Scuola Internazionale Superiore di Studi Avanzati, Trieste

Esame di Ammissione alle borse per la Laurea Magistrale in Matematica

Prova scritta del 6 Settembre 2018

Il candidato risolva cinque dei seguenti problemi, scegliendone almeno uno nel gruppo A (esercizi 1-5) ed uno nel gruppo B (esercizi 6-10). Il candidato *indichi chiaramente* sulla prima pagina dell'elaborato quali sono gli esercizi svolti, e di cui chiede la valutazione (in ogni caso non più di cinque).

Gruppo A

1. Sia $f: \mathbb{R} \to \mathbb{R}$ una funzione C^1 e periodica (cioè tale per cui esista un T > 0 tale che f(x+T) = f(x) per ogni $x \in \mathbb{R}$). Si consideri l'insieme:

$$P = \{T > 0 \text{ tale che } f(x+T) = f(x) \text{ per ogni } x \in \mathbb{R}\}.$$

- (a) Si dimostri la seguente implicazione (s) : "se f non è constante, allora inf P > 0."
- (b) Assumendo che la f sia solo continua, rimane la (s) vera? Lo si provi o si dia un controesempio.
- (c) Assumendo solo che la f sia continua in un punto, rimane la (s) vera? Lo si provi o si dia un controesempio.
- (d) Rimuovendo l'ipotesi di continuità della f, rimane la (s) vera? Lo si provi o si dia un controesempio.
- **2.** Sia X un sottoinsieme di \mathbb{R}^n con la topologia Euclidea. Si dimostri che X è compatto se e solo se ogni funzione continua $f: X \to \mathbb{R}$ è limitata.
- 3. Sia $\{x_n\}_{n\in\mathbb{N}}$ la successione di numeri reali definita da:

$$x_1 = 1$$
 e $x_{n+1} = x_n - \frac{1}{n(n+1)}$.

Si determini l'espressione del generico elemento x_n della successione.

4. Sia (A, \mathcal{B}, μ) uno spazio di misura con misura finita e sia $f: A \to \mathbb{R}_+$ una funzione misurabile. Sia $\lambda: \mathbb{R}_+ \to \mathbb{R}$ la funzione definita da:

$$\lambda(t) = \mu\left(\left\{x \in A \mid f(x) > \frac{1}{t}\right\}\right).$$

Si dimostri che:

$$\int_{A} f d\mu = \int_{0}^{+\infty} \frac{\lambda(t)}{t^{2}} dt.$$

(Traccia: si consideri la funzione $K: A \times (0, \infty) \to \mathbb{R}$ definita da $K(x,t) = \frac{1}{t^2} \chi_{\{f(x) > \frac{1}{t}\}}(x)$.)

5. Sia $f:(0,+\infty)\to(-1,0)$ una funzione tale che

$$\lim_{x \to +\infty} f(x) = 0.$$

Si dimostri che f non può essere convessa.

Gruppo B

- **6.** Sia A una matrice $n \times n$ con entrate complesse e con $n \ge 2$.
 - (a) Si dimostri che se A è nilpotente (cioè $A^r = 0$ per qualche $r \in \mathbb{N}$), allora ogni autovalore di A è nullo. Si determini quindi il polinomio caratteristico di A.
 - (b) Più in generale si determini per quali valori $c \in \mathbb{C}$ una matrice A tale per cui $A^r = cI_n$ è diagonalizzabile su \mathbb{C} (I_n denota la matrice identità).
- 7. Nel piano affine reale \mathbb{A}^2 con coordinate (O; x, y) si consideri l'ellisse:

$$\Gamma : x^2 + 4y^2 = 4.$$

Siano A e B i punti di intersezione di Γ con l'asse delle x e sia P il punto di intersezione di Γ con l'asse y avente ordinata positiva.

- (a) Si determino le coordinate dei punti $A, B \in P$ e la retta t tangente a Γ in P;
- (b) si scriva l'equazione del fascio \mathcal{F} di coniche tangenti a Γ in P e passanti per A e per B;
- (c) si trovino le coniche riducibili di \mathcal{F} .
- (d) Sia \mathcal{G} il fascio di coniche che sono simultaneamente tangenti a Γ in A e in P. Senza scrivere l'equazione per \mathcal{G} , si determinino le coniche comuni a \mathcal{F} e \mathcal{G} . In generale, quante coniche sono comuni a due fasci di coniche?
- 8. Sia $\mathbb{Z}_3[X]$ l'anello dei polinomi nell'indeterminata X e con coefficienti in $\mathbb{Z}_3 := \mathbb{Z}/3\mathbb{Z}$; si consideri l'anello quoziente $A := \mathbb{Z}_3[X]/(X^2 + \overline{2})$.
 - (a) Determinare il numero di elementi di A;
 - (b) dimostrare che A non è un dominio;
 - (c) trovare l'insieme ZD(A) dei divisori di zero in A. (traccia: si consideri anche il punto (d))
 - (d) Per ciascun elemento non nullo di $A \setminus ZD(A)$ si determini il suo inverso.
- 9. Sia $(\mathbb{R}, \mathcal{T}_{\mathbb{R}})$ la retta reale con la topologia Eucludea $\mathcal{T}_{\mathbb{R}}$ e sia $\mathcal{C} = \{A \subseteq \mathbb{R} \mid \mathbb{R} \setminus A \text{ è compatto}\}$. Si consideri la "compattificazione a n punti" di X, cioè lo spazio topologico $X_n = \mathbb{R} \cup \{\infty_1, \dots, \infty_n\}$ munito della topologia \mathcal{T} definita da:

$$\mathcal{T} = \mathcal{T}_{\mathbb{R}} \cup \left(\bigcup_{k=1}^{n} \{ A \cup \{ \infty_k \} \mid A \in \mathcal{C} \} \right).$$

- (a) Si dimostri che X_n è compatto e, per $n \geq 2$, non-Hausdorff.
- (b) Si calcoli il gruppo fondamentale di X_n .
- 10. Un punto materiale è vincolato a muoversi senza attrito lungo la curva C di equazione

$$y = c \cosh \frac{x}{c}, \quad c > 0$$

soggetto, come unica forza attiva, alla forza peso costante, diretta lungo l'asse y discendente. All'istante t=0 il punto è fermo nella posizione x=c.

- a) Scrivere l'ascissa curvilinea lungo C come funzione della variabile x.
- b) Scrivere l'equazione del moto del punto in termini dell'ascissa curvilinea come funzione del tempo.
- c) Determinare un integrale primo del moto (quantità conservata).
- d) Calcolare dopo quanto tempo il punto si ferma.