Export 54 results:
Filters: Author is Massimiliano Berti [Clear All Filters]
Zoll magnetic systems on the two-torus: A Nash–Moser construction. Advances in Mathematics [Internet]. 2024 ;452:109826. Available from: https://www.sciencedirect.com/science/article/pii/S0001870824003414
. Variational methods for Hamiltonian PDEs. NATO Science for Peace and Security Series B: Physics and Biophysics. 2008 :391-420.
. Traveling quasi-periodic water waves with constant vorticity. Arch. Ration. Mech. Anal. [Internet]. 2021 ;240:99–202. Available from: https://doi.org/10.1007/s00205-021-01607-w
. Time quasi-periodic vortex patches of Euler equation in the plane. Invent. Math. [Internet]. 2023 ;233:1279–1391. Available from: https://doi.org/10.1007/s00222-023-01195-4
. Time periodic solutions of completely resonant Klein-Gordon equations on $\mathbbS^3$. Ann. Inst. H. Poincaré C Anal. Non Linéaire . 2024 .
. Stokes waves at the critical depth are modulationally unstable. Comm. Math. Phys. [Internet]. 2024 ;405:Paper No. 56, 67. Available from: https://doi.org/10.1007/s00220-023-04928-x
. Soluzioni periodiche di PDEs Hamiltoniane. Bollettino dell\\\'Unione Matematica Italiana Serie 8 7-B (2004), p. 647-661 [Internet]. 2004 . Available from: http://hdl.handle.net/1963/4582
. Sobolev quasi-periodic solutions of multidimensional wave equations with a multiplicative potential. Nonlinearity. 2012 ;25:2579-2613.
. Sobolev periodic solutions of nonlinear wave equations in higher spatial dimensions. Archive for Rational Mechanics and Analysis. 2010 ;195:609-642.
. Reducibility of Klein-Gordon equations with maximal order perturbations. [Internet]. 2024 . Available from: https://arxiv.org/abs/2402.11377
. Quasi-periodic solutions with Sobolev regularity of NLS on Td with a multiplicative potential. Journal of the European Mathematical Society. 2013 ;15:229-286.
. Quasi-periodic solutions of nonlinear wave equations on the $d$-dimensional torus. EMS Publishing House, Berlin; 2020 p. xv+358.
. Quadratic life span of periodic gravity-capillary water waves. Water Waves [Internet]. 2021 ;3:85–115. Available from: https://doi.org/10.1007/s42286-020-00036-8
. Pure gravity traveling quasi-periodic water waves with constant vorticity. Comm. Pure Appl. Math. [Internet]. 2024 ;77:990–1064. Available from: https://doi.org/10.1002/cpa.22143
. Periodic solutions of nonlinear wave equations with non-monotone forcing terms. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 16 (2005), no. 2, 117-124 [Internet]. 2005 . Available from: http://hdl.handle.net/1963/4581
. Periodic solutions of nonlinear wave equations for asymptotically full measure sets of frequencies. Atti della Accademia Nazionale dei Lincei, Classe di Scienze Fisiche, Matematiche e Naturali, Rendiconti Lincei Matematica e Applicazioni. 2006 ;17:257-277.
. Paralinearization and extended lifespan for solutions of the $ α$-SQG sharp front equation. [Internet]. 2023 . Available from: https://arxiv.org/abs/2310.15963
. Optimal stability and instability results for a class of nearly integrable Hamiltonian systems. Atti.Accad.Naz.Lincei Cl.Sci.Fis.Mat.Natur.Rend.Lincei (9) Mat.Appl.13(2002),no.2,77-84 [Internet]. 2002 . Available from: http://hdl.handle.net/1963/1596
. An optimal fast-diffusion variational method for non isochronous system. [Internet]. 2002 . Available from: http://hdl.handle.net/1963/1579
. A note on KAM theory for quasi-linear and fully nonlinear forced KdV. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 24 (2013), no. 3: 437–450. 2013 .
. Nonlinear wave and Schrödinger equations on compact Lie groups and homogeneous spaces. Duke Mathematical Journal. 2011 ;159(3).
. Non-compactness and multiplicity results for the Yamabe problem on Sn. J. Funct. Anal. 180 (2001) 210-241 [Internet]. 2001 . Available from: http://hdl.handle.net/1963/1345
. Local well posedness of the Euler-Korteweg equations on {$\Bbb T^d$}. Journal of Dynamics and Differential Equations [Internet]. 2021 ;33(3):1475 - 1513. Available from: https://doi.org/10.1007/s10884-020-09927-3
. KAM theory for the Hamiltonian derivative wave equation. Annales Scientifiques de l'Ecole Normale Superieure. 2013 ;46:301-373.
. KAM for Vortex Patches. Regular and Chaotic Dynamics [Internet]. 2024 ;29(4):654 - 676. Available from: https://doi.org/10.1134/S1560354724540013
.