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Introduction

This thesis is concerned with the study of singular Liouville systems on closed surfaces, that is
systems of second-order elliptic partial differential equations with exponential nonlinearities, which
arise in many problems in both physics and geometry.
Such problems are attacked by a variational point of view, namely we consider solutions as critical
points for a suitable energy functional defined on a suitable space.
We will first discuss the existence of points of minima for the energy functional, which solve the
problem. Then, in the cases when the energy cannot have global minimum points, we will look
for critical points of other kind, the so-called min-max points. Finally, we will also give some non-
existence results for such problems.

Let (Σ, g) be a compact surface without boundary. We will consider the following system of PDEs:

−∆ui =

N∑
j=1

aijρj

(
hje

uj − 1

|Σ|

)
− 4π

M∑
m=1

αim

(
δpm −

1

|Σ|

)
, i = 1, . . . , N (1)

Here, −∆ = −∆g is the Laplace-Beltrami operator with respect to the metric g and the other
quantities have the following properties:

• A = (aij)i,j=1,...,N ∈ RN×N is a positive definite symmetric N ×N matrix,

• ρ1, . . . , ρN ∈ R>0 are positive real parameters,

• h1, . . . , hN ∈ C∞>0(Σ) are positive smooth functions,

• p1, . . . , pM ∈ Σ are given points,

• αim > −1 for i = 1, . . . , N,m = 1, . . . ,M .

Recalling that

ˆ
Σ

(−∆u)dVg = 0 for any u ∈ H1(Σ), by integrating both sides of (1) in the whole

surface Σ we deduce

ˆ
Σ

hie
uidVg = 1 for all i = 1, . . . , N .

Therefore, under the non-restrictive assumption that the surface area of |Σ| of Σ equals 1, (1) can
be re-written in the equivalent form

−∆ui =

N∑
j=1

aijρj

(
hje

uj´
Σ
hjeujdVg

− 1

)
− 4π

M∑
m=1

αim(δpm − 1), i = 1, . . . , N.

To better describe the properties of such systems, it is convenient to perform a change of variables.
Consider the Green’s function Gp of −∆g centered at a point p ∈ Σ, that is the solution of −∆Gp = δp − 1ˆ

Σ

GpdVg = 0
, (2)
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and apply the following change of variable:

ui 7→ ui + 4π

M∑
m=1

αimGpm .

The newly-defined ui solve

−∆ui =

N∑
j=1

aijρj

(
h̃je

uj´
Σ
h̃jeujdVg

− 1

)
, with h̃i := hie

−4π
∑M
m=1 αimGpm . (3)

Basically, the new potentials h̃i “absorbed” the Dirac deltas appearing in (1).

Since Gp blows up around p like
1

2π
log

1

d(·, p)
, then h̃i will verify:

h̃i ∈ C∞>0(Σ \ {p1, . . . , pM}), h̃i ∼ d(·, pm)2αim around pm. (4)

Therefore, h̃i will tend to +∞ at pm if and only if αim < 0 and it will tend to 0 at pm if and only
if αim > 0.

The form (3) is particularly useful because it admits a variational formulation. In fact, all and only
its solutions are the critical points of the following energy functional defined on H1(Σ)N :

Jρ(u) :=
1

2

N∑
i,j=1

aij
ˆ

Σ

∇ui · ∇ujdVg −
N∑
i=1

ρi

(
log

ˆ
Σ

h̃ie
uidVg −

ˆ
Σ

uidVg

)
. (5)

Here, ∇ = ∇g is the gradient given by the metric g, · is the Riemannian scalar product and aij are
the entries of the inverse matrix A−1 of A. Sometimes, to denote the dependence on the matrix A,
we will denote the functional as JA,ρ. We will also denote as QA(u), or simply Q(u), the quadratic

expression
1

2

N∑
i,j=1

aij∇ui · ∇uj .

The functional Jρ is well defined on the space H1(Σ)N because of the classical Moser-Trudinger
inequalities by [73, 63, 38], which ensure exponential integrability in such a space.

The system (3) is a natural generalization of the scalar Liouville equation

−∆u = ρ (heu − 1)− 4π

M∑
m=1

αm(δpm − 1),

which is equivalent, by manipulations similar to the ones described before, to

−∆u = ρ

(
h̃eu´

Σ
h̃eudVg

− 1

)
. (6)

Equation (6) arises in many well-known problem from different areas of mathematics.
In statistical mechanics, it is a mean field equation for the Euler flow in the Onsager’s theory (see
[17, 18, 46]). In theoretical physics, it is used in the description of abelian Chern-Simons vortices
theory (see [70, 76]).
In geometry, (6) is the equation of Gaussian curvature prescription problem on surfaces with con-
ical singularity (see [22, 23]). Here, each of the points pm will have a conical singularity of angle
2π(1 + αm), whereas h is the Gaussian curvature of the new metric and the parameter ρ is deter-
mined by the Gauss-Bonnet theorem, that is by the Euler characteristic χ(Σ) of Σ.
The scalar Liouville equations has been very widely studied in literature, with many results concern-
ing existence and multiplicity of solutions, compactness properties, blow-up analysis et al., which
have been summarized for instance in the surveys [71, 58].
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Liouville systems like (3) have several applications: in biology they appear in some models describ-
ing chemotaxis ([27]), in physics they arise in kinetic models of plasma ([47, 45]).

Particularly interesting are the cases where A is the Cartan matrix of a Lie algebra, such as

A = AN =



2 −1 0 . . . 0

−1 2
. . .

. . .
...

0
. . .

. . .
. . . 0

...
. . .

. . . 2 −1
0 . . . 0 −1 2


,

which is the Cartan Matrix of SU(N + 1). This particular system is known as the SU(N + 1) or
the AN Toda system.
The importance of the SU(3) Toda system is due to its application in algebraic geometry, in the
description of the holomorphic curves of CPN (see e.g. [19, 15, 26]), and in mathematical physics
in the non-abelian Chern-Simon vortices theory (see [37, 76, 70]).
The singularities represent, respectively, the ramification points of the complex curves and the
vortices of the wave functions.
Two further important examples are given by the following 2× 2 systems

B2 =

(
2 −1
−2 2

)
, G2 =

(
2 −1
−3 2

)
,

which are known respectively as B2 and G2 Toda systems and can be seen as particular cases of
the A3 and A6 Toda system, respectively. Just like the A2 Toda, their study is closely related to
holomorphic curves in projective spaces.
Although the matrices B2, G2 are not symmetric, their associated Liouville system is equivalent
to one with associated to a symmetric matrix and a re-scaled parameter, through the elementary
substitution: (

2 −1
−2 2

)(
ρ1

ρ2

)
=

(
2 −2
−2 4

)(
ρ1
ρ2

2

)
(

2 −1
−3 2

)(
ρ1

ρ2

)
=

(
2 −3
−3 6

)(
ρ1
ρ2

3

)
.

Their energy functional will therefore be

JB2,ρ(u) :=

ˆ
Σ

QB2
(u)dVg−ρ1

(
log

ˆ
Σ

h1e
u1dVg −

ˆ
Σ

u1dVg

)
− ρ2

2

(
log

ˆ
Σ

h2e
u2dVg −

ˆ
Σ

u2dVg

)
,

JG2,ρ(u) :=

ˆ
Σ

QG2
(u)dVg−ρ1

(
log

ˆ
Σ

h1e
u1dVg −

ˆ
Σ

u1dVg

)
− ρ2

3

(
log

ˆ
Σ

h2e
u2dVg −

ˆ
Σ

u2dVg

)
,

with

QB2(u) =
|∇u1|2

2
+
∇u1 · ∇u2

2
+
|∇u2|2

4
QG2(u) = |∇u1|2 +∇u1 · ∇u2 +

|∇u2|2

3
. (7)

A first tool to attack variationally problem (6) is given by the Moser-Trudinger inequality, from the
aforementioned references [73, 63, 38] and, in the singular case, by [24, 72].
Such an inequality basically state that the energy functional, which in the scalar case has the form

Iρ(u) =
1

2

ˆ
Σ

|∇u|2dVg − ρ
(ˆ

Σ

h̃eudVg −
ˆ

Σ

udVg

)
, (8)

is bounded from below if and only if ρ ≤ 8πmin

{
1, 1 + min

m=1,...,M
αm

}
. Moreover, if ρ is strictly

smaller than this threshold, then Iρ is (weakly) coercive, that is all of his sub-levels are bounded.
Since Iρ is also lower semi-continuous, as can be easily verified, if this occurs then direct methods
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from calculus of variations yield the existence of minimizers for Iρ, which solve (6).

The first main goal of of this thesis is to prove Moser-Trudinger inequalities for singular Liouville
system like (3), that is to establish sufficient and necessary conditions for the boundedness from
below and for the coercivity of its energy functional Jρ.
Such issues were addressed in the papers [12] and [9]. The former considers the SU(3) Toda system,
that is the following system:

−∆u1 = 2ρ1

(
h̃1e

u1´
Σ
h̃1eu1dVg

− 1

)
− ρ2

(
h̃2e

u2´
Σ
h̃2eu2dVg

− 1

)

−∆u2 = 2ρ2

(
h̃2e

u2´
Σ
h̃2eu2dVg

− 1

)
− ρ1

(
h̃1e

u1´
Σ
h̃1eu1dVg

− 1

) ; (9)

the latter studies the general case. Here, they are presented in Chapter 2.
They are inspired by some results obtained for particular systems with no singularities ([44, 74])
and for similar problems on Euclidean domains ([28, 29]), on the sphere S2 ([68]) and on general
compact manifolds ([67]).

The arguments used to this purpose are roughly the following.
As a first thing, an easy application of the scalar Moser-Trudinger inequality gives boundedness
from below and coercivity for small values of ρ.
We then consider, for such values, the minimizing solutions uρ of Jρ and perform a blow-up anal-
ysis. To this purpose, we first prove a concentration-compactness theorem for solutions of (3) and
then show that compactness must occur under some algebraic conditions on ρ and αim, which are
satisfied in particular as long as ρ is in the neighborhood of 0.
Therefore, Jρ must be coercive for all ρ’s which satisfy this condition. On the other hand, through
suitable test functions, we can show that such conditions are indeed also sufficient for the coercivity.

Next, we discuss whether Jρ can still be bounded from below when it is not coercive.
In particular, we will consider the case of fully competitive systems, that is when aij ≤ 0 for any
i 6= j (hence also for the AN , B2, G2 Toda system described before).
The conditions for coercivity, which are in general pretty lengthy to state (which will be done in
Chapter 2), are much simpler under this assumption. In this case, coercivity occurs if and only

if ρi <
8πmin {1, 1 + minm=1,...,M αim}

aii
, a condition which is also very similar to the one in the

scalar case.
This is basically due to the following fact: under the assumption of A being non-positive out-
side the diagonal, the blow-up of minimizing sequences uρ is locally one-dimensional, that it,
roughly speaking, each blowing-up component do not interact with any other. This means that
a sharper blow-up analysis can be done using a local version of the scalar Moser-Trudinger in-
equality, thus enabling to prove that Jρ is bounded from below even in the borderline case ρi =
8πmin {1, 1 + minm=1,...,M αim}

aii
for i = 1, . . . , N .

The next major problem considered in this work is the existence of non-minimizing solutions, in
case the parameter ρ exceeds the range of parameters which gives coercivity.

A first big issue which one encounters when looking for non-minimizing critical points is the lack
of the Palais-Smale condition, which is needed to apply most of the standard min-max theorems.
Actually, despite the Palais-Smale condition is not known to hold true for functionals like Jρ, we
can exploit a monotonicity trick by Struwe ([69], see also [34]). Basically, because of the specific

structure of Jρ, and in particular the fact that t 7→ Jtρ
t

is non-increasing, we get the existence of

some converging Palais-Smale sequences at mountain-pass critical level.
Due to this result, to apply standard min-max methods for a generic value of ρ we only need a
compactness result for solutions of (3). In fact, if we had compactness of solutions, then we could
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take ρn −→
n→+∞

ρ such that bounded Palais-Smale sequences exist for such values, getting a mountain

pass solutions uρn and then, by compactness, considering uρ = lim
n→+∞

uρn , which would solve (3).

Non-compactness phenomena for the Liouville equation (6) have been pretty well understood.
The only possible scenario is a blow-up around a finite number of points, with no residual mass
(see [16]).

Local quantization values, that is the portions of the integral of h̃eu which accumulate around each
blow-up point, are also fully known: they equal 8π for blow-up at a regular point (see [49]) and
8π(1 + αm) in the case of blow-up at a singular point pm (see [7, 5]).
Therefore, the only values of ρ which could generate non-compactness are all the possible finite sum
of such values. We get a discrete set on the positive half-line, outside of which we get compactness
of solutions. Min-max methods can thus be applied for a generic choice of ρ.

Concerning general Liouville systems, local quantization and blow-up analysis are still widely open
problems.
A classification of local blow-up values has been given only for very specific systems, namely the
A2 Toda system (9) ([43, 53]) and, in the case of no singularities, the B2 and (partially) G2 Toda
systems ([51]): 

−∆u1 = 2ρ1

(
h1e

u1´
Σ
h1eu1dVg

− 1

)
− ρ2

(
h2e

u2´
Σ
h2eu2dVg

− 1

)
−∆u2 = 2ρ2

(
h2e

u2´
Σ
h2eu2dVg

− 1

)
− 2ρ1

(
h1e

u1´
Σ
h1eu1dVg

− 1

) (10)


−∆u1 = 2ρ1

(
h1e

u1´
Σ
h1eu1dVg

− 1

)
− ρ2

(
h2e

u2´
Σ
h2eu2dVg

− 1

)
−∆u2 = 2ρ2

(
h2e

u2´
Σ
h2eu2dVg

− 1

)
− 3ρ1

(
h1e

u1´
Σ
h1eu1dVg

− 1

) . (11)

Anyway, the quantization results do not suffice, by themselves, to ensure a generic compactness re-
sults on ρ, due to the possibility of residual mass. Actually, in [30] it was proved that non-vanishing
residual may indeed occur for the regular Toda system.
The issue of residual has been rule out in the paper [14], where we showed that if it occurs, then it
does only for one component of the A2 Toda. Similarly, for N × N systems, there is at least one
component which has not residual mass. This result is presented in Section 2.2.
Ruling out the chance of a double residual implies that, for blowing up sequences of solutions of the
A2, B2, G2 Toda systems, at least one between ρ1 and ρ2 must be a finite combination of the local
blow-up values. Therefore, the set of parameters to be excluded for the purpose of compactness
is just a union of horizontal and vertical half-lines on the first quadrant so, similarly as before,
conditions to apply min-max methods are satisfied for almost every ρ ∈ R2

>0.

We are therefore allowed to search for min-max solutions, a goal to which Chapter 3 will be devoted.
The strategy we will follow will be based on analysis of energy sub-levels and application of Morse
theory, rather than usual mountain pass or linking theorems, as was usually done by many authors
who studied similar problems. The reason of such a choice is that, whereas the two arguments are
perfectly equivalent to prove existence of solutions, Morse theory gives also information about the
number of solutions, provided the energy is a Morse functional, which a generic assumption (in a
sense which will be clarified later).
We will actually show that a change of topology occurs between very high sub-levels of energy func-
tional, which are contractible, and very low sub-levels. The compactness assumptions discussed in
the previous paragraph ensure, thanks to [56], that a change of topology between sub-levels implies
existence of solutions.

Roughly speaking, if Jρ(u) is very negative, then the L1-mass of h̃ie
ui accumulates, for one or both

i’s, around a finite number of points, depending on the parameters ρi and αim.
This can be made rigorous by introducing a space X , a subspace of finitely-supported unit measures
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on Σ, and by building two maps Φ,Ψ from very low sub-levels to the space X and vice-versa, such
that their composition is homotopically equivalent to the identity on X . If X is not contractible,
then low sub-levels of Jρ will also be non-contractible, hence we will deduce existence of solutions.
Moreover, by estimating the ranks of the homology groups of X we will get an estimate on the
multiplicity of solutions.
Such a method has been introduced in [36] for a fourth-order elliptic problem and has been widely
used to study the singular Liouville equation. Through this argument, general existence results
have been proved for problem (6) in the case of no singularities ([35]) and in the case of positive
singularities on surfaces of non-positive Euler-Poincaré characteristic ([3]), as well as partial exis-
tence results in the case of negative singularities ([21, 20]) and of positive singularities on general
surfaces ([60, 4]). It has also been used in [59, 61, 42] to attack the regular SU(3) Toda system
in the cases when one or both between ρ1, ρ2 are less then 8π, and even in similar problems with
exponential nonlinearities, such as the Sinh-Gordon equation ([77, 41]) and the Nirenberg problem
([55, 33]).
Here, we will present the results obtained in the papers [11, 10, 13, 8], the last of which is in prepa-
ration.

In the first of such papers we study the SU(3) Toda system (9). We assume Σ to have non-positive
Euler characteristic, that is neither homeomorphic to the sphere S2 nor to the projective plane RP2,
and we assume that coefficients αim to be non-negative.
Here, following [3], we exploit the topology of Σ to retract the surface on a bouquet of circles. By
taking two of such retractions on disjoint curves we can by-pass a major issue which occurs in the
study of Liouville systems of two or more equations, that is the interaction between the concentra-
tion of two (or more) components. In fact, through the push-forward of measures, we can restrict
the study of u1 on a curve γ1 and of u2 on the other γ2. Moreover, by choosing γ1, γ2 not containing
any of the singular points pm, we also avoid the issue of singularities.
Performing such a retraction clearly causes a loss of topological information, but the partial char-
acterization we give on sub-levels suffices to get a generic existence result.
Furthermore, we can apply Morse inequalities to get an estimate from below on the number of
solutions. This can be done for a generic choice of the potentials h1, h2 and of the metric g, since
Jρ is a Morse functional for such a generic choice, as was proved in [32] for the scalar case. In
particular, if the characteristic of Σ is greater or equal than 2, namely its Euler characteristic is
negative, the number of solutions goes to +∞ as either ρ1 or ρ2 goes to +∞.

In the paper [9] we give a partial extension of the results from [11] to the case of singularity of arbi-
trary sign. The main difference is that negatively-signed vortices actually affect the best constant
in Moser-Trudinger inequality, as will be shown in detail in Chapter 2, therefore they cannot be
simply “ignored” as was done before. On the contrary, we will have to take into account each point
pm on γi if αim < 0.
This means that, since we need γ1 and γ2 to be disjoint, we have to assume max{α1m, α2m} ≥ 0
for any m, as well as the characteristic of Σ to be non-positive.
Moreover, we also need some algebraic condition on ρ and αim to let low sub-levels be not con-
tractible, much like [20].
By Morse theory, we also get another generic multiplicity result similar to the one before [11].

