MENU

You are here

Publications

Export 241 results:
Filters: First Letter Of Last Name is D  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
D
Dubrovin B, Youjin Z. Bihamiltonian Hierarchies in 2D Topological Field Theory At One-Loop Approximation. Comm. Math. Phys. 198 (1998) 311-361 [Internet]. 1998 . Available from: http://hdl.handle.net/1963/3696
Dubrovin B, Liu S-Q, Zhang Y. On the genus two free energies for semisimple Frobenius manifolds. Russian Journal of Mathematical Physics. Volume 19, Issue 3, September 2012, Pages 273-298 [Internet]. 2012 . Available from: http://hdl.handle.net/1963/6464
Dubrovin B, Skrypnyk TV. Classical double, R-operators, and negative flows of integrable hierarchies. Theoretical and Mathematical Physics. Volume 172, Issue 1, July 2012, Pages 911-931 [Internet]. 2012 . Available from: http://hdl.handle.net/1963/6468
Dubrovin B. Differential geometry of the space of orbits of a Coxeter group. J. Differential Geometry Suppl.4 (1998) 181-211 [Internet]. 1998 . Available from: http://hdl.handle.net/1963/3562
Dubrovin B, Elaeva M. On the critical behavior in nonlinear evolutionary PDEs with small viscocity. Russian Journal of Mathematical Physics. Volume 19, Issue 4, December 2012, Pages 449-460 [Internet]. 2012 . Available from: http://hdl.handle.net/1963/6465
Dubrovin B. Painlevé transcendents in two-dimensional topological field theory. In: The Painlevé property : one century later / Robert Conte ed. - New York : Springer-Verlag, 1999. - (CRM series in mathematical physics). - p. 287-412. The Painlevé property : one century later / Robert Conte ed. - New York : Springer-Verlag, 1999. - (CRM series in mathematical physics). - p. 287-412. Springer; 1999. Available from: http://hdl.handle.net/1963/3238
Dubrovin B. On universality of critical behaviour in Hamiltonian PDEs. In: Geometry, topology, and mathematical physics : S.P. Novikov\\\'s seminar : 2006-2007 / V.M. Buchstaber, I.M. Krichever, editors. - Providence, R.I. : American Mathematical Society, 2008. - pages : 59-109. Geometry, topology, and mathematical physics : S.P. Novikov\\\'s seminar : 2006-2007 / V.M. Buchstaber, I.M. Krichever, editors. - Providence, R.I. : American Mathematical Society, 2008. - pages : 59-109. American Mathematical Society; 2006. Available from: http://hdl.handle.net/1963/6491
Dubrovin B, Strachan IAB, Zhang Y, Zuo D. Extended affine Weyl groups of BCD type, Frobenius manifolds and their Landau-Ginzburg superpotentials. SISSA; 2015. Available from: http://preprints.sissa.it/handle/1963/35316
Dubrovin B. Hamiltonian PDEs: deformations, integrability, solutions. Journal of Physics A: Mathematical and Theoretical. Volume 43, Issue 43, 29 October 2010, Article number 434002 [Internet]. 2010 . Available from: http://hdl.handle.net/1963/6469
Dubrovin B. WDVV equations and Frobenius manifolds. In: Encyclopedia of Mathematical Physics. Vol 1 A : A-C. Oxford: Elsevier, 2006, p. 438-447. Encyclopedia of Mathematical Physics. Vol 1 A : A-C. Oxford: Elsevier, 2006, p. 438-447. SISSA; 2006. Available from: http://hdl.handle.net/1963/6473
Dubrovin B. On Hamiltonian perturbations of hyperbolic systems of conservation laws, II: universality of critical behaviour.; 2006. Available from: http://hdl.handle.net/1963/1786
Dubrovin B, Youjin Z. Virasoro Symmetries of the Extended Toda Hierarchy. Comm. Math.\\nPhys. 250 (2004) 161-193. [Internet]. 2004 . Available from: http://hdl.handle.net/1963/2544
Dubrovin B, Youjin Z. Frobenius manifolds and Virasoro constraints. Selecta Math. (N.S.) 5 (1999) 423-466 [Internet]. 1999 . Available from: http://hdl.handle.net/1963/2883
Dubrovin B. Hamiltonian partial differential equations and Frobenius manifolds. Russian Mathematical Surveys. Volume 63, Issue 6, 2008, Pages 999-1010 [Internet]. 2008 . Available from: http://hdl.handle.net/1963/6471
Dubrovin B. Integrable systems in topological field theory. Nuclear Physics B. Volume 379, Issue 3, 1992, pages : 627-689 [Internet]. 1992 . Available from: http://hdl.handle.net/1963/6477
d’Avenia P, Pomponio A, Vaira G. Infinitely many positive solutions for a Schrödinger–Poisson system. Nonlinear Analysis: Theory, Methods & Applications [Internet]. 2011 ;74:5705 - 5721. Available from: http://www.sciencedirect.com/science/article/pii/S0362546X11003518

Pages

Sign in