MENU

You are here

Publications

Export 1689 results:
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
S
Bianchini S, Gusev NA. Steady nearly incompressible vector elds in 2D: chain rule and renormalization. SISSA; 2014.
Dell'Antonio G, Figari R, Teta A. Statistics in space dimension two. Lett. Math. Phys. 40 (1997), no. 3, 235-256 [Internet]. 1997 . Available from: http://hdl.handle.net/1963/130
Caldiroli P, Musina R. Stationary states for a two-dimensional singular Schrodinger equation. Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8) 4 (2001), no. 3, 609-633. [Internet]. 2001 . Available from: http://hdl.handle.net/1963/1249
Gidoni P, DeSimone A. Stasis domains and slip surfaces in the locomotion of a bio-inspired two-segment crawler. Meccanica [Internet]. 2017 ;52:587–601. Available from: https://doi.org/10.1007/s11012-016-0408-0
Ambrosetti A, Colorado E. Standing waves of some coupled Nonlinear Schrödinger Equations.; 2007. Available from: http://hdl.handle.net/1963/1821
Bogomolov F, Lukzen E. Stable vector bundles on the families of curves. 2020 .
Mola A, Heltai L, DeSimone A. A stable semi-lagrangian potential method for the simulation of ship interaction with unsteady and nonlinear waves. In: 17th Int. Conf. Ships Shipp. Res. 17th Int. Conf. Ships Shipp. Res. ; 2012.
Bonacini M, Morini M. Stable regular critical points of the Mumford-Shah functional are local minimizers. Annales de l'Institut Henri Poincare (C) Non Linear Analysis [Internet]. 2015 ;32(3):533-570. Available from: https://www.sciencedirect.com/science/article/pii/S0294144914000171
Ballerini A. Stable determination of an immersed body in a stationary Stokes fluid. Inverse Problems [Internet]. 2010 ;26:125015. Available from: https://doi.org/10.1088%2F0266-5611%2F26%2F12%2F125015
Ballerini A. Stable determination of a body immersed in a fluid: the nonlinear stationary case. Applicable Analysis [Internet]. 2013 ;92:460-481. Available from: https://doi.org/10.1080/00036811.2011.628173
Mola A, Heltai L, DeSimone A. A stable and adaptive semi-Lagrangian potential model for unsteady and nonlinear ship-wave interactions. Engineering Analysis with Boundary Elements, 37(1):128 – 143, 2013. [Internet]. 2013 . Available from: http://hdl.handle.net/1963/5669
Torlo D, Ballarin F, Rozza G. Stabilized weighted reduced basis methods for parametrized advection dominated problems with random inputs. SIAM-ASA Journal on Uncertainty Quantification [Internet]. 2018 ;6:1475-1502. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85058246502&doi=10.1137%2f17M1163517&partnerID=40&md5=6c54e2f0eb727cb85060e988486b8ac8
Ali S, Ballarin F, Rozza G. Stabilized reduced basis methods for parametrized steady Stokes and Navier–Stokes equations. Computers and Mathematics with Applications [Internet]. 2020 ;80:2399-2416. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85083340115&doi=10.1016%2fj.camwa.2020.03.019&partnerID=40&md5=7ace96eee080701acb04d8155008dd7d
Pacciarini P, Rozza G. Stabilized reduced basis method for parametrized scalar advection-diffusion problems at higher Péclet number: Roles of the boundary layers and inner fronts. In: 11th World Congress on Computational Mechanics, WCCM 2014, 5th European Conference on Computational Mechanics, ECCM 2014 and 6th European Conference on Computational Fluid Dynamics, ECFD 2014. 11th World Congress on Computational Mechanics, WCCM 2014, 5th European Conference on Computational Mechanics, ECCM 2014 and 6th European Conference on Computational Fluid Dynamics, ECFD 2014. ; 2014. pp. 5614–5624. Available from: https://infoscience.epfl.ch/record/203327/files/ECCOMAS_PP_GR.pdf
Pacciarini P, Rozza G. Stabilized reduced basis method for parametrized advection-diffusion PDEs. Computer Methods in Applied Mechanics and Engineering. 2014 ;274:1–18.
Altafini C, Ticozzi F, Nishio K. Stabilization of Stochastic Quantum Dynamics via Open and Closed Loop Control. IEEE Transactions on Automatic Control. Volume 58, Issue 1, 2013, Article number6228517, Pages 74-85 [Internet]. 2013 . Available from: http://hdl.handle.net/1963/6503
Dal Maso G, Ebobisse F, Ponsiglione M. A stability result for nonlinear Neumann problems under boundary variations. J.Math. Pures Appl. (9) 82 (2003) no.5 , 503 [Internet]. 2003 . Available from: http://hdl.handle.net/1963/1618
Ancona F, Bressan A. Stability rates for patchy vector fields. ESAIM COCV 10 (2004) 168-200 [Internet]. 2004 . Available from: http://hdl.handle.net/1963/2959
Bianchini S, Colombo RM. On the Stability of the Standard Riemann Semigroup. P. Am. Math. Soc., 2002, 130, 1961 [Internet]. 2002 . Available from: http://hdl.handle.net/1963/1528
Michelangeli A, Pfeiffer P. Stability of the (2+2)-fermionic system with zero-range interaction.; 2015. Available from: http://urania.sissa.it/xmlui/handle/1963/34474
Coclite GM, Holden H. Stability of solutions of quasilinear parabolic equations. J. Math. Anal. Appl. 308 (2005) 221-239 [Internet]. 2005 . Available from: http://hdl.handle.net/1963/2892
Boscain U, Balde M. Stability of planar switched systems: the nondiagonalizable case. Commun. Pure Appl. Anal. 7 (2008) 1-21 [Internet]. 2008 . Available from: http://hdl.handle.net/1963/1857
Boscain U. Stability of planar switched systems: the linear single input case. SIAM J. Control Optim. 41 (2002), no. 1, 89-112 [Internet]. 2002 . Available from: http://hdl.handle.net/1963/1529
Boscain U, Charlot G, Sigalotti M. Stability of planar nonlinear switched systems.; 2006. Available from: http://hdl.handle.net/1963/1710
Bressan A, Goatin P. Stability of L^infty Solutions of Temple Class Systems. Differential Integral Equations 13 (2000) 1503-1528 [Internet]. 2000 . Available from: http://hdl.handle.net/1963/3256

Pages

Sign in