You are here


Export 167 results:
Filters: Author is Gianluigi Rozza  [Clear All Filters]
Hess MW, Quaini A, Rozza G. A comparison of reduced-order modeling approaches using artificial neural networks for PDEs with bifurcating solutions. ETNA - Electronic Transactions on Numerical Analysis. 2022 ;56:52–65.
Hess MW, Quaini A, Rozza G. Data-Driven Enhanced Model Reduction for Bifurcating Models in Computational Fluid Dynamics. 2022 .
Hess MW, Quaini A, Rozza G. A Data-Driven Surrogate Modeling Approach for Time-Dependent Incompressible Navier-Stokes Equations with Dynamic Mode Decomposition and Manifold Interpolation. 2022 .
Pichi F, Strazzullo M, Ballarin F, Rozza G. Driving bifurcating parametrized nonlinear PDEs by optimal control strategies: application to Navier–Stokes equations with model order reduction. ESAIM: M2AN [Internet]. 2022 ;56(4):1361 - 1400. Available from:
Romor F, Tezzele M, Lario A, Rozza G. Kernel-based active subspaces with application to computational fluid dynamics parametric problems using discontinuous Galerkin method. International Journal for Numerical Methods in Engineering. 2022 ;123:6000-6027.
Khamlich M, Pichi F, Rozza G. Model order reduction for bifurcating phenomena in fluid-structure interaction problems. International Journal for Numerical Methods in FluidsInternational Journal for Numerical Methods in FluidsInt J Numer Meth Fluids [Internet]. 2022 ;n/a(n/a). Available from:
Hess MW, Rozza G. Model Reduction Using Sparse Polynomial Interpolation for the Incompressible Navier-Stokes Equations. 2022 .
Papapicco D, Demo N, Girfoglio M, Stabile G, Rozza G. The Neural Network shifted-proper orthogonal decomposition: A machine learning approach for non-linear reduction of hyperbolic equations. Computer Methods in Applied Mechanics and Engineering [Internet]. 2022 ;392. Available from:
Girfoglio M, Quaini A, Rozza G. A POD-Galerkin reduced order model for the Navier–Stokes equations in stream function-vorticity formulation. [Internet]. 2022 :105536. Available from:
Nonino M, Ballarin F, Rozza G, Maday Y. Projection based semi–implicit partitioned Reduced Basis Method for non parametrized and parametrized Fluid–Structure Interaction problems. 2022 .
Meneghetti L, Demo N, Rozza G. A Proper Orthogonal Decomposition Approach for Parameters Reduction of Single Shot Detector Networks. In: 2022 IEEE International Conference on Image Processing (ICIP). 2022 IEEE International Conference on Image Processing (ICIP). ; 2022.
Pichi F, Ballarin F, Rozza G, Hesthaven JS. An artificial neural network approach to bifurcating phenomena in computational fluid dynamics. 2021 .
Romor F, Tezzele M, Rozza G. ATHENA: Advanced Techniques for High dimensional parameter spaces to Enhance Numerical Analysis. Software Impacts. 2021 ;10:100133.
Gadalla M, Cianferra M, Tezzele M, Stabile G, Mola A, Rozza G. On the comparison of LES data-driven reduced order approaches for hydroacoustic analysis. Computers & Fluids [Internet]. 2021 ;216:104819. Available from:
Strazzullo M, Girfoglio M, Ballarin F, Iliescu T, Rozza G. Consistency of the full and reduced order models for Evolve-Filter-Relax Regularization of Convection-Dominated, Marginally-Resolved Flows. 2021 .
Donadini E, Strazzullo M, Tezzele M, Rozza G. A data-driven partitioned approach for the resolution of time-dependent optimal control problems with dynamic mode decomposition. 2021 .
Meneghetti L, Demo N, Rozza G. A Dimensionality Reduction Approach for Convolutional Neural Networks. 2021 .
Shah N, Hess MW, Rozza G. Discontinuous Galerkin Model Order Reduction of Geometrically Parametrized Stokes Equation. In: Vermolen FJ, Vuik C Numerical Mathematics and Advanced Applications ENUMATH 2019. Numerical Mathematics and Advanced Applications ENUMATH 2019. Cham: Springer International Publishing; 2021.
Andreuzzi F, Demo N, Rozza G. A dynamic mode decomposition extension for the forecasting of parametric dynamical systems. arXiv preprint arXiv:2110.09155. 2021 .
Pintore M, Pichi F, Hess MW, Rozza G, Canuto C. Efficient computation of bifurcation diagrams with a deflated approach to reduced basis spectral element method. Advances in Computational Mathematics. 2021 ;47.


Sign in