Well-posedness of the Cauchy problem for n x n systems of conservation laws. American Mathematical Society; 2000. Available from: http://hdl.handle.net/1963/3495
. The Monge Problem in Geodesic Spaces. In: Nonlinear Conservation Laws and Applications. Nonlinear Conservation Laws and Applications. Boston, MA: Springer US; 2011. pp. 217–233.
. Asymptotic variational wave equations. Arch. Ration. Mech. Anal. 183 (2007) 163-185 [Internet]. 2007 . Available from: http://hdl.handle.net/1963/2182
. On the Blow-up for a Discrete Boltzmann Equation in the Plane. Discrete Contin. Dyn. Syst. 13 (2005) 1-12 [Internet]. 2005 . Available from: http://hdl.handle.net/1963/2244
. On the Boundary Control of Systems of Conservation Laws. SIAM J. Control Optim. 41 (2002) 607-622 [Internet]. 2002 . Available from: http://hdl.handle.net/1963/3070
. BV estimates for multicomponent chromatography with relaxation. Discrete Contin. Dynam. Systems 6 (2000) 21-38 [Internet]. 2000 . Available from: http://hdl.handle.net/1963/1336
. BV solutions for a class of viscous hyperbolic systems. Indiana Univ. Math. J. 49 (2000) 1673-1714 [Internet]. 2000 . Available from: http://hdl.handle.net/1963/3194
. A case study in vanishing viscosity. Discrete Cont. Dyn. Syst. 7 (2001) 449-476 [Internet]. 2001 . Available from: http://hdl.handle.net/1963/3091
. A center manifold technique for tracing viscous waves. Commun. Pure Appl. Anal. 1 (2002) 161-190 [Internet]. 2002 . Available from: http://hdl.handle.net/1963/3075
. A class of absolute retracts of dwarf spheroidal galaxies. Proc.Amer.Math.Soc. 112 (1991), no.2, 413 [Internet]. 1991 . Available from: http://hdl.handle.net/1963/837
. Conservative Solutions to a Nonlinear Variational Wave Equation. Comm. Math. Phys. 266 (2006) 471-497 [Internet]. 2006 . Available from: http://hdl.handle.net/1963/2184
. On the convergence of Godunov scheme for nonlinear hyperbolic systems. Chinese Ann. Math. B, 2000, 21, 269 [Internet]. 2000 . Available from: http://hdl.handle.net/1963/1473
. On the convergence of viscous approximations after shock interactions. Discrete Contin. Dyn. Syst. 23 (2009) 29-48 [Internet]. 2009 . Available from: http://hdl.handle.net/1963/3412
. On the convergence rate of vanishing viscosity approximations. Comm. Pure Appl. Math. 57 (2004) 1075-1109 [Internet]. 2004 . Available from: http://hdl.handle.net/1963/2915
. On differential systems with vector-valued impulsive controls. Boll. Un. Mat. Ital. B (7) 2 (1988), no. 3, 641-656 [Internet]. 1988 . Available from: http://hdl.handle.net/1963/535
. Error bounds for a deterministic version of the Glimm scheme. Arch. Rational Mech. Anal. 142 (1998), no. 2, 155-176 [Internet]. 1998 . Available from: http://hdl.handle.net/1963/1045
. Existence and continuous dependence for discontinuous O.D.E.s. Boll. Un. Mat. Ital. B (7) 4 (1990), no. 2, 295--311 [Internet]. 1990 . Available from: http://hdl.handle.net/1963/716
. Flow Stability of Patchy Vector Fields and Robust Feedback Stabilization. SIAM J. Control Optim. 41 (2002) 1455-1476 [Internet]. 2002 . Available from: http://hdl.handle.net/1963/3073
. Generalized Baire category and differential inclusions in Banach spaces. J. Differential Equations 76 (1988), no. 1, 135-158. [Internet]. 1988 . Available from: http://hdl.handle.net/1963/538
. A generic classification of time-optimal planar stabilizing feedbacks. SIAM J. Control Optim. 36 (1998) 12-32 [Internet]. 1998 . Available from: http://hdl.handle.net/1963/998
. Global solutions of the Hunter-Saxton equation. SIAM J. Math. Anal. 37 (2005) 996-1026 [Internet]. 2005 . Available from: http://hdl.handle.net/1963/2256
. Hyperbolic Systems of Conservation Laws. Rev. Mat. Complut. 12 (1999) 135-200 [Internet]. 1999 . Available from: http://hdl.handle.net/1963/1855
. An ill posed Cauchy problem for a hyperbolic system in two space dimensions. [Internet]. 2003 . Available from: http://hdl.handle.net/1963/2913
. An instability of the Godunov scheme. Comm. Pure Appl. Math. 59 (2006) 1604-1638 [Internet]. 2006 . Available from: http://hdl.handle.net/1963/2183
. L-1 stability estimates for n x n conservation laws. Arch. Ration. Mech. Anal. 149 (1999), no. 1, 1--22 [Internet]. 1999 . Available from: http://hdl.handle.net/1963/3373
.