In [13], we consider the singular SU(3) system on arbitrary surfaces and we allow both α1m and
α2m to be negative for the same pm. Here, the methods which were briefly described before cannot
be applied anymore and we need a sharper analysis of sub-levels.
To this purpose, we introduce a center of mass and scale of concentration, inspired by [61] but
strongly adapted to take into account the presence of singularities. We basically show that, for
functions with same center and scale, Moser-Trudinger inequality holds with a higher constant. In
other words, we get a so-called improved Moser-Trudinger inequality.
Such improved inequalities allow, for sufficiently small values of ρ, to give a precise characterization
of sublevels, hence existence of min-max solutions also in this case.

Finally, in [8] the results from [11] are adapted to the regular B2 and G2 Toda systems (10), (11).
We get similar general existence and multiplicity results for surfaces with non-positive Euler char-
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acteristic.

In Chapter 4 we give some non-existence result for singular Liouville systems (3), contained in the
paper [13].

The first two results, inspired by the ones in [4] for the scalar equation, are for general systems
defined on particular surfaces. The former holds on the unit Euclidean ball, equipped with the stan-
dard metric, with a unique singularity in its center; the latter holds on the standard unit sphere
with two antipodal singularities.
Concerning the result on the ball, we show, through a Pohožaev identity, that if a solution exists
then the parameters ρ, αi must satisfy an algebraic relation.
The argument used for the case of the sphere is similar. We exploit the stereographic projection
to transform the solution of (3) on S2 in an entire solution on the plane. Then, we use another
Pohožaev identity for entire solutions to get again necessary algebraic conditions for the existence
of solutions.
These result show that in the general existence results stated before the assumptions on χ(Σ) is
somehow sharp.

The last result, inspired by [20], is given only for the SU(3) Toda system, but it holds for any
surfaces. It basically states that the system has no solutions if a couple of coefficients (α1m, α2m)
is too close to −1.
The result is proven by contradiction, using blow-up analysis. We assume that a solution exists
for α1m, α2m arbitrarily close to −1 and apply the Concentration-Compactness alternative from
Chapter 2 to this sequence. By ruling out all the alternatives we get a contradiction.
By comparing this result with the ones in Chapter 3 we deduce that, to have such a general exis-
tence result, we need to assume all the coefficients αim to be positive.

Before stating the main result of this thesis, we devote Chapter 1 to some preliminaries.
First of all, we introduce the notation we will use throughout the whole paper. Then, we present
some known facts which will be used in the rest, mostly from analysis and topology, and some of
their consequences which need very short proofs.

We will postpone some proofs in an Appendix: the proof of a Pohožaev identity for entire solutions
of singular Liouville systems and of the fact that being a Morse function is a generic condition for
the energy functional.
The reason of this choice is that such proofs are very similar to the ones for the scalar case, though
quite lengthy.
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Chapter 1

Preliminaries

In this chapter we present some notation and some preliminary facts which will be useful in the
following.

1.1 Notation

The indicator function of a set Ω ⊂ Σ will be denoted as

1Ω(x) =

{
1 if x ∈ Ω
0 if x 6∈ Ω

Given two points x, y ∈ Σ, we will indicate the metric distance on Σ between them as d(x, y).
Similarly, for any Ω,Ω′ ⊂ Σ we will write:

d(x,Ω) := inf{d(x, y) : x ∈ Ω}, d(Ω,Ω′) := inf{d(x, y) : x ∈ Ω, y ∈ Ω′}.

The diameter of a set Ω will be indicated as

diam(Ω) := sup{d(x, y) : x, y ∈ Ω}.

We will indicate the open metric ball centered in p having radius r as

Br(x) := {y ∈ Σ : d(x, y) < r}.

Similarly, for Ω ⊂ Σ we will write

Br(Ω) := {y ∈ Σ : d(y,Ω) < r}.

For any subset of a topological space A ⊂ X we indicate its closure as A and its interior part as Å.
For r2 > r1 > 0 we denote the open annulus centered at p with radii r1, r2 as

Ar1,r2(p) := {x ∈ Σ : r1 < d(x, p) < r2} = Br2(p) \Br1(p).

If Ω ⊂ Σ has a smooth boundary, for any x ∈ ∂Ω we will denote the outer normal at x as ν(x). If
u ∈ C1(∂Ω) we will indicate its normal derivative at x as ∂νu(x) := ∇u(x) · ν(x).

Standard notation will be used for the usual numeric set, like N,R,RN . Here, N contains 0. A
similar notation will be used for the space of N ×M matrices, which we will denote as RN×M .
The positive and negative part of real number t will be denoted respectively as t+ := max{0, t} and
t− := max{0,−t}.

The usual functional spaces will be denoted as Lp(Ω), C∞(Σ), C∞(Σ)N , . . . . A subscript will be
added to indicate vector with positive component or (almost everywhere) positive functions, like
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R>0, C
∞
>0(Σ). Subscript may be also added to stress the dependence on the metric g defined on Σ.

For a continuous map f : Σ → Σ and a measure µ defined on Σ, we define the push-forward of µ
with respect to f as the measure defined by

f∗µ(B) = µ
(
f−1(B)

)
.

If µ has finite support, its push-forward has a particularly simple form:

µ =

K∑
k=1

tkδxk ⇒ f∗µ =

K∑
k=1

tkδf(xk).

Given a function u ∈ L1(Σ) and a measurable Ω ⊂ Σ with positive measure, the average of u on Ω
will be denoted as  

Ω

udVg =
1

|Ω|

ˆ
Ω

udVg.

In particular, since we assume |Σ| = 1, we can write

ˆ
Σ

udVg =

 
Σ

udVg.

We will indicate the subset of H1(Σ) which contains the functions with zero average as

H
1
(Σ) :=

{
u ∈ H1(Σ) :

ˆ
Σ

u = 0

}
.

Since the functional Jρ defined by (5) is invariant by addition of constants, as well as the system

(3), it will not be restrictive to study both of them on H
1
(Σ)N rather than on H1(Σ)N .

On the other hand, for a planar Euclidean domain Ω ⊂ R2 (or Ω ⊂ Σ) with smooth boundary and
a function u ∈ H1(Ω) we will indicate with the symbol u|∂Ω the trace of u on the boundary of Ω.
The space of functions with zero trace will be denoted by

H1
0 (Ω) :=

{
u ∈ H1(Ω) : u|∂Ω = 0

}
. (1.1)

The sub-levels of Jρ, which will play, as anticipated, an essential role throughout most of the paper,
will be denoted as

Jaρ =
{
u ∈ H1(Σ)N : Jρ(u) ≤ a

}
. (1.2)

We will denote with the symbol X ' Y a homotopy equivalence between two topological spaces X
and Y .
The composition of two homotopy equivalences F1 : X×[0, 1]→ Y and F2 : Y ×[0, 1]→ Z satisfying
F1(·, 1) = F2(·, 0) is the map F2 ∗ F1 : X × [0, 1]→ Z defined by

F2 ∗ F1 : (x, s) 7→


F1(x, 2s) if s ≤ 1

2

F2(x, 2s− 1) if s >
1

2

.

The identity map on X will be denoted as IdX .
We will denote the qth homology group with coefficient in Z of a topological space X as Hq(X).
An isomorphism between two homology groups will be denoted just by equality sign.
Reduced homology groups will be denoted as H̃q(X), namely

H0(X) = H̃0(X)⊕ Z, Hq(X) = H̃q(X) if q ≥ 1.

The qth Betti number of X, namely the dimension of its qth group of homology, will be indicated
by bq(X) := rank(Hq(X)).

The symbol b̃q(X) will stand for the qth reduced Betti number, namely the dimension of H̃q(X),
that is

b̃0(X) = b0(X)− 1, b̃q(X) = bq(X) if q ≥ 1.
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If Jρ is a Morse function, we will denote as Cq(a, b) the number of critical points u of Jρ with Morse
index q satisfying a ≤ Jρ(u) ≤ b. The total number of critical points of index q will be denoted as
Cq; in other words, Cq := Cq(+∞,−∞).

We will indicate with the letter C large constants which can vary among different lines and formu-
las. To underline the dependence of C on some parameter α, we indicate with Cα and so on.
We will denote as oα(1) quantities which tend to 0 as α tends to 0 or to +∞ and we will similarly
indicate bounded quantities as Oα(1), omitting in both cases the subscript(s) when it is evident
from the context.

1.2 Compactness results

First of all, we need two results from Brezis and Merle [16].
The first is a classical estimate about exponential integrability of solutions of some elliptic PDEs.

Lemma 1.1. ([16], Theorem 1, Corollary 1)
Let Ω ⊂ R2 be a smooth bounded domain, f ∈ L1(Ω) be with ‖f‖L1(Ω) < 4π and u be the solution
of {

−∆u = f in Ω
u = 0 on ∂Ω

.

Then, for any q <
4π

‖f‖L1(Ω)
there exists a constant C = Cq,diam(Ω) such that

ˆ
Ω

eq|u(x)|dx ≤ C.

Moreover, e|u| ∈ Lq(Ω) for any q < +∞.

The second result we need, which has been extended in [5, 6], is a concentration-compactness the-
orem for scalar Liouville-type equations, which can be seen as a particular case of the one which
will be proved in Chapter 2:

Theorem 1.2. ([16], Theorem 3; [6], Theorem 5; [5], Theorem 2.1)

Let {un}n∈N be a sequence of solutions of (6) with ρn −→
n→+∞

R>0 and h̃n = V nh̃ with V n −→
n→+∞

1

in C1(Σ) and S be defined by

S :=

{
x ∈ Σ : ∃xn −→

n→+∞
x such that un (xn)− log

ˆ
Σ

h̃neu
n

−→
n→+∞

+∞
}
. (1.3)

Then, up to subsequences, one of the following occurs:

• (Compactness) If S = ∅, then un − log

ˆ
Σ

h̃neu
n

dVg converges to some u in W 2,q(Σ).

• (Concentration) If S 6= ∅, then it is finite and un− log

ˆ
Σ

h̃neu
n

dVg −→
n→+∞

−∞ in L∞loc(Σ\S).

Let us now report the known local blow-up quantization results for the systems (6), (9), (10), (11).

Theorem 1.3. ([49]; [48], Theorem 0.2; [6], Theorem 6; [5], Theorem 2.3)
Let {un}n∈N be a sequence of solutions of (6) with ρ = ρn, let S be defined by (1.3) and let, for
x ∈ S, σ(x) be defined (up to subsequences) by

σ(x) := lim
r→0

lim
n→+∞

ρn

´
Br(x)

h̃neu
n

dVg´
Σ
h̃neundVg

.

If x 6∈ {p1, . . . , pM}, then σ(x) = 8π, whereas σ(pm) = 8π(1 + αm).
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Corollary 1.4.
Let Γ = Γα be defined by

Γ := 8π

{
n+

∑
m∈M

(1 + αm), n ∈ N,M⊂ {1, . . . ,M}

}
.

Then, the family of solutions {uρ}ρ∈K ⊂ H
1
(Σ) of (6) is uniformly bounded in W 2,q(Σ) for some

q > 1 for any given K b R>0 \ Γ.

Proof.
Take ρn −→

n→+∞
ρ ∈ K and apply Lemma 1.2 to un = uρn .

If Concentration occurred, then we can easily see that ρn
h̃neu

n

´
Σ
h̃neundVg

⇀
n→+∞

∑
x∈S

σ(x)δx, hence

ρ =
∑
x∈S

σ(x) ∈ Γ, which is a contradiction since we assumed ρ ∈ K ⊂ R>0 \ Γ.

Therefore, we must have Compactness for un − log

ˆ
Σ

h̃neu
n

dVg.

If un were not bounded in W 2,q(Σ), then

∣∣∣∣log

ˆ
Σ

h̃neu
n

dVg

∣∣∣∣ −→n→+∞
±∞.

Anyway, Jensen inequality gives log

ˆ
Σ

h̃neu
n

dVg ≥
ˆ

Σ

log h̃ndVg ≥ −C. Moreover, log

ˆ
Σ

h̃neu
n

dVg −→
n→+∞

+∞ would imply inf
Σ
un −→

n→+∞
+∞, in contradiction with

ˆ
Σ

undVg = 0.

Definition 1.5.
Let (α1, α2) be a couple of numbers greater than −1 and let ∆α1,α2 ⊂ R2 as the piece of ellipse
defined by

∆α1,α2
=
{

(σ1, σ2) ⊂ R2
≥0 : σ2

1 − σ1σ2 + σ2
2 − 4π(1 + α1)σ2 − 4π(1 + α2)σ2 = 0

}
We then define iteratively the finite set Ξα1,α2 ⊂ ∆α1,α2 via the following rules:

• Ξα1,α2 contains the points

(0, 0) 4π((1 + α1), 0) (0, 4π(1 + α2)) (4π(2 + α1 + α2), 4π(1 + α2))

(4π(1 + α1), 4π(2 + α1 + α2)) (4π(2 + α1 + α2), 4π(2 + α1 + α2)). (1.4)

• If (σ1, σ2) ∈ Ξα1,α2
, then any (σ′1, σ

′
2) ∈ ∆α1,α2

with σ′1 = σ1 + 4πn for some n ∈ N and
σ′2 ≥ σ2 belongs to Ξα1,α2 .

• If (σ1, σ2) ∈ Ξα1,α2 , then any (σ′1, σ
′
2) ∈ ∆α1,α2 with σ′2 = σ2 + 4πn for some n ∈ N and

σ′1 ≥ σ1 belongs to Ξα1,α2
.

Theorem 1.6. ([43], Proposition 2.4; [53], Theorem 1.1)
Let {un = (un1 , u

n
2 )}n∈N be a sequence of solutions of (9) with (ρ1, ρ2) = (ρn1 , ρ

n
2 ) and let, for x ∈ Σ,

σ(x) = (σ1(x), σ2(x)) be defined (up to subsequences) by

σi(x) := lim
r→0

lim
n→+∞

ρni

´
Br(x)

h̃ni e
uni dVg´

Σ
h̃ni e

uni dVg
. (1.5)

If x 6∈ {p1, . . . , pM}, then σ(x) ∈ Ξ0,0, whereas σ(pm) ∈ Ξα1m,α2m
.
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Remark 1.7.
Notice that, if either α1 = α2 = 0 or they are both small enough, then Ξα1,α2

contains only the set
Ξ′α1,α2

of six points defined in (1.4).
The authors announced ([75]) that they refined the previous result by proving that σ(pm) ∈ Ξ′α1m,α2m

if α1m, α2m ≤ C for some C > 0. They also conjectured that σ(pm) ∈ Ξ′α1m,α2m
for any α1m, α2m.

In [64], the authors prove that, in the regular case, all the values in Ξ0,0 = Ξ′0,0 can be attained in
case of blow-up (see also [31, 30]).

Theorem 1.8. ([51])
Let {un = (un1 , u

n
2 )}n∈N be a sequence of solutions of (10) with (ρ1, ρ2) = (ρn1 , ρ

n
2 ) and let σ(x) be

defined by (1.5).
For any x ∈ Σ:

σ(x) ∈ 4π{(0, 0), (1, 0), (0, 1), (1, 3), (2, 1), (3, 3), (2, 4), (3, 4)}.

Let {un = (un1 , u
n
2 )}n∈N be a sequence of solutions of (11) with (ρ1, ρ2) = (ρn1 , ρ

n
2 ) and let σ(x) be

defined by (1.5).

If ρn1 < 4π
(

2 +
√

2
)
, ρn2 < 4π

(
5 +
√

7
)

, then for any x ∈ Σ:

σ(x) ∈ 4π{(0, 0), (1, 0), (0, 1), (1, 4), (2, 1), (2, 6)}.

Let us now state a couple of Lemmas from [56] concerning deformations of sub-levels.

Lemma 1.9. ([56], Proposition 1.1)
Let ρ ∈ RN>0, a, b ∈ R be given with a < b and let Jaρ , J

b
ρ be defined by (1.2).

Then, one of the following alternatives occurs:

• There exists a sequence {un}n∈N of solutions of (3) with ρn −→
n→+∞

ρ and a ≤ Jρn(un) ≤ b,

• Jaρ is a deformation retract of Jbρ.

Corollary 1.10.
Let ρ ∈ RN>0 be given and let JLρ be defined by (1.2).
Then, one of the following alternatives occurs:

• There exists a sequence {un}n∈N of solutions of (3) with ρn −→
n→+∞

ρ and Jρn(un) −→
n→+∞

+∞,

• There exists L > 0 such that JLρ is a deformation retract of H
1
(Σ)N . In particular, JLρ is

contractible.

In the scalar case the global compactness result (1.4) holds, hence for ρ 6∈ Γ we can act as if Palais-
Smale condition holds:

Corollary 1.11.
Let Γ be as in Corollary 1.4, ρ ∈ R>0 \ Γ, a, b ∈ R be given with a < b and such that (6) has no
solutions with a ≤ Iρ ≤ b.
Then, Iaρ is a deformation retract of Ibρ.

Moreover, there exists L > 0 such that ILρ is contractible.
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Proof.
If ρ 6∈ Γ then the second alternative must occur in Lemma 1.9, since the first alternative would give,
by Corollary 1.4, un −→

n→+∞
u which solves (6) and satisfies a ≤ Iρ(u) ≤ b.

Moreover, by Corollary 1.4, we have ‖un‖H1(Σ) ≤ C for any solution un ∈ H
1
(Σ) of (6) with

ρn −→
n→+∞

ρ, therefore by Jensen’s inequality every solution of (6) verifies

Iρn (un) ≤ 1

2

ˆ
Σ

|∇un|2dVg − ρ
ˆ

Σ

log h̃dVg ≤
C2

2
− ρ

ˆ
Σ

log h̃dVg =: L;

Corollary 1.10 gives the last claim.

1.3 Analytical preliminaries and Moser-Trudinger inequali-
ties

To study the concentration phenomena of solutions of (3) we will use the following simple but useful
calculus Lemma:

Lemma 1.12. ([44], Lemma 4.4)
Let {an}n∈N and {bn}n∈N be two sequences of real numbers satisfying

an −→
n→+∞

+∞, lim
n→+∞

bn

an
≤ 0.

Then, there exists a smooth function F : [0,+∞)→ R which satisfies, up to subsequences,

0 < F ′(t) < 1 ∀ t > 0, F ′(t) −→
t→+∞

0, F (an)− bn −→
n→+∞

+∞.

Now we recall the Moser-Trudinger inequality for the scalar Liouville equation.

