MENU

You are here

Publications

Export 31 results:
Filters: Author is Giovanni Stabile  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
R
Karatzas EN, Stabile G, Nouveau L, Scovazzi G, Rozza G. A reduced-order shifted boundary method for parametrized incompressible Navier–Stokes equations. Computer Methods in Applied Mechanics and Engineering [Internet]. 2020 ;370. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85087886522&doi=10.1016%2fj.cma.2020.113273&partnerID=40&md5=d864e4808190b682ecb1c8b27cda72d8
Stabile G, Ballarin F, Zuccarino G, Rozza G. A reduced order variational multiscale approach for turbulent flows. Advances in Computational Mathematics [Internet]. 2019 ;45:2349-2368. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85068076665&doi=10.1007%2fs10444-019-09712-x&partnerID=40&md5=af0142e6d13bbc2e88c6f31750aef6ad
Star K, Sanderse B, Stabile G, Rozza G, Degroote J. Reduced order models for the incompressible Navier-Stokes equations on collocated grids using a `discretize-then-project' approach. International Journal for Numerical Methods in Fluids [Internet]. 2021 ;93:2694–2722. Available from: https://doi.org/10.1002/fld.4994
Stabile G, Matthies HG, Borri C. A Reduced Order Model for the Simulation of Mooring Cable Dynamics. In: Computational Methods in Marine Engineering VI – MARINE2015. Computational Methods in Marine Engineering VI – MARINE2015. Salvatore, Francesco; Broglia, Riccardo; Muscari, Roberto; 2015. pp. 387–400.
Karatzas EN, Stabile G, Atallah N, Scovazzi G, Rozza G. A Reduced Order Approach for the Embedded Shifted Boundary FEM and a Heat Exchange System on Parametrized Geometries. In: Fehr J, Haasdonk B IUTAM Symposium on Model Order Reduction of Coupled Systems, Stuttgart, Germany, May 22–25, 2018. IUTAM Symposium on Model Order Reduction of Coupled Systems, Stuttgart, Germany, May 22–25, 2018. Springer International Publishing; 2020. Available from: https://arxiv.org/abs/1807.07753
Karatzas EN, Stabile G, Nouveau L, Scovazzi G, Rozza G. A reduced basis approach for PDEs on parametrized geometries based on the shifted boundary finite element method and application to a Stokes flow. Computer Methods in Applied Mechanics and Engineering [Internet]. 2019 ;347:568-587. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85060107322&doi=10.1016%2fj.cma.2018.12.040&partnerID=40&md5=1a3234f0cb000c91494d946428f8ebef
P
Busto S, Stabile G, Rozza G, Vázquez-Cendón ME. POD–Galerkin reduced order methods for combined Navier–Stokes transport equations based on a hybrid FV-FE solver. Computers and Mathematics with Applications [Internet]. 2020 ;79:256-273. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85068068567&doi=10.1016%2fj.camwa.2019.06.026&partnerID=40&md5=a8dcce1b53b8ee872d174bbc4c20caa3
Star K, Stabile G, Georgaka S, Belloni F, Rozza G, Degroote J. POD-Galerkin Reduced Order Model of the Boussinesq Approximation for Buoyancy-Driven Enclosed Flows. In: International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering, M and C 2019. International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering, M and C 2019. ; 2019.
Star K, Stabile G, Rozza G, Degroote J. A POD-Galerkin reduced order model of a turbulent convective buoyant flow of sodium over a backward-facing step. Applied Mathematical Modelling. 2021 ;89:486-503.
Stabile G, Hijazi S, Mola A, Lorenzi S, Rozza G. POD-Galerkin reduced order methods for CFD using Finite Volume Discretisation: vortex shedding around a circular cylinder. Communications in Applied and Industrial Mathematics. 2017 ;8:210-236.
Georgaka S, Stabile G, Rozza G, Bluck MJ. Parametric POD-Galerkin Model Order Reduction for Unsteady-State Heat Transfer Problems. Communications in Computational Physics [Internet]. 2019 ;27:1–32. Available from: https://arxiv.org/abs/1808.05175
N
Morelli UEmil, Barral P, Quintela P, Rozza G, Stabile G. A numerical approach for heat flux estimation in thin slabs continuous casting molds using data assimilation. International Journal for Numerical Methods in Engineering [Internet]. 2021 ;122:4541–4574. Available from: https://doi.org/10.1002/nme.6713
Stabile G, Matthies HG, Borri C. A novel reduced order model for vortex induced vibrations of long flexible cylinders. [Internet]. 2018 ;156:191–207. Available from: https://doi.org/10.1016/j.oceaneng.2018.02.064
Star K, Stabile G, Belloni F, Rozza G, Degroote J. A novel iterative penalty method to enforce boundary conditions in Finite Volume POD-Galerkin reduced order models for fluid dynamics problems. Communications in Computational Physics. 2021 ;30:34–66.
Hijazi S, Stabile G, Mola A, Rozza G. Non-intrusive Polynomial Chaos Method Applied to Full-Order and Reduced Problems in Computational Fluid Dynamics: A Comparison and Perspectives. In: Quantification of Uncertainty: Improving Efficiency and Technology: QUIET selected contributions. Quantification of Uncertainty: Improving Efficiency and Technology: QUIET selected contributions. Cham: Springer International Publishing; 2020. pp. 217–240. Available from: https://doi.org/10.1007/978-3-030-48721-8_10
Papapicco D, Demo N, Girfoglio M, Stabile G, Rozza G. The Neural Network shifted-Proper Orthogonal Decomposition: a Machine Learning Approach for Non-linear Reduction of Hyperbolic Equations. 2021 .
E
Tezzele M, Demo N, Stabile G, Mola A, Rozza G. Enhancing CFD predictions in shape design problems by model and parameter space reduction. Advanced Modeling and Simulation in Engineering Sciences [Internet]. 2020 ;7(40). Available from: https://arxiv.org/abs/2001.05237
Hijazi S, Ali S, Stabile G, Ballarin F, Rozza G. The Effort of Increasing Reynolds Number in Projection-Based Reduced Order Methods: from Laminar to Turbulent Flows. In: Lecture Notes in Computational Science and Engineering. Lecture Notes in Computational Science and Engineering. Cham: Springer International Publishing; 2020. pp. 245–264.
Stabile G, Zancanaro M, Rozza G. Efficient Geometrical parametrization for finite-volume based reduced order methods. International Journal for Numerical Methods in Engineering [Internet]. 2020 ;121:2655-2682. Available from: https://arxiv.org/abs/1901.06373

Pages

Sign in