
SISSA – Mathematics Area

Entrance examination for the course in Mathematical Analysis, Modelling, and Applications

February 14, 2023

Solve FIVE of the following problems. In the first page of your examination paper please write
neatly the list of the exercises you have chosen. These exercises only (in any case not more than
five) will be considered for the selection.

Mathematical Analysis

1. Let A ,B be bounded operators on a Hilbert space. Prove or disprove the following sentences:

(i) If AB is compact, at least one between A and B is compact.

(ii) If AB is injective, at least one of the two is injective.

(iii) If AB is surjective, at least one of the two is surjective.

(iv) If AB is bijective, at least one of the two is bijective.

2. Consider the operator T : ℓ2(Z) → ℓ2(Z) defined, for a sequence x ≡ (xk)k∈Z , by

(Tx)k := xk+1 − 2xk + xk−1.

Discuss, properly justifying the answers, the following questions:

(i) Is T bounded? Which is its norm?

(ii) Is T injective? Is it surjective? Is it invertible?

(iii) Is T compact?

(iv) Which is the spectrum of T ?

3. Show that

lim
n→+∞

∫ 2π

0
| sin(nx)f(x)|dx =

2

π

∫ 2π

0
|f(x)|dx for any f ∈ L1(0, 2π).

(Hint: consider first the case where f is the characteristic function of an interval.)

4. Answer the following questions.
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(i) Consider the embedding Lp(0, 2π) ↪→ Lq(0, 2π) for p ≥ q . Is there any choice of p and q
such that the embedding is a compact operator?

(ii) Let I = [a, b] be a bounded interval: is the embedding of C1([a, b]) ↪→ C([a, b]) compact?

(iii) Let Cb(R) be the space of continuous bounded functions f over R with norm ∥f∥Cb
=

supx∈R |f(x)| , and let C1
b (R) be the space of continuous bounded functions f over R

with continuous bounded derivative f ′ with norm ∥f∥Cb
+ ∥f ′∥Cb

. Is the embedding
C1
b (R) ↪→ Cb(R) compact?

The candidate must justify the answers.

5. Answer the following questions.

(i) Let f ∈ C0(R) ∩ L1(R). Prove that, if the limit

lim
x→+∞

f(x)

exists, then it must be equal to 0.

(ii) Find an example of a function f ∈ C0(R) ∩ L1(R) such that the limit

lim
x→+∞

f(x)

does not exist.

(iii) Let f ∈ C1(R) ∩ L1(R) with f ′ ∈ C0(R) ∩ L1(R). Prove that

lim
x→+∞

f(x) = 0 .

6. Let f : [0,+∞) → [0,+∞) be a concave function with f(0) = 0.

(i) Prove that
f(x+ y) ≤ f(x) + f(y)

for every x, y ∈ [0,+∞).

(ii) Prove that
f(x)

x
≥ f(y)

y

for every x, y ∈ [0,+∞) with x ≤ y .
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(iii) Prove that the limit

lim
x→+∞

f(x)

x

exists and is finite.

(iv) Assume, in addition, that f ∈ C1((0,+∞)). Prove that

lim
x→+∞

f ′(x) = lim
x→+∞

f(x)

x
.

7. Let I := [0, 1] and let Iik := [ i−1
k , i

k ] for k ∈ N and i = 1, . . . , k . For every A ⊂ I let
χA : I → R be the characteristic function of A , defined by χA(x) = 1 if x ∈ A and χA(x) = 0
if x ∈ I \A . For every k ∈ N let Tk : L

1(I) → L1(I) be the linear operator defined by

(Tk(f))(x) := k
k∑

i=1

χIik
(x)

∫
Iik

f(y)dy

for every f ∈ L1(I).

(i) Prove that
∥Tk(f)∥L1(I) ≤ ∥f∥L1(I)

for every f ∈ L1(I).

(ii) Prove that
Tk(f) → f in L1(I)

for every f ∈ C0(I).

(iii) Prove that
Tk(f) → f in L1(I)

for every f ∈ L1(I).

(iv) Is it true that
lim

k→+∞
sup

f∈L1(I)
∥f∥L1(I)≤1

∥Tk(f)− f∥L1(I) = 0?

8. Let f ∈ L1(R) with f ≥ 0 a.e. in R and let g : R → R be the function defined by

g(x) :=

∫ x4+2

x2+sin(x)
f(t) dt

for every x ∈ R . Prove that g has a maximum point in R .

