SISSA — Mathematics Area
Entrance examination for the course in Mathematical Analysis, Modelling, and Applications

March 5, 2024

Solve FIVE of the following problems. Mark in the table below the exercises you have chosen.
These exercises only will be considered for the selection.

Mark here the FIVE problems you have chosen
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Mathematical Analysis

1. (i) Show that the map
70, 1) 5 OO, TIW) = 1@+ [ 1w,

defines an isomorphism of vector spaces of C°([0,1]) with itself.
(i3) Prove that there exists g9 > 0 such that, for any g € C°([0,1]) with [|g||co < €0, there
is at least one solution f € C9([0,1]) to the nonlinear equation

Tf+f*=g.

2. Let y(t) be a solution of the differential equation
y' =y +(y)?

not identically 0. Prove that y(t) cannot be globally defined on R.

3. Consider the operator T : L%([0,1]) — L?([0,1]) given by

1
Ti(z) = /0 2y (1 — 2g) £(y) dy

(a) Show that T is continuous.

(b) Determine the spectrum of T'.

4. Given a Banach space B, a sequence n — v, € B is called weakly Cauchy provided for
any L € B* the sequence n — L(v,) € R is Cauchy. B is said weakly sequentially complete
provided any weakly Cauchy sequence has a weak limit. Determine, with proof, if the following
Banach spaces are weakly sequentially complete:

L. 2
2. ¢([o,1))
3. ' (Hint: it is)

5. Given A, B C R? we denote by A+ B C R? the set {a+b:a € A,be B}.
1. Let K1, K> C R be compact. Prove that £1(K; + Ka) > LY (K1) + L1(K3).



2. Prove that there are compact negligible sets K1, Ko such that Kj + K2 D [0,1].

3. Let f:[0,1] = R be a twice continuously differentiable function. Let
A={(z,y) eR? |y =[f(2),0 <z <1}
Prove that £2(A+ A) = 0 if and only if f is affine.

Here and below £? denotes the d-dimensional Lebesgue measure.

6. Let p,q € (—oo,1) \ {0} be such that % + % =1and f,g: R — (0,00) be Borel.

Prove that " "
/fgdﬁl > (/ff'd/:l)ﬁ(/quﬁl)a ,

where at the right hand side it is intended that 0- oo = 0.

7. Let P([0,1]) be the space of Borel probability measures on [0, 1].

i) Let € P([0,1]). Prove that u < £! if and only if for every & > 0 there is § > 0 such
that f e C([0,1]), 0< f <1 and [ fdC' < ¢ implies [ fdu <e.

ii) Let & > 0 and consider the functional Fj: P([0,1]) — [0, 00] given by
1
Fw) =sup{ [ fau + fec®p.), 0<f<t, | ract<s}.
0

Prove that Fj is lower semicontinuous with respect to the weak* topology on P([0,1])
(recall that P([0,1]) is canonically isomorphic to the dual of C°([0,1])).

iii) Prove that the collection of measures in P([0,1]) absolutely continuous with respect to Lt
is weakly* Borel, i.e. it belongs to the o-algebra generated by the weak™ topology.

8. (i) Prove that there exists a constant C' > 0 such that for all functions u € C3(0,1) and
continuous in [0, 1] such that u(0) = u(1) =0 and u changes sign in (0,1) we have

1 1
UCCZI u”' 2.’E.
/0|(>|d sc/0| (2)Pd

(ii) Prove that there exists a constant C' > 0 such that for all functions u € Cc*0,1), k€N,
such that the equation u(z) = 0 has at least k solutions we have

1 1
/ u(z)2dz < c/ ™ (2)|2dz.
0 0



9. Let V:R — {—1,0} be defined by V(0) = —1 and V(z) = 0 if z # 0. Given z,v € R,
compute

lim %min { /Op(lu’(t)|2 + V(u(t))dt : w € H'(0,p), u(0) =z,u(p) =z + pv}.

p—0t

(Hint: consider the case z = 0 separately.)

