On the tritronquée solutions of P$_I^2$. SISSA; 2013.
. Numerical study of a multiscale expansion of KdV and Camassa-Holm equation.; 2007. Available from: http://hdl.handle.net/1963/2527
. Numerical Solution of the Small Dispersion Limit of the Camassa-Holm and Whitham Equations and Multiscale Expansions.; 2010. Available from: http://hdl.handle.net/1963/3840
. . . On universality of critical behaviour in the focusing nonlinear Schrödinger equation, elliptic umbilic catastrophe and the \\\\it tritronquée solution to the Painlevé-I equation. J. Nonlinear Sci. 19 (2009) 57-94 [Internet]. 2009 . Available from: http://hdl.handle.net/1963/2525
. Numerical study of the small dispersion limit of the Korteweg-de Vries equation and asymptotic solutions. Physica D 241, nr. 23-24 (2012): 2246-2264. 2012 .
. Numerical study of the Kadomtsev-Petviashvili equation and dispersive shock waves. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences [Internet]. 2018 ;474:20170458. Available from: https://royalsocietypublishing.org/doi/abs/10.1098/rspa.2017.0458
. Numerical Study of breakup in generalized Korteweg-de Vries and Kawahara equations. SIAM J. Appl. Math. 71 (2011) 983-1008 [Internet]. 2011 . Available from: http://hdl.handle.net/1963/4951
. Numerical study of a multiscale expansion of the Korteweg-de Vries equation and Painlevé-II equation. Proc. R. Soc. A 464 (2008) 733-757 [Internet]. 2008 . Available from: http://hdl.handle.net/1963/2592
.