The candidate is asked to solve at least one of the following problems.

Problem No. 1

1) Give a brief outline of the theory of the Hamilton–Jacobi equation.

2) Consider a Hamiltonian of the form

\[h = \sum_{k=1}^{n} f_k(q_k, p_k) \]

where \(f_k, g_k \) are smooth functions of two variables for \(k = 1, \ldots, n \).

2a) Show that the associated Hamilton–Jacobi equation can be solved by the method of separation of variables.

2b) Prove that the functions \(F_0 = h; F_k = f_k - h \cdot g_k, k = 1, \ldots, n - 1 \) are involutive conserved quantities of the Hamiltonian system:

\[\dot{q}_i = \frac{\partial h}{\partial p_i} \]

\[\dot{p}_i = -\frac{\partial h}{\partial q_i} \]

3) Let

\[H = \frac{p_x^2}{x^2} + \frac{p_y^2}{y^2} + \frac{y}{x^2}. \]

Use the solution of the Hamilton–Jacobi equation associated to \(H \) to find the solutions \(x(t), y(t) \) of the equation of motions. (Recall that integrals of the form \(\int F(\sqrt{ax^2 + bx + c}; x)dx \) can be computed by means of the Euler substitution \(t = \sqrt{ax^2 + bx + c} \pm \sqrt{a} \cdot x \).)

Problem No. 2

Let \(f(x) \) be a continuous doubly periodic function on the plane, i.e., there are two linearly independent vectors \(a, b \) ("elementary periods") such that

\[f(x + ma + nb) = f(x) \quad \forall x, \]

for arbitrary integers \(m, n \).
1) Prove that, if a non-constant \(f(x) \) satisfies also \(f(x + mc) = f(x) \) for all \(x \) and for any integer \(m \), then the vector \(c \) must be of the form \(c = pa + qb \) with rational \(p, q \).

2) Suppose now that a continuous doubly periodic function \(f(x) \) satisfies \(f(R(x)) = f(x) \) where \(R \) is the rotation of the plane around some point by the angle \(\pi / 5 \). Prove that \(f(x) \) is a constant.

Problem No. 3

1) Briefly describe the properties of the group of Lorentz transformations of Minkowski space–time, i.e. the group of linear transformations \(\Lambda \)

\[
\begin{pmatrix}
 c t' \\
 x' \\
 y' \\
 z'
\end{pmatrix}
= \Lambda
\begin{pmatrix}
 c t \\
 x \\
 y \\
 z
\end{pmatrix}
\]

such that \(\Lambda^T \eta \Lambda = \eta \), \(\eta \) being the matrix \(\text{diag}(1, -1, -1, -1) \).

2) Knowing that under an arbitrary Lorentz transformation \(\Lambda \) the vectors \(E \) and \(B \) (electric and magnetic fields) transform into vectors \((E^\Lambda, B^\Lambda) \) in such a way that

\[
F^{\mu\nu} = \begin{bmatrix}
0 & -E_x & -E_y & -E_z \\
E_x & 0 & -B_z & B_y \\
E_y & B_z & 0 & -B_x \\
E_z & -B_y & B_x & 0
\end{bmatrix}
\]

behaves as rank two contravariant tensor, i.e. \(F \mapsto F^\Lambda = \Lambda F \Lambda^T \):

2a) Prove that \(|E|^2 - |B|^2 \) and \(E \cdot B \) are Lorentz invariant and that the duality transformation \((E, B) \mapsto (-B, E) \) commutes with the proper orthochronous Lorentz group \(L_+^\Lambda = \{ \Lambda \text{ s.t. } A_0 > 1, \ det \Lambda = 1 \} \).

2b) Show that for every \(\Lambda \in L_+^\Lambda \) there exists a \(3 \times 3 \) complex orthogonal matrix \(A(\Lambda) \) such that

\[
E^\Lambda + iB^\Lambda = A(\Lambda) \cdot (E + iB)
\]

2c) Write the transformation law for \(E \) and \(B \) under a Lorentz boost

\[
\begin{align*}
x' &= x + \left[(\gamma - 1)\frac{x \cdot v}{v^2} - \gamma t\right]v \\
t' &= \gamma \left(t - \frac{x \cdot v}{c^2}\right)
\end{align*}
\]

2d) Consider the case in which \(E \) and \(B \) are uniform and mutually orthogonal. Discuss under which conditions there exists a Lorentz boost \(\Lambda \) for which \(E^\Lambda = 0 \) or \(B^\Lambda = 0 \).

Problem No. 4
Consider a system of linear differential equations

\[\frac{dy}{dz} = \left(\sum_{i=1}^{k} \frac{A_i}{z - z_i} \right) y \tag{*} \]

for the vector-function

\[y(z) = \begin{pmatrix} y_1(z) \\ y_2(z) \\ \vdots \\ y_n(z) \end{pmatrix} \]

Here \(A_1, \ldots, A_k \) are \(z \)-independent \(n \times n \) matrices, \(z_1, \ldots, z_k \) are pairwise distinct complex numbers. Let

\[Y(z) = \begin{pmatrix} y_{11}(z) & \cdots & y_{1n}(z) \\ \vdots & \ddots & \vdots \\ y_{n1}(z) & \cdots & y_{nn}(z) \end{pmatrix} \]

be a fundamental matrix of the system \((*)\) (i.e., the columns of \(Y(z) \) form a basis in the space of solutions of \((*)\)) defined in a neighborhood of a point \(z = z_0, z_0 \neq z_i \) for any \(i = 1, \ldots, k \).

1) Prove that \(\det Y(z) \) does not depend on \(z \) if \(\text{trace}(A_i) = 0, i = 1, \ldots, k \).

2) Let \(\gamma \) be an oriented closed loop on the \(z \)-plane passing through \(z_0 \) but avoiding the points \(z_1, \ldots, z_k \). Denote \(Y_\gamma(z) \) the result of analytic continuation of the fundamental matrix \(Y(z) \) along \(\gamma \). Prove that there exists a nondegenerate \(n \times n \) matrix \(M_\gamma \) such that

\[Y_\gamma(z) = Y(z)M_\gamma. \]

3) Consider the particular case \(n = 2 \). Let us assume that

- \(\text{trace}(A_i) = 0, \det A_i = 0, i = 1, \ldots, k. \)
- for any two closed loops \(\gamma_1, \gamma_2 \) the matrices \(M_{\gamma_1} \) and \(M_{\gamma_2} \) commute:

\[M_{\gamma_1}M_{\gamma_2} = M_{\gamma_2}M_{\gamma_1}. \]

Prove that there exists a nondegenerate \(2 \times 2 \) matrix \(T \) such that the matrices

\[B_i := T^{-1}A_iT \]

have the form

\[B_i = \begin{pmatrix} 0 & b_i \\ 0 & 0 \end{pmatrix} \]

for any \(i = 1, \ldots, k \).