Minimal Liouville gravity correlation numbers from Douglas string equation. [Internet]. 2014 . Available from: http://urania.sissa.it/xmlui/handle/1963/34588
. MicroMotility: State of the art, recent accomplishments and perspectives on the mathematical modeling of bio-motility at microscopic scales. Mathematics in Engineering [Internet]. 2020 ;2:230. Available from: http://dx.doi.org/10.3934/mine.2020011
. MicroMotility: State of the art, recent accomplishments and perspectives on the mathematical modeling of bio-motility at microscopic scales. Mathematics in Engineering [Internet]. 2020 ;2:230. Available from: http://dx.doi.org/10.3934/mine.2020011
. Methods of stochastic stability and properties of the Gribov horizon in the stochastic quantization of gauge theories. Stochastic processes, physics and geompetry (Ascona and Locarno, 1988), 302, World Sci.Publishing,NJ(1990) [Internet]. 1988 . Available from: http://hdl.handle.net/1963/817
. Metastable equilibria of capillary drops on solid surfaces: a phase field approach. Continuum Mechanics and Thermodynamics [Internet]. 2011 ;23:453–471. Available from: https://doi.org/10.1007/s00161-011-0189-6
. Mathematical modelling of oscillating patterns for chronic autoimmune diseases. Mathematical Methods in the Applied SciencesMathematical Methods in the Applied SciencesMath Meth Appl Sci [Internet]. 2022 ;n/a(n/a). Available from: https://doi.org/10.1002/mma.8229
. Macroscopic contact angle and liquid drops on rough solid surfaces via homogenization and numerical simulations. ESAIM: Mathematical Modelling and Numerical Analysis. 2013 ;47:837–858.
. Lp-Boundedness of Wave Operators for the Three-Dimensional Multi-Centre Point Interaction. Annales Henri Poincaré [Internet]. 2018 ;19:283–322. Available from: https://doi.org/10.1007/s00023-017-0628-4
. A lower semicontinuity result for a free discontinuity functional with a boundary term. Journal de Mathématiques Pures et Appliquées [Internet]. 2017 ;108(6):952-990. Available from: http://hdl.handle.net/20.500.11767/15979
. Lower semicontinuity of a class of integral functionals on the space of functions of bounded deformation. Advances in Calculus of Variations. 2017 ;10:183–207.
. Lorentz Covariant k-Minkowski Spacetime. Phys. Rev. D 81 (2010) 125024 [Internet]. 2010 . Available from: http://hdl.handle.net/1963/3829
. The local index formula for SUq(2). K-Theory 35 (2005) 375-394 [Internet]. 2005 . Available from: http://hdl.handle.net/1963/1713
. Local calibrations for minimizers of the Mumford-Shah functional with rectilinear discontinuity sets. J. Math. Pures Appl. 79, 2 (2000) 141-162 [Internet]. 2000 . Available from: http://hdl.handle.net/1963/1261
. . Liquid crystal elastomer strips as soft crawlers. Journal of the Mechanics and Physics of Solids [Internet]. 2015 ;84:254 - 272. Available from: http://www.sciencedirect.com/science/article/pii/S0022509615300430
. A Lipschitz selection from the set of minimizers of a nonconvex functional of the gradient. Nonlinear Analysis, Theory, Methods and Applications. Volume 37, Issue 6, September 1999, Pages 707-717 [Internet]. 1999 . Available from: http://hdl.handle.net/1963/6439
. Linearly degenerate Hamiltonian PDEs and a new class of solutions to the WDVV associativity equations. Functional Analysis and Its Applications. Volume 45, Issue 4, December 2011, Pages 278-290 [Internet]. 2011 . Available from: http://hdl.handle.net/1963/6430
. Linearized plastic plate models as Γ-limits of 3D finite elastoplasticity. ESAIM: Control, Optimisation and Calculus of Variations. 2014 ;20:725–747.
. Linearized elasticity as gamma-limit of finite elasticity. Set-Valued Anal. 10 (2002), p.165-183 [Internet]. 2002 . Available from: http://hdl.handle.net/1963/3052
. Linear elasticity obtained from finite elasticity by Gamma-convergence under weak coerciveness conditions. Ann. Inst. H. Poincare Anal. Non Lineaire [Internet]. 2012 ;29:715-735. Available from: http://hdl.handle.net/1963/4267
. Linear elasticity obtained from finite elasticity by Gamma-convergence under weak coerciveness conditions. Ann. Inst. H. Poincare Anal. Non Lineaire [Internet]. 2012 ;29:715-735. Available from: http://hdl.handle.net/1963/4267
. Limits of variational problems for Dirichlet forms in varying domains. Journal des Mathematiques Pures et Appliquees. Volume 77, Issue 1, January 1998, Pages 89-116 [Internet]. 1998 . Available from: http://hdl.handle.net/1963/6440
. Limits of variational problems for Dirichlet forms in varying domains. Journal des Mathematiques Pures et Appliquees. Volume 77, Issue 1, January 1998, Pages 89-116 [Internet]. 1998 . Available from: http://hdl.handle.net/1963/6440
. Limits of obstacle problems for the area functional. Partial differential equations and the calculus of variations : essays in honor of Ennio De Giorgi. - Boston : Birkhauser, 1989. - p. 285-309 [Internet]. 1989 . Available from: http://hdl.handle.net/1963/577
. Limits of nonlinear Dirichlet problems in varying domains. (Italian). Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 81, 1987, no. 2, 111-118 [Internet]. 1987 . Available from: http://hdl.handle.net/1963/486
.