003) 513-531 [Internet]. 2003 . Available from: http://hdl.handle.net/1963/1612
. Two-dimensional almost-Riemannian structures with tangency points. Ann. Inst. H. Poincare Anal. Non Lineaire [Internet]. 2010 ;27:793-807. Available from: http://hdl.handle.net/1963/3870
. An estimation of the controllability time for single-input systems on compact Lie Groups. ESAIM Control Optim. Calc. Var. 12 (2006) 409-441 [Internet]. 2006 . Available from: http://hdl.handle.net/1963/2135
. Sub-Riemannian structures on 3D Lie groups. Journal of Dynamical and Control Systems. Volume 18, Issue 1, January 2012, Pages 21-44 [Internet]. 2012 . Available from: http://hdl.handle.net/1963/6453
. On finite-dimensional projections of distributions for solutions of randomly forced PDE\\\'s. Ann. Inst. Henri Poincare-Prob. Stat. 43 (2007) 399-415 [Internet]. 2007 . Available from: http://hdl.handle.net/1963/2012
. Invariant Lagrange submanifolds of dissipative systems. Russian Mathematical Surveys. Volume 65, Issue 5, 2010, Pages: 977-978 [Internet]. 2010 . Available from: http://hdl.handle.net/1963/6457
. Geodesics and horizontal-path spaces in Carnot groups. Geometry & Topology. 2015 ;19:1569–1630.
. Continuity of optimal control costs and its application to weak KAM theory. Calculus of Variations and Partial Differential Equations. Volume 39, Issue 1, 2010, Pages 213-232 [Internet]. 2010 . Available from: http://hdl.handle.net/1963/6459
. Principal invariants of Jacobi curves. In: Nonlinear control in the Year 2000 / Alberto Isidori, Francoise Lamnabhi-Lagarrigue, Witold Respondek (eds.) - Springer : Berlin, 2001. - (Lecture notes in control and information sciences ; 258). - ISBN 1-85233-363-4 (v. 1). - p. 9-22. Nonlinear control in the Year 2000 / Alberto Isidori, Francoise Lamnabhi-Lagarrigue, Witold Respondek (eds.) - Springer : Berlin, 2001. - (Lecture notes in control and information sciences ; 258). - ISBN 1-85233-363-4 (v. 1). - p. 9-22. Springer; 2000. Available from: http://hdl.handle.net/1963/3825
. On conjugate times of LQ optimal control problems. [Internet]. 2014 . Available from: http://hdl.handle.net/1963/7227
. Controllability on the group of diffeomorphisms. Ann. Inst. H. Poincaré Anal. Non Linéaire 26 (2009) 2503-2509 [Internet]. 2009 . Available from: http://hdl.handle.net/1963/3396
. Generalized Ricci Curvature Bounds for Three Dimensional Contact Subriemannian manifolds. [Internet]. 2011 . Available from: http://hdl.handle.net/1963/6507
. Dynamics control by a time-varying feedback. Journal of Dynamical and Control Systems. Volume 16, Issue 2, April 2010, Pages :149-162 [Internet]. 2010 . Available from: http://hdl.handle.net/1963/6461
. Geometry of Jacobi curves II. J. Dynam. Control Systems 8 (2002), no. 2, 167--215 [Internet]. 2002 . Available from: http://hdl.handle.net/1963/1589
.