10. Consider the following system of linear partial differential equations:

Oy + Ozu +v =0,
O+ Aov=0, zeR, t>0,

with initial data
(u(0,2),v(0,z)) = (uo(z),v0(z)) € CY(R,R*) N L' (R,R?) N L™ (R, R?).

i) Write explicitly the solution (u(t,z),v(t,z)) in terms of the initial data (ug,vp) and the
parameter A € R.

i) Find for which values of A € R we have

sup |u(t, )| + [v(t, z)] < o0
t>0, zeR

for any initial data as above such that

luollzr + llvollzr + [luwollzee + [lvollze < 1.

Numerical Analysis

11. A rather classical example of second order ODE is the equation of motion of an ideal
pendulum:

0"(t) = —sin(f) with 6(0) =0 6'(0)=1

(a) Write the second order ODE as a system of first-order ODEs.

(b) Write the explicit and implicit Euler schemes for such system. For each scheme, propose an
algorithm for advancing the solution from an initial condition at ¢ = 0.

(c) Now, let us simplify the formulation and consider the linearised case close to 6 = 0 which
reads:

§'(t) = —0 with 6(0)=0 6'(0)=1



Write the explicit Euler and implicit Euler schemes. The discrete version of the system of
ODEs can be recast in the form:

X1L+1 = MLX™.

Study the behaviour of:
lim X"

n—-+oo

(d) What happens if we consider the Crank-Nicolson scheme? Which conclusions can we take
in terms of stability analysis?

12. Consider the classical transport equation in 1D with periodic boundary conditions:

ou ou
T4 =0 aell t>0
w(0,8) = u(l,£) Vt>0 (1)

wz,0)=f(z) z€(0,1),
for given ¢ € R\ {0} and initial datum f.

(a) Give a complete description of the discretisation of problem (1) using the combination of
the Crank-Nicolson scheme as time-integrator and second-order centered finite differences
for the space derivative.

b) Write explicitly the matrices A and B such that AU = BU™ for the case of the space
y
grid given by the points z; = j/N with N = 3 and j = 0,...,N (i.e. discretising the
computational domain with 4 collocation points).

(c) Using the Von-Neumann/Fourier spectral analysis or otherwise show that:

~n+l| _ |50
|| = |uk
Hint: the solution at the point z; can be written in Fourier expansion as:

P
uy = Z uy exp(2mijkoz)
k=—P

(d) Problem (1) with ¢ = 1 has been solved with initial datum f the gaussian shown in the
figure below using the Crank-Nicolson (C.N.) scheme above as well as with the Explicit Eu-
ler (E.E.) and Implicit Euler (LE.) schemes (again coupled with the second-order centered
finite difference scheme). The results obtained by the three methods at 7' = 0.2 are shown
in the figure below. In particular, the Crank-Nicolson and the exact solution, which are in-
distinguishable in the figure, can be distinguished in the zoomed figure below. Exhaustively
comment the results obtained with each method.

(e) Can you come up with a nodally exact discretisation for problem (17



14+ — E.E. (2-nd order) .
5 — L.E. (2-nd order)
121 i
— C.N. (2-nd order)
10| — Exact i
— Initial
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13. A very popular example of ill-conditioned matrix is the so-called Vandermonde matrix.
Given a set of scattered data (x,y), the interpolation problem can be written as: find the
coefficients ¢ of a given basis f; with ¢ = 1,...,n, such that the interpolation conditions are
satisfied:

vi = filze
j=1



This can be written as a linear system y = Ac with A;; = fj(z;). If you take the basis of
monomials you get the Vandermonde matrix:

Aij = IZ Z,j = 1, vy TUe
Consider in particular the points z1 =1, z2 =2, 23 =3, 4 = 4.
(a) Write explicitly the matrices A for the cases n = 2,3,4.
(b) Compute the condition number for each matrix (you can use any norm)

(c) In the case n =4, consider the data:

y = (1,8,27,64)T
and solve the linear system Ac =1y

(d) Consider the modified data:

y = (1,9,26,65)T
and solve again the linear system.

(e) Evaluate ||6 y||1/|lyll1 and ||éc||1/||c||1 and comment.

14. For n € N and z € [-1, 1], we name T, (z) := cos(ncos™! z) the Chebyshev polynomial of
degree n.

(a) Deduce the recurrence relation
To+1(z) — 22T, (z) + Th-1(z) =0, n>1,

and, hence, show that for all n € N the function 7;, is indeed a polynomial of degree n.
Prove that the leading term of T}, is given by 2"~1z".

