MENU

You are here

Publications

Export 703 results:
Filters: First Letter Of Last Name is B  [Clear All Filters]
Journal Article
Boscaggin A, Garrione M. Resonance and rotation numbers for planar Hamiltonian systems: Multiplicity results via the Poincaré–Birkhoff theorem. Nonlinear Analysis: Theory, Methods & Applications [Internet]. 2011 ;74:4166 - 4185. Available from: http://www.sciencedirect.com/science/article/pii/S0362546X11001817
Bianchini S, Bonicatto P, Gusev NA. Renormalization for Autonomous Nearly Incompressible BV Vector Fields in Two Dimensions. SIAM Journal on Mathematical Analysis [Internet]. 2016 ;48:1-33. Available from: https://doi.org/10.1137/15M1007380
Bianchini S, Bonicatto P, Gusev NA. Renormalization for Autonomous Nearly Incompressible BV Vector Fields in Two Dimensions. SIAM Journal on Mathematical Analysis [Internet]. 2016 ;48:1-33. Available from: https://doi.org/10.1137/15M1007380
Mancini G, Battaglia L. Remarks on the Moser–Trudinger inequality. Advances in Nonlinear Analysis [Internet]. 2013 ;2(4):389-425. Available from: http://edoc.unibas.ch/43974/
Bellettini G, Elshorbagy A, Paolini M, Scala R. On the relaxed area of the graph of discontinuous maps from the plane to the plane taking three values with no symmetry assumptions. Annali di Matematica Pura ed Applicata (1923 -) [Internet]. 2019 . Available from: https://doi.org/10.1007/s10231-019-00887-0
Bellettini G, Carano S, Scala R. The relaxed area of $S^1$-valued singular maps in the strict $BV$-convergence. ESAIM: Control, Optimization and Calculus of Variations [Internet]. 2022 ;28:38. Available from: http://cvgmt.sns.it/paper/5440/
Bartocci C, Bruzzo U, Hernandez Ruiperez D, Munoz Porras JM. Relatively stable bundles over elliptic fibrations. Math. Nachr. 238 (2002) 23-36 [Internet]. 2002 . Available from: http://hdl.handle.net/1963/3132
Bartocci C, Bruzzo U, Hernandez Ruiperez D, Munoz Porras JM. Relatively stable bundles over elliptic fibrations. Math. Nachr. 238 (2002) 23-36 [Internet]. 2002 . Available from: http://hdl.handle.net/1963/3132
Balogh F, Bertola M. Regularity of a vector potential problem and its spectral curve. J. Approx. Theory [Internet]. 2009 ;161:353–370. Available from: http://0-dx.doi.org.mercury.concordia.ca/10.1016/j.jat.2008.10.010
Balogh F, Bertola M. Regularity of a vector potential problem and its spectral curve. J. Approx. Theory [Internet]. 2009 ;161:353–370. Available from: http://0-dx.doi.org.mercury.concordia.ca/10.1016/j.jat.2008.10.010
Berti M, Feola R, Procesi M, Terracina S. Reducibility of Klein-Gordon equations with maximal order perturbations. [Internet]. 2024 . Available from: https://arxiv.org/abs/2402.11377
Stabile G, Ballarin F, Zuccarino G, Rozza G. A reduced order variational multiscale approach for turbulent flows. Advances in Computational Mathematics [Internet]. 2019 ;45:2349-2368. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85068076665&doi=10.1007%2fs10444-019-09712-x&partnerID=40&md5=af0142e6d13bbc2e88c6f31750aef6ad
Zainib Z, Ballarin F, Fremes SE, Triverio P, Jiménez-Juan L, Rozza G. Reduced order methods for parametric optimal flow control in coronary bypass grafts, toward patient-specific data assimilation. International Journal for Numerical Methods in Biomedical EngineeringInternational Journal for Numerical Methods in Biomedical EngineeringInt J Numer Meth Biomed Engng [Internet]. 2020 ;n/a(n/a):e3367. Available from: https://onlinelibrary.wiley.com/doi/10.1002/cnm.3367?af=R
Karatzas EN, Nonino M, Ballarin F, Rozza G. A Reduced Order Cut Finite Element method for geometrically parametrized steady and unsteady Navier–Stokes problems. Computer & Mathematics With Applications [Internet]. 2021 . Available from: https://www.sciencedirect.com/science/article/pii/S0898122121002790
Beltrán C, Kozhasov K. The Real Polynomial Eigenvalue Problem is Well Conditioned on the Average. Foundations of Computational Mathematics [Internet]. 2019 . Available from: https://doi.org/10.1007/s10208-019-09414-2
Bicchi A, Marigo A, Piccoli B. On the reachability of quantized control systems. IEEE Trans. Automat. Contr. 47 (2002) 546-563 [Internet]. 2002 . Available from: http://hdl.handle.net/1963/1501
Babadjian J-F, Francfort GA, Mora MG. Quasistatic evolution in non-associative plasticity - the cap models. SIAM Journal on Mathematical Analysis 44, nr. 1 (2012) 245-292 [Internet]. 2012 . Available from: http://hdl.handle.net/1963/4139
Berti M, Montalto R. Quasi-periodic water waves. J. Fixed Point Theory Appl. [Internet]. 2017 ;19:129–156. Available from: https://doi.org/10.1007/s11784-016-0375-z
Berti M, Montalto R. Quasi-periodic standing wave solutions of gravity-capillary water waves. Mem. Amer. Math. Soc. [Internet]. 2020 ;263:v+171. Available from: https://doi.org/10.1090/memo/1273
Berti M, Bolle P. Quasi-periodic solutions with Sobolev regularity of NLS on Td with a multiplicative potential. Journal of the European Mathematical Society. 2013 ;15:229-286.
Berti M, Bolle P. Quasi-periodic solutions with Sobolev regularity of NLS on Td with a multiplicative potential. Journal of the European Mathematical Society. 2013 ;15:229-286.
Berti M, Bolle P. Quasi-periodic solutions of nonlinear Schrödinger equations on $\Bbb T^d$. Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. [Internet]. 2011 ;22:223–236. Available from: https://doi.org/10.4171/RLM/597
Berti M, Bolle P. Quasi-periodic solutions of nonlinear Schrödinger equations on $\Bbb T^d$. Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. [Internet]. 2011 ;22:223–236. Available from: https://doi.org/10.4171/RLM/597
Berti M, Procesi M. Quasi-periodic solutions of completely resonant forced wave equations. Comm. Partial Differential Equations [Internet]. 2006 ;31:959–985. Available from: https://doi.org/10.1080/03605300500358129
Berti M, Procesi M. Quasi-periodic oscillations for wave equations under periodic forcing. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 2005 ;16:109–116.

Pages

Sign in