Export 703 results:
Filters: First Letter Of Last Name is B [Clear All Filters]
Quasi-periodic water waves. J. Fixed Point Theory Appl. [Internet]. 2017 ;19:129–156. Available from: https://doi.org/10.1007/s11784-016-0375-z
. Quasi-periodic standing wave solutions of gravity-capillary water waves. Mem. Amer. Math. Soc. [Internet]. 2020 ;263:v+171. Available from: https://doi.org/10.1090/memo/1273
. Quasi-periodic solutions with Sobolev regularity of NLS on Td with a multiplicative potential. Journal of the European Mathematical Society. 2013 ;15:229-286.
. Quasi-periodic solutions with Sobolev regularity of NLS on Td with a multiplicative potential. Journal of the European Mathematical Society. 2013 ;15:229-286.
. Quasi-periodic solutions of PDEs. In: Séminaire Laurent Schwartz–-Équations aux dérivées partielles et applications. Année 2011–2012. Séminaire Laurent Schwartz–-Équations aux dérivées partielles et applications. Année 2011–2012. École Polytech., Palaiseau; 2013. p. Exp. No. XXX, 11.
. Quasi-periodic solutions of nonlinear wave equations on the $d$-dimensional torus. EMS Publishing House, Berlin; 2020 p. xv+358.
. Quasi-periodic solutions of nonlinear wave equations on the $d$-dimensional torus. EMS Publishing House, Berlin; 2020 p. xv+358.
. Quasi-periodic solutions of nonlinear Schrödinger equations on $\Bbb T^d$. Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. [Internet]. 2011 ;22:223–236. Available from: https://doi.org/10.4171/RLM/597
. Quasi-periodic solutions of nonlinear Schrödinger equations on $\Bbb T^d$. Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. [Internet]. 2011 ;22:223–236. Available from: https://doi.org/10.4171/RLM/597
. Quasi-periodic solutions of completely resonant forced wave equations. Comm. Partial Differential Equations [Internet]. 2006 ;31:959–985. Available from: https://doi.org/10.1080/03605300500358129
. Quasi-periodic oscillations for wave equations under periodic forcing. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 2005 ;16:109–116.
. Quantum Isometries of the finite noncommutative geometry of the Standard Model. Commun. Math. Phys. 307:101-131, 2011 [Internet]. 2011 . Available from: http://hdl.handle.net/1963/4906
. Quantum Hitchin Systems via beta-deformed Matrix Models. SISSA; 2011. Available from: http://hdl.handle.net/1963/4181
. Quantum Geometry on Quantum Spacetime: Distance, Area and Volume Operators. Commun. Math. Phys. 308 (2011) 567-589 [Internet]. 2011 . Available from: http://hdl.handle.net/1963/5203
. Quantum gauge symmetries in noncommutative geometry. [Internet]. 2014 . Available from: http://urania.sissa.it/xmlui/handle/1963/34897
. Quantized control systems and discrete nonholonomy. Lagrangian and Hamiltonian Methods for Nonlinear Control : a proc. volume from the IFAC Workshop. Princeton, New Jersey, 16-18 March 2000 / ed. by N.E. Leonard, R. Ortega. - Oxford : Pergamon, 2000 [Internet]. 2000 . Available from: http://hdl.handle.net/1963/1502
. Quadratic life span of periodic gravity-capillary water waves. Water Waves [Internet]. 2021 ;3:85–115. Available from: https://doi.org/10.1007/s42286-020-00036-8
. Quadratic interaction functional for systems of conservation laws: a case study. Bulletin of the Institute of Mathematics of Academia Sinica (New Series) [Internet]. 2014 ;9:487-546. Available from: https://w3.math.sinica.edu.tw/bulletin_ns/20143/2014308.pdf
. Quadratic Interaction Functional for General Systems of Conservation Laws. Communications in Mathematical Physics. 2015 ;338:1075–1152.
. On a quadratic functional for scalar conservation laws. Journal of Hyperbolic Differential Equations [Internet]. 2014 ;11(2):355-435. Available from: http://arxiv.org/abs/1311.2929
. Q-factorial Laurent rings. SISSA; 2011. Available from: http://hdl.handle.net/1963/4183
. Pure gravity traveling quasi-periodic water waves with constant vorticity. Comm. Pure Appl. Math. [Internet]. 2024 ;77:990–1064. Available from: https://doi.org/10.1002/cpa.22143
. Properties of Mixing BV Vector Fields. Communications in Mathematical Physics [Internet]. 2023 ;402:1953–2009. Available from: https://doi.org/10.1007%2Fs00220-023-04780-z
. Propagating geometry information to finite element computations. Transactions on Mathematical Software. 2021 ;47(4):1--30.
. Projective Reeds-Shepp car on $S^2$ with quadratic cost. ESAIM COCV 16 (2010) 275-297 [Internet]. 2010 . Available from: http://hdl.handle.net/1963/2668
.