Export 480 results:
Filters: First Letter Of Last Name is B [Clear All Filters]
SBV regularity of genuinely nonlinear hyperbolic systems of conservation laws in one space dimension. Acta Mathematica Scientia, Volume 32, Issue 1, January 2012, Pages 380-388 [Internet]. 2012 . Available from: http://hdl.handle.net/1963/6535
. SBV regularity for Hamilton-Jacobi equations in R^n. Arch. Rational Mech. Anal. 200 (2011) 1003-1021 [Internet]. 2011 . Available from: http://hdl.handle.net/1963/4911
. Renormalization for Autonomous Nearly Incompressible BV Vector Fields in Two Dimensions. SIAM Journal on Mathematical Analysis [Internet]. 2016 ;48:1-33. Available from: https://doi.org/10.1137/15M1007380
. On the Euler-Lagrange equation for a variational problem. Discrete Contin. Dynam. Systems A 17 (2007) 449-480 [Internet]. 2007 . Available from: http://hdl.handle.net/1963/1792
. A note on singular limits to hyperbolic systems of conservation laws. Commun. Pure Appl. Ana., 2003, 2, 51-64 [Internet]. 2003 . Available from: http://hdl.handle.net/1963/1542
. A Lagrangian approach for scalar multi-d conservation laws.; 2017. Available from: http://preprints.sissa.it/handle/1963/35290
. The decomposition of optimal transportation problems with convex cost. SISSA; 2014. Available from: http://hdl.handle.net/1963/7433
. Asymptotic behaviour of smooth solutions for partially dissipative hyperbolic systems with a convex entropy. Comm. Pure Appl. Math. 60 (2007) 1559-1622 [Internet]. 2007 . Available from: http://hdl.handle.net/1963/1780
. Dissipative solutions to Hamiltonian systems. Kinetic and Related Models. 2024 ;17.
. On the structure of $L^\infty$-entropy solutions to scalar conservation laws in one-space dimension. SISSA; 2016. Available from: http://urania.sissa.it/xmlui/handle/1963/35209
. A case study in vanishing viscosity. Discrete Cont. Dyn. Syst. 7 (2001) 449-476 [Internet]. 2001 . Available from: http://hdl.handle.net/1963/3091
. On the concentration of entropy for scalar conservation laws. Discrete & Continuous Dynamical Systems - S [Internet]. 2016 ;9:73. Available from: http://aimsciences.org//article/id/ce4eb91e-9553-4e8d-8c4c-868f07a315ae
. Perturbation techniques applied to the real vanishing viscosity approximation of an initial boundary value problem. SISSA; 2007. Available from: http://preprints.sissa.it/handle/1963/35315
. Vanishing viscosity solutions of hyperbolic systems on manifolds. [Internet]. 1999 . Available from: http://hdl.handle.net/1963/1238
. Existence and uniqueness of the gradient flow of the Entropy in the space of probability measures. [Internet]. 2014 . Available from: http://urania.sissa.it/xmlui/handle/1963/34693
. Invariant Manifolds for Viscous Profiles of a Class of Mixed Hyperbolic-Parabolic Systems.; 2008. Available from: http://hdl.handle.net/1963/3400
. Glimm interaction functional for BGK schemes.; 2006. Available from: http://hdl.handle.net/1963/1770
. Quadratic Interaction Functional for General Systems of Conservation Laws. Communications in Mathematical Physics. 2015 ;338:1075–1152.
. A Decomposition Theorem for BV functions. Communications on Pure and Applied Analysis [Internet]. 2011 ;10(6):1549-1566. Available from: http://hdl.handle.net/20.500.11767/14599
. Properties of Mixing BV Vector Fields. Communications in Mathematical Physics [Internet]. 2023 ;402:1953–2009. Available from: https://doi.org/10.1007%2Fs00220-023-04780-z
. A uniqueness result for the decomposition of vector fields in Rd. SISSA; 2017. Available from: http://preprints.sissa.it/handle/1963/35274
. An Estimate on the Flow Generated by Monotone Operators. Communications in Partial Differential Equations 36 (2011) 777-796 [Internet]. 2011 . Available from: http://hdl.handle.net/1963/3646
. Extremal faces of the range of a vector measure and a theorem of Lyapunov. J. Math. Anal. Appl. 231 (1999) 301-318 [Internet]. 1999 . Available from: http://hdl.handle.net/1963/3370
. On a quadratic functional for scalar conservation laws. Journal of Hyperbolic Differential Equations [Internet]. 2014 ;11(2):355-435. Available from: http://arxiv.org/abs/1311.2929
. On Bressan\\\'s conjecture on mixing properties of vector fields. Self-Similar Solutions of Nonlinear PDE / Ed. Piotr Biler and Grzegorz Karch. - Banach Center Publ. 74 (2006) 13-31 [Internet]. 2006 . Available from: http://hdl.handle.net/1963/1806
.