MENU

You are here

Publications

Export 167 results:
Filters: Author is Gianluigi Rozza  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
A
Salmoiraghi F, Ballarin F, Corsi G, Mola A, Tezzele M, Rozza G. Advances in geometrical parametrization and reduced order models and methods for computational fluid dynamics problems in applied sciences and engineering: overview and perspectives. In: Papadrakakis M, Papadopoulos V, Stefanou G, Plevris V Proceedings of the ECCOMAS Congress 2016, VII European Conference on Computational Methods in Applied Sciences and Engineering,. Proceedings of the ECCOMAS Congress 2016, VII European Conference on Computational Methods in Applied Sciences and Engineering,. Crete, Greece: ECCOMAS; 2016.
Rozza G, Malik MH, Demo N, Tezzele M, Girfoglio M, Stabile G, Mola A. Advances in reduced order methods for parametric industrial problems in computational fluid dynamics. In: Proceedings of the 6th European Conference on Computational Mechanics: Solids, Structures and Coupled Problems, ECCM 2018 and 7th European Conference on Computational Fluid Dynamics, ECFD 2018. Proceedings of the 6th European Conference on Computational Mechanics: Solids, Structures and Coupled Problems, ECCM 2018 and 7th European Conference on Computational Fluid Dynamics, ECFD 2018. ; 2020. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85075395686&partnerID=40&md5=fb0b1a3cfdfd35a104db9921bc9be675
Salavatidezfouli S, Hajisharifi S, Girfoglio M, Stabile G, Rozza G. Applicable Methodologies for the Mass Transfer Phenomenon in Tumble Dryers: A Review. 2023 .
Pitton G, Rozza G. On the Application of Reduced Basis Methods to Bifurcation Problems in Incompressible Fluid Dynamics. Journal of Scientific Computing. 2017 .
Pichi F, Ballarin F, Rozza G, Hesthaven JS. An artificial neural network approach to bifurcating phenomena in computational fluid dynamics. 2021 .
Romor F, Tezzele M, Rozza G. ATHENA: Advanced Techniques for High dimensional parameter spaces to Enhance Numerical Analysis. Software Impacts. 2021 ;10:100133.
B
Rozza G, Hess MW, Stabile G, Tezzele M, Ballarin F. Basic ideas and tools for projection-based model reduction of parametric partial differential equations. In: Model Order Reduction, Volume 2 Snapshot-Based Methods and Algorithms. Model Order Reduction, Volume 2 Snapshot-Based Methods and Algorithms. Berlin, Boston: De Gruyter; 2020. pp. 1 - 47. Available from: https://www.degruyter.com/view/book/9783110671490/10.1515/9783110671490-001.xml
Gadalla M, Tezzele M, Mola A, Rozza G. BladeX: Python Blade Morphing. The Journal of Open Source Software. 2019 ;4:1203.
Lassila T, Manzoni A, Quarteroni A, Rozza G. Boundary control and shape optimization for the robust design of bypass anastomoses under uncertainty. Mathematical Modelling and Numerical Analysis, in press, 2012-13 [Internet]. 2012 . Available from: http://hdl.handle.net/1963/6337
C
Devaud D, Rozza G. Certi fied Reduced Basis Method for Affinely Parametric Isogeometric Analysis NURBS Approximation. In: Spectral and High Order Methods for Partial Differential Equations . Vol. 119. Bittencourt, Dumont, Hesthaven. (Eds). Spectral and High Order Methods for Partial Differential Equations . Heildeberg: Springer; 2017.
Martini I, Haasdonk B, Rozza G. Certified Reduced Basis Approximation for the Coupling of Viscous and Inviscid Parametrized Flow Models. Journal of Scientific Computing [Internet]. 2018 ;74:197-219. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85017156114&doi=10.1007%2fs10915-017-0430-y&partnerID=40&md5=023ef0bb95713f4442d1fa374c92a964
Strazzullo M, Ballarin F, Rozza G. A CERTIFIED REDUCED BASIS Method FOR LINEAR PARAMETRIZED PARABOLIC OPTIMAL CONTROL PROBLEMS IN SPACE-TIME FORMULATION. 2021 .
Hesthaven JS, Rozza G, Stamm B. Certified Reduced Basis Methods for Parametrized Partial Differential Equations. 1st ed. Switzerland: Springer; 2015 p. 135.