9. Let α ∈ [0,∞) and consider the differential equation

ẍ(t) + x(t)− sin(αx(t)) = 0 .
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(i) Prove that if α ∈ [0, 1] then all the solutions are periodic.

(ii) Prove that if α > 1 there are solutions not periodic.

10. Find a C1 solution u : R2 → R to the PDE

ux + uy = u, u(0, x) = sin(x).

Numerical Analysis

11. Consider the nonlinear equation 5x4 − 4x2 + 2x − 3 = 0. We are interested in the root
x0 ≈ −1.25.

(i) Given a user defined tolerance ε and established a stopping criterion, use the bisection
method and the Newton method to obtain a numerical approximation of x0 .

(ii) Which method requires a lower number of iterations?

(iii) Could you derive a theoretical prediction of the number of iterations to be performed to
converge? Is such prediction applicable to both methods and to any stopping criterion?

12. Consider the following non-singular matrix M ∈ R3×3 :

M =

1 2 4
0 1 6
5 7 0


(i) Compute the LU factorization of the matrix M .

(ii) Exploit the LU factorization of M and compute its inverse M−1 .

(iii) Compute the p-norm ||M||p with p = 1 and p = ∞ .

13. Consider the linear system Ax = b .

(i) Write a pseudo code that employs the Gauss-Seidel method and the Jacobi method to
solve the mentioned system.

(ii) Discuss the convergence of two methods in the following two cases:
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– A is strictly diagonally dominant by row;

– A is symmetric positive definite.

14. Consider the following PDE governing an unsteady one-dimensional heat conduction prob-
lem:

∂φ

∂t
− k

∂2φ

∂x2
= 0 for (x, t) ∈ (0, L)× (t0, T ),

where φ(x, t) is the temperature and k ∈ R+ is the thermal conductivity coefficient.

(i) Based on the assumption that φ(x, t) = a(x)b(t) derive the ODE whose unknown is
b(t) (Suggestion: if you have α(t) = β(x) where α(t) and β(x) are two time-dependent
and space-dependent only functions respectively, you can impose α(t) = β(x) = K with
K ∈ R).

(ii) Consider the ODE obtained at point (i), set b(t0) = b0 and use the forward Euler method
with stepsize ∆t to discretize it.

(iii) Finally discuss the stability of the scheme.

15. Consider the linear advection equation:

∂φ

∂t
+ a

∂φ

∂x
= 0 for (x, t) ∈ (0, L]× (t0, T ),

where a ∈ R+ . The equation is endowed with the boundary condition φ(0, t) = φ0 and initial
condition φ(x, t0) = φ0(x). Let ∆t and ∆x be the time step and the mesh size respectively.

(i) Within a finite difference method, derive

– a first order forward approximation of
∂φ

∂t
,

– a first order backward approximation of
∂φ

∂x
,

and use them to discretize the differential problem.

(ii) Discuss the stability of the scheme.

(iii) Compute the amount of artificial viscosity introduced by the scheme.
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Continuum Mechanics

16. Consider the homogeneous deformation y : B → E such that (in Cartesian components)
y1 = αx1 , y2 = β x2 , and y3 = x3 , where α and β are positive scalars and xi , with i = {1, 2, 3} ,
are the coordinates of a material point x ∈ B . Compute the right stretch tensor and the deformed
length of the material curve c(σ) : [0, 1] → E with x1 = σ , x2 = σ2 , and x3 = 0.

17. An elastic strip of length ℓ and rectangular cross section of area A is subject at its
extremities to tensile normal tractions of constant magnitude σ . The strip is constrained such
that transverse displacements are prohibited on two opposite lateral faces. Assuming linear
elastic, isotropic and incompressible material response, determine the stress and strain tensors
and compute the elongation of the strip corresponding to the total force σA .

18. Compute the critical load Pc for the elastic system shown in the figure. Assume that the
horizontal bar is rigid and that the vertical elastic rod is of constant bending stiffness B .
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19. Consider the mechanical system shown in the figure, consisting of two elastic-perfectly
plastic rods of cross-sectional area A , Young’s modulus E , and yield stresses σy and 2σy ,
respectively. Compute the mechanical response of the system under the prescribed external
force P (i.e., the external force versus elongation behaviour) and the magnitude of the external
force corresponding to plastic collapse.
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20. A cylindrical chalk stick with circular cross section of radius r is subject at its extremities
to applied torques and axial forces of magnitude T and N , respectively. Let σf be the strength
of chalk. Determine the loading conditions at which the chalk stick breaks.
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