MENU

You are here

Publications

Export 47 results:
Filters: Author is Massimiliano Berti  [Clear All Filters]
2008
Baldi P, Berti M. Forced Vibrations of a Nonhomogeneous String. SIAM J. Math. Anal. 40 (2008) 382-412 [Internet]. 2008 . Available from: http://hdl.handle.net/1963/2643
Berti M, Matzeu M, Valdinoci E. On periodic elliptic equations with gradient dependence. Communications on Pure and Applied Analysis. 2008 ;7:601-615.
Berti M. Variational methods for Hamiltonian PDEs. NATO Science for Peace and Security Series B: Physics and Biophysics. 2008 :391-420.
2010
Berti M, Bolle P, Procesi M. An abstract Nash-Moser theorem with parameters and applications to PDEs. Annales de l'Institut Henri Poincare. Annales: Analyse Non Lineaire/Nonlinear Analysis. 2010 ;27:377-399.
Berti M, Bolle P. Sobolev periodic solutions of nonlinear wave equations in higher spatial dimensions. Archive for Rational Mechanics and Analysis. 2010 ;195:609-642.
2013
Berti M, Biasco L, Procesi M. Existence and stability of quasi-periodic solutions for derivative wave equations. Atti della Accademia Nazionale dei Lincei, Classe di Scienze Fisiche, Matematiche e Naturali, Rendiconti Lincei Matematica e Applicazioni. 2013 ;24:199-214.
Berti M, Biasco L, Procesi M. KAM theory for the Hamiltonian derivative wave equation. Annales Scientifiques de l'Ecole Normale Superieure. 2013 ;46:301-373.
Baldi P, Berti M, Montalto R. A note on KAM theory for quasi-linear and fully nonlinear forced KdV. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 24 (2013), no. 3: 437–450. 2013 .
Berti M, Bolle P. Quasi-periodic solutions with Sobolev regularity of NLS on Td with a multiplicative potential. Journal of the European Mathematical Society. 2013 ;15:229-286.
2016
Berti M, Kappeler T, Montalto R. Large KAM tori for perturbations of the dNLS equation.; 2016. Available from: http://preprints.sissa.it/handle/1963/35284
Mola A, Heltai L, DeSimone A, Berti M. Ship Sinkage and Trim Predictions Based on a CAD Interfaced Fully Nonlinear Potential Model. In: The 26th International Ocean and Polar Engineering Conference. Vol. 3. The 26th International Ocean and Polar Engineering Conference. International Society of Offshore and Polar Engineers; 2016. pp. 511–518.

Pages

Sign in