Ballarin F, Rebollo TC, Ávila ED, Marmol MG, Rozza G. Certified Reduced Basis VMS-Smagorinsky model for natural convection flow in a cavity with variable height. Computers and Mathematics with Applications [Internet]. 2020 ;80:973-989. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85085843368&doi=10.1016%2fj.camwa.2020.05.013&partnerID=40&md5=7c6596865ec89651319c7dd97159dd77
Rebollo TC, Ávila ED, Marmol MG, Ballarin F, Rozza G. On a certified smagorinsky reduced basis turbulence model. SIAM Journal on Numerical Analysis [Internet]. 2017 ;55:3047-3067. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85039928218&doi=10.1137%2f17M1118233&partnerID=40&md5=221d9cd2bcc74121fcef93efd9d3d76c
Devaud D, Manzoni A, Rozza G. A combination between the reduced basis method and the ANOVA expansion: On the computation of sensitivity indices. Comptes Rendus Mathematique. Volume 351, Issue 15-16, August 2013, Pages 593-598 [Internet]. 2013 . Available from: http://hdl.handle.net/1963/7389
Tezzele M, Ballarin F, Rozza G. Combined parameter and model reduction of cardiovascular problems by means of active subspaces and POD-Galerkin methods. In: Mathematical and Numerical Modeling of the Cardiovascular System and Applications. Mathematical and Numerical Modeling of the Cardiovascular System and Applications. Springer; 2018. pp. 185–207.
Chen P, Quarteroni A, Rozza G. Comparison between reduced basis and stochastic collocation methods for elliptic problems. [Internet]. 2014 . Available from: http://urania.sissa.it/xmlui/handle/1963/34727
Sartori A, Baroli D, Cammi A, Chiesa D, Luzzi L, Ponciroli RR, Previtali E, Ricotti ME, Rozza G, Sisti M. Comparison of a Modal Method and a Proper Orthogonal Decomposition approach for multi-group time-dependent reactor spatial kinetics. Annals of Nuclear Energy [Internet]. 2014 ;71:229. Available from: http://urania.sissa.it/xmlui/handle/1963/35039
Gadalla M, Cianferra M, Tezzele M, Stabile G, Mola A, Rozza G. On the comparison of LES data-driven reduced order approaches for hydroacoustic analysis. Computers & Fluids [Internet]. 2021 ;216:104819. Available from: https://www.sciencedirect.com/science/article/pii/S0045793020303893
Hess MW, Quaini A, Rozza G. A comparison of reduced-order modeling approaches using artificial neural networks for PDEs with bifurcating solutions. ETNA - Electronic Transactions on Numerical Analysis. 2022 ;56:52–65.
Demo N, Tezzele M, Mola A, Rozza G. A complete data-driven framework for the efficient solution of parametric shape design and optimisation in naval engineering problems. In: VIII International Conference on Computational Methods in Marine Engineering. VIII International Conference on Computational Methods in Marine Engineering. ; 2019. Available from: https://arxiv.org/abs/1905.05982
Demo N, Tezzele M, Mola A, Rozza G. A complete data-driven framework for the efficient solution of parametric shape design and optimisation in naval engineering problems. In: 8th International Conference on Computational Methods in Marine Engineering, MARINE 2019. 8th International Conference on Computational Methods in Marine Engineering, MARINE 2019. ; 2019. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85075342565&partnerID=40&md5=d76b8a1290053e7a84fb8801c0e6bb3d
Auricchio F, Conti M, Lefieux A, Morganti S, Reali A, Rozza G, Veneziani A. Computational methods in cardiovascular mechanics. In: Labrosse MF Cardiovascular Mechanics. Cardiovascular Mechanics. CRC Press; 2018. p. 54. Available from: https://www.taylorfrancis.com/books/e/9781315280288/chapters/10.1201%2Fb21917-5
Pitton G, Quaini A, Rozza G. Computational reduction strategies for the detection of steady bifurcations in incompressible fluid-dynamics: Applications to Coanda effect in cardiology. Journal of Computational Physics. 2017 ;344:557.

Pages

Sign in