Theorem 1.13. ([38], Theorem 1.7; [63], Theorem 2; [72], Corollary 9)
There exists C > 0 such that for any u ∈ H1(Σ)

log

ˆ
Σ

h̃eudVg −
ˆ

Σ

udVg ≤
1

16πmin {1, 1 + minm αm}

ˆ
Σ

|∇u|2dVg + C. (1.6)

In other words, the functional Iρ defined in (8) is bounded from below if and only if ρ ≤ 8πmin
{

1, 1 + min
m

αm

}
and it is coercive on H

1
(Σ) if and only if ρ < 8πmin

{
1, 1 + min

m
αm

}
.

In particular, in the latter case Iρ has a global minimizer which solves (6).

We will also need a similar inequality by Adimurthi and Sandeep [1], holding on Euclidean domains,
and its straightforward corollary.

Theorem 1.14. ([1], Theorem 2.1)
Let r > 0, α ∈ (−1, 0] be given.
Then, there exists a constant C = Cα,r such that for any u ∈ H1

0 (Br(0))

ˆ
Br(0)

|∇u(x)|2dx ≤ 1 ⇒
ˆ
Br(0)

|x|2αe4π(1+α)u(x)2

dx ≤ C

13



Corollary 1.15.
Let r > 0, α ∈ (−1, 0] be given.
Then, there exists a constant C = Cα,r such that for any u ∈ H1

0 (Br(0))

(1 + α) log

ˆ
Br(0)

|x|2αeu(x)dx ≤ 1

16π

ˆ
Br(0)

|∇u(x)|2dx+ C

Proof.

By the elementary inequality u ≤ θu2 +
1

4θ
with θ =

4π(1 + α)´
Ω
|∇u(y)|2dy

we get

(1 + α) log

ˆ
Ω

|x|2αeu(x)dx

≤ (1 + α) log

ˆ
Ω

|x|2αeθu(x)2+ 1
4θ dx

≤ 1

16π

ˆ
Ω

|∇u(y)|2dy + (1 + α) log

ˆ
Ω

|x|2αe
4π(1+α)

(
u(x)√´

Ω |∇u(y)|2dy

)2

dx

≤ 1

16π

ˆ
Ω

|∇u(y)|2dy + C.

Let us now state the Moser-Trudinger inequality for the regular SU(3) Toda system:

Theorem 1.16. ([44], Theorem 1.3)
There exists C > 0 such that for any u = (u1, u2) ∈ H1(Σ):

2∑
i=1

(
log

ˆ
Σ

euidVg −
ˆ

Σ

uidVg

)
≤ 1

4π

ˆ
Σ

QA2
(u)dVg + C.

In other words, the functional Jρ defined by (5), in the case A = A2, αim ≥ 0, is bounded from

below on H1(Σ) if and only if ρ1, ρ2 ≤ 4π and it is coercive on H
1
(Σ)2 if and only if ρ1, ρ2 < 4π.

In particular, in the latter case Iρ has a global minimizer which solves (9).

From this result, we deduce a Moser-Trudinger inequality for the SU(3) Toda system on domains
with boundary. This can be seen as a generalization of the well-known scalar Moser-Trudinger
inequalities on Euclidean domains from [23], which we report:

Theorem 1.17.
Let Ω ⊂ R2 be a smooth simply connected domain.
Then, there exists C > 0 such that, for any u ∈ H1(Ω),

log

ˆ
Ω

eu(x)dx−
 

Ω

u(x)dx ≤ 1

8π

ˆ
Ω

|∇u(x)|2dx+ C. (1.7)

Before stating the inequality for the SU(3) Toda, we introduce a class of smooth open subset of Σ
which satisfy an exterior and interior sphere condition with radius δ > 0:

Aδ :=
{

Ω ⊂ Σ : ∀x ∈ ∂Ω∃x′ ∈ Ω, x′′ ∈ Σ \ Ω : x = Bδ(x′) ∩ ∂Ω = Bδ(x′′) ∩ ∂Ω
}

(1.8)
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Theorem 1.18.
There exists C > 0 such that, for any u ∈ H1(B1(0))2,

2∑
i=1

(
log

ˆ
B1(0)

eui(x)dx−
 
B1(0)

ui(x)dx

)
≤ 1

2π

ˆ
B1(0)

QA2
(u(x))dx+ C.

The same result holds if B1(0) is replaced with a simply connected domain belonging to Aδ for some
δ > 0, with the constant C is replaced with some Cδ > 0.

Sketch of the proof.
Consider a conformal diffeomorphism from B1(0) to the unit upper half-sphere and reflect the image
of u through the equator.
Now, apply the Moser-Trudinger inequality to the reflected u′, which is defined on S2. The Dirichlet
integral of u′ will be twice the one of u on B1(0), while the average and the integral of eu

′
will be

the same, up to the conformal factor. Therefore the constant 4π is halved to 2π.
Starting from a simply connected domain, one can exploit the Riemann mapping theorem to map
it conformally on the unit ball and repeat the same argument. The exterior and interior sphere
condition ensures the boundedness of the conformal factor.

In Chapter 3, we will need to combine different type of Moser-Trudinger inequalities.
To do this, we will need the following technical estimates concerning averages of functions on balls
and their boundary:

Lemma 1.19.
There exists C > 0 such that for any u ∈ H1(Σ), x ∈ Σ, r > 0 one has∣∣∣∣∣

 
Br(x)

udVg −
 
∂Br(x)

udVg

∣∣∣∣∣ ≤ C
√ˆ

Br(x)

|∇u|2dVg.

Moreover, for any R > 1 there exists C = CR such that∣∣∣∣∣
 
Br(x)

udVg −
 
BRr(x)

udVg

∣∣∣∣∣ ≤ C
√ˆ

Br(x)

|∇u|2dVg.

The same inequalities hold if Br(x) is replaced by a domain Ω ⊂ BRr(x) such that Ω ∈ Aδr for
some δ > 0, with the constants C and CR replaced by some Cδ, CR,δ > 0, respectively.

The proof of the above Lemma follows by the Poincaré-Wirtinger and trace inequalities, which are
invariant by dilation. Details can be found, for instance, in [39].

We will also need the following estimate on harmonic liftings.

Lemma 1.20.

Let r2 > r1 > 0, f ∈ H1(Br2(0)) with

ˆ
Br1 (0)

f(x)dx = 0 be given and u be the solution of

 −∆u = 0 in Ar1,r2(0)
u = f on ∂Br1(0)
u = 0 on ∂Br2(0)

.

Then, there exists C = C r2
r1

> 0 such that

ˆ
Ar1,r2 (0)

|∇u(x)|2dx ≤ C
ˆ
Ar1,r2 (0)

|∇f(x)|2dx
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Finally, we give a result concerning entire solution of singular Liouville systems, which will be used
to prove the non-existence results in Chapter 4.
Unlike the previously stated results, this one has not been published, up to our knowledge, nor
it follows straightforwardly from any known results. Anyway, it can be proved similarly as in the
scalar case ([25], Theorem 1).
As anticipated in the introduction, the proof will be postponed to the Appendix.

Theorem 1.21.
Let H1, . . . ,HN ∈ C1

loc

(
R2 \ {0}

)
be such that, for suitable a, c ≥ 0, b > −2, C > 0,

|x|a

C
≤ Hi(x) ≤ C|x|b ∀x ∈ B1(0) \ {0} 0 < Hi(x) ≤ C|x|c ∀x ∈ R2 \B1(0);

let U = (U1, . . . , UN ) be a solution of
−∆U1 =

N∑
j=1

aijHje
Uj in R2

ˆ
R2

(
|x|b + |x|c

)
eUi(x)dx < +∞

, i = 1, . . . , N (1.9)

and define

ρi :=

ˆ
R2

Hi(x)eUi(x)dx, τi :=

ˆ
R2

(x · ∇Hi(x))eUi(x)dx, i = 1, 2.

Then,
N∑

i,j=1

aijρiρj − 4π

N∑
i=1

(2ρi + τi) = 0. (1.10)

1.4 Topological preliminaries, homology and Morse theory

We start with a simple fact from general topology, which anyway will be essential in most of Chapter
3:

Lemma 1.22.
Let Σ be a compact surface with χ(Σ) ≤ 0 and

{
p′01, . . . , p

′
0M ′0

, p′11, . . . , p
′
1M ′1

, p′21, . . . , p
′
2M ′1

}
be given

points of Σ.

Then, there exist two curves γ1, γ2, each of which is homeomorphic to a bouquet of 1 +

[
−χ(Σ)

2

]
circles and two global projections Πi : Σ→ γi such that:

• γ1 ∩ γ2 = ∅.

• p′im ∈ γi for all m = 1, . . . ,M ′i , i = 1, 2.

• p′0m 6∈ γi for all m = 1, . . . ,M ′0, i = 1, 2.

Sketch of the proof.
If Σ = Tg is a g-torus, two retractions on disjoint bouquets of g circles can be easily built.
For instance, as in [3], Σ can be assumed to be embedded in R3 in such a way that each hole contains
a line parallel to the x3 axis and that the projection Pi on each plane

{
x3 = (−1)i+1

}
is a disk with

16



Σ

γ1

γ2

p01
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p03p11
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Figure 1.1: The curves γ1, γ2

g holes. Then, there exists two bouquets of circles γi ⊂ Σ such that Pi|γi are homeomorphisms and

there exists retractions ri : Pi(Σ)→ Pi(γi), and we suffice to define Πi := Pi|γi
−1 ◦ ri ◦ Pi.

One can argue similarly with a connected sum Σ = P2k of an even number of copies of the projective
plane, since this is homeomorphic to a connected sum of a Tk−1 and a Klein bottle, which in turn
retracts on a circle; therefore, P2k retracts on two disjoint bouquets of k circles.
If instead Σ is a connected sum of an odd number of projective planes, one can argue as before
setting the retractions constant on the last copy of P.
In all these cases,

g = 1 +
−χ(Tg)

2
, k = 1 +

−χ
(
P2k
)

2
= 1 +

[
−χ
(
P2k+1

)
2

]
.

Finally, with a small deformation, the curves γi can be assumed to contain all the points p′im and
they will not contain any of the other singular points. We can apply those deformations to γ1

without intersecting γ2 (or vice versa) because Σ \ γ2 is pathwise connected.
See Figure 1.1 for an example.

In Chapter 3 we will often have to deal with the space M(Σ) of Radon measures defined on Σ,
especially unit measures.
Such a space will be endowed with the Lip′ topology, that is with the norm of the dual space of
Lipschitz functions:

‖µ‖Lip′(Σ) := sup
φ∈Lip(Σ),‖φ‖Lip(Σ)≤1

∣∣∣∣ˆ
Σ

φdµ

∣∣∣∣ . (1.11)

As a choice of this motivation, notice that by choosing, in (1.11), φ = d(·, y), one gets dLip′(δx, δy) ∼
d(x, y) for any x, y ∈ Σ. This means that M(Σ) contains a homeomorphic copy of Σ.
Moreover, one can see immediately that L1

>0(Σ) embeds into M(Σ).

Concerning u ∈ H1(Σ)N , there is a natural way to associate to any u, through the system (3), a
N -tuple of positive normalized L1 functions, that is N elements of the space

A :=

{
f ∈ L1(Σ) : f > 0 a.e. and

ˆ
Σ

fdVg = 1

}
. (1.12)

Precisely, we define

(u1, . . . , uN ) 7→

(
h̃1e

u1´
Σ
h̃1eu1dVg

, . . . ,
h̃Ne

uN´
Σ
h̃NeuNdVg

)
=: (f1,u, . . . , fN,u). (1.13)

Lemma 1.23.
Let A be defined by (1.12) and fi,u be defined by (1.13).
Then, the map u 7→ fi,u is weakly continuous for i = 1, . . . , N .
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Proof.
It will suffice to give the proof for the index i = 1, which we will omit. We will just need to prove
the continuity of the map u 7→ h̃eu, since dividing a non-zero element by his norm is a continuous
operation in any normed space.
Let un ∈ H1 be converging weakly, and strongly in any Lp(Σ), to u, and fix q > 1 in such a way
that qαm > −1 ∀m.
From the elementary inequality et − 1 ≤ |t|e|t| we get, by Lemma 1.13 and Hölder’s inequality,∣∣∣∣ˆ

Σ

h̃eu
n

dVg −
ˆ

Σ

h̃eudVg

∣∣∣∣
≤

ˆ
Σ

h̃eu
∣∣∣eun−u − 1

∣∣∣ dVg
≤

ˆ
Σ

h̃eu |un − u| e|u
n−u|dVg

≤
(ˆ

Σ

h̃qequdVg

) 1
q
(ˆ

Σ

|un − u|
2q
q−1 dVg

)1− 1
2q
(ˆ

Σ

e
2q
q−1 |u

n−u|dVg

)1− 1
2q

≤
(
Ceq

´
Σ
udVg+ q2

16πmin{1,1+qminm αm}
´
Σ
|∇u|2dVg

) 1
q
(ˆ

Σ

|un − u|
2q
q−1 dVg

)1− 1
2q

·

·
(
Ce

2q
q−1

´
Σ
|un−u|dVg+ q2

4π(q−1)2

´
Σ
|∇(un−u)|2dVg

)1− 1
2q

≤ C

(ˆ
Σ

|un − u|
2q
q−1 dVg

)1− 1
2q

−→
n→+∞

0.

From the proof of the previous Lemma we deduce the following useful Corollary:

Corollary 1.24.
The functional Jρ : H1(Σ)N → R defined in (5) is of class C1 and weakly lower semi-continuous.

Speaking about unit measures, a fundamental role will be played by the so-called K-barycenters,
that is unit measures supported in at most K points of Σ, for some given K. They will be used in
Chapter (3) to express the fact that fi,u concentrates around at most K points.
For a subset X ⊂ Σ, we define:

(X)K :=

{
K∑
k=1

tkδxk : xk ∈ X, tk ≥ 0,

K∑
k=1

tk = 1

}
. (1.14)

If we choose X to be homeomorphic to a bouquet of g circles, such as for instance the curves γ1, γ2

defined in Lemma 1.22, the homology of the K- barycenters on X is well-known:

Proposition 1.25. ([3], Proposition 3.2)
Let γ be a bouquet of g circles and let (γ)K be defined by (1.14).
Then, its homology groups are the following:

Hq ((γ)K) =


Z if q = 0

Z(K+g−1
g−1 ) if q = 2K − 1

0 if q 6= 0, 2K − 1

.
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Remark 1.26.
In Proposition 1.25, when g = 1 we get not only a homology equivalence but a homotopy equivalence
between

(
S1
)
K

and S2K−1.

We will also need a similar definition, which extends the K-barycenters defined before. We still
consider unit measure with finite support, but we do not give a constraint on the number of the
points, but rather on a weight defined on such points.
Given a set X ⊂ Σ, a finite number of points p1, . . . , pM ∈ X and a multi-index α = (α1, . . . , αM )
with −1 < αm < 0 for any m = 1, . . . ,M , we define the weighted cardinality ωα as

ωα({x}) :=

{
1 + αm if x = pm
1 if x 6∈ {p1, . . . , pM}

, ωα

( ⋃
xk∈J

{xk}

)
:=

∑
xk∈J

ωα({xk}).

We then define the weighted barycenters on X with respect to the a parameter ρ > 0 and the
multi-index α as

(X)ρ,α :=

{∑
xk∈J

tkδxk : xk ∈ X, tk ≥ 0,
∑
xk∈J

tk = 1, 4πωα(J ) < ρ

}
. (1.15)

As a motivation for this weight, introduced in [21] to study the singular Liouville equation, consider

inequality (1.6). In the case of no singularities, the constant multiplying

ˆ
Σ

|∇u|2dVg is
1

16π
, and

in case of one singular point pm with αm < 0, that constant is
1

16π(1 + αm)
.

Roughly speaking, the weight of each point represents how much that point affects the Moser-
Trudinger inequality (1.6).

The space of weighted barycenters can be in general more complicated than the non-weighted
barycenters, which are a particular case given by defining ωα({x}) = 1 for any x ∈ X and K as the

largest integer strictly smaller than
ρ

4π
.

Anyway, both the weighted and the non-weighted barycenters are stratified set, that is, roughly
speaking, union of manifolds of different dimensions with possibly non-smooth gluings.
For this reason, they have the fundamental property of being a Euclidean Neighborhood Retract,
namely a deformation retract of an open neighborhood of theirs.

Lemma 1.27. ([21], Lemma 3.12)
Let, for ρ ∈ R>0, α = (α1, . . . , αM ), (Σ)ρ,α be defined as in (1.15).
Then, there exists ε0 > 0 and a continuous retraction

ψρ,α :
{
µ ∈M(Σ) : dLip′

(
µ, (Σ)ρ,α

)
< ε0

}
→ (Σ)ρ,α

In particular, if µn ⇀
n→∞

σ for some σ ∈ (Σ)ρ,α, then ψρ,α(µn) −→
n→∞

σ.

Another tool which we will take from general topology is the join between two spaces X and Y ,
defined by

X ? Y :=
X × Y × [0, 1]

∼
(1.16)

where ∼ is the identification given by

(x, y, 0) ∼ (x, y′, 0) ∀x ∈ X, ∀ y, y′ ∈ Y, (x, y, 1) ∼ (x′, y, 1) ∀x, x′ ∈ X, ∀ y ∈ Y.

Basically, the join expresses a (non-exclusive) alternative between X and Y : if t = 0 we only “see”
X and not Y , if t = 1 we see only Y and if 0 < t < 1 we see both X and Y (for more details, see
[40], page 9). This will be used in Chapter 3 as a model for the alternative between concentration
of f1,u and f2,u.
The homology of X ? Y depends from the homology of X and Y through the following:
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Proposition 1.28. ([40], Theorem 3.21)
Let X and Y be two CW -complexes and X ? Y be their join as in (1.16).
Then, its homology group are defined by

H̃q(X ? Y ) =

q⊕
q′=0

H̃q′(X)⊗ H̃q−q′−1(Y ).

In particular,

b̃q(X ? Y ) =

q∑
q′=0

b̃q′(X )̃bq−q′−1(Y )

and
+∞∑
q=0

b̃q(X ? Y ) =

+∞∑
q′=0

b̃q′(X)

+∞∑
q′′=0

b̃q′′(Y ).

Remark 1.29.
By taking, in the previous Proposition, two wedge sum of spheres X =

(
SD1

)∨N1
and Y =

(
SD2

)∨N2
,

we find that X ? Y has the homology of another wedge sum of spheres
(
SD1+D2+1

)∨N1N2
.

In the same book [40] it is shown that actually a homotopically equivalence
(
SD1

)∨N1
?
(
SD2

)∨N2 '(
SD1+D2+1

)∨N1N2
holds. In particular, from Remark 1.26,

(
S1
)
K1

?
(
S1
)
K2
' S2K1+1 ? S2K2+1 '

S2K1+2K2−1.

