MENU

You are here

Publications

Export 703 results:
Filters: First Letter Of Last Name is B  [Clear All Filters]
Journal Article
Biswas I, Bruzzo U. On semistable principal bundles over complex projective manifolds, II. Geom. Dedicata 146 (2010) 27-41 [Internet]. 2010 . Available from: http://hdl.handle.net/1963/3404
Biswas I, Bruzzo U. On semistable principal bundles over complex projective manifolds, II. Geom. Dedicata 146 (2010) 27-41 [Internet]. 2010 . Available from: http://hdl.handle.net/1963/3404
Biswas I, Bruzzo U. On semistable principal bundles over a complex projective manifold. Int. Math. Res. Not. vol. 2008, article ID rnn035 [Internet]. 2008 . Available from: http://hdl.handle.net/1963/3418
Biswas I, Bruzzo U. On semistable principal bundles over a complex projective manifold. Int. Math. Res. Not. vol. 2008, article ID rnn035 [Internet]. 2008 . Available from: http://hdl.handle.net/1963/3418
Bruzzo U, Grana-Otero B. Semistable and numerically effective principal (Higgs) bundles. Advances in Mathematics 226 (2011) 3655-3676 [Internet]. 2011 . Available from: http://hdl.handle.net/1963/3638
Bruzzo U, Hernandez Ruiperez D. Semistability vs. nefness for (Higgs) vector bundles. Differential Geom. Appl. 24 (2006) 403-416 [Internet]. 2006 . Available from: http://hdl.handle.net/1963/2237
Bianchini S. The semigroup generated by a Temple class system with non-convex flux function. Differential Integral Equations 13 (2000) 1529-1550 [Internet]. 2000 . Available from: http://hdl.handle.net/1963/3221
Baiti P, Bressan A. The semigroup generated by a temple class system with large data. Differential Integral Equations 10 (1997), no. 3, 401-418 [Internet]. 1997 . Available from: http://hdl.handle.net/1963/1023
Baiti P, Bressan A. The semigroup generated by a temple class system with large data. Differential Integral Equations 10 (1997), no. 3, 401-418 [Internet]. 1997 . Available from: http://hdl.handle.net/1963/1023
Bressan A. The semigroup approach to systems of conservation laws. Mat. Contemp. 10 (1996) 21-74 [Internet]. 1996 . Available from: http://hdl.handle.net/1963/1037
Bressan A, Shen W. Semi-cooperative strategies for differential games. Internat. J. Game Theory 32 (2004) 561-593 [Internet]. 2004 . Available from: http://hdl.handle.net/1963/2893
Bertola M, Eynard B, Harnad J. Semiclassical orthogonal polynomials, matrix models and isomonodromic tau functions. Comm. Math. Phys. 2006 ;263:401–437.
Boscain U, Prandi D. Self-adjoint extensions and stochastic completeness of the Laplace-Beltrami operator on conic and anticonic surfaces. 2013 .
Bertola M. Second and third order observables of the two-matrix model. J. High Energy Phys. 2003 :062, 30 pp. (electronic).
Bianchini S, Tonon D. SBV-like regularity for Hamilton-Jacobi equations with a convex Hamiltonian. Journal of Mathematical Analysis and Applications [Internet]. 2012 ;391(1):190-208. Available from: http://hdl.handle.net/20.500.11767/13909
Bianchini S, Yu L. SBV-like regularity for general hyperbolic systems of conservation laws in one space dimension. Rend. Istit. Mat. Univ. Trieste. 2012 ;44:439–472.
Bianchini S. SBV Regularity of Systems of Conservation Laws and Hamilton–Jacobi Equations. [Internet]. 2014 . Available from: http://urania.sissa.it/xmlui/handle/1963/34691
Bianchini S. SBV regularity of genuinely nonlinear hyperbolic systems of conservation laws in one space dimension. Acta Mathematica Scientia, Volume 32, Issue 1, January 2012, Pages 380-388 [Internet]. 2012 . Available from: http://hdl.handle.net/1963/6535
Bianchini S, Tonon D. SBV regularity for Hamilton-Jacobi equations with Hamiltonian depending on (t,x). Siam Journal on Mathematical Analysis [Internet]. 2012 ;44(3):2179-2203. Available from: http://hdl.handle.net/20.500.11767/14066
Bianchini S, De Lellis C, Robyr R. SBV regularity for Hamilton-Jacobi equations in R^n. Arch. Rational Mech. Anal. 200 (2011) 1003-1021 [Internet]. 2011 . Available from: http://hdl.handle.net/1963/4911
Bianchini S, Caravenna L. SBV regularity for genuinely nonlinear, strictly hyperbolic systems of conservation laws in one space dimension. Communications in Mathematical Physics 313 (2012) 1-33 [Internet]. 2012 . Available from: http://hdl.handle.net/1963/4091
Bertola M, El G, Tovbis A. Rogue waves in multiphase solutions of the focusing nonlinear Schrödinger equation. Proc. A. [Internet]. 2016 ;472:20160340, 12. Available from: http://dx.doi.org/10.1098/rspa.2016.0340
Agrachev AA, Baryshnikov Y, Liberzon D. On robust Lie-algebraic stability conditions for switched linear systems. Systems and Control Letters. Volume 61, Issue 2, February 2012, Pages 347-353 [Internet]. 2012 . Available from: http://hdl.handle.net/1963/6455
Bertola M, Cafasso M. Riemann–Hilbert approach to multi-time processes: The Airy and the Pearcey cases. Physica D: Nonlinear Phenomena [Internet]. 2012 ;241:2237 - 2245. Available from: http://www.sciencedirect.com/science/article/pii/S0167278912000115
Boscain U, Charlot G. Resonance of minimizers for n-level quantum systems with an arbitrary cost. ESAIM COCV 10 (2004) 593-614 [Internet]. 2004 . Available from: http://hdl.handle.net/1963/2910

Pages

Sign in