MENU

You are here

Publications

Export 233 results:
Filters: First Letter Of Title is S  [Clear All Filters]
Journal Article
Bertola M, Eynard B, Harnad J. Semiclassical orthogonal polynomials, matrix models and isomonodromic tau functions. Comm. Math. Phys. 2006 ;263:401–437.
Jenkins R, McLaughlin K. Semiclassical limit of focusing NLS for a family of square barrier initial data. [Internet]. 2014 . Available from: http://urania.sissa.it/xmlui/handle/1963/35066
Selvitella A. Semiclassical evolution of two rotating solitons for the Nonlinear Schrödinger Equation with electric potential. Adv. Differential Equations [Internet]. 2010 ;15:315–348. Available from: https://projecteuclid.org:443/euclid.ade/1355854752
Dell'Antonio G, Tenuta L. Semiclassical analysis of constrained quantum systems. J. Phys. A 37 (2004) 5605-5624 [Internet]. 2004 . Available from: http://hdl.handle.net/1963/2997
Conti S, DeSimone A, Müller S. Self-similar folding patterns and energy scaling in compressed elastic sheets. Comput. Methods Appl. Mech. Engrg. 194 (2005) 2534-2549 [Internet]. 2005 . Available from: http://hdl.handle.net/1963/3000
Morandotti M. Self-propelled micro-swimmers in a Brinkman fluid. Journal of Biological Dynamics [Internet]. 2012 ;6:88-103. Available from: https://doi.org/10.1080/17513758.2011.611260
Boscain U, Prandi D. Self-adjoint extensions and stochastic completeness of the Laplace-Beltrami operator on conic and anticonic surfaces. 2013 .
Cagnetti F, Mora MG, Morini M. A second order minimality condition for the Mumford-Shah functional. Calc. Var. Partial Differential Equations 33 (2008) 37-74 [Internet]. 2008 . Available from: http://hdl.handle.net/1963/1955
Gigli N, Tamanini L. Second order differentiation formula on RCD(K, N) spaces. Rendiconti Lincei-Matematica e Applicazioni. 2018 ;29:377–386.
Dal Maso G, Fonseca I, Leoni G. Second Order Asymptotic Development for the Anisotropic Cahn-Hilliard Functional. [Internet]. 2014 . Available from: http://hdl.handle.net/1963/7390
Agostiniani V. Second order approximations of quasistatic evolution problems in finite dimension. Discrete & Continuous Dynamical Systems - A [Internet]. 2012 ;32:1125. Available from: http://aimsciences.org//article/id/560b82d9-f289-498a-a619-a4b132aaf9f8
Bertola M. Second and third order observables of the two-matrix model. J. High Energy Phys. 2003 :062, 30 pp. (electronic).
Ambrosetti A, YanYan L, Malchiodi A. Scalar curvature under boundary conditions. Cr. Acad. Sci. I-Math, 2000, 330, 1013 [Internet]. 2000 . Available from: http://hdl.handle.net/1963/1506
Ambrosetti A, Malchiodi A. On the scalar curvature problem under symmetry. [Internet]. 1999 . Available from: http://hdl.handle.net/1963/1287
Malchiodi A. The scalar curvature problem on $S\\\\sp n$: an approach via Morse theory. Calc. Var. Partial Differential Equations 14 (2002), no. 4, 429-445 [Internet]. 2002 . Available from: http://hdl.handle.net/1963/1331
Bianchini S, Tonon D. SBV-like regularity for Hamilton-Jacobi equations with a convex Hamiltonian. Journal of Mathematical Analysis and Applications [Internet]. 2012 ;391(1):190-208. Available from: http://hdl.handle.net/20.500.11767/13909
Bianchini S, Yu L. SBV-like regularity for general hyperbolic systems of conservation laws in one space dimension. Rend. Istit. Mat. Univ. Trieste. 2012 ;44:439–472.
Bianchini S. SBV Regularity of Systems of Conservation Laws and Hamilton–Jacobi Equations. [Internet]. 2014 . Available from: http://urania.sissa.it/xmlui/handle/1963/34691
Bianchini S. SBV regularity of genuinely nonlinear hyperbolic systems of conservation laws in one space dimension. Acta Mathematica Scientia, Volume 32, Issue 1, January 2012, Pages 380-388 [Internet]. 2012 . Available from: http://hdl.handle.net/1963/6535
Bianchini S, Tonon D. SBV regularity for Hamilton-Jacobi equations with Hamiltonian depending on (t,x). Siam Journal on Mathematical Analysis [Internet]. 2012 ;44(3):2179-2203. Available from: http://hdl.handle.net/20.500.11767/14066
Bianchini S, De Lellis C, Robyr R. SBV regularity for Hamilton-Jacobi equations in R^n. Arch. Rational Mech. Anal. 200 (2011) 1003-1021 [Internet]. 2011 . Available from: http://hdl.handle.net/1963/4911
Bianchini S, Caravenna L. SBV regularity for genuinely nonlinear, strictly hyperbolic systems of conservation laws in one space dimension. Communications in Mathematical Physics 313 (2012) 1-33 [Internet]. 2012 . Available from: http://hdl.handle.net/1963/4091
Conference Paper
Mola A, Heltai L, DeSimone A. A stable semi-lagrangian potential method for the simulation of ship interaction with unsteady and nonlinear waves. In: 17th Int. Conf. Ships Shipp. Res. 17th Int. Conf. Ships Shipp. Res. ; 2012.
Pacciarini P, Rozza G. Stabilized reduced basis method for parametrized scalar advection-diffusion problems at higher Péclet number: Roles of the boundary layers and inner fronts. In: 11th World Congress on Computational Mechanics, WCCM 2014, 5th European Conference on Computational Mechanics, ECCM 2014 and 6th European Conference on Computational Fluid Dynamics, ECFD 2014. 11th World Congress on Computational Mechanics, WCCM 2014, 5th European Conference on Computational Mechanics, ECCM 2014 and 6th European Conference on Computational Fluid Dynamics, ECFD 2014. ; 2014. pp. 5614–5624. Available from: https://infoscience.epfl.ch/record/203327/files/ECCOMAS_PP_GR.pdf
Mola A, Heltai L, DeSimone A, Berti M. Ship Sinkage and Trim Predictions Based on a CAD Interfaced Fully Nonlinear Potential Model. In: The 26th International Ocean and Polar Engineering Conference. Vol. 3. The 26th International Ocean and Polar Engineering Conference. International Society of Offshore and Polar Engineers; 2016. pp. 511–518.

Pages

Sign in