Remark 1.30.
Proposition 1.28 shows, in particular, that if both X and Y have some non-trivial homology, then
the same is true for X ? Y .
It is easy to see that a partial converse holds, concerning contractibility rather than homology: if
either X or Y is contractible, that X ? Y is also contractible.
In fact, if F is a homotopy equivalence between X and a point, then

((x, y, t), s) 7→ (F (x, s), y, t)

is a homotopical equivalence between X ? Y and the cone based on Y , which is contractible.

Morse inequalities yield the following estimate on the number of solutions, through the Betti num-
bers of low sub-levels:

Lemma 1.31.
Let ρ ∈ R2

>0 be such that JA2,ρ is a Morse functional and ‖u‖H1(Σ)2 ≤ C for any solution u ∈
H

1
(Σ)2 of (9).

Then, there exists L > 0 such that

# solutions of (9) ≥
+∞∑
q=0

b̃q

(
J−LA2,ρ

)
.

The same result holds if A2 is replace by B2 or G2.

Proof.
By Corollary 1.24, −L < Jρ(u) ≤ L for some L > 0. In particular, −L is a regular value for Jρ,
hence the exactness of the sequence

· · · → H̃q

(
J−Lρ

)
→ H̃q

(
JLρ
)
→ Hq

(
J−Lρ , JLρ

)
→ H̃q−1

(
J−Lρ

)
→ H̃q−1

(
JLρ
)
→ . . .
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reduces to
Hq+1

(
J−Lρ , JLρ

)
= H̃q

(
J−Lρ

)
.

Therefore, Morse inequalities give:

# solutions of (10) =

+∞∑
q=0

Cq (Jρ) =

+∞∑
q=0

Cq (Jρ;−L,L) ≥
+∞∑
q=0

bq
(
J−Lρ , JLρ

)
=

+∞∑
q=0

b̃q
(
J−Lρ

)
.

Finally, we need a density result for Jρ, given in [32] for Iρ, which will be proved in the Appendix.

Theorem 1.32.
Let M2(Σ) be the space of Riemannian metrics on Σ, equipped with the C2 norm, and M2

1(Σ) its

subspaces of the metrics g satisfying

ˆ
Σ

dVg = 1.

Then, there exists dense open set D ⊂M2(Σ)×C2
>0(Σ)×C2

>0(Σ), D1 ⊂M2
1(Σ)×C2

>0(Σ)×C2
>0(Σ)

such that for any (g, h1, h2) ∈ D ∪ D1 the three of JA2,ρ, JB2,ρ, JG2,ρ are all Morse functions from

H
1
(Σ)2 to R.
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Chapter 2

New Moser-Trudinger inequalities
and minimizing solutions

This chapter will be devoted to proving two Moser-Trudinger inequalities for systems (3), namely
to give conditions for the energy functional Jρ to be coercive and bounded from below.

The first result gives a characterization of the values of ρ which yield coercivity for Jρ and some
necessary conditions for boundedness from below:

Theorem 2.1.
Define, for ρ ∈ RN>0, x ∈ Σ and i ∈ I ⊂ {1, . . . , N}:

αi(x) =

{
αim if x = pm
0 otherwise

(2.1)

ΛI,x(ρ) := 8π
∑
i∈I

(1 + αi(x))ρi −
∑
i,j∈I

aijρiρj , (2.2)

Λ(ρ) := min
I⊂{1,...,N},x∈Σ

ΛI,x(ρ) . (2.3)

Then, Jρ is bounded from below if Λ(ρ) > 0 and it is unbounded from below if Λ(ρ) < 0.

Moreover, Jρ is coercive in H
1
(Σ)N if and only if Λ(ρ) > 0. In particular, if this occurs, then it

has a minimizer u which solves (3).

By this theorem, the values of ρ which yield coercivity belong to a region of the positive orthant
which is delimited by hyperplanes and hypersurfaces, whose role will be clearer in the blow-up
analysis which will be done in this chapter.
The coercivity region is shown in Figure 2.1:

Theorem 2.1 leaves an open question about what happens when Λ(ρ) = 0. In this case one encoun-
ters blow-up phenomena which are not yet fully known for general systems.
Anyway, we can say something more precise if we assume the matrix A to be non-positive outside
its main diagonal. First of all, it is not hard to see that notice that in this case

Λ(ρ) = min
i∈{1,...,N}

(
8π(1 + α̃i)ρi − aiiρ2

i

)
,

where

α̃i := min
m∈{1,...,M},x∈Σ

αi(x) = min

{
0, min
m∈{1,...,M}

αim

}
. (2.4)

In particular, only the negative αim play a role in the coercivity of Jρ, like for the scalar case and
unlike the general case in Theorem 2.1.
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Figure 2.1: The set Λ(ρ) > 0, in the case N = 2.

Therefore, under these assumptions, the coercivity region is actually a rectangle and the sufficient

condition in Theorem 2.1 is equivalent to assuming ρi <
8π(1 + α̃i)

aii
for any i:

0.5 1.0 1.5

0.5

1.0

1.5

2.0

Figure 2.2: The set Λ(ρ) > 0, in the case N = 2, a12 ≤ 0.

With this assumption, the blow-up analysis needed to study what happens when Λ(ρ) = 0 is locally
one-dimensional, hence can be treated by using well-known scalar inequalities like Lemma 1.15.
Therefore, we get the following sharp result:

Theorem 2.2.
Let Λ(ρ) as in (2.3), α̃i as in (2.4) and suppose aij ≤ 0 for any i, j = 1, . . . , N with i 6= j.
Then, Jρ is bounded from below on H1(Σ)N if and only if Λ(ρ) ≥ 0, namely if and only if ρi ≤
8π(1 + α̃i)

aii
for any i = 1, . . . , N . In other words, there exists C > 0 such that

2∑
i=1

1 + α̃i
aii

(
log

ˆ
Σ

h̃ie
uidVg −

ˆ
Σ

uidVg

)
≤ 1

8π

ˆ
Σ

Q(u)dVg + C (2.5)

Remark 2.3.
We remark that assuming A to be positive definite is necessary. If A is invertible but not symmetric
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definite, then Jρ is unbounded from below for any ρ.

In fact, suppose there exists v ∈ RN such that

N∑
i,j=1

aijvivj ≤ −θ|v|2 for some θ > 0. Then, consider

the family of functions uλ(x) := λv · x.
By Jensen’s inequality we get:

Jρ
(
uλ
)
≤ 1

2

N∑
i,j=1

aij
ˆ

Σ

∇uλi · ∇uλj dVg −
N∑
i=1

ρi

ˆ
Σ

log h̃idVg ≤ −
θ

2
λ2|v|2 + C −→

n→+∞
∞.

The proofs of Theorems 2.1 and 2.2 will be given respectively in Sections 2.3 and 2.4.

2.1 Concentration-compactness theorem

The aim of this section is to prove a result which describes the concentration phenomena for the
solutions of (3), extending what was done for the two-dimensional Toda system in [12, 57].

We actually have to normalize such solutions to bypass the issue of the invariance by translation
by constants and to have the parameter ρ multiplying only the constant term.
In fact, for any solution u of (3) the functions

vi := ui − log

ˆ
Σ

h̃ie
uidVg + log ρi (2.6)

solve 
−∆vi =

N∑
j=1

aij

(
h̃je

vj − ρj
)

ˆ
Σ

h̃ie
vidVg = ρi

, i = 1, . . . , N. (2.7)

Moreover, we can rewrite in a shorter way the local blow-up masses defined in (1.5) as

σi(x) = lim
r→0

lim
n→+∞

ˆ
Br(x)

h̃ni e
vni dVg.

For such functions, we get the following concentration-compactness alternative:

Theorem 2.4.
Let {un}n∈N be a sequence of solutions of (3) with ρn −→

n→+∞
ρ ∈ RN>0 and h̃ni = V ni h̃i with

V ni −→
n→+∞

1 in C1(Σ)N , {vn}n∈N be defined as in (2.6) and Si be defined, for i = 1, . . . , N , by

Si :=

{
x ∈ Σ : ∃xn −→

n→+∞
x such that vni (xn) −→

n→+∞
+∞

}
. (2.8)

Then, up to subsequences, one of the following occurs:

• (Compactness) If S := ∪Ni=1Si = ∅, then vn −→
n→+∞

v in W 2,q(Σ)N for some q > 1 and some

v which solves (2.7).

• (Concentration) If S 6= ∅, then it is finite and

h̃ni e
vni ⇀

n→+∞

∑
x∈S

σi(x)δx + fi

as measures, with σi(x) defined as in (2.8) and some fi ∈ L1(Σ).
In this case, for any given i, either vni −→

n→+∞
−∞ in L∞loc(Σ \ S) and fi ≡ 0, or vni −→

n→+∞
vi

in W 2,q
loc (Σ \ S) for some q > 1 and some suitable vi and fi = h̃ie

vi > 0 a.e. on Σ.
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Since h̃j is smooth outside the points pm’s, the estimates inW 2,q(Σ) are actually in C2,α
loc

(
Σ \

M⋃
m=1

pm

)

and the estimates in W 2,q
loc (Σ \ S) are actually in C2,α

loc

(
Σ \

(
S ∪

M⋃
m=1

pm

))
.

Anyway, estimates in W 2,q will suffice throughout all this Chapter.

To prove Theorem 2.4 we need two preliminary lemmas.
The first is a Harnack-type alternative for sequences of solutions of PDEs. It is inspired by [16, 57].

Lemma 2.5.
Let Ω ⊂ Σ be a connected open subset, {fn}n∈N a bounded sequence in Lqloc(Ω) ∩ L1(Ω) for some
q > 1 and {wn}n∈N bounded from above and solving −∆wn = fn in Ω.
Then, up to subsequences, one of the following alternatives holds:

• wn is uniformly bounded in L∞loc(Ω).

• wn −→
n→+∞

−∞ in L∞loc(Ω).

Proof.

Take a compact set K b Ω and cover it with balls of radius
δ

2
, with δ smaller than the injectivity

radius of Σ. By compactness, we can write K ⊂
L⋃
l=1

B δ
2
(xl).

If the second alternative does not occur, then up to re-labeling we get sup
Bδ(x1)

wn ≥ −C.

Then, we consider the solution zn of{
−∆zn = fn in Bδ(x1)
zn = 0 on ∂Bδ(x1)

,

which is bounded in L∞(Bδ(x1)) by elliptic estimates.
This means that, for a large constant C, the function C−wn+zn is positive, harmonic and bounded
from below on Bδ(x1), and moreover its infimum is bounded from above. Therefore, applying the
Harnack inequality for harmonic function (which is allowed since r is small enough) we get that

C − wn + zn is uniformly bounded in L∞
(
B δ

2
(x1)

)
, hence wn is.

At this point, by connectedness, we can re-label the index l in such a way that B δ
2
(xl)∩B δ

2
(xl+1) 6= ∅

for any l = 1, . . . , L−1 and we repeat the argument for B δ
2
(x2). Since it has nonempty intersection

with B δ
2
(x1), we have sup

Bδ(x2)

wn ≥ −C, hence we get boundedness in L∞
(
B δ

2
(x2)

)
.

In the same way, we obtain the same result in all the balls B δ
2
(xl), whose union contains K; therefore

wn must be uniformly bounded on K and we get the conclusion.

The second Lemma basically says that if all the concentration values in a point are under a certain
threshold, and in particular if all of them equal zero, then compactness occurs around that point.
On the other hand, if a point belongs to some set Si, then at least a fixed amount of mass has to
accumulate around it; hence, being the total mass uniformly bounded from above, this can occur
only for a finite number of points, so we deduce the finiteness of the Si’s.
Precisely, we have the following, inspired again by [57], Lemma 4.4:

Lemma 2.6.
Let {vn}n∈N and Si be as in (2.8) and σi as in (1.5), and suppose σi(x) < σ0

i for any i = 1, . . . , N ,
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where

σ0
i :=

4πmin
{

1, 1 + minj∈{1,...,N},m∈{1,...,M} αjm
}∑N

j=1 a
+
ij

.

Then, x 6∈ Si for any i ∈ {1, . . . , N}.

Proof.

First of all we notice that σ0
i is well-defined for any i because aii > 0, hence

N∑
j=1

a+
ij > 0.

Under the hypotheses of the Lemma, for large n and small δ we have

ˆ
Bδ(x)

h̃ni e
vni dVg < σ0

i . (2.9)

Let us consider wni and zni defined by −∆wni = −
N∑
j=1

aijρ
n
j in Bδ(x)

wni = 0 on ∂Bδ(x)

,

 −∆zni =

N∑
j=1

a+
ij h̃

n
j e
vnj in Bδ(x)

zni = 0 on ∂Bδ(x)

. (2.10)

Is it evident that the wni ’s are uniformly bounded in L∞(Bδ(x)).
As for the zni ’s, we can suppose to be working on a Euclidean disc, up to applying a perturbation to

h̃ni which is smaller as δ is smaller, hence for δ small enough we still have the strict estimate (2.9).
Therefore, we get

‖−∆zni ‖L1(Bδ(x)) =

N∑
j=1

a+
ij

ˆ
Bδ(x)

h̃nj e
vnj dVg <

N∑
j=1

a+
ijσ

0
j ≤ 4πmin{1, 1 + αi(x)},

and we can apply Lemma 1.1 to obtain

ˆ
Bδ(x)

eq|z
n
i |dVg ≤ C for some q >

1

min{1, 1 + αi(x)}
.

If αi(x) ≥ 0, then taking q ∈

(
1,

4π

‖−∆zni ‖L1(Bδ(x))

)
we have

ˆ
Bδ(x)

(
h̃ni e

zni

)q
dVg ≤ Cδ

ˆ
Bδ(x)

eq|z
n
i |dVg ≤ C.

On the other hand, if αi(x) < 0, we choose

q ∈

(
1,

4π

‖−∆zni ‖L1(Bδ(x)) − 4παi(x)

)
, q′ ∈

(
4π

4π − q ‖−∆zni ‖L1(Bδ(x))

,
1

−αi(x)q

)
,

and, applying Hölder’s inequality,

ˆ
Bδ(x)

(
h̃ni e

zni

)q
dVg

≤ Cδ

ˆ
Bδ(x)

d(·, x)2qαi(x)eqz
n
i dVg

≤ C

(ˆ
Bδ(x)

d(·, x)2qq′αi(x)dVg

) 1
q′
(ˆ

Bδ(x)

e
q q′
q′−1

|zni |dVg

)1− 1
q′

≤ C,

because qq′αi(x) > −1 and q
q′

q′ − 1
αi(x) <

4π

‖−∆zni ‖L1(Bδ(x))

.
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Now, let us consider vni − zni −wni : it is a subharmonic sequence by construction, so for y ∈ B δ
2
(x)

we get

vni (y)− zni (y)− wni (y)

≤
 
B δ

2
(y)

(vni − zni − wni ) dVg

≤ C

ˆ
B δ

2
(y)

(vni − zni − wni )+dVg

≤ C

ˆ
Bδ(x)

(
(vni − zni )+ + (wni )−

)
dVg

≤ C

(
1 +

ˆ
Bδ(x)

(vni − zni )
+

dVg

)
.

Moreover, since the maximum principle yields zni ≥ 0, taking θ =

 1 if αi(x) ≤ 0

∈
(

0,
1

1 + αi(x)

)
if αi(x) > 0

,

we get

ˆ
Bδ(x)

(vni − zni )
+

dVg

≤
ˆ
Bδ(x)

(vni )+dVg

≤ 1

θ

ˆ
Bδ(x)

eθv
n
i dVg

≤ C

∥∥∥∥(h̃ni )−θ∥∥∥∥
L

1
1−θ (Bδ(x))

(ˆ
Bδ(x)

h̃ni e
vni dVg

)θ
≤ C.

Therefore, we showed that vni − zni − wni is bounded from above in B δ
2
(x), that is ev

n
i −z

n
i −w

n
i is

uniformly bounded in L∞
(
B δ

2
(x)
)

. Since the same holds for ew
n
i , and h̃ni e

zni is uniformly bounded

in Lq
(
B δ

2
(x)
)

for some q > 1, we also deduce that

h̃ni e
vni = h̃ni e

zni ev
n
i −z

n
i −w

n
i ew

n
i

is bounded in the same Lq
(
B δ

2
(x)
)

.

Thus, we have an estimate on ‖−∆zni ‖
Lq
(
B δ

2
(x)

) for any i = 1, . . . , N , hence by standard elliptic

estimates we deduce that zni is uniformly bounded in L∞
(
B δ

2
(x)
)

.

Therefore, we also deduce that

vni = (vni − zni − wni ) + zni + wni

is bounded from above on B δ
2
(x), which is equivalent to saying x 6∈ S.

From this proof, we notice that, under the assumptions of Theorem 2.2, the same result holds for
any single index i = 1, . . . , N .
In other words, for such systems, the upper bound on one σi implies that x 6∈ Si. In particular,
σi(x) = 0 implies x ∈ Si, whereas in the general case we could have blow-up of one component at
a point without that component accumulates any mass.
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Corollary 2.7.
Suppose aij ≤ 0 for any i 6= j.
Then, for any given i = 1, . . . , N the following conditions are equivalent:

• x ∈ Si.

• σi(x) 6= 0.

• σi(x) ≥ σ′i =
4πmin {1, 1 + minm αim}

aii
.

Proof.
The third statement obviously implies the second and the second implies the first, since if vni is

bounded from above in Bδ(x) then h̃ni e
vni is bounded in Lq(Bδ(x)).

Finally, if σi(x) < σ′i then the sequence h̃ni e
zni defined by (2.10) is bounded in Lq for q > 1, so one

can argue as in Lemma 2.6 to get boundedness from above of vni around x, that is x 6∈ Si.

We can now prove the main theorem of this Section.

Proof of Theorem 2.4.

If S = ∅, then ev
n
i is bounded in L∞(Σ), so −∆vni is bounded in Lq(Σ) for any q ∈

[
1,

1

maxj,m α
−
jm

)
.

Therefore, we can apply Lemma 2.5 to vni on Σ, where we must have the first alternative for every

i, since otherwise the dominated convergence would give

ˆ
Σ

h̃ni e
vni dVg −→

n→+∞
0 which is absurd;

standard elliptic estimates allow to conclude compactness in W 2,q(Σ).

Suppose now S 6= ∅. From Lemma 2.6 we deduce, for any i,

|Si|σ0
i ≤

∑
x∈Si

max
j
σj(x) ≤

N∑
j=1

∑
x∈Si

σj(x) ≤
N∑
j=1

ρj ,

hence Si is finite.