(b) Show that the roots of Ty,4+1 are the following points in the interval [—1,1]:

(c) Let f:[—1,1] = R be a function such that f"*1 is continuous in [—1,1]. Show that there
exists a unique polynomial p,, of degree n such that pn(z;) = f(z;), i=0,...,n.



(d) Prove the interpolation error bound

]\/In—i—l
L. - < onlm L 1\l
AV =P S

for some constant M, ; which you should specify.

_ [

Hint: You may use without proof the error identity f(z)—pn(z) = et Tnt1(z), where
n !

Tne1(z) = (z — zg) ... (T — zy).

(e) Discuss the distribution within [—1,1] of the Chebyshev interpolation points (2) and its
relevance for the polynomial interpolation problem analysed in points (c) and (d).

15. For © C R? an open and bounded domain with Lipschitz boundary 9, consider the
boundary value problem
—alAu+ cu =f in Q,

3
u =0 on 0f, )

where A is the Laplace operator, f: Q@ — R is a given function, and a,c € R with a > 0,¢ > 0.

(a) Assuming ¢ > 0, formulate the weak formulation associated to (3): find u € V' such that
A(u,v) = F(v) Yo eV, (4)

by specifying A, F and the (real) Hilbert space V. Clearly indicate for which class of datum
f the problem is well-defined. Prove that, when it is well defined, the weak formulation is
well-posed, carefully characterising the dependence of the solution on the datum (a priori
bound).

(b) Give the relevant details from point (a) above in the case ¢ = 0.

(c) Prove that u solves (4) if and only if it minimises in V' the quadratic functional

(d) Introduce the Galerkin method for the solution of (4), discuss its well-posedness, and give
its algebric formulation. State and prove the quasi-optimality property (Cea lemma) of the
Galerkin method in the norm of V. Explain under which conditions this result implies the
convergence of the Galerkin method.

(e) Exemplify the Galerkin method with a finite element method, possibly introducing extra
assumptions on the domain . Comment on the speciality of its algebric form. Describe
which (if any) numerical difficulties arise in the case a < c¢. Do you expect the convergence
properties discussed in point (d) above to hold in this case as well?



Continuum Mechanics

16. An incompressible neo-Hookean cylindrical body of radius r is subject on the lateral surface
to reference contact forces —on, where n is the outward unit normal. Neglecting body forces,
determine the value of o such that the body is deformed into a cylinder of radius r/2. What
are the contact forces acting on the body in the deformed configuration? Hint: the constitutive
law for an incompressible neo-Hookean solid is T = —7l + pFFT, with T the Cauchy stress
tensor, F the deformation gradient, and p the shear modulus.

17. Consider the deformation y:B — £ defined in Cartesian components by y1 = z1 + az2,
yo = B2, and y3 = z3, where a and B are positive scalars and {z1, 23,3} are the coordinates
of a material point x € B. Compute the right Cauchy—Green strain tensor and the stretch
A0):[0,1] = R* of the material curve ¢(c):[0,1] — € with z1 = 0, 22 = (0 —1)?, and 23 = 0.

18. Compute the critical torque M, for the elastic system shown in the figure. Assume that
the horizontal bar is rigid and that the vertical elastic rod is of constant bending stiffness B.

| ¢ | ¢
| |

Y

19. Two spheres of radii 7 and ro are connected at their center by a linear elastic spring of
stiffness k£ and length ¢, much greater than the spheres’ radii. The system is neutrally buoyant
in a Newtonian fluid of viscosity . Assume that the spring is stretched by an amount ¢ and
then released from rest at time ¢ = 0. Determine the motion of the system by assuming Stokes
flow for the surrounding fluid and neglecting hydrodynamic interactions between the spheres
and their inertia. Comment about the cases in which: i) 71 = r9 and ii) 71 > r2. Hint: from
Stokes formula, the viscous drag on a sphere moving at velocity v is fyrag = —6murv.

20. A linear elastic, isotropic and homogeneous cylindrical body of length ¢ and radius r is
twisted about its axis through the relative rotation of the bases by the angle ¢. Failure of the
body occurs as ¢ attains the critical value of ¢;. Determine the strength of the material oy.
Hint: the angle of twist per unit length is T'/(ul,), where T is the torque magnitude, I, is the
polar moment of inertia, and g is the shear modulus.



