MENU

You are here

Publications

Export 1837 results:
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
W
Bertola M, Gouthier D. Warped products with special Riemannian curvature. Bol. Soc. Brasil. Mat. (N.S.). 2001 ;32:45–62.
Dal Maso G, Lucardesi I. The wave equation on domains with cracks growing on a prescribed path: existence, uniqueness, and continuous dependence on the data.; 2015. Available from: http://urania.sissa.it/xmlui/handle/1963/34629
Dubrovin B. WDVV equations and Frobenius manifolds. In: Encyclopedia of Mathematical Physics. Vol 1 A : A-C. Oxford: Elsevier, 2006, p. 438-447. Encyclopedia of Mathematical Physics. Vol 1 A : A-C. Oxford: Elsevier, 2006, p. 438-447. SISSA; 2006. Available from: http://hdl.handle.net/1963/6473
Dal Maso G, De Giorgi E, Modica L. Weak convergence of measures on spaces of semicontinuous functions. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 79 (1985), no. 5, 98-106 [Internet]. 1985 . Available from: http://hdl.handle.net/1963/463
Tasso E. Weak formulation of elastodynamics in domains with growing cracks. [Internet]. 2020 ;199(4):1571 - 1595. Available from: https://doi.org/10.1007/s10231-019-00932-y
Carlotto A, Malchiodi A. Weighted barycentric sets and singular Liouville equations on compact surfaces. Journal of Functional Analysis 262 (2012) 409-450 [Internet]. 2012 . Available from: http://hdl.handle.net/1963/5218
Saracco G. Weighted Cheeger sets are domains of isoperimetry. Manuscripta Math. 2018 ;156:371–381.
Chen P, Quarteroni A, Rozza G. A weighted empirical interpolation method: A priori convergence analysis and applications. [Internet]. 2014 . Available from: http://urania.sissa.it/xmlui/handle/1963/35021
.Venturi L, Ballarin F, Rozza G. A Weighted POD Method for Elliptic PDEs with Random Inputs. Journal of Scientific Computing [Internet]. 2019 ;81:136-153. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85053798049&doi=10.1007%2fs10915-018-0830-7&partnerID=40&md5=5cad501b6ef1955da55868807079ee5d
Carere G, Strazzullo M, Ballarin F, Rozza G, Stevenson R. A weighted POD-reduction approach for parametrized PDE-constrained optimal control problems with random inputs and applications to environmental sciences. Computers and Mathematics with Applications [Internet]. 2021 ;102:261-276. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85117948561&doi=10.1016%2fj.camwa.2021.10.020&partnerID=40&md5=cb57d59a6975a35315b2cf5d0e3a6001
Balogh F, Krauczi É. Weighted quantile correlation test for the logistic family. [Internet]. 2014 . Available from: http://urania.sissa.it/xmlui/handle/1963/35025
Chen P, Quarteroni A, Rozza G. A weighted reduced basis method for elliptic partial differential equations with random input data. SIAM Journal on Numerical Analysis. 2013 ;51:3163–3185.
Venturi L, Torlo D, Ballarin F, Rozza G. Weighted Reduced Order Methods for Parametrized Partial Differential Equations with Random Inputs. PoliTO Springer Series [Internet]. 2019 :27-40. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85084009379&doi=10.1007%2f978-3-030-04870-9_2&partnerID=40&md5=446bcc1f331167bbba67bc00fb170150
Fonda A, Klun G, Sfecci A. Well-Ordered and Non-Well-Ordered Lower and Upper Solutions for Periodic Planar Systems. Advanced Nonlinear Studies [Internet]. 2021 ;21(2):397 - 419. Available from: https://doi.org/10.1515/ans-2021-2117
Agrachev AA. Well-posed infinite horizon variational problems on a compact manifold. Proceedings of the Steklov Institute of Mathematics. Volume 268, Issue 1, 2010, Pages 17-31 [Internet]. 2010 . Available from: http://hdl.handle.net/1963/6458
Ancona F, Marson A. Well-posedness for general 2x2 systems of conservation laws. Mem. Amer. Math. Soc. 169 (2004), no. 801, x+170 pp. [Internet]. 2004 . Available from: http://hdl.handle.net/1963/1241
Danchin R, Fanelli F. The well-posedness issue for the density-dependent Euler equations in endpoint Besov spaces. Journal de Mathématiques Pures et Appliquées [Internet]. 2011 ;96:253 - 278. Available from: http://www.sciencedirect.com/science/article/pii/S0021782411000511
Bressan A, Crasta G, Piccoli B. Well-posedness of the Cauchy problem for n x n systems of conservation laws. American Mathematical Society; 2000. Available from: http://hdl.handle.net/1963/3495
Mola A, Heltai L, DeSimone A. Wet and Dry Transom Stern Treatment for Unsteady and Nonlinear Potential Flow Model for Naval Hydrodynamics Simulations. Journal of Ship Research. 2017 ;61:1–14.
DeSimone A, Alberti G. Wetting of rough surfaces: a homogenization approach. Proc. R. Soc. Lon. Ser. A 461 (2005) 79-97 [Internet]. 2005 . Available from: http://hdl.handle.net/1963/2253

Pages

Sign in