For any i = 1, . . . , N , we can apply Lemma 2.5 on Σ \ S with fn =

N∑
j=1

aij

(
h̃nj e

vnj − ρnj
)

, since the

last function is bounded in Lqloc(Σ \ S).
Therefore, either vnj goes to −∞ or it is bounded in L∞loc, and in the last case we get compactness

in W 2,q
loc by applying again standard elliptic regularity.

Now, set fi := 0 in the former case and fi := h̃ie
vi in the latter case and take rn −→

n→+∞
0 such that

ˆ
Brn (x)

h̃ni e
vni dVg −→

n→+∞
σi(x), sup

Σ\
⋃
x∈S Brn (x)

∣∣∣h̃ni evni − h̃ievi ∣∣∣ −→
n→+∞

0.

For any φ ∈ C(Σ) we have
ˆ

Σ

h̃ni e
vni φdVg −

∑
x∈S

σi(x)φ(x) +

ˆ
Σ

fiφdVg

=
∑
x∈S

ˆ
Brn (x)

h̃ni e
vni (φ− φ(x))dVg +

ˆ
Brn (x)

(
h̃ni e

vni − fi
)
φdVg + o(1)

−→
n→+∞

0.

The proof is now complete.
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Remark 2.8.
We can easily give a localized version of Theorem 2.4, namely to take an open Ω ⊂ Σ, V ni −→

n→+∞
1

in C1
(
Ω
)N

and to study vn|Ω.
The main difference with respect to the original form of Theorem 2.4 is the following: in case of
Compactness we could have, for any i = 1, . . . , N , vni −→

n→+∞
−∞ in L∞loc(Ω). This is because, at

the beginning of the proof of the Theorem,

ˆ
Ω

h̃ni e
vni dVg −→

n→+∞
0 is allowed. All the rest of the proof

can be adapted step-by-step.
Such a localized version will be useful in Chapter 4.

2.2 Pohožaev identity and quantization for the Toda system

The main goal of this Section is to prove a Pohožaev identity for solutions of (3), namely an alge-
braic conditions which must be satisfied by the quantities σi(x). This was already done in [44, 53]
for some special cases.
Such a result is very important for two reasons. First of all, it is essential to prove Theorem 2.1
through blow-up analysis. Moreover, it allows to deduce a global compactness theorem for systems
(9), (10), (11) from the local quantization theorems (1.6), (1.8).
This global compactness result will be proved in the end of this Section.

The content of this Section is mostly from the paper [14].

Theorem 2.9.
Let {un}n∈N be a sequence of solutions of (3), αi(x) and ΛI,x as in (2.1) and σ(x) = (σ1(x), . . . , σN (x))
as in (1.5).
Then,

Λ{1,...,N},x(σ(x)) = 8π

N∑
i=1

(1 + αi(x))σi(x)−
N∑

i,j=1

aijσi(x)σj(x) = 0.

As a first step, we prove that blowing up sequences {un} resemble suitable combination of Green’s
functions plus a remainder term.

Lemma 2.10.
Let {vn}n∈N, Si be as in Theorem 2.4, σi(x) as in (2.8) and Gx be the Green’s function of −∆ as
in (2); assume Concentration occurs in Theorem 2.4

Then, there exist w1, . . . , wN such that

ˆ
Σ

eqwidVg < +∞ for any q < +∞, i = 1, . . . , N and

vni −
ˆ

Σ

vni dVg −→
n→+∞

N∑
j=1

aij
∑
x∈S

σj(x)Gx + wi,

weakly in W 1,q′(Σ) for any q′ < 2 and strongly in W 2,q(Σ \ S) for some q > 1.

Proof.
Define wi as the solution of 

−∆wi =

N∑
j=1

aij

(
fj −

ˆ
Σ

fjdVg

)
ˆ

Σ

widVg = 0
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Since fi ∈ L1(Σ), then

ˆ
Σ

eqwidVg < +∞ by Lemma 1.1.

Take now q′ ∈ (1, 2) and φ ∈W 1, q′
q′−1 (Σ). Since

q′

q′ − 1
> 2, φ ∈ C(Σ), therefore:

ˆ
Σ

∇

vni − ˆ
Σ

vni dVg −
N∑
j=1

aij
∑
x∈S

σj(x)Gx − wi

 · ∇φdVg

=

ˆ
Σ

−∆

vni − N∑
j=1

aij
∑
x∈S

σj(x)Gx − wi

φdVg

=

ˆ
Σ

N∑
j=1

aij

(
h̃ni e

vni −
∑
x∈S

σj(x)δx − fj + ρnj − ρj

)
φdVg

−→
n→+∞

0,

which gives weak convergence in W 1,q′(Σ).
Strong convergence in W 2,q(Σ \ S) follows from standard elliptic estimates.

At this point, the main issue is given by the residual fi defined in Theorem 2.4.
If we had wi ≡ 0, then Theorem 2.9 would follow quite easily by an integration by parts. Anyway,
the wi’s could in principle play a role in the double limit which is taken in the definition of σ(x),
because we do not know whether it belongs to L∞(Σ) or H1(Σ).
Some information on the residuals is given by the following Lemma.

Lemma 2.11.
Let vn and fi be as in Theorem 2.4, σi(x) as in (1.5) and wi as in Lemma 2.10 and assume
Concentration occurs.
Then, for any i = 1, . . . , N , one of the following holds true:

• fi ≡ 0 and

ˆ
Σ

vni dVg −→
n→+∞

−∞.

• fi > 0 and

ˆ
Σ

vni dVg is uniformly bounded.

Moreover, in the latter case, there exists ĥi ∈ Lqloc(Σ \ S) for some q > 1 such that fi = ĥie
wi and

ĥi ∼ d(·, x)2αi(x)−
∑N
j=1 aijσj(x)

2π and ĥi ∼ h̃i around any x ∈ Σ \ S.

Proof.
First of all, by Jensen’s inequality

ˆ
Σ

vni dVg ≤
ˆ

Σ

vni dVg + log

ˆ
Σ

h̃ni dVg + C ≤ log

ˆ
Σ

h̃ni e
vni dVg + C ≤ C.

Therefore, up to subsequences, there exists L := lim
n→+∞

e
´
Σ
vni dVg .

Now, fix Ω b Σ \ S and write:

ˆ
Ω

fidVg

←−
n→+∞

ˆ
Ω

h̃ni e
vni dVg

= e
´
Σ
vni dVg

ˆ
Ω

h̃ni e
vni −

´
Σ
vni dVgdVg
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−→
n→+∞

L

ˆ
Ω

h̃ie
∑N
j=1 aij

∑
x∈S σj(x)Gx+widVg︸ ︷︷ ︸

∈(0,+∞)

.

Therefore, r ≡ 0 if and only if L = 0, that is if and only if

ˆ
Σ

vni dVg −→
n→+∞

−∞.

For the last statement, just set ĥi := Lh̃ie
∑N
j=1 aij

∑
x∈S σj(x)Gx .

A key step in the proof of Theorem 2.9 is given by the following result:

Lemma 2.12.
Let vn and fi be as in Theorem 2.4, σi(x) as in (1.5) and wi as in Lemma 2.10 and assume
Concentration occurs.

If fi 6≡ 0, then it belongs to Lq(Σ) for some q > 1 and

N∑
j=1

aijσj(x) < 4π(1 + αi(x)) for any x ∈ S.

Moreover, wj ∈W 2,q(Σ) for any j = 1, . . . , N .

To proof this Lemma, we need a couple of results about matrices.
We believe such results are both well-known, but we could not find any references, so we will give
a new proof.

Lemma 2.13.
Let B = (bij)i,j=1,...,M ∈ RL×L be such that bij > 0 for any i 6= j.
Then, there exists υ = (υ1, . . . , υL) ∈ RL>0 such that Bυ ∈ RL>0 ∪ RL<0 ∪ {0}.

Proof.
We proceed by induction in L.
In the case L = 1 there is nothing to prove.
If L ≥ 2, the lemma can be proved easily if bii ≥ 0 for some i. In fact, if b11 ≥ 0, it suffices to take

υi = 1 for i ≥ 2 and υ1 > max
i=2,...,L

b−ii
bi1

:

L∑
j=1

b1jυj > 0 holds for any υj > 0, and for i ≥ 2

L∑
j=1

bijυj ≥ bi1υ1 + biiυi = bi1υ1 + bii > 0.

The same argument obviously works if instead bii ≥ 0 for some i ≥ 2.
Suppose now that bii < 0 for all i’s.
Then, the system

M∑
j=1

bijυj T 0, ∀ i = 1 = . . . , L (2.11)

is equivalent to 
υL S

L−1∑
j=1

bLj
−bLL

υj

υL T −
L−1∑
j=1

bij
biL

υj ∀ i ∈ {1, . . . , L− 1}
,

which in turn is solvable if and only if

L−1∑
j=1

(biLbLj − bijbLL)υj T 0, for any i = 1, . . . , L− 1. (2.12)
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Consider now the matrix B′ ∈ R(L−1)×(L−1) defined by b′ij = biLbLj − bijbLL.
For i 6= j it verifies b′ij > biLbLj > 0, therefore by inductive hypothesis the system (2.12) is solvable
for at least one between <,=, >.
This means that the system (2.11) is also solvable for that choice of the sign, hence the Lemma is
proved.

Lemma 2.14.
Let B = (bij)i,j=1,...,L ∈ RL×L be a positive definite symmetric matrix.
Then, there exists υ = (υ1, . . . , υL) ∈ RL>0 such that Bυ ∈ RL>0.

Proof.
We will argue, as in the previous Lemma, by induction and, as before, we have nothing to prove if
L = 1.
If L ≥ 2, we consider, for any l = 1, . . . , L, the sub-matrix Bl ∈ R(L−1)×(L−1) = (bij)i,j 6=l obtained
by removing to B the lth row and column.
By inductive hypothesis, for every l there exists υl = (υ1l, . . . , υl−1,l, υl+1,l, . . . , υL,l) such that∑
k 6=l

bikυkl > 0 for all i 6= l.

Now, define the matrix Υ ∈ RL×L as (Υ)ij = υij for i 6= j and (Υ)ii = 0. By what we showed
before, the matrix B′ := BΥ verifies b′ij > 0 for any i 6= j, so it satisfies the hypotheses of Lemma
2.13.
We then get υ′ ∈ RL>0 such that B′υ′ ∈ RL>0 ∪RL<0 ∪ {0}. Actually, it must be B′υ′ ∈ RL>0; in fact,
since Υυ′ ∈ RL>0, B′υ′ ∈ RL≤0 would imply B(Υυ′) · (Υυ′) = B′υ′ · Υυ′ ≤ 0, in contradiction with
the fact that B is positive definite.
Therefore, we conclude by setting υ := Υυ′.

Proof of Lemma 2.12.

We first notice that the Lemma will follow by showing that α̂i(x) := αi(x) −
∑N
j=1 aijσj(x)

4π
is

greater than −1 for all i, x such that fi 6= 0.

In fact, this would imply ĥi ∈ Lq
′
(Σ) for q′ ∈

(
1,

1

maxi
{

max
{
α̂−i ,maxm α

−
im

}}) and, since

ewi ∈ Lq
′′

for any q′′ < +∞, then by Hölder’s inequality fi ∈ Lq(Σ) for q ∈ (1, q′).
Moreover, we would get −∆wj ∈ Lq(Σ) for any j, hence wj ∈W 2,q(Σ).
Assume, by contradiction, that α̂i(x) ≤ −1 for some i, x. Up to re-labeling indexes, this will occur
if and only if i ∈ {1, . . . , L} for some L ≥ 1.

Consider now the matrix B given by inverting the first L rows and columns of A, namely bij =

A|ij(1,...,L)×(1,...,L).

Then, for i = 1, . . . , L,

−∆

 L∑
j=1

bijwj

 = fi −
ˆ

Σ

fidVg +

L∑
j=1

N∑
k=L+1

bijajk

(
fk −

ˆ
Σ

fkdVg

)

≥ −
ˆ

Σ

fidVg +

L∑
j=1

N∑
k=L+1

bijajk

(
fk −

ˆ
Σ

fkdVg

)
∈ Lq(Σ)

for some q > 1 as at the in the beginning of this proof. Therefore, by the Green’s representation

formula,

L∑
j=1

bijwj ≥ −C.

Now, apply Lemma 2.14 to B and take υ1, . . . , υL given by the Lemma. Up to multiplying by a
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suitable positive constant, we may assume

L∑
i,j=1

bijυj = 1, and clearly

L∑
i,j=1

bijwiυj ≥ −C.

Therefore, for x ∈ S and δ > 0 small enough, by the convexity of t 7→ et we get:ˆ
Bδ(x)

d(·, x)2 maxi=1,...,L α̂i(x)dVg

≤ C

ˆ
Bδ(x)

d(·, x)2 maxi=1,...,L α̂i(x)e
∑L
i=1(

∑L
j=1 bijυj)widVg

≤ C

L∑
i=1

 L∑
j=1

bijυj

 ˆ
Bδ(x)

d(·, x)2 maxi=1,...,L α̂i(x)ewidVg

≤ C

L∑
i=1

ˆ
Σ

fidVg

< +∞;

which means α̂i > −1 for some i ∈ {1, . . . , L}. This gives a contradiction and proves the Lemma.

Proof of Theorem 2.9.
To compute the limits in the definition of σi it is convenient, and not restrictive, to work on a small
Euclidean ball Br(x). We will therefore write |y − x| in place of d(y, x).

Since r is small, we can write h̃ni = | · −x|2αi(x)h′i
n

for some smooth h′i
n

converging to h′i in

C1
(
Br(x)

)
.

From Lemma 2.12 and the Green’s representation formula we deduce d(·, x)|∇wi| = o(1), therefore
it is negligible when integrating the gradient terms on ∂Br:

lim
r→0

lim
n→+∞

r

ˆ
∂Br(x)

∂νv
n
i ∂νv

n
j dσ

= lim
r→0

lim
n→+∞

r

ˆ
∂Br(x)

∇vni · ∇vnj dσ

= lim
r→0

lim
n→+∞

r

ˆ
∂Br(x)

(
N∑
k=1

aikσk(x)∇Gx

)
·

(
N∑
l=1

ajlσl(x)∇Gx

)
dσ

=
1

2π

 N∑
i,j=1

aijσj(x)

2

.

From Lemma 2.12 we also know that wi ∈ L∞(Σ) and ĥi ∼ d(·, x)2α̂i(x) around x, with α̂i(x) > −1.

Therefore, for a fixed r > 0, we will have h̃ni e
vni ≤ Cr2α̂i(x) on ∂Br(x). This implies that

lim
r→0

lim
n→+∞

r

ˆ
∂Br(x)

h̃ni (y)ev
n
i (y)dσ(y) = 0.

Moreover, since vni is bounded in W 1,q′(Σ) for q′ ∈ (1, 2) and h̃ni e
vni is bounded in L1(Σ), we find:

lim
r→0

lim
n→+∞

ˆ
Br(x)

(y − x) · ∇vni (y) = 0,

lim
r→0

lim
n→+∞

ˆ
Br(x)

(y − x) · ∇h′i
n
(y)|y − x|2αi(x)ev

n
i (y)dy = 0.

After these consideration, Theorem 2.9 follows by an integration by parts and some computations:

1

4π

N∑
i,j=1

aijσi(x)σj(x)
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=

N∑
i,j=1

aij
1

4π

 N∑
i,j=1

aijσj(x)

2

= lim
r→0

lim
n→+∞

N∑
i,j=1

aijr

ˆ
∂Br(x)

(
∂νv

n
i ∂νv

n
j −
∇vni · ∇vnj

2
dσ

)

= lim
r→0

lim
n→+∞

N∑
i,j=1

aij
ˆ
∂Br(x)

(
((y − x) · ∇vni )∇vnj −

∇vni · ∇vnj
2

(y − x)

)
· ν(y)dσ(y)

= lim
r→0

lim
n→+∞

N∑
i,j=1

aij
ˆ
Br(x)

div

(
((y − x) · ∇vni )∇vnj −

∇vni · ∇vnj
2

(y − x)

)
dy

= lim
r→0

lim
n→+∞

N∑
i,j=1

aij
ˆ
Br(x)

(
((y − x) · ∇vni (y))∆vnj (y)

+ (y − x) ·
D2vni (y)∇vnj (y)−D2vnj (y)∇vni (y)

2

)
dy

= lim
r→0

lim
n→+∞

N∑
i,j=1

aij
ˆ
Br(x)

((y − x) · ∇vni (y))∆vnj (y)dy

= lim
r→0

lim
n→+∞

N∑
i=1

(
ρni

ˆ
Br(x)

(y − x) · ∇vni (y)−
ˆ
Br(x)

((y − x) · ∇vni (y))h̃ni (y)ev
n
i (y)dy

)

= lim
r→0

lim
n→+∞

N∑
i=1

(ˆ
Br(x)

div(y − x)h̃ni (y)ev
n
i (y)dy +

ˆ
Br(x)

(
(y − x) · ∇

(
h̃ni (y)

))
ev
n
i (y)dy

+ r

ˆ
∂Br(x)

h̃ni (y)ev
n
i (y)dσ(y)

)

= lim
r→0

lim
n→+∞

N∑
i=1

(
2

ˆ
Br(x)

h̃ni (y)ev
n
i (y)dy + 2αi(x)

ˆ
Br(x)

h̃ni (y)ev
n
i (y)dy

+

ˆ
Br(x)

(
(y − x) · ∇h′i

n
(y)
)
|y − x|2αi(x)ev

n
i (y)dy

)

= 2

N∑
i=1

(1 + αi(x))σi(x).

From Lemma 2.12 and Theorem 2.9 we deduce a simple but very important fact about the residuals
fi.
It is described by Figure 2.2:

Corollary 2.15.
Let vn, fi as in Theorem 2.4 and assume Concentration occurs.
Then, there exists i = 1, . . . , N such that fi ≡ 0.

Proof.
Assume, by contradiction, that fi 6≡ 0 for all i’s, and take x ∈ S. By Lemma 2.6, σi0(x) > 0 for
some i0.
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a22

12π 1+α2

a22

16π 1+α2

a22

Figure 2.3: The algebraic conditions satisfied by σ(x), in the case N = 2.

Moreover, by Lemma 2.12, for any i = 1, . . . , N we must have

N∑
j=1

aijσj(x) < 4π(1+αi(x)). Multiply

each of these inequality by σi(x) and sum over i = 1, . . . , N . Since the σ(x) is not identically 0, the
following strict inequality is preserved:

N∑
i,j=1

aijσi(x)σj(x) < 4π

N∑
i=1

(1 + αi(x))σi(x);

this is in contradiction with Theorem 2.9.

Now we are in position to prove a global compactness result for the A2, B2, G2 Toda systems.

