MENU

You are here

Publications

Export 452 results:
Filters: First Letter Of Last Name is D  [Clear All Filters]
Journal Article
Dal Maso G, Defranceschi A. Limits of nonlinear Dirichlet problems in varying domains. (Italian). Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 81, 1987, no. 2, 111-118 [Internet]. 1987 . Available from: http://hdl.handle.net/1963/486
Dal Maso G, Defranceschi A. Limits of nonlinear Dirichlet problems in varying domains. (Italian). Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 81, 1987, no. 2, 111-118 [Internet]. 1987 . Available from: http://hdl.handle.net/1963/486
Dal Maso G, Carere G, Leaci A, Pascali E. Limits of obstacle problems for the area functional. Partial differential equations and the calculus of variations : essays in honor of Ennio De Giorgi. - Boston : Birkhauser, 1989. - p. 285-309 [Internet]. 1989 . Available from: http://hdl.handle.net/1963/577
Dal Maso G, De Cicco V, Notarantonio L, Tchou NA. Limits of variational problems for Dirichlet forms in varying domains. Journal des Mathematiques Pures et Appliquees. Volume 77, Issue 1, January 1998, Pages 89-116 [Internet]. 1998 . Available from: http://hdl.handle.net/1963/6440
Dal Maso G, De Cicco V, Notarantonio L, Tchou NA. Limits of variational problems for Dirichlet forms in varying domains. Journal des Mathematiques Pures et Appliquees. Volume 77, Issue 1, January 1998, Pages 89-116 [Internet]. 1998 . Available from: http://hdl.handle.net/1963/6440
Agostiniani V, Dal Maso G, DeSimone A. Linear elasticity obtained from finite elasticity by Gamma-convergence under weak coerciveness conditions. Ann. Inst. H. Poincare Anal. Non Lineaire [Internet]. 2012 ;29:715-735. Available from: http://hdl.handle.net/1963/4267
Agostiniani V, Dal Maso G, DeSimone A. Linear elasticity obtained from finite elasticity by Gamma-convergence under weak coerciveness conditions. Ann. Inst. H. Poincare Anal. Non Lineaire [Internet]. 2012 ;29:715-735. Available from: http://hdl.handle.net/1963/4267
Dal Maso G, Negri M, Percivale D. Linearized elasticity as gamma-limit of finite elasticity. Set-Valued Anal. 10 (2002), p.165-183 [Internet]. 2002 . Available from: http://hdl.handle.net/1963/3052
Davoli E. Linearized plastic plate models as Γ-limits of 3D finite elastoplasticity. ESAIM: Control, Optimisation and Calculus of Variations. 2014 ;20:725–747.
Dubrovin B, Pavlov MV, Zykov SA. Linearly degenerate Hamiltonian PDEs and a new class of solutions to the WDVV associativity equations. Functional Analysis and Its Applications. Volume 45, Issue 4, December 2011, Pages 278-290 [Internet]. 2011 . Available from: http://hdl.handle.net/1963/6430
Dal Maso G, Goncharov VV, Ornelas A. A Lipschitz selection from the set of minimizers of a nonconvex functional of the gradient. Nonlinear Analysis, Theory, Methods and Applications. Volume 37, Issue 6, September 1999, Pages 707-717 [Internet]. 1999 . Available from: http://hdl.handle.net/1963/6439
DeSimone A, Gidoni P, Noselli G. Liquid crystal elastomer strips as soft crawlers. Journal of the Mechanics and Physics of Solids [Internet]. 2015 ;84:254 - 272. Available from: http://www.sciencedirect.com/science/article/pii/S0022509615300430
Di Castro A, Kuusi T, Palatucci G. Local behavior of fractional p-minimizers. 2014 .
Dal Maso G, Mora MG, Morini M. Local calibrations for minimizers of the Mumford-Shah functional with rectilinear discontinuity sets. J. Math. Pures Appl. 79, 2 (2000) 141-162 [Internet]. 2000 . Available from: http://hdl.handle.net/1963/1261
van Suijlekom W, Dabrowski L, Landi G, Sitarz A, Varilly JC. The local index formula for SUq(2). K-Theory 35 (2005) 375-394 [Internet]. 2005 . Available from: http://hdl.handle.net/1963/1713
Dabrowski L, Godlinski M, Piacitelli G. Lorentz Covariant k-Minkowski Spacetime. Phys. Rev. D 81 (2010) 125024 [Internet]. 2010 . Available from: http://hdl.handle.net/1963/3829
Dal Maso G, Orlando G, Toader R. Lower semicontinuity of a class of integral functionals on the space of functions of bounded deformation. Advances in Calculus of Variations. 2017 ;10:183–207.
Almi S, Dal Maso G, Toader R. A lower semicontinuity result for a free discontinuity functional with a boundary term. Journal de Mathématiques Pures et Appliquées [Internet]. 2017 ;108(6):952-990. Available from: http://hdl.handle.net/20.500.11767/15979
Dell'Antonio G, Michelangeli A, Scandone R, Yajima K. Lp-Boundedness of Wave Operators for the Three-Dimensional Multi-Centre Point Interaction. Annales Henri Poincaré [Internet]. 2018 ;19:283–322. Available from: https://doi.org/10.1007/s00023-017-0628-4
Cacace S, Chambolle A, DeSimone A, Fedeli L. Macroscopic contact angle and liquid drops on rough solid surfaces via homogenization and numerical simulations. ESAIM: Mathematical Modelling and Numerical Analysis. 2013 ;47:837–858.
Della Marca R, Ramos Mda Piedade, Ribeiro C, Soares AJacinta. Mathematical modelling of oscillating patterns for chronic autoimmune diseases. Mathematical Methods in the Applied SciencesMathematical Methods in the Applied SciencesMath Meth Appl Sci [Internet]. 2022 ;n/a(n/a). Available from: https://doi.org/10.1002/mma.8229
Fedeli L, Turco A, DeSimone A. Metastable equilibria of capillary drops on solid surfaces: a phase field approach. Continuum Mechanics and Thermodynamics [Internet]. 2011 ;23:453–471. Available from: https://doi.org/10.1007/s00161-011-0189-6
Dell'Antonio G. Methods of stochastic stability and properties of the Gribov horizon in the stochastic quantization of gauge theories. Stochastic processes, physics and geompetry (Ascona and Locarno, 1988), 302, World Sci.Publishing,NJ(1990) [Internet]. 1988 . Available from: http://hdl.handle.net/1963/817
Agostinelli D, Cerbino R, Del Alamo JC, DeSimone A, Höhn S, Micheletti C, Noselli G, Sharon E, Yeomans J. MicroMotility: State of the art, recent accomplishments and perspectives on the mathematical modeling of bio-motility at microscopic scales. Mathematics in Engineering [Internet]. 2020 ;2:230. Available from: http://dx.doi.org/10.3934/mine.2020011
Agostinelli D, Cerbino R, Del Alamo JC, DeSimone A, Höhn S, Micheletti C, Noselli G, Sharon E, Yeomans J. MicroMotility: State of the art, recent accomplishments and perspectives on the mathematical modeling of bio-motility at microscopic scales. Mathematics in Engineering [Internet]. 2020 ;2:230. Available from: http://dx.doi.org/10.3934/mine.2020011

Pages

Sign in