MENU

You are here

Publications

Export 33 results:
Filters: First Letter Of Last Name is H  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
H
Huynh DBP, Pichi F, Rozza G. Reduced Basis Approximation and A Posteriori Error Estimation: Applications to Elasticity Problems in Several Parametric Settings. SEMA SIMAI Springer Series [Internet]. 2018 ;15:203-247. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85055036627&doi=10.1007%2f978-3-319-94676-4_8&partnerID=40&md5=e9c07038e7bcc6668ec702c0653410dc
Huynh DBP, Pichi F, Rozza G. Reduced Basis Approximation and A Posteriori Error Estimation: Applications to Elasticity Problems in Several Parametric Settings. In: Numerical Methods for PDEs. Vol. 15. Numerical Methods for PDEs. ; 2018. Available from: https://link.springer.com/chapter/10.1007/978-3-319-94676-4_8
Hundertmark D, Jex M, Lange M. Quantum Systems at The Brink. Existence and Decay Rates of Bound States at Thresholds; Atoms. arXiv:1908.05016. 2019 :14.
Hundertmark D, Jex M, Lange M. Quantum Systems at The Brink. Existence and Decay Rates of Bound States at Thresholds; Critical Potentials and dimensionality. arXiv:2107.14128. 2021 :8.
Hundertmark D, Jex M, Lange M. Quantum Systems at The Brink: Properties of Atomic Bound States at The Ionization Threshold. 2020 .
Hundertmark D, Jex M, Lange M. Quantum Systems at The Brink. Existence and Decay Rates of Bound States at Thresholds; Helium. arXiv:1908.04883. 2019 :25.
Hijazi S, Stabile G, Mola A, Rozza G. Non-intrusive Polynomial Chaos Method Applied to Full-Order and Reduced Problems in Computational Fluid Dynamics: A Comparison and Perspectives. In: Quantification of Uncertainty: Improving Efficiency and Technology: QUIET selected contributions. Quantification of Uncertainty: Improving Efficiency and Technology: QUIET selected contributions. Cham: Springer International Publishing; 2020. pp. 217–240. Available from: https://doi.org/10.1007/978-3-030-48721-8_10
Hijazi S, Stabile G, Mola A, Rozza G. Data-driven POD-Galerkin reduced order model for turbulent flows. Journal of Computational Physics [Internet]. 2020 ;416:109513. Available from: https://arxiv.org/abs/1907.09909
Hijazi S, Ali S, Stabile G, Ballarin F, Rozza G. The Effort of Increasing Reynolds Number in Projection-Based Reduced Order Methods: from Laminar to Turbulent Flows. In: Lecture Notes in Computational Science and Engineering. Lecture Notes in Computational Science and Engineering. Cham: Springer International Publishing; 2020. pp. 245–264.
Hesthaven JS, Rozza G, Stamm B. Certified Reduced Basis Methods for Parametrized Partial Differential Equations. 1st ed. Switzerland: Springer; 2015 p. 135.
Hess M, Alla A, Quaini A, Rozza G, Gunzburger M. A Localized Reduced-Order Modeling Approach for PDEs with Bifurcating Solutions. Computer Methods in Applied Mechanics and Engineering [Internet]. 2019 ;351:379-403. Available from: https://arxiv.org/abs/1807.08851
Hess M, Quaini A, Rozza G. A spectral element reduced basis method for navier–stokes equations with geometric variations. Lecture Notes in Computational Science and Engineering. 2020 ;134:561-571.
Hess M, Rozza G. A Spectral Element Reduced Basis Method in Parametric CFD. In: Radu FAdrian, Kumar K, Berre I, Nordbotten JMartin, Pop ISorin Numerical Mathematics and Advanced Applications - ENUMATH 2017. Vol. 126. Numerical Mathematics and Advanced Applications - ENUMATH 2017. Springer International Publishing; 2019. Available from: https://arxiv.org/abs/1712.06432
Hess M, Quaini A, Rozza G. Reduced basis model order reduction for Navier–Stokes equations in domains with walls of varying curvature. International Journal of Computational Fluid Dynamics [Internet]. 2020 ;34:119-126. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85085233294&doi=10.1080%2f10618562.2019.1645328&partnerID=40&md5=e2ed8f24c66376cdc8b5485aa400efb0
Hess M, Quaini A, Rozza G. Reduced Basis Model Order Reduction for Navier-Stokes equations in domains with walls of varying curvature. International Journal of Computational Fluid Dynamics [Internet]. 2020 ;34:119-126. Available from: https://arxiv.org/abs/1901.03708
Hess M, Rozza G. A spectral element reduced basis method in parametric CFD. Lecture Notes in Computational Science and Engineering [Internet]. 2019 ;126:693-701. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85060005503&doi=10.1007%2f978-3-319-96415-7_64&partnerID=40&md5=d1a900db8ddb92cd818d797ec212a4c6
Hess M, Alla A, Quaini A, Rozza G, Gunzburger M. A localized reduced-order modeling approach for PDEs with bifurcating solutions. Computer Methods in Applied Mechanics and Engineering [Internet]. 2019 ;351:379-403. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85064313505&doi=10.1016%2fj.cma.2019.03.050&partnerID=40&md5=8b095034b9e539995facc7ce7bafa9e9
Heltai L, Costanzo F. Variational implementation of immersed finite element methods. Computer Methods in Applied Mechanics and Engineering. Volume 229-232, 1 July 2012, Pages 110-127 [Internet]. 2012 . Available from: http://hdl.handle.net/1963/6462
Heltai L, Kiendl J, DeSimone A, Reali A. A natural framework for isogeometric fluid-structure interaction based on BEM-shell coupling. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING [Internet]. 2017 ;316:522–546. Available from: http://cdsads.u-strasbg.fr/abs/2017CMAME.316.522H
Heltai L, Caiazzo A, Müeller L. Multiscale coupling of one-dimensional vascular models and elastic tissues. Annals of Biomedical Engineering. 2021 .
Heltai L, Arroyo M, DeSimone A. Nonsingular Isogeometric Boundary Element Method for Stokes Flows in 3D. [Internet]. 2014 . Available from: http://hdl.handle.net/1963/6326
Heltai L, Lei W. A priori error estimates of regularized elliptic problems. Numerische Mathematik [Internet]. 2020 ;146:571–596. Available from: https://doi.org/10.1007/s00211-020-01152-w
Heltai L, Bangerth W, Kronbichler M, Mola A. Propagating geometry information to finite element computations. Transactions on Mathematical Software. 2021 ;47(4):1--30.
Heltai L, Lei W. A priori error estimates of regularized elliptic problems. Numerische Mathematik. 2020 .
Heltai L, Rotundo N. Error estimates in weighted Sobolev norms for finite element immersed interface methods. Computers & Mathematics with Applications [Internet]. 2019 ;78:3586–3604. Available from: https://doi.org/10.1016/j.camwa.2019.05.029

Pages

Sign in