MENU

You are here

Publications

Export 166 results:
Filters: Author is Gianluigi Rozza  [Clear All Filters]
Unpublished
Strazzullo M, Ballarin F, Rozza G. POD-Galerkin Model Order Reduction for Parametrized Nonlinear Time Dependent Optimal Flow Control: an Application to Shallow Water Equations. 2020 .
Hess MW, Rozza G. Model Reduction Using Sparse Polynomial Interpolation for the Incompressible Navier-Stokes Equations. 2022 .
Romor F, Tezzele M, Rozza G. A local approach to parameter space reduction for regression and classification tasks. arXiv preprint arXiv:2107.10867. 2021 .
Demo N, Strazzullo M, Rozza G. AN EXTENDED PHYSICS INFORMED NEURAL NETWORK FOR PRELIMINARY ANALYSIS OF PARAMETRIC OPTIMAL CONTROL PROBLEMS. 2021 .
Donadini E, Strazzullo M, Tezzele M, Rozza G. A data-driven partitioned approach for the resolution of time-dependent optimal control problems with dynamic mode decomposition. 2021 .
Strazzullo M, Girfoglio M, Ballarin F, Iliescu T, Rozza G. Consistency of the full and reduced order models for Evolve-Filter-Relax Regularization of Convection-Dominated, Marginally-Resolved Flows. 2021 .
Strazzullo M, Ballarin F, Rozza G. A CERTIFIED REDUCED BASIS Method FOR LINEAR PARAMETRIZED PARABOLIC OPTIMAL CONTROL PROBLEMS IN SPACE-TIME FORMULATION. 2021 .
Pichi F, Ballarin F, Rozza G, Hesthaven JS. An artificial neural network approach to bifurcating phenomena in computational fluid dynamics. 2021 .
Salavatidezfouli S, Hajisharifi S, Girfoglio M, Stabile G, Rozza G. Applicable Methodologies for the Mass Transfer Phenomenon in Tumble Dryers: A Review. 2023 .
Preprint
Lassila T, Manzoni A, Rozza G. Reduction Strategies for Shape Dependent Inverse Problems in Haemodynamics. SISSA; 2013.
Lassila T, Manzoni A, Quarteroni A, Rozza G. A reduced-order strategy for solving inverse Bayesian identification problems in physiological flows. SISSA; 2013.
Lassila T, Manzoni A, Quarteroni A, Rozza G. A Reduced Computational and Geometrical Framework for Inverse Problems in Haemodynamics. SISSA; 2013.
Salmoiraghi F, Ballarin F, Heltai L, Rozza G. Isogeometric analysis-based reduced order modelling for incompressible linear viscous flows in parametrized shapes. Springer, AMOS Advanced Modelling and Simulation in Engineering Sciences; 2016. Available from: http://urania.sissa.it/xmlui/handle/1963/35199
Ballarin F, Faggiano E, Manzoni A, Rozza G, Quarteroni A, Ippolito S, Scrofani R, Antona C. A fast virtual surgery platform for many scenarios haemodynamics of patient-specific coronary artery bypass grafts. Submitted; 2016. Available from: http://urania.sissa.it/xmlui/handle/1963/35240
Ballarin F, Faggiano E, Ippolito S, Manzoni A, Quarteroni A, Rozza G, Scrofani R. Fast simulations of patient-specific haemodynamics of coronary artery bypass grafts based on a POD-Galerkin method and a vascular shape parametrization.; 2015. Available from: http://urania.sissa.it/xmlui/handle/1963/34623
Miscellaneous
Nonino M, Ballarin F, Rozza G, Maday Y. Projection based semi–implicit partitioned Reduced Basis Method for non parametrized and parametrized Fluid–Structure Interaction problems. 2022 .
Prusak I, Torlo D, Nonino M, Rozza G. An optimisation-based domain-decomposition reduced order model for parameter-dependent non-stationary fluid dynamics problems. 2023 .
Papapicco D, Demo N, Girfoglio M, Stabile G, Rozza G. The Neural Network shifted-Proper Orthogonal Decomposition: a Machine Learning Approach for Non-linear Reduction of Hyperbolic Equations. 2021 .
Giuliani N, Hess MW, DeSimone A, Rozza G. MicroROM: An Efficient and Accurate Reduced Order Method to Solve Many-Query Problems in Micro-Motility. [Internet]. 2020 . Available from: https://arxiv.org/abs/2006.13836
Meneghetti L, Demo N, Rozza G. A Dimensionality Reduction Approach for Convolutional Neural Networks. 2021 .
Hess MW, Quaini A, Rozza G. A Data-Driven Surrogate Modeling Approach for Time-Dependent Incompressible Navier-Stokes Equations with Dynamic Mode Decomposition and Manifold Interpolation. 2022 .
Hess MW, Quaini A, Rozza G. Data-Driven Enhanced Model Reduction for Bifurcating Models in Computational Fluid Dynamics. 2022 .

Pages

Sign in