MENU

You are here

Publications

Export 31 results:
Filters: Author is Marco Tezzele  [Clear All Filters]
Journal Article
Demo N, Tezzele M, Rozza G. A supervised learning approach involving active subspaces for an efficient genetic algorithm in high-dimensional optimization problems. SIAM Journal on Scientific Computing [Internet]. 2021 ;43(3). Available from: https://arxiv.org/abs/2006.07282
Garotta F, Demo N, Tezzele M, Carraturo M, Reali A, Rozza G. Reduced order isogeometric analysis approach for pdes in parametrized domains. Lecture Notes in Computational Science and Engineering [Internet]. 2020 ;137:153-170. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85089615035&doi=10.1007%2f978-3-030-48721-8_7&partnerID=40&md5=7b15836ae65fa28dcfe8733788d7730c
Tezzele M, Demo N, Mola A, Rozza G. PyGeM: Python Geometrical Morphing. Software Impacts. 2021 ;7:100047.
Demo N, Tezzele M, Rozza G. PyDMD: Python Dynamic Mode Decomposition. The Journal of Open Source Software [Internet]. 2018 ;3:530. Available from: https://joss.theoj.org/papers/734e4326edd5062c6e8ee98d03df9e1d
Demo N, Tezzele M, Rozza G. A non-intrusive approach for the reconstruction of POD modal coefficients through active subspaces. Comptes Rendus - Mecanique [Internet]. 2019 ;347:873-881. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85075379471&doi=10.1016%2fj.crme.2019.11.012&partnerID=40&md5=dcb27af39dc14dc8c3a4a5f681f7d84b
Romor F, Tezzele M, Mrosek M, Othmer C, Rozza G. Multi-fidelity data fusion through parameter space reduction with applications to automotive engineering. arXiv preprint arXiv:2110.14396. 2021 .
Romor F, Tezzele M, Lario A, Rozza G. Kernel-based active subspaces with application to computational fluid dynamics parametric problems using discontinuous Galerkin method. International Journal for Numerical Methods in Engineering. 2022 ;123:6000-6027.
Demo N, Tezzele M, Mola A, Rozza G. Hull Shape Design Optimization with Parameter Space and Model Reductions, and Self-Learning Mesh Morphing. Journal of Marine Science and Engineering [Internet]. 2021 ;9:185. Available from: https://www.mdpi.com/2077-1312/9/2/185
Demo N, Tezzele M, Rozza G. EZyRB: Easy Reduced Basis method. The Journal of Open Source Software [Internet]. 2018 ;3:661. Available from: https://joss.theoj.org/papers/10.21105/joss.00661
Tezzele M, Demo N, Stabile G, Mola A, Rozza G. Enhancing CFD predictions in shape design problems by model and parameter space reduction. Advanced Modeling and Simulation in Engineering Sciences [Internet]. 2020 ;7(40). Available from: https://arxiv.org/abs/2001.05237
Tezzele M, Salmoiraghi F, Mola A, Rozza G. Dimension reduction in heterogeneous parametric spaces with application to naval engineering shape design problems. Advanced Modeling and Simulation in Engineering Sciences. 2018 ;5:25.
Gadalla M, Cianferra M, Tezzele M, Stabile G, Mola A, Rozza G. On the comparison of LES data-driven reduced order approaches for hydroacoustic analysis. Computers & Fluids [Internet]. 2021 ;216:104819. Available from: https://www.sciencedirect.com/science/article/pii/S0045793020303893
Gadalla M, Tezzele M, Mola A, Rozza G. BladeX: Python Blade Morphing. The Journal of Open Source Software. 2019 ;4:1203.
Romor F, Tezzele M, Rozza G. ATHENA: Advanced Techniques for High dimensional parameter spaces to Enhance Numerical Analysis. Software Impacts. 2021 ;10:100133.
Conference Paper
Cangelosi D, Bonvicini A, Nardo M, Mola A, Marchese A, Tezzele M, Rozza G. SRTP 2.0 - The evolution of the safe return to port concept. In: Technology and Science for the Ships of the Future - Proceedings of NAV 2018: 19th International Conference on Ship and Maritime Research. Technology and Science for the Ships of the Future - Proceedings of NAV 2018: 19th International Conference on Ship and Maritime Research. ; 2018.
Tezzele M, Demo N, Rozza G. Shape optimization through proper orthogonal decomposition with interpolation and dynamic mode decomposition enhanced by active subspaces. In: 8th International Conference on Computational Methods in Marine Engineering, MARINE 2019. 8th International Conference on Computational Methods in Marine Engineering, MARINE 2019. ; 2019. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85075390244&partnerID=40&md5=3e1f2e9a2539d34594caff13766c94b8
Demo N, Tezzele M, Gustin G, Lavini G, Rozza G. Shape Optimization by means of Proper Orthogonal Decomposition and Dynamic Mode Decomposition. In: Technology and Science for the Ships of the Future: Proceedings of NAV 2018: 19th International Conference on Ship & Maritime Research. Technology and Science for the Ships of the Future: Proceedings of NAV 2018: 19th International Conference on Ship & Maritime Research. Trieste, Italy: IOS Press; 2018. Available from: http://ebooks.iospress.nl/publication/49229
Romor F, Tezzele M, Rozza G. Multi-fidelity data fusion for the approximation of scalar functions with low intrinsic dimensionality through active subspaces. In: Proceedings in Applied Mathematics & Mechanics. Vol. 20. Proceedings in Applied Mathematics & Mechanics. Wiley Online Library; 2021.
Tezzele M, Demo N, Gadalla M, Mola A, Rozza G. Model Order Reduction by means of Active Subspaces and Dynamic Mode Decomposition for Parametric Hull Shape Design Hydrodynamics. In: Technology and Science for the Ships of the Future: Proceedings of NAV 2018: 19th International Conference on Ship & Maritime Research. Technology and Science for the Ships of the Future: Proceedings of NAV 2018: 19th International Conference on Ship & Maritime Research. Trieste, Italy: IOS Press; 2018. Available from: http://ebooks.iospress.nl/publication/49270
Mola A, Tezzele M, Gadalla M, Valdenazzi F, Grassi D, Padovan R, Rozza G. Efficient reduction in shape parameter space dimension for ship propeller blade design. In: 8th International Conference on Computational Methods in Marine Engineering, MARINE 2019. 8th International Conference on Computational Methods in Marine Engineering, MARINE 2019. ; 2019. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85075395143&partnerID=40&md5=b6aa0fcedc2f88e78c295d0f437824d0
Demo N, Tezzele M, Mola A, Rozza G. A complete data-driven framework for the efficient solution of parametric shape design and optimisation in naval engineering problems. In: 8th International Conference on Computational Methods in Marine Engineering, MARINE 2019. 8th International Conference on Computational Methods in Marine Engineering, MARINE 2019. ; 2019. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85075342565&partnerID=40&md5=d76b8a1290053e7a84fb8801c0e6bb3d

Pages

Sign in