Export 30 results:
Filters: Author is F. Ballarin [Clear All Filters]
Weighted Reduced Order Methods for Parametrized Partial Differential Equations with Random Inputs. PoliTO Springer Series [Internet]. 2019 :27-40. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85084009379&doi=10.1007%2f978-3-030-04870-9_2&partnerID=40&md5=446bcc1f331167bbba67bc00fb170150
. A Weighted POD Method for Elliptic PDEs with Random Inputs. Journal of Scientific Computing [Internet]. 2019 ;81:136-153. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85053798049&doi=10.1007%2fs10915-018-0830-7&partnerID=40&md5=5cad501b6ef1955da55868807079ee5d
. Supremizer stabilization of POD-Galerkin approximation of parametrized Navier-Stokes equations. [Internet]. 2015 . Available from: http://urania.sissa.it/xmlui/handle/1963/34701
. Stabilized weighted reduced basis methods for parametrized advection dominated problems with random inputs. SIAM-ASA Journal on Uncertainty Quantification [Internet]. 2018 ;6:1475-1502. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85058246502&doi=10.1137%2f17M1163517&partnerID=40&md5=6c54e2f0eb727cb85060e988486b8ac8
. Stabilized reduced basis methods for parametrized steady Stokes and Navier–Stokes equations. Computers and Mathematics with Applications [Internet]. 2020 ;80:2399-2416. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85083340115&doi=10.1016%2fj.camwa.2020.03.019&partnerID=40&md5=7ace96eee080701acb04d8155008dd7d
. Shape Optimization by Free-Form Deformation: Existence Results and Numerical Solution for Stokes Flows. [Internet]. 2014 . Available from: http://urania.sissa.it/xmlui/handle/1963/34698
. Reduced-order semi-implicit schemes for fluid-structure interaction problems. In: Model Reduction of Parametrized Systems. Model Reduction of Parametrized Systems. Springer International Publishing; 2017. pp. 149–167.
. A reduced order variational multiscale approach for turbulent flows. Advances in Computational Mathematics [Internet]. 2019 ;45:2349-2368. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85068076665&doi=10.1007%2fs10444-019-09712-x&partnerID=40&md5=af0142e6d13bbc2e88c6f31750aef6ad
. Reduced Order Methods for Parametrized Non-linear and Time Dependent Optimal Flow Control Problems, Towards Applications in Biomedical and Environmental Sciences. In: Numerical Mathematics and Advanced Applications ENUMATH 2019. Numerical Mathematics and Advanced Applications ENUMATH 2019. Cham: Springer International Publishing; 2021. Available from: https://www.springerprofessional.de/en/reduced-order-methods-for-parametrized-non-linear-and-time-depen/19122676
. Reduced order methods for parametric optimal flow control in coronary bypass grafts, toward patient-specific data assimilation. International Journal for Numerical Methods in Biomedical EngineeringInternational Journal for Numerical Methods in Biomedical EngineeringInt J Numer Meth Biomed Engng [Internet]. 2020 ;n/a(n/a):e3367. Available from: https://onlinelibrary.wiley.com/doi/10.1002/cnm.3367?af=R
. A Reduced Order Cut Finite Element method for geometrically parametrized steady and unsteady Navier–Stokes problems. Computer & Mathematics With Applications [Internet]. 2021 . Available from: https://www.sciencedirect.com/science/article/pii/S0898122121002790
. Projection-based reduced order models for a cut finite element method in parametrized domains. Computers and Mathematics with Applications [Internet]. 2020 ;79:833-851. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85070900852&doi=10.1016%2fj.camwa.2019.08.003&partnerID=40&md5=2d222ab9c7832955d155655d3c93e1b1
. POD–Galerkin monolithic reduced order models for parametrized fluid-structure interaction problems. International Journal Numerical Methods for Fluids. 2016 .
. POD–Galerkin Model Order Reduction for Parametrized Time Dependent Linear Quadratic Optimal Control Problems in Saddle Point Formulation. Journal of Scientific Computing. 2020 ;83.
. A POD-selective inverse distance weighting method for fast parametrized shape morphing. International Journal for Numerical Methods in Engineering [Internet]. 2019 ;117:860-884. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85056396233&doi=10.1002%2fnme.5982&partnerID=40&md5=6aabcbdc9a0da25e36575a0ebfac034f
. . Numerical modeling of hemodynamics scenarios of patient-specific coronary artery bypass grafts. Biomechanics and Modeling in Mechanobiology [Internet]. 2017 ;16:1373-1399. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85015065851&doi=10.1007%2fs10237-017-0893-7&partnerID=40&md5=c388f20bd5de14187bad9ed7d9affbd0
. A Monolithic and a Partitioned, Reduced Basis Method for Fluid–Structure Interaction Problems. Fluids [Internet]. 2021 ;6:229. Available from: https://www.mdpi.com/2311-5521/6/6/229
. Model Reduction for Parametrized Optimal Control Problems in Environmental Marine Sciences and Engineering. SIAM Journal on Scientific Computing [Internet]. 2018 ;40:B1055-B1079. Available from: https://doi.org/10.1137/17M1150591
. Isogeometric analysis-based reduced order modelling for incompressible linear viscous flows in parametrized shapes. Springer, AMOS Advanced Modelling and Simulation in Engineering Sciences; 2016. Available from: http://urania.sissa.it/xmlui/handle/1963/35199
. Hierarchical model reduction techniques for flow modeling in a parametrized setting. Multiscale Modeling and Simulation. 2021 ;19:267-293.
. . .
The Effort of Increasing Reynolds Number in Projection-Based Reduced Order Methods: from Laminar to Turbulent Flows. In: Lecture Notes in Computational Science and Engineering. Lecture Notes in Computational Science and Engineering. Cham: Springer International Publishing; 2020. pp. 245–264.
. Driving bifurcating parametrized nonlinear PDEs by optimal control strategies: application to Navier–Stokes equations with model order reduction. ESAIM: M2AN [Internet]. 2022 ;56(4):1361 - 1400. Available from: https://doi.org/10.1051/m2an/2022044
.