MENU

You are here

When applied mathematics collided with algebra

Nalini Joshi
Institution: 
University of Sidney
Schedule: 
Wednesday, June 3, 2020 - 10:00
Location: 
Online
Location: 
Zoom (sign in to get the link)
Abstract: 

Imagine walking from one tile to another on a lattice defined by reflections associate with an affine Coxeter or Weyl group. Examples include triangular or hexagonal lattices on the plane. Recently, it was discovered that translations on such lattices give rise to the Painlevé equations, which are reductions of integrable systems that are more familiar to applied mathematicians and mathematical physicists. I will explain this surprising development through introductory examples and explain the background to the discovery of the geometric theory of continuous and discrete Painlevé equations.

Sign in