Theorem 2.16.
Let Ξα1,α2

be as in Definition 1.5 and πi : R2 → R the projection on the ith component, for i = 1, 2,
and define:

Γi :=

{
4πn+

∑
m∈M

σm; n ∈ N,M⊂ {1, . . . ,M}, σm ∈ πi(Ξα1m,α2m
)

}
,

Γ = Γα1,α2
:= Γ1 × R ∪ R× Γ2, Γ0 := 4πN× R ∪ R× 4πN. (2.13)

Then, the family of solutions {uρ} ⊂ H
1
(Σ)2 of (9) is uniformly bounded in W 2,q(Σ)2 for some

q > 1, for any given K b R2
>0 \ Γ.

The same holds true for solutions of (10), under assuming K b R2
>0 \Γ0, and for solutions of (11),

provided K b
(

0, 4π
(

2 +
√

2
))
×
(

0, 4π
(

5 +
√

7
))
\ Γ0.

Proof.
We will just show the proof for (9).
Take ρn −→

n→+∞
ρ ∈ K, apply Theorem 2.4 and assume, by contradiction, that Concentration occurs.

Then, by Corollary 2.15, we must have h̃ni e
vni ⇀

n→∞

∑
x∈S

σi(x)δx for either i = 1 or i = 2, therefore

ρni −→
n→+∞

∑
x∈S

σi(x) for that i. By construction,
∑
x∈S

σi(x) ∈ Γi for any possible S, hence we would
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get ρi ∈ Γi for some i, which is a contradiction.
Therefore, Compactness must occur for vn. Now, write

uni = vni + log

ˆ
Σ

h̃ni e
uni dVg + log ρni =: vni + cni ,

with cni ≥ −C by Jensen’s inequality.
If un were not bounded in W 2,q(Σ)2, then we had cni −→

n→+∞
+∞ for some i, but this would mean

inf
Σ
uni −→

n→+∞
+∞, contradicting

ˆ
Σ

uidVg = 0.

Corollary 2.17.
Let Γ,Γ0 be as in Theorem 2.16, ρ ∈ R2

>0 \Γ, a, b ∈ R be given with a < b and such that (9) has no
solutions with a ≤ Jρ ≤ b.
Then, Jaρ is a deformation retract of Ibρ.

Moreover, there exists L > 0 such that ILρ is contractible.

The same result holds true for solutions of (10) if ρ ∈ R2
>0 \ Γ0 and for solutions of (11) if

ρ ∈
(

0, 4π
(

2 +
√

2
))
×
(

0, 4π
(

5 +
√

7
))
\ Γ0.

Proof.
If ρ 6∈ Γ then the second alternative must occur in Lemma 1.9, since the first alternative would give,
by Corollary 2.16, un −→

n→+∞
u which solves (6) and satisfies a ≤ Iρ(u) ≤ b.

Moreover, by Corollary 1.4, we have ‖un‖H1(Σ) ≤ C for any solution un ∈ H
1
(Σ)2 of (9) with

ρn −→
n→+∞

ρ, therefore by Jensen’s inequality every solution of (6) verifies

Jρn (un) ≤ 1

2

ˆ
Σ

(
|∇u1|2 + |∇u2|2

)
dVg −

2∑
i=1

ρi

ˆ
Σ

log h̃idVg ≤
C2

2
−

2∑
i=1

ρi

ˆ
Σ

log h̃idVg =: L;

Corollary 1.10 gives the last claim.
The same argument works for the cases of (10), (11).

2.3 Proof of Theorem 2.1

Here we will prove the theorem which gives conditions for the functional Jρ to be bounded from
below and coercive.
Setting

E :=
{
ρ ∈ RN>0 : Jρ is bounded from below on H1(Σ)N

}
, (2.14)

E′ :=
{
ρ ∈ RN>0 : Jρ is coercive on H

1
(Σ)N

}
, (2.15)

then E′ ⊂ E, so we will suffice to prove that E′ = {Λ > 0} and E ⊂ {Λ ≥ 0}.

As a first thing, we notice that E is not empty and it verifies a simple monotonicity condition.

Lemma 2.18.
The set E defined by (2.14) is nonempty.
Moreover, for any ρ ∈ E then ρ′ ∈ E provided ρ′i ≤ ρi for any i ∈ {1, . . . , N}.
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Proof.
Let θ > 0 be the biggest eigenvalue of the matrix (aij). Then,

Jρ(u) ≥
N∑
i=1

(
1

2θ

ˆ
Σ

|∇ui|2dVg − ρi
(

log

ˆ
Σ

h̃ie
uidVg −

ˆ
Σ

uidVg

))
.

Therefore, from scalar Moser-Trudinger inequality (1.6), we deduce that Jρ is bounded from below

if ρi ≤
8π(1 + α̃i)

θ
, hence E 6= ∅.

Suppose now ρ ∈ E and ρ′i ≤ ρi for any i.
Then, through Jensen’s inequality, we get for any u ∈ H1(Σ)N

Jρ′(u)

= Jρ(u) +

N∑
i=1

(ρi − ρ′i)
(

log

ˆ
Σ

h̃ie
uidVg −

ˆ
Σ

uidVg

)

≥ −C +

N∑
i=1

(ρi − ρ′i)
ˆ

Σ

log h̃idVg

≥ −C,

hence the claim.

It is interesting to observe that a similar monotonicity condition is also satisfied by the set {Λ > 0}
(although one can easily see that it is not true if we replace Λ with ΛI,x).

Lemma 2.19.
Let ρ, ρ′ ∈ RN>0 be such that Λ(ρ) > 0 and ρ′i ≤ ρi for any i ∈ {1, . . . , N}.
Then, Λ(ρ′) > 0.

Proof.
Suppose by contradiction Λ(ρ′) ≤ 0, that is ΛI,x(ρ′) ≤ 0 for some I, x.

This cannot occur for I = {i} because it would mean ρ′i ≥
8π(1 + αi(x))

aii
, so the same inequality

would for ρi, hence Λ(ρ) ≤ ΛI,x(ρ) ≤ 0.
Therefore, there must be some I, x such that ΛI,x(ρ′) ≤ 0 and ΛI\{i},x(ρ′) > 0 for any i ∈ I; this
implies

0

< ΛI\{i},x(ρ′)− ΛI,x(ρ′)

= 2
∑
j∈I

aijρ
′
iρ
′
j − aiiρ′i

2 − 8π(1 + αi(x))ρ′i

< ρ′i

2
∑
j∈I

aijρ
′
j − 8π(1 + αi(x))

 . (2.16)

It will be not restrictive to suppose, from now on, ρ′1 ≤ ρ1 and ρ′i = ρi for any i ≥ 2, since the
general case can be treated by exchanging the indices and iterating.
Assuming this, we must have 1 ∈ I, therefore we obtain:

0

< ΛI,x(ρ)− ΛI,x(ρ′)

= 8π(1 + α1(x))(ρ1 − ρ′1)− a11

(
ρ′1

2 − ρ2
1

)
− 2

∑
j∈I\{1}

a1j(ρ
′
1 − ρ1)ρj
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= (ρ1 − ρ′1)

8π(1 + α1(x))− a11(ρ′1 + ρ1)− 2
∑

j∈I\{1}

a1jρj


< (ρ1 − ρ′1)

8π(1 + α1(x))− 2
∑
j∈I

a1jρ
′
j

 ,

which is negative by (2.16). We found a contradiction.

We will now show that relation between E and E′: the interior part of E is contained in E′.
On the other hand, if ρ ∈ ∂E, then Jρ has a different behavior.

Lemma 2.20.
Let E, E′ be as in (2.14), (2.15) and take ρ ∈ E̊.
Then, there exists a constant C = Cρ such that

Jρ(u) ≥ 1

C

N∑
i=1

ˆ
Σ

|∇ui|2dVg − C.

In particular, E̊ ⊂ E′.

Proof.

Take δ ∈
(

0,
dRN (ρ, ∂E)√

N |ρ|

)
so that (1 + δ)ρ ∈ E. Then,

Jρ(u)

=
δ

2(1 + δ)

N∑
i,j=1

aij
ˆ

Σ

∇ui · ∇ujdVg +
1

1 + δ
J(1+δ)ρ(u)

≥ δ

2θ(1 + δ)

N∑
i=1

ˆ
Σ

|∇ui|2dVg − C,

hence E̊ ⊂ E′.

Lemma 2.21.
Let E be as in (2.14) and take ρ ∈ ∂E.
Then, there exists a sequence {un}n∈N ⊂ H1(Σ)N such that

N∑
i=1

ˆ
Σ

|∇uni |
2

dVg −→
n→+∞

+∞, lim
n→+∞

Jρ (un)∑N
i=1

´
Σ
|∇uni |

2
dVg

≤ 0,

Proof.
We first notice that (1− δ)ρ ∈ E for any δ ∈ (0, 1). In fact, otherwise, from Lemma 2.18 we would
get ρ′ 6∈ E as soon as ρ′i ≥ (1− δ)ρi for some i, hence ρ 6∈ ∂E.
Now, suppose by contradiction that for any sequence un one gets

N∑
i=1

ˆ
Σ

|∇uni |
2

dVg −→
n→+∞

+∞ ⇒ Jρ (un)∑N
i=1

´
Σ
|∇uni |

2
dVg

≥ ε > 0.
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Therefore, we would have

Jρ(u) ≥ ε

2

N∑
i=1

ˆ
Σ

|∇ui|2dVg − C.

Hence, indicating as θ′ the smallest eigenvalue of the matrix A, for small δ we would get

Jρ(u)

= (1 + δ)J(1+δ)ρ(u)− δ

2

N∑
i,j=1

aij
ˆ

Σ

∇ui · ∇ujdVg

≥
(

(1 + δ)
ε

2
− δ

2θ′

) N∑
i=1

ˆ
Σ

|∇ui|2 − C

≥ −C,

therefore (1 + δ)ρ ∈ E.
Being also, by Lemma 2.18, (1− δ)ρ ∈ E, we get a contradiction with ρ ∈ ∂E.

To see what happens when ρ ∈ ∂E, we build an auxiliary functional using Lemma 1.12.

Lemma 2.22.
Define, for ρ′ ∈ ∂E:

anρ′ :=
1

2

N∑
i,j=1

aij
ˆ

Σ

∇uni · ∇unj dVg, bnρ′ := Jρ′ (u
n) ,

J ′ρ′,ρ(u) = Jρ(u)− Fρ′

1

2

N∑
i,j=1

aij
ˆ

Σ

∇ui · ∇ujdVg

 ,

where un is given by Lemma 2.21 and Fρ′ by Lemma 1.12.

If ρ ∈ E̊, then J ′ρ′,ρ is bounded from below on H1(Σ)N and its infimum is achieved by a solution of

−∆

ui − N∑
i,j=1

aijfuj

 =

N∑
j=1

aijρj

(
h̃je

uj´
Σ
h̃jeujdVg

− 1

)
, i = 1, . . . , N,

with f = (Fρ′)
′

1

2

N∑
i,j=1

aij
ˆ

Σ

∇ui · ∇ujdVg

.

On the other hand, J ′ρ′,ρ′ is unbounded from below.

Proof.
For ρ ∈ E̊, we can argue as in Lemma 2.20, since the continuity follows from the regularity of F
and the coercivity from the behavior of F ′ at the infinity.
For ρ = ρ′, if we take un as in Lemma 2.21 we get

J ′ρ′,ρ′ (u
n) = bnρ′ − Fρ′

(
anρ′
)
−→

n→+∞
−∞.

Now we can prove the first part of Theorem 2.1, that is Jρ is bounded from below if Λ(ρ) > 0.
Moreover, being the set {Λ > 0} open, we also get coercivity.
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Proof of {Λ > 0} ⊂ E′.
We will show that {Λ > 0} ⊂ E̊.
Suppose by contradiction there is some ρ′ ∈ ∂E with Λ(ρ) > 0 and take a sequence ρn ∈ E with
ρn −→

n→+∞
ρ′.

Then, by Lemma 2.22, the auxiliary functional Jρ′,ρn has a minimizer un, so the functions vni defined
as in (2.6) solve 

−∆vni =

N∑
j,k=1

aijb
jk,n

(
h̃je

vnj − ρnj
)

ˆ
Σ

h̃ni e
vni dVg = ρni

, i = 1, . . . , N

where bij,n is the inverse matrix of bnij := δij − aijfn, hence bij,n −→
n→+∞

δij .

We can then apply Theorem 2.4. Compactness is excluded, since otherwise we would get, for any
u ∈ H1(Σ)N ,

J ′ρ′,ρ′(u) = lim
n→+∞

J ′ρ′,ρn(u) ≥ lim
n→+∞

J ′ρ′,ρn (vn) = J ′ρ′,ρ′(v) > −∞,

thus contradicting Lemma 2.22.
Therefore, Concentration must occur. This means, by Lemma 2.6, that σi(x) 6= 0 for some i ∈
{1, . . . , N} and some x ∈ Σ.
By Theorem 2.9 follows Λ(σ(x)) ≤ 0. On the other hand, since by its definition σi(x) ≤ ρ′i for any
i, Lemma 2.19 yields Λ(ρ′) ≤ 0, which contradicts our assumptions.

To prove the unboundedness from below of Jρ in the case Λ(ρ) < 0 we will use suitable test func-
tions. Their profile is inspired by the well-known entire solution of the Liouville equation on R2;
here we use truncated versions of the standard bubbles, rather than the smooth ones, because they
yield the same estimates with simpler calculations.
Similar test functions are considered in Section 3.3.

The properties of such test functions are described by the following:

Lemma 2.23.
Define, for x ∈ Σ and λ > 0, ϕ = ϕλ,x as

ϕi := −2(1 + αi(x)) log max{1, λd(·, x)}. (2.17)

Then, as λ→ +∞, one has

ˆ
Σ

∇ϕi · ∇ϕjdVg = 8π(1 + αi(x))(1 + αj(x)) log λ+O(1)

ˆ
Σ

ϕidVg = −2(1 + αi(x)) log λ+O(1)

ˆ
Σ

h̃ie
∑N
j=1 θjϕjdVg ∼ λ−2(1+αi(x)) if

N∑
j=1

θj(1 + αj(x)) > 1 + αi(x).

Remark 2.24.
When using normal coordinates near the peaks of the test functions, the metric coefficients will
slightly deviate from the Euclidean ones. We will then have coefficients of order (1 + oλ(1)) in front
of the logarithmic terms appearing below. To keep the formulas shorter, we will omit them, as they
will be harmless for the final estimates.
The same convention will be adopted in Chapter 3, Section 3.3.
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Proof.
It holds

∇ϕi =


0 if d(·, x) <

1

λ

−2(1 + αi(x))
∇d(·, x)

d(·, x)
if d(·, x) >

1

λ

.

Therefore, being |∇d(·, x)| = 1 almost everywhere on Σ:

ˆ
Σ

∇ϕi · ∇ϕjdVg

= 4(1 + αi(x))(1 + αj(x))

ˆ
Σ\B 1

λ
(x)

dVg
d(·, x)2

= 8π(1 + αi(x))(1 + αj(x)) log λ+O(1).

For the average of ϕi, we get

ˆ
Σ

ϕidVg = −2(1 + αi(x))

ˆ
Σ\B 1

λ
(x)

(log λ+ log d(·, x))dVg +O(1) = −2(1 + αi(x)) log λ+O(1).

For the last estimate, choose r > 0 such that Bδ(x) does not contain any of the points pm for
m = 1, . . . ,M , except possibly x.

Then, outside such a ball, e
∑N
j=1 θjϕj ≤ Cλ−2

∑N
j=1 θj(1+αj(x)).

Therefore, under the assumptions of the Lemma,

ˆ
Σ\Bδ(x)

h̃ie
∑N
i=1 θjϕjdVg = o

(
λ−2(1+αi(x))

)
,

hence ˆ
Σ

h̃ie
∑N
i=1 θjϕjdVg

∼
ˆ
Bδ(x)

h̃ie
∑N
i=1 θjϕjdVg

∼
ˆ
B 1
λ

(x)

d(·, x)2αi(x)dVg +
1

λ2
∑N
j=1 θj(1+αj(x))

ˆ
A 1
λ
,δ

(x)

d(·, x)2αi(x)−2
∑N
i=1 θj(1+αj(x))dVg

∼ λ−2(1+αi(x)),

which concludes the proof.

Proof of E ⊂ {Λ ≥ 0} and E′ ⊂ {Λ > 0}.
Let us start by the first assertion.
Take ρ, I, x such that ΛI,x(ρ) < 0 and ΛI\{i},x(ρ) ≥ 0 for any i ∈ I, and consider the family of

functions
{
uλ
}
λ>0

defined by

uλi :=
∑
j∈I

aijρj
4π(1 + αi(x))

ϕλ,xj .

By Jensen’s inequality we get

Jρ
(
uλ
)

≤ 1

2

N∑
i,j=1

aij
ˆ

Σ

∇uλi · ∇uλj dVg +
∑
i∈I

ρi

(
log

ˆ
Σ

h̃ie
uλi dVg −

ˆ
Σ

uλi dVg

)
+ C
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=
1

2

∑
i,j∈I

aijρiρj
16π2(1 + αi(x))(1 + αj(x))

ˆ
Σ

∇ϕi · ∇ϕjdVg

+
∑
i,j∈I

aijρiρj
4π(1 + αj(x))

ˆ
Σ

ϕjdVg −
∑
i∈I

ρi log

ˆ
Σ

h̃ie
∑
j∈I

aijρj
4π(1+αj(x))

ϕj
dVg + C.

At this point, we would like to apply Lemma 2.23 to estimate Jρ
(
uλ
)
.

To be able to do this, we have to verify that

1

4π

∑
j∈I

aijρj > 1 + αi(x), ∀ i ∈ I.

If I = {i}, then ρi >
8π(1 + αi(x))

aii
, so it follows immediately. For the other cases, it follows from

(2.16).
So we can apply Lemma 2.23 and we get:

Jρ
(
uλ
)

≤

 1

4π

∑
i,j∈I

aijρiρj −
1

2π

∑
i,j∈I

aijρiρj + 2
∑
i∈I

ρi(1 + αi(x))

 log λ+ C

= −ΛI,x(ρ)

4π
log λ+ C

−→
n→+∞

−∞.

To prove the second assertion, we still use family
{
uλ
}
λ>0

.

If Λ(ρ) ≥ 0, then by the previous estimate we get:

N∑
i=1

ˆ
Σ

∣∣∇uλi ∣∣2 dVg −→
λ→+∞

+∞, Jρ
(
uλ
)
≤ −ΛI,x(ρ)

4π
log λ+ C ≤ C.

2.4 Proof of Theorem 2.2

Here we will finally prove a sharp inequality in the case when the matrix aij has non-positive entries
outside its main diagonal.

