Data-driven solutions of ill-posed inverse problems arising from doping reconstruction in semiconductors. Applied Mathematics in Science and Engineering [Internet]. 2024 ;32:2323626. Available from: https://doi.org/10.1080/27690911.2024.2323626
. Pure gravity traveling quasi-periodic water waves with constant vorticity. Comm. Pure Appl. Math. [Internet]. 2024 ;77:990–1064. Available from: https://doi.org/10.1002/cpa.22143
. R3MG: R-tree based agglomeration of polytopal grids with applications to multilevel methods. [Internet]. 2024 . Available from: https://arxiv.org/abs/2404.18505
. Reducibility of Klein-Gordon equations with maximal order perturbations. [Internet]. 2024 . Available from: https://arxiv.org/abs/2402.11377
. Birkhoff normal form and long time existence for periodic gravity water waves. Comm. Pure Appl. Math. [Internet]. 2023 ;76:1416–1494. Available from: https://doi.org/10.1002/cpa.22041
. A comparison of non-matching techniques for the finite element approximation of interface problemsImage 1. Computers & Mathematics with Applications [Internet]. 2023 ;151:101-115. Available from: https://www.sciencedirect.com/science/article/pii/S0898122123004029
. The deal.II Library, Version 9.5. Journal of Numerical Mathematics [Internet]. 2023 ;31:231–246. Available from: https://doi.org/10.1515/jnma-2023-0089
The deal.II Library, Version 9.5. Journal of Numerical Mathematics [Internet]. 2023 ;31:231–246. Available from: https://doi.org/10.1515/jnma-2023-0089
On the Minimal Number of Solutions of the Equation φ(n+k)=Mφ(n), M=1,2. Journal of Integer Sequences [Internet]. 2023 ;26. Available from: https://cs.uwaterloo.ca/journals/JIS/VOL26/Sillari/sillari3.html
. Reducibility for a linear wave equation with Sobolev smooth fast driven potential. Discr. Cont. Dyn. Syst. [Internet]. 2023 ;43(9):3251–3285. Available from: https://doi.org/10.3934/dcds.2023047
. The deal.II library, Version 9.4. Journal of Numerical Mathematics [Internet]. 2022 ;30:231–246. Available from: https://doi.org/10.1515/jnma-2022-0054
The deal.II library, Version 9.4. Journal of Numerical Mathematics [Internet]. 2022 ;30:231–246. Available from: https://doi.org/10.1515/jnma-2022-0054
Indeterminacy estimates, eigenfunctions and lower bounds on Wasserstein distances. [Internet]. 2022 ;61(4):131. Available from: https://doi.org/10.1007/s00526-022-02240-5
. Long-time stability of the quantum hydrodynamic system on irrational tori. Mathematics in Engineering [Internet]. 2022 ;4:1-24. Available from: https://www.aimspress.com/article/doi/10.3934/mine.2022023
. A piecewise conservative method for unconstrained convex optimization. [Internet]. 2022 ;81(1):251 - 288. Available from: https://doi.org/10.1007/s10589-021-00332-0
. The \textttdeal.II Library, Version 9.4. Journal of Numerical Mathematics. 2022 .
The \textttdeal.II Library, Version 9.4. Journal of Numerical Mathematics. 2022 .
Birkhoff normal form for gravity water waves. Water Waves [Internet]. 2021 ;3:117–126. Available from: https://doi.org/10.1007/s42286-020-00024-y
. The deal.II Library, Version 9.3. Journal of Numerical Mathematics [Internet]. 2021 . Available from: https://doi.org/10.1515/jnma-2021-0081
. Exactness of Linear Response in the Quantum Hall Effect. Annales Henri Poincaré [Internet]. 2021 ;22:1113–1132. Available from: http://dx.doi.org/10.1007/s00023-020-00989-z
. Non-well-ordered lower and upper solutions for semilinear systems of PDEs. Communications in Contemporary MathematicsCommunications in Contemporary Mathematics [Internet]. 2021 :2150080. Available from: https://doi.org/10.1142/S0219199721500802
. Periodic Solutions of Second-Order Differential Equations in Hilbert Spaces. [Internet]. 2021 ;18(5):223. Available from: https://doi.org/10.1007/s00009-021-01857-8
. Quadratic life span of periodic gravity-capillary water waves. Water Waves [Internet]. 2021 ;3:85–115. Available from: https://doi.org/10.1007/s42286-020-00036-8
. Quadratic life span of periodic gravity-capillary water waves. Water Waves [Internet]. 2021 ;3:85–115. Available from: https://doi.org/10.1007/s42286-020-00036-8
.