MENU

You are here

Dynamical Systems and PDEs

  • KAM for PDEs
    • Periodic and Quasi-periodic solutions of Hamiltonian PDEs
    • Nonlinear wave and Schroedinger equations
    • Reversible KAM theory
    • KAM for unbounded perturbations: quasi linear KdV, derivative wave equations
    • Water waves equations
    • Birkhoff Lewis periodic orbits
    • Almost periodic solutions
  • Bifurcation Theory and Nash-Moser Implicit Function Theorems
  • Birkhoff normal forms
  • Variational and Topological Methods in the study of Hamiltonian systems
    • Variational methods for periodic solutions
    • Homoclinic and heteteoclinic solutions
  • Dynamical systems
    • Arnold Diffusion
    • Chaotic dynamics
    • Perturbation and Nekhoroshev Theory
    • 3 body problem

Marie Curie Research and Innovation Staff Exchange, "Integrable Partial Differential Equations: Geometry, Asymptotics, and Numerics"

IPaDEGAN is a European Marie Skłodowska-Curie Research and Innovation Staff Exchange ( RISE ) project, funded by the European Commission within the H2020-MSCA-RISE-2017 call. It fosters international mobility and collaboration on the topic of partial differential equations, especially on Integrable PDEs and their ramified applications.

Pseudodifferential operators, applications and dynamics

Aim of the course is to introduce the basic tools of pseudodifferential calculus, and to show applications of such techniques in the analysis of dispersive PDEs, spectral theory, or other areas. A particular emphasis will be given to the problem of growth of Sobolev norms. 

Course Contents:

Part 1: Review of Fourier calculus

Bifurcation theory and PDEs

This course deals with bifurcation theory and applications to dynamical systems and PDEs, like the Lyapunov center theorem, Hopf bifurcation, traveling and Stokes waves for fluids. At the beginning we shall present the differential calculus and the implicit function theorem in Banach spaces. At the end I will deal also with the cases in which the classical implicit function theorem can not be applied since the linearized operator has an unbounded inverse and a version of the Nash-Moser implicit function theorem. 

Introduction to pseudodifferential operators and dynamics of linear, time dependent Schrödinger equations

Aim of the course is to introduce the basic tools of pseudodifferential calculus, and apply them to analyze the long time dynamics of linear, time dependent Schrödinger equations. A particular emphasis will be given to the problem of growth of Sobolev norms.

Course contents:

Part 1: Pseudodifferential operators

Pages

Sign in