As already pointed out, Λ(ρ) can be written in a much shorter form under these assumptions, so

the condition Λ(ρ) ≥ 0 is equivalent to ρi ≤
8π(1 + α̃i)

aii
for any i ∈ {1, . . . , N}.

Moreover, thanks to Lemma 2.18, in order to prove Theorem 2.2 for all such ρ’s it will suffice to
consider

ρ0 :=

(
8π(1 + α̃1)

a11
, . . . ,

8π(1 + α̃N )

aNN

)
. (2.18)

By what we proved in the previous Section, for any sequence ρn ↗
n→+∞

ρ0 one has

inf
H1(Σ)N

Jρn = Jρn(un) ≥ −Cρn ,

so Theorem 2.2 will follow by showing that, for a given sequence {ρn}n∈N, the constant Cn = Cρn

can be chosen independently of n.
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As a first thing, we provide a Lemma which shows the possible blow-up scenarios for such a sequence
un.
Here, the assumption on aij is crucial since it reduces largely the possible cases.

Lemma 2.25.
Let ρ0 be as in (2.18), {ρn}n∈N such that ρn ↗ ρ0, un a minimizer of Jρn and vn as in (2.6).
Then, up to subsequences, there exists a set I ⊂ {1, . . . , N} such that:

• If i ∈ I, then Si = {xi} for some xi ∈ Σ which satisfy α̃i = αi(xi) and σi(xi) = ρ0
i , and

vni −→
n→+∞

−∞ in L∞loc

Σ \
⋃
j∈I
{xj}

.

• If i 6∈ I, then Si = ∅ and vni −→
n→+∞

vi in W 2,q
loc

Σ \
⋃
j∈I
{xj}

 for some q > 1 and some

suitable vi.

Moreover, if aij < 0 then xi 6= xj.

Proof.
From Theorem 2.4 we get a I ⊂ {1, . . . , N} such that Si 6= ∅ for i ∈ I.
If Si 6= ∅, then by Corollary 2.7 one gets

0 < σi(x) ≤ ρ0
i ≤

8π(1 + αi(x))

aii

for all x ∈ Si, hence

0

= Λ{1,...,N},x(σ(x))

≥
N∑
j=1

(
8π(1 + αj(x))σj(x)− ajjσj(x)2

)
(2.19)

≥ 8π(1 + αi(x))σi(x)− aiiσi(x)2

≥ 0.

Therefore, all these inequalities must actually be equalities.

From the last, we have σi(x) = ρ0
i =

8π(1 + αi(x))

aii
, hence αi(x) = α̃i. On the other hand, since∑

x∈Si

σi(x) ≤ ρ0
i , it must be σi(x) = 0 for all but one xi ∈ Si, so Corollary 2.7 yields Si = {xi}.

Let us now show that vni −→
n→+∞

−∞ in L∞loc.

It this were not the case, Theorem 2.4 would imply vni −→
n→+∞

vi almost everywhere, therefore by

Fatou’s Lemma we would get the following contradiction:

σi(xi) <

ˆ
Σ

h̃ie
vidVg + σi(xi) ≤

ˆ
Σ

h̃ni e
vni dVg = ρni ≤ ρi = σi(xi).

Since also inequality (2.19) has to be an equality, we get aijσi(xi)σj(xi) for any i, j ∈ I, so whenever
aij < 0 there must be σj(xi) = 0, so xi 6= xj .

Finally, if Si = ∅, the convergence in W 2,q
loc follows from what we just proved and Theorem 2.4.

We basically showed that if a component of the sequence vn blows up, then all its mass concentrates
at a single point which has the lowest singularity coefficient.

We will now consider particular combinations of the vni which have some good blow-up properties:
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Lemma 2.26.

Let vn and xi be as in Lemma 2.25 and wn be defined by wni =

N∑
j=1

aij
(
vnj −

ˆ
Σ

vnj dVg

)
for

i ∈ {1, . . . , N}.
If i ∈ I, then wni is uniformly bounded in W 1,q′(Σ) and in W 2,q

loc (Σ \ {xi}), for any q′ ∈ (1, 2) and
some q > 1, and if i 6∈ I then it is bounded in W 2,q(Σ).

Proof.

The boundedness in W 1,q′(Σ) follows from the boundedness of vni −
ˆ

Σ

vni dVg in the same space,

which was proved in Lemma 2.10.
Moreover, wni solves  −∆wni = h̃ni e

vni − ρniˆ
Σ

wni dVg = 0
,

with h̃ni e
vni ∈ Lqloc(Σ \ {xi}) if i ∈ I, or h̃ni e

vni ∈ Lq(Σ) if i 6∈ I, for some q > 1.

Therefore, boundedness in W 2,q or W 2,q
loc follows by standard elliptic estimates.

The last Lemma we need is a localized scalar Moser-Trudinger inequality for the blowing-up se-
quence.

Lemma 2.27.
Let wni be as in Lemma 2.26 and xi as in the previous Lemmas.
Then, for any i ∈ I and any small δ > 0 one has

aii
2

ˆ
Bδ(xi)

|∇wni |
2

dVg − ρni log

ˆ
Bδ(xi)

h̃ie
aiiw

n
i dVg ≥ −Cδ.

Proof.
Since Σ is locally conformally flat, we can choose δ small enough so that we can apply Corollary
1.15 up to modifying h̃ni . We also take δ so small that Bδ(xi) contains neither any xj for xj 6= xi
nor any pm for m = 1, . . . ,M (except possibly xi).
Let zn be the solution of {

−∆zni = h̃ni e
vni − ρni in Bδ(xi)

zni = 0 on ∂Bδ(xi)
.

Then, wni − zni is harmonic and it has the same value as wni on ∂Bδ(xi), so from standard estimates

‖wni − zni ‖C1(Bδ(xi)) ≤ C‖w
n
i ‖C1(∂Bδ(xi)) ≤ C.

From Lemma 2.26 we get∣∣∣∣∣
ˆ
Bδ(xi)

|∇wni |
2

dVg −
ˆ
Bδ(xi)

|∇zni |
2

dVg

∣∣∣∣∣
=

∣∣∣∣∣
ˆ
Bδ(xi)

|∇ (wni − zni )|2 dVg + 2

ˆ
Bδ(xi)

∇wni · ∇ (wni − zni ) dVg

∣∣∣∣∣
≤

ˆ
Bδ(xi)

|∇ (wni − zni )|2 dVg + 2 ‖∇wni ‖L1(Σ) ‖∇ (wni − zni )‖L∞(Bδ(xi))

≤ Cδ.

Moreover,ˆ
Bδ(xi)

h̃ie
aiiw

n
i dVg ≤ e

aii‖wni −z
n
i ‖L∞(Bδ(xi))

ˆ
Bδ(xi)

h̃ie
aiiz

n
i dVg ≤ Cδ

ˆ
Bδ(xi)

d(·, xi)2α̃ieaiiz
n
i dVg.
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Therefore, since α̃i ≤ 0 and aiiρ
n
i ≤ 8π(1 + α̃i), we can apply Corollary 1.15 to get the claim:

aii
2

ˆ
Bδ(xi)

|∇wni |
2

dVg − ρni log

ˆ
Bδ(xi)

h̃ie
aiiw

n
i dVg

≥ 1

2aii

ˆ
Bδ(xi)

|∇ (aiiz
n
i )|2 dVg − ρni log

ˆ
Bδ(xi)

d(·, xi)2α̃ieaiiz
n
i dVg − Cδ

≥ −Cδ.

Proof of Theorem 2.2.
As noticed before, it suffices to prove the boundedness from below of Jρn (un) for a sequence
ρn ↗

n→+∞
ρ0 and a sequence of minimizers un for Jρn . Moreover, due to the invariance by addition

of constants, one can consider vn in place of un.
Let us start by estimating the term involving the gradients.
From Lemma 2.26 we deduce that the integral of |∇wni |2 outside a neighborhood of xi is uniformly
bounded for any i ∈ I, and the integral on the whole Σ is bounded if i 6∈ I.
For the same reason, the integral of aij∇wni · ∇wnj on the whole surface is uniformly bounded. In
fact, if aij 6= 0, then xi 6= xj , then∣∣∣∣ˆ

Σ

∇wni · ∇wnj dVg

∣∣∣∣
≤

ˆ
Σ\Bδ(xj)

|∇wni |
∣∣∇wnj ∣∣ dVg +

ˆ
Σ\Bδ(xi)

|∇wni |
∣∣∇wnj ∣∣dVg

≤ ‖∇wni ‖Lq′ (Σ)

∥∥∇wnj ∥∥Lq′′ (Σ\Bδ{xj}) + ‖∇wni ‖Lq′′ (Σ\Bδ{xi})
∥∥∇wnj ∥∥Lq′ (Σ)

≤ Cδ,

with q as in Lemma 2.26, q′ =


2q

3q − 2
< 2 if q < 2

1 if q ≥ 2
and q′′ =


2q

2− q
if q < 2

∞ if q ≥ 2
.

Therefore, we can write

N∑
i,j=1

aij
ˆ

Σ

∇vni · ∇vnj dVg =

N∑
i,j=1

aij

ˆ
Σ

∇wni · ∇wnj dVg ≥
∑
i∈I

aii

ˆ
Bδ(xi)

|∇wni |
2

dVg − Cδ.

To deal with the other term in the functional, we use the boundedness of wni away from xi: choosing
r as in Lemma 2.27, we get

ˆ
Σ

h̃ni e
vni −

´
Σ
vni dVgdVg

≤ 2

ˆ
Bδ(xi)

h̃ni e
vni −

´
Σ
vni dVgdVg

= 2

ˆ
Bδ(xi)

h̃ie
∑N
j=1 aijw

n
j dVg

≤ Cδ

ˆ
Bδ(xi)

h̃ie
aiiw

n
i dVg.

Therefore, using Lemma 2.27 we obtain

Jρn (vn)

=
1

2

N∑
i,j=1

aij
ˆ

Σ

∇vni · ∇vnj dVg −
N∑
i=1

ρni

(
log

ˆ
Σ

h̃ni e
vni dVg −

ˆ
Σ

vni dVg

)
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≥
∑
i∈I

(
aii
2

ˆ
Bδ(xi)

|∇wni |
2

dVg − ρni log

ˆ
Bδ(xi)

h̃ie
aiiw

n
i dVg

)
− Cδ

≥ −Cδ

Since the choice of δ does not depend on n, the proof is complete.

Remark 2.28.
The same arguments used to prove Theorems 2.1 and 2.2 can be applied to get the same results in
the case of a compact surface with boundary Σ for the functional

Jρ(u) =
1

2

N∑
i,j=1

aij
ˆ

Σ

∇ui · ∇ujdVg −
N∑
i=1

ρi log

ˆ
Σ

h̃ie
uidVg

on the space H1
0 (Σ) defined by (1.1).

Its critical points solve −∆ui =

N∑
j=1

aijρj
h̃je

uj´
Σ
h̃jeujdVg

in Σ

ui = 0 on ∂Σ

, i = 1, . . . , N.

As in Remark 2.8, we could also have Vanishing in Theorem 2.4, but this can easily be excluded for
minimizing sequences.
The main issue in adapting the argument seems to be the blow up at a point x ∈ ∂Σ. Anyway, in
[52] this phenomenon has been ruled out for the SU(3) Toda system and the same can also be done
in the general case.
This can be seen by arguing as in Theorem 2.9 and applying to Br(x)∩Σ a conformal diffeomorphism
which flattens Br(x) ∩ ∂Σ, as was done in [65].
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Chapter 3

Existence and multiplicity of
min-max solutions

The largest chapter of this work is devoted to the existence of min-max solutions for some particular
systems, namely the A2 Toda system (9) and the regular B2 and G2 Toda systems (10), (11).

As anticipated in the introductions, the results we present are based on a variational analysis of
the sub-levels J−Lρ of the energy functional.
We recall that the functional JA2,ρ is defined by

JA2,ρ(u) :=

ˆ
Σ

Q(u)dVg −
2∑
i=1

ρi

(
log

ˆ
Σ

h̃ie
uidVg −

ˆ
Σ

uidVg

)
,

with

Q(u) =
1

3

(
|∇u1|2 +∇u1 · ∇u2 + |∇u2|2

)
,

whereas JB2 , JG2 have been defined by (7).
To use such variational techniques we need a compactness theorem like 2.16 (or 1.4). This is the
reason why we can consider only these three specific systems. We will also have to assume ρ 6∈ Γ
or ρ 6∈ Γ0, with Γ, Γ0 as in Theorem 2.16, which is a generic assumptions due to the construction
of Γ, Γ0.
We will follow a standard scheme which has been widely used for problems with exponential non-
linearities. Roughly speaking, we need a non-contractible space X which roughly resembles very
low sub-levels. Then, we build, for large L, two maps Φ : X → J−Lρ , Ψ : J−Lρ → X such that

Φ ◦ Ψ ' IdX . This will prove that J−Lρ is not contractible, hence, by Corollary 2.17, existence of
solutions.

The first result we present is from [11]. We consider the A2 Toda system on compact surfaces with
χ(Σ) ≤ 0 and non-negative coefficients αim ≥ 0.
The assumption on the topology of Σ allows to retract it on two disjoint bouquets of circles which
do not contain any of the singular points pm (see Lemma 1.22). Roughly speaking, this permits
to study u1 only on γ1 and u2 only on γ2, thus avoiding both the issue of concentration around
singular points and interaction between concentration of u1 and u2.
We then “compare” (in the sense describe above) low sub-levels J−Lρ with the join of the barycenters
on γ1 and γ2 X = XK1,K2

:= (γ1)K1
? (γ2)K2

, which are well-known to be non-contractible (see
Lemma 1.25 and Remark 1.29).
In this way, we get existence of solution without any further assumption, and also multiplicity in
dependence of the homology groups of X (see Lemma 1.31).
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Theorem 3.1.
Let Σ be a closed surface with χ(Σ) ≤ 0, Γ be as in (2.13) and assume αim ≥ 0 for all i,m and

ρ ∈ (4K1π, 4(K1 + 1)π)× (4K2π, 4(K2 + 1)π) \ Γ.

Then, the problem (9) has solutions and, for a generic choice of (g, h1, h2), it has at leastK1 +
[
−χ(Σ)

2

]
[
−χ(Σ)

2

]
K2 +

[
−χ(Σ)

2

]
[
−χ(Σ)

2

]


solutions.

This result was generalized in the paper [10] to allow the coefficients αim to attain negative values.
The main issue is due to the fact that negatively-signed singularities actually affect the Moser-
Trudinger inequality (2.5). Notice that, in the case of the SU(3) Toda, such an inequality holds
if and only if ρi ≤ 4π(1 + α̃i) for both i’s, with α̃i as in (2.4), whereas for the B2 and G2 Toda
systems it holds for ρ1, ρ2 ≤ 4π. Precisely, we have

4π

2∑
i=1

(1 + α̃i)

(
log

ˆ
Σ

h̃ie
uidVg −

ˆ
Σ

uidVg

)
≤
ˆ

Σ

QA2(u)dVg + C, (3.1)

4π

(
log

ˆ
Σ

eu1dVg −
ˆ

Σ

u1dVg

)
+ 2π

(
log

ˆ
Σ

eu2dVg −
ˆ

Σ

u2dVg

)
≤
ˆ

Σ

QB2
(u)dVg + C, (3.2)

4π

(
log

ˆ
Σ

eu1dVg −
ˆ

Σ

u1dVg

)
+

4

3
π

(
log

ˆ
Σ

eu2dVg −
ˆ

Σ

u2dVg

)
≤
ˆ

Σ

QG2(u)dVg + C. (3.3)

For this reason, negative singularities cannot be “forgotten” as was done in the previous theorem.
Conversely, we have to take them into account when we retract of each of the two curves. We want
p ∈ γ1 if α1m < 0 and p ∈ γ2 if α2m < 0.
Clearly, since we must assume γ1∩γ2 = ∅, we cannot have both α1m and α2m negative for the same
m.

Following these considerations, it is convenient to divide the points pm in three subsets, depending
on whether α1m, α2m or none of them is negative, and we order each subset so that the respective
αim are not decreasing.
Precisely, we write

{p1, . . . , pM} =
{
p′01, . . . , p

′
0M ′0

, p′11, . . . , p
′
1M ′1

, p′21, . . . , p
′
2M ′2

}
(3.4)

with pm = p′imi for some i = 1, 2, m′ = 1, . . . ,M ′i if and only if α′im′ := αim < 0 and α′i1 ≤ · · · ≤
α′iM ′i .
We therefore modify the curves γi so that each contains, among the singular points, all and only
the p′im, as in Lemma 1.22. To take into account such points, we consider the weighted barycenters
defined by (1.15). Precisely, we replace XK1,K2 with

X = Xρ1,α′1,ρ2,α′2
:= (γ1)ρ1,α′1

? (γ2)ρ2,α′2
, (3.5)

where the multi-indexes α′i are defined by α′1 :=
(
α′11, . . . , α

′
1M ′1

)
, α′2 :=

(
α′21, . . . , α

′
2M ′2

)
.

With respect to Theorem 3.1, the weighted barycenters may be contractible, therefore we have to
make some extra assumptions to get existence of solutions.

Theorem 3.2.
Let Σ be a closed surface with χ(Σ) ≤ 0, Γ be as in (2.13) and p′im, α

′
im as before, and max{α1m, α2m} ≥

48



0 for any m = 1, . . . ,M .
Then, the problem (9) has solutions provided ρ satisfies

4π

(
Ki +

∑
m∈Mi

(1 + α′im)

)
< ρi < 4π

Ki +
∑

m∈Mi∪{1}

(1 + α′im),

 i = 1, 2 (3.6)

for some Ki ∈ N and Mi ⊂ {2, . . . ,M ′i}.

Through Morse theory, we again get multiplicity of solutions. Although the statement of next theo-
rem looks quite complicated, it basically says that, the more are the quadruples (K1,M1,K2,M2)
for which (3.6) is verified, the higher is the number of solutions.

Theorem 3.3.
Assume the hypotheses of Theorem 3.2 hold, and suppose that for i = 1, 2 there exist Li,Ki1, . . . ,KiLi ∈
N and Mi1, . . . ,MiLi ⊂ {2, . . . ,M ′i} such that any l = 1, . . . , Li verifies

4π

(
Kim +

∑
m∈Mim

(1 + α′im)

)
< ρi < 4πmin

Kim +
∑

m∈Mim∪{1}

(1 + α′im),Kim + 1 +
∑

m∈Mim\{maxMim}

(1 + α′im)

 .

Then, for a generic choice of (g, h1, h2) ∈ D (in the sense of Theorem 1.32), the problem (9) has
at least ∑

l1,l2

K1l1 + |M1l1 |+
[
−χ(Σ)

2

]
|M1l1 |+

[
−χ(Σ)

2

]
K2l2 + |M2l2 |+

[
−χ(Σ)

2

]
|M2l2 |+

[
−χ(Σ)

2

]


solutions.

