MENU

You are here

Publications

Export 68 results:
Filters: First Letter Of Last Name is V  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
C
De Sole A, Kac VG, Valeri D. Classical W-algebras and generalized Drinfeld-Sokolov bi-Hamiltonian systems within the theory of Poisson vertex algebras. Communications in Mathematical Physics 323, nr. 2 (2013) 663-711 [Internet]. 2013 . Available from: http://hdl.handle.net/1963/6978
De Sole A, Kac VG, Valeri D. Classical W-algebras and generalized Drinfeld-Sokolov hierarchies for minimal and short nilpotents. Communications in Mathematical Physics 331, nr. 2 (2014) 623-676 [Internet]. 2014 . Available from: http://hdl.handle.net/1963/6979
Ruiz D, Vaira G. Cluster solutions for the Schrödinger-Poisson-Slater problem around a local minimum of the potential. Rev. Mat. Iberoamericana [Internet]. 2011 ;27:253–271. Available from: https://projecteuclid.org:443/euclid.rmi/1296828834
Maggiani GBattista, Scala R, Van Goethem N. A compatible-incompatible decomposition of symmetric tensors in Lp with application to elasticity. Mathematical Methods in the Applied Sciences [Internet]. 2015 ;38:5217-5230. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/mma.3450
Auricchio F, Conti M, Lefieux A, Morganti S, Reali A, Rozza G, Veneziani A. Computational methods in cardiovascular mechanics. In: Labrosse MF Cardiovascular Mechanics. Cardiovascular Mechanics. CRC Press; 2018. p. 54. Available from: https://www.taylorfrancis.com/books/e/9781315280288/chapters/10.1201%2Fb21917-5
Ianni I, Vaira G. On concentration of positive bound states for the Schrödinger-Poisson problem with potentials. Advanced nonlinear studies. 2008 ;8:573–595.
Vidossich G. On the continuous dependence of solutions of boundary value problems for ordinary differential equations. J. Differential Equations 82 (1989), no. 1, 1--14 [Internet]. 1989 . Available from: http://hdl.handle.net/1963/633
Vidossich G. On the continuous dependence of solutions of boundary value problems for ordinary differential equations (Revised version). J. Differential Equations 82 (1989), no. 1, 1-14 [Internet]. 1989 . Available from: http://hdl.handle.net/1963/666
Vidossich G. A correction and an extension of Stampacchia's work on the geometric BVP. [Internet]. 2014 . Available from: http://urania.sissa.it/xmlui/handle/1963/35023
Vidossich G. A criterion for he existence of maximal solutions of strongly nonlinear elliptic problems. [Internet]. 1982 . Available from: http://hdl.handle.net/1963/161
Scala R, Van Goethem N. Currents and dislocations at the continuum scale. Methods and Applications of Analysis. 2016 ;23:1–34.
D
Dabrowski L, Landi G, Sitarz A, van Suijlekom W, Varilly JC. The Dirac operator on SU_q(2). Commun. Math. Phys. 259 (2005) 729-759 [Internet]. 2005 . Available from: http://hdl.handle.net/1963/4425
Dabrowski L, Landi G, Sitarz A, van Suijlekom W, Varilly JC. The Dirac operator on SU_q(2). Commun. Math. Phys. 259 (2005) 729-759 [Internet]. 2005 . Available from: http://hdl.handle.net/1963/4425
De Sole A, Kac VG, Valeri D. Dirac reduction for Poisson vertex algebras. Communications in Mathematical Physics 331, nr. 3 (2014) 1155-1190 [Internet]. 2014 . Available from: http://hdl.handle.net/1963/6980
Shah N, Hess MW, Rozza G. Discontinuous Galerkin Model Order Reduction of Geometrically Parametrized Stokes Equation. In: Vermolen FJ, Vuik C Numerical Mathematics and Advanced Applications ENUMATH 2019. Numerical Mathematics and Advanced Applications ENUMATH 2019. Cham: Springer International Publishing; 2021.
Shah N, Hess MW, Rozza G. Discontinuous Galerkin Model Order Reduction of Geometrically Parametrized Stokes Equation. In: Vermolen FJ, Vuik C Numerical Mathematics and Advanced Applications ENUMATH 2019. Numerical Mathematics and Advanced Applications ENUMATH 2019. Cham: Springer International Publishing; 2021.
Dipierro S, Palatucci G, Valdinoci E. Dislocation dynamics in crystals: a macroscopic theory in a fractional Laplace setting. SISSA; 2013. Available from: http://hdl.handle.net/1963/7124
Scala R, Van Goethem N. Dislocations at the continuum scale: functional setting and variational properties.; 2014. Available from: http://cvgmt.sns.it/paper/2294/
Bonaschi GA, Van Meurs P, Morandotti M. Dynamics of screw dislocations: a generalised minimising-movements scheme approach. SISSA; 2015. Available from: http://urania.sissa.it/xmlui/handle/1963/34495

Pages

Sign in