MENU

You are here

"Cossa xe... a measure of maximal entropy?"

Hamza Ounesli
Schedule: 
Friday, April 23, 2021 - 11:00 to 12:00
Location: 
Online
Abstract: 

A measure of maximal entropy is an invariant measure of the  geodesic flow of a given Riemannian manifold (M,g) for which the  topological entropy of the flow coincides with the measure entropy.  The question of existence, uniqueness and explicit construction of  such measures in general is a highly non trivial problem, In the talk  we will present some of the results in case of metrics of negative  sectional curvature without conjugate points. 

Sign in