Since Theorem 3.1 is a particular case of Theorems 3.2, 3.3, obtained setting α′1 = α′2 = ∅, we will
just prove the latter two.

The same argument used in the proof of Theorems 3.2, 3.3 will allow to treat some other cases,
both again from [10].
First of all, we can remove the hypotheses max{α1m, α2m} ≥ 0 if we suppose one of the parameter
ρi to be small enough so that concentration of both component around pm with α1m, α2m < 0 is
excluded (hence, in particular, if it is under the coercivity threshold 4π(1 + α̃2)). Precisely, this
occurs when ρ2 < 4π(1 + α2max), with

α1max := min{α1m : max{α1m, α2m} < 0}, α2max := min{α2m : max{α1m, α2m} < 0}. (3.7)

In this case we have to keep the assumption on χ(Σ) to retract on γi.

Theorem 3.4.
Let Σ be a closed surface with χ(Σ) ≤ 0, Γ be as in (2.13), αimax as in (3.7) and assume ρ 6∈ Γ,
ρ2 < 4π(1 + α2max) and

4π

(
K +

∑
m∈M1

(1 + α′1m)

)
< ρ1 < 4π

K +
∑

m∈M1∪{1}

(1 + α′1m)


4π

∑
m∈M2

(1 + α′2m) < ρ2 < 4π
∑

m∈M2∪{1}

(1 + α′2m) (3.8)

for some K ∈ N and Mi ⊂ {1, . . . ,M ′i}.
Then, the problem (9) has solutions.
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If moreover the condition (3.8) is satisfied by M21, . . . ,M2L2
and there exist L1,K1, . . . ,KL1

∈ N
and M11, . . . ,M1L1 ⊂ {2, . . . ,M ′1} satisfying, for any l = 1, . . . , L1,

4π

(
Kl +

∑
m∈M1l

(1 + α′1m)

)
< ρ1 < 4πmin

Kl +
∑

m∈M1l∪{1}

(1 + α′1m),Kl + 1 +
∑

m∈M1l\{maxM1l}

(1 + α′1m)

 ,

then a generic choice of (g, h1, h2) yields at least

L2

∑
l

Kl + |M1l|+
[
−χ(Σ)

2

]
|M1l|+

[
−χ(Σ)

2

]


solutions.

A similar statement can be proved in the case both ρi under 4π(1 + αimax), even without the as-
sumption on χ(Σ). Anyway, such configurations will be covered by a more general theorem which
will be stated later on.

In [13], we remove the restriction on the topology of Σ and the coefficients αim.
We perform a sharper analysis of sub-levels, focusing on the case when both u1 and u2 concentrate
at a point pm with α1m, α2m < 0.
Inspired by the regular Toda system [61], we define a suitable center of mass βi and scale of
concentration ςi for each component. We then get an improved Moser-Trudinger inequality (see
Section 3.5), namely we proved that, if (β1, ς1) = (β2, ς2), then Jρ(u) is bounded from below for
ρ1, ρ2 < 4π(2+α1m+α2m), namely for values which are higher than the usual coercivity threshold.
For simplicity, we will consider only relatively low values of ρ, in such a way that the space of
weighted barycenter is finite and it contains only Dirac deltas centered at points pm. This will be
the case under the following assumptions:

ρ1 := 4πmin

{
1, min
m 6=m′

(2 + α1m + α1m′)

}
ρ2 := 4πmin

{
1, min
m6=m′

(2 + α2m + α2m′)

}
. (3.9)

With respect to the previously stated results, we will consider weighted barycenters on the whole
surface Σ. Anyway, in view of the improved Moser-Trudinger inequalities, we will have to “punc-
ture” their join in some points.
We will consider the following object:

X ′ := Σρ1,α1
? Σρ2,α2

\
{(

pm, pm,
1

2

)
: ρ1, ρ2 < 4π(2 + α1m + α2m)

}
. (3.10)

Notice that, by the upper bound (3.9) we are assuming on ρ, only the negative coefficients αim
actually play a role, therefore the multi-indexes α1, α2 could be replaced by α′1, α

′
2 introduced

before. Anyway, we are no longer allowed to split the set of singular points like (3.4).
As for (3.5), we will have to make some assumptions to ensure X ′ is not contractible. In particular,
this will depend on the number of points in the two Σρi,αi and on the number of punctures.
We get the following existence result:

Theorem 3.5.
Let Γ as in (2.13), (ρ1, ρ2) be as in (3.9), and let ρ ∈ R2

>0 \ Γ satisfy ρi < ρi for both i = 1, 2.
Define integer numbers M1,M2,M3 by:

M1 := #{m : 4π(1 + α1m) < ρ1} M2 := #{m : 4π(1 + α2m) < ρ2}
M3 := #{m : 4π(1 + αim) < ρi and ρi < 4π(2 + α1m + α2m) for both i = 1, 2}. (3.11)

Then system (9) has solutions provided the following condition holds

(M1,M2,M3) 6∈ {(1,m, 0), (m, 1, 0), (2, 2, 1), (2, 3, 2), (3, 2, 2), m ∈ N}.
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Finally, in the work in progress [8], we extended, with few modifications, both the existence and
multiplicity result of Theorem 3.1 to the regular B2 and G2 systems.

Theorem 3.6.
Let Σ be a closed surface with χ(Σ) ≤ 0, Γ0 be as in (2.13) and assume ρ 6∈ 4πN × R ∪ R × 4πN.
Then, the problem (10) admits at least a solution and, if

ρ ∈ (4K1π, 4(K1 + 1)π)× (4K2π, 4(K2 + 1)π), (3.12)

for a generic choice of (g, h1, h2) it has at leastK1 +
[
−χ(Σ)

2

]
[
−χ(Σ)

2

]
K2 +

[
−χ(Σ)

2

]
[
−χ(Σ)

2

]


solutions.
The same results hold true for the system (11), provided ρ1 < 4π

(
2 +
√

2
)
, ρ2 < 4π

(
5 +
√

7
)

.

This chapter is sub-divided as follows.
In Sections 3.1, 3.2 we prove that the the spaces X ,X ′ defined by (3.5), (3.10) are not contractible.
In Section 3.3 we build a family of test functions Φλ from X and X ′ to arbitrarily low sub-levels of
Jρ. In Sections 3.4 and 3.5 we proved the improved Moser-Trudinger inequalities which lead to the
construction of the map Φ : J−Lρ → X ,X ′. Finally, in Section 3.6, we put together all these result
to prove the theorems.

3.1 Topology of the space X

In this section, we will provide information about the topology and the homology of the space
X = (γ1)ρ1,α′1

? (γ2)ρ2,α′2
.

First of all, we notice that most information can be deduced by studying the weighted barycenters
spaces (γi)ρi,α′i . Proposition 1.16 shows how the homology groups of the join depend on the ones
of the spaces which form it.
Some of the results contained in this section will be inspired by [20], where weighted barycenters
centered at Σ are studied.
As pointed out in Remark 1.30, the join of two spaces, one of which is contractible, is itself con-
tractible. Therefore, for our purposes, we will just need to give conditions under which both the
spaces (γi)ρi,α′i are contractible.

In the following, we will omit the indices i = 1, 2 and consider a generic weighted barycenters
set (γ)ρ,α′ with the multi-indices α′ = (α′1, . . . , α

′
M ′) such that α′m ≤ α′m+1 and singular points

p′1, . . . , p
′
M ′ satisfy ωα′(p

′
m′) = 1 + α′m < 1.

To start with, following [20] we consider (γ)ρ,α′ as a union of strata of the kind

(γ)K,M =

{
K∑
k=1

tkδqk +
∑
m∈M

t′mδp′m : qk ∈ Σ, tk ≥ 0, t′m ≥ 0,

K∑
k=1

tk +
∑
m∈M

t′m = 1

}
,

for K ∈ N ∪ {0},M⊂ {1, . . . ,M ′}.
One can easily notice that each of these strata is a union of manifolds whose maximal dimension
is 2K + |M| − 1. Considering only the strata which are maximal with respect to the inclusion, we
write a unique decomposition

(γ)ρ,α′ =

L⋃
l=1

(γ)Kl,Ml . (3.13)
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It is easy to see how the strata depend on the position of ρ with respect to the α′m’s. A stratum
(γ)K,M is contained in (γ)ρ,α′ if and only if

ρ > 4π

(
K +

∑
m∈M

(1 + α′m)

)
. (3.14)

Moreover, we notice that a stratum (γ)K,M is contained in (γ)K
′,M′ if and only if |M\M′| ≤ K ′−K.

Therefore, the maximality of an existing stratum is equivalent to the condition

ρ ≤ 4πmin

K + 1 +
∑

m∈M\{maxM}

(1 + α′m),K +
∑

m∈M∪{min({1,...,M}\M)}

(1 + α′m)

 ,

and the equality sign is excluded if we take ρ 6∈ Γ.
Notice that in the regular case the decomposition in maximal strata is just (γ)ρ,∅ = (γ)K,∅ = (γ)K ,

with K such that ρ ∈ (4Kπ, 4(K + 1)π), and all the strata are of the kind (γ)K
′,∅ = (γ)K

′
for

K ′ = 1, . . . ,K.
However, in the regular case Proposition 1.25 gives already full information about homology of the
barycenters.
In the general case the decomposition in strata makes more difficult the computation of the ho-
mology groups. Nonetheless, we can still obtain information on the homology of (γ)ρ,α′ with an
estimate from below of its Betti numbers.
Precisely, we will prove the following result:

Theorem 3.7.
Suppose (γ)ρ,α′ has the following decomposition in maximal strata:

(γ)ρ,α′ =

L⋃
l=1

(γ)Kl,Ml ∪
L′⋃
l′=1

(γ)K
′
l′ ,M

′
l′ , (3.15)

with 1 6∈ Ml for any l = 1, . . . , L. Then,

b̃q
(
(γ)ρ,α′

)
≥

L∑
l=1

Kl + |Ml|+
[
−χ(Σ)

2

]
|Ml|+

[
−χ(Σ)

2

]
 δq,2Kl+Ml−1.

In particular, if l ≥ 1, then b̃q
(
(γ)ρ,α′

)
6= 0 for some q 6= 0.

We will start by analyzing the cases which are not covered by the previous theorem, that is when
every maximal stratum is defined by a multi-index containing the index 1.
In this case, we find out that (γ)ρ,α′ is contractible, so in conclusion we get a necessary and sufficient
condition for the contractibility of (γ)ρ,α′ .

Lemma 3.8.
Suppose (γ)ρ,α′ has the decomposition (3.13) in maximal strata, with p1, . . . , pM ′ such that α′1 ≤
· · · ≤ α′M ′ . Then, the following conditions are equivalent:

(1) (γ)ρ,α′ is star-shaped with respect to δp1
.

(2) There exists some m ∈ {1, . . . ,M ′} such that (γ)ρ,α′ is star-shaped with respect to δpm .

(3) (γ)Kl,Ml is star-shaped with respect to δp1
for any l ∈ {1, . . . , L}.

(4) There exists some m ∈ {1, . . . ,M ′} such that (γ)Kl,Ml is star-shaped with respect to δpm for
any l ∈ {1, . . . , L}.

Moreover, each of these conditions implies that (γ)ρ,α′ is contractible.
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Proof.
The contractibility of (γ)ρ,α′ follows trivially from its star-shapedness, so it suffices to prove the
equivalences between the conditions.
The following implications are immediate:

(1 )⇒ (2 ), (3 )⇒ (1 ), (3 )⇒ (4 ), (4 )⇒ (2 );

therefore, we suffice to show that (2 ) implies (1 ) and (1 ) implies (3 ).
We will start by showing that if (γ)ρ,α′ is star-shaped with respect to some p′m̃, then the same holds
with p1.
We notice immediately that star-shapedness of (γ)ρ,α′ is equivalent to saying that for any stratum

(γ)K,M ⊂ (γ)ρ,α′ we have (γ)K,M∪m̃ ⊂ (γ)ρ,α′ ; moreover, we recall that the existence of a stratum
within (γ)ρ,α′ means (3.14). Let us now suppose condition 2 occurs for m̃ > 1, that is

ρ > 4π

(
K +

∑
m∈M

(1 + α′m)

)
⇒ ρ > 4π

K +
∑

m∈M∪{m̃}

(1 + α′m)

 ,

and let us recall that we are assuming α′m ≤ α′m+1 for any m. This implies

ρ > 4π

K +
∑

m∈M∪{m̃}

(1 + α′m)

 ≥ 4π

K +
∑

m∈M∪{1}

(1 + α′m)

 ,

that is star-shapedness of (γ)ρ,α′ with respect to p1.
Suppose now, by contradiction, that condition (3 ) holds but condition (1 ) does not, that is (γ)ρ,α′

is star-shaped with respect to p1 but it contains a maximal stratum (γ)K,M which is not.
Then, star-shapedness of (γ)ρ,α′ with respect to δp1 implies the existence of a stratum (γ)K,M∪{1} ⊂
(γ)ρ,α′ , which contains properly (γ)K,M, thus contradicting its maximality.

Let us now see what happens if we are in a scenario which is opposite to the previous lemma, that
is some index j is not contained in any multi-index which defines the strata.
The following lemma shows that this situation produces some non-trivial homology.

Lemma 3.9.
Suppose K ∈ N,M⊂ {1, . . . ,M ′} and m̃ 6∈ M and define

(γ)K,M,m̃ :=
⋃

M′⊂M∪{m̃}, |M′|=|M|

(γ)K,M.

Then, it holds

H̃q

(
(γ)K,M,m̃

)
=

 Z

(
K+|M|+[−χ(Σ)

2 ]
|M|+[−χ(Σ)

2 ]

)
if q = 2K + |M| − 1

0 if q 6= 2K + |M| − 1

.

The proof of the lemma will use the Mayer-Vietoris exact sequence.
Actually, when applying the Mayer-Vietoris sequence the sets A and B should be open. If they are
not, we are implicitly considering two suitable open neighborhoods in their stead.
The existence of such neighborhoods follows from the properties of the weighted barycenters, which
can be deduced by arguing as in [20], Section 2 and [21], Section 3.
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Proof.
We proceed by double induction on K and |M|.
If M = ∅ we have (γ)K,∅,m = (γ)K,∅ = (γ)K so the claim follows by Proposition 1.25.

If K = 0, any stratum (γ)0,M′ is actually the (|M′|−1)-simplex
[
δpm1

, . . . , δpm|M′|

]
if we can write

M′ =
{
m1, . . . ,m|M′|

}
. Therefore, (γ)0,M,m̃ is the boundary of the |M|-simplex with vertices in

δpm for m ∈ M∪ {m̃}; hence, it is homeomorphic to the sphere S|M|−1 and the claim follows also
in this case.
Suppose now that the lemma is true for K − 1,M and for any K,M0 with |M0| = |M| − 1.
Being (γ)K,M,m̃ union of manifolds of dimension less or equal to 2K + |M| − 1, all the higher
homology groups are trivial.
To compute the other groups, we write (γ)K,M,m̃ = A ∪B with

A = (γ)K,M, B =
⋃

m∈M
(γ)K,M\m∪{m̃}

and consider the Mayer-Vietoris sequence. The set B is star-shaped with respect to δp′
m̃

whereas A
is star-shaped with respect to δpm for any m ∈M, hence we can write

0 = H̃q(A)⊕ H̃q(B)→ H̃q(A ∪B)→ H̃q−1(A ∩B)→ H̃q−1(A)⊕ H̃q−1(B) = 0,

that is H̃q(A ∪B) = H̃q−1(A ∩B). Moreover, this set can be written as

A ∩B = C ∪D, C := (γ)K−1,M∪{m̃}, D :=
⋃

m∈M
(γ)K,M\{m}.

As before, C is contractible, whereas we can write D = (γ)K,M\{m},{m} for any m ∈ M and
C ∩D = (γ)K−1,M,m̃. Therefore, by inductive hypothesis we know the homology of these sets and
we can apply again Mayer-Vietoris. If q < 2K + |M| − 1 we get

0 = H̃q−1(C)⊕ H̃q−1(D)→ H̃q−1(C ∪D)→ H̃q−2(C ∩D)→ H̃q−2(C)⊕ H̃q−2(D) = 0,

that is
H̃q(A ∪B) = H̃q−1(A ∩B) = H̃q−1(C ∪D) = H̃q−2(C ∩D) = 0.

Finally, for the last homology group we get

0 = H̃2K+|M|−2(C ∩D)→ H̃2K+|M|−2(C)⊕ H̃2K+|M|−2(D)→ H̃2K+|M|−2(C ∪D)→

→ H̃2K+|M|−3(C ∩D)→ H̃2K+|M|−3(C)⊕ H̃2K+|M|−3(D) = 0.

Hence, by the inductive hypothesis and the properties of binomial coefficients,

H̃2K+|M|−1(A ∪B)

= H̃2K+|M|−2(C ∪D)

= H̃2K+|M|−2(D)⊕ H̃2K+|M|−3(C ∩D)

= Z

(
K+|M|+[−χ(Σ)

2 ]−1

|M|+[−χ(Σ)
2 ]−1

)
⊕ Z

(
K+|M|+[−χ(Σ)

2 ]−1

|M|+[−χ(Σ)
2 ]

)

= Z

(
K+|M|+[−χ(Σ)

2 ]−1

|M|+[−χ(Σ)
2 ]−1

)
+

(
K+|M|+[−χ(Σ)

2 ]−1

|M|+[−χ(Σ)
2 ]

)

= Z

(
K+|M|+[−χ(Σ)

2 ]
|M|+[−χ(Σ)

2 ]

)
,

which is what we wanted.

Finally, we see how the sets defined in the previous lemma affect the homology of (γ)ρ,α′ .
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Proof of Theorem 3.7.
We proceed by induction on L. If L = 0 there is nothing to prove.
Suppose now the theorem holds true for L− 1. Then it also holds for H when q 6= 2KL+ |ML|− 1.
For q = 2KL + |ML| − 1, we notice that (γ)KL,ML,1 ⊂ (γ)ρ,α′ , since the coefficients α′M are
non-increasing; hence we can apply Mayer-Vietoris sequence by writing (γ)ρ,α′ = A ∪B with

A = (γ)KL,ML,1, B =

L−1⋃
l=1

(γ)Kh,Ml ∪
L′⋃
l′=1

(γ)K
′
l′ ,M

′
l′ .

By a dimensional argument we have H̃2KL+|ML|−1(A ∩B) = 0, so we get

0 = H̃2KL+|ML|−1(A∩B)→ H̃2KL+|ML|−1(A)⊕ H̃2KL+|