S.I.S.S.A.

Sector of Functional Analysis and Applications

Entrance Examination - October 8, 1997

Solve at most five of the following problems.

1. Let $f: \mathbf{R} \to \mathbf{R}$ be a continuous function such that

(1)
$$\int_0^1 f(u(x)) \, dx = 0$$

for every $u \in C^0([0,1])$ satisfying

(2)
$$\int_0^1 u(x) \, dx = 0.$$

- (a) Prove that (1) holds for every $u \in L^{\infty}([0,1])$ satisfying (2).
- (b) Prove that f is linear.
- 2. Let X be a separable Hilbert space with infinite dimension, let (\cdot, \cdot) and $\|\cdot\|$ be the scalar product and the norm of X, and $\{e_n\}_{n>1}$ be an orthonormal basis of X.
- (a) Prove that the function $\|\cdot\|_0$ defined by

$$||x||_0 = \left(\sum_{n=1}^{\infty} \frac{|(x, e_n)|^2}{n^2}\right)^{\frac{1}{2}}$$

is a norm in X.

- (b) Prove that $\{x \in X : ||x|| \le 1\}$ is compact in $(X, ||\cdot||_0)$.
- (c) Prove that the normed space $(X, \|\cdot\|_0)$ is not complete.
- 3. Let $f: \mathbf{R}^n \to \mathbf{R}$ be a convex function of class C^2 and let $x: I \to \mathbf{R}^n$ be a solution of the equation

$$\dot{x}(t) = -\nabla f(x(t))$$

defined on a connected open set $I \subseteq \mathbf{R}$.

- (a) Prove that the function $t \mapsto f(x(t))$ is non-increasing.
- (b) Prove that the function $t \mapsto |\dot{x}(t)|^2$ is non-increasing.
- (c) Prove that, if $I = \mathbf{R}$ and x is periodic, then there exists an absolute minimum point x_0 of f such that $x(t) = x_0$ for every $t \in \mathbf{R}$.
- 4. Let $f: \mathbf{R} \to \mathbf{R}$ be a function with compact support. Prove that the two following conditions are equivalent:

1

- (i) f is the uniform limit of a sequence of step functions, continuous from the right, namely of functions of the kind $\sum_{i=1}^{k} c_i \chi_{[a_i,b_i)}$, where χ_E is the characteristic function of E;
- (ii) f is continuous from the right and admits a finite limit from the left at each point.
- 5. Let a>0 and let $g\in C^0([-a,a])$. Prove that there exists a unique function $u\in C^0([-a,a])$ such that

$$u(x) = \frac{x}{2}u(\frac{x}{2}) + g(x)$$

for every $x \in [-a, a]$.

6. Let (u_n) be a sequence of functions of class $C^1([0,1])$ pointwise converging in [0,1] to a function $u:[0,1] \to \mathbf{R}$. Suppose that

$$\sup_{n} \int_{0}^{1} |u_n'(x)| dx < +\infty.$$

- (a) Prove that u has bounded variation on [0, 1].
- (b) Prove that

$$\int_0^1 |u'(x)| dx \le \liminf_{n \to \infty} \int_0^1 |u'_n(x)| dx,$$

where u' denotes the derivative of u, that is defined almost everywhere in [0,1].

7. Let $1 \leq p < +\infty$ and let $L^p = L^p(0,1)$. For every integer $n \geq 1$ let $T_n: L^p \to L^p$ be the linear operator defined by

$$(T_n f)(x) = n \int_{\frac{i-1}{n}}^{\frac{i}{n}} f(t) dt$$
 for $\frac{i-1}{n} \le x < \frac{i}{n}$, $i = 1, ..., n$.

- (a) Prove that for every $n \geq 1$ we have $||T_n||_{\mathcal{L}(L^p,L^p)} = 1$, where $\mathcal{L}(L^p,L^p)$ is the normed space of all bounded linear operators from L^p into L^p .
- (b) Prove that $T_n f \to f$ strongly in L^p for every $f \in L^p$.
- (c) Prove that for every $n \geq 1$ we have $||T_n I||_{\mathcal{L}(L^p, L^p)} \geq 1$, where $I: L^p \to L^p$ is the identity operator. (Hint: determine the kernel of T_n).
- 8. Let $u:[0,1] \to \mathbf{R}$ be a bounded function such that for every $t < \sup_{x \in [0,1]} u(x)$ the set

$$\{x \in [0,1] \ : \ u(x) \geq t\}$$

is a closed interval. Prove that u has bounded variation and that the total variation V(u) of u satisfies the inequality

$$V(u) \le 2 \Big(\sup_{x \in [0,1]} u(x) - \inf_{x \in [0,1]} u(x) \Big).$$

9. Let $f: \mathbf{R} \to \mathbf{R}$ be a function of class C^1 with f(1) = 0. Prove that for $0 < \alpha < 1$ the Cauchy problems

$$\left\{ \begin{array}{l} x'(t) = x(t) f(x(t)^2 + y(t)^2) - y(t) \;, \quad x(0) = \alpha \;, \\ \\ y'(t) = y(t) f(x(t)^2 + y(t)^2) + x(t) \;, \quad y(0) = 0 \;, \end{array} \right.$$

have a bounded solution defined on \mathbf{R} . (*)

10. Let $f: \mathbf{R} \to \mathbf{R}$ be a function of class C^1 such that for every $\xi \in \mathbf{R}$

$$f(-\xi) = -f(\xi) ,$$

$$f'(\xi) > 0 ,$$

$$\lim_{\xi \to +\infty} f(\xi) = l < +\infty .$$

For every $\alpha > 0$ let x be the maximal solution of the Cauchy problem

$$x'(t) = f(tx(t)), \quad x(0) = \alpha.$$

- (a) Prove that x is defined on \mathbf{R} . (*)
- (b) Prove that x'(t) > 0 for t > 0.
- (c) Prove that x(t) = x(-t) for every $t \in \mathbf{R}$.
- (d) Prove that $x(t) \geq \alpha$ for every $t \in \mathbf{R}$.
- (e) Prove that $\lim_{t \to +\infty} x'(t) = l$.

(*) To answer this question one can use general theorems on global existence of solutions, but in this case one must write explicitly the statements of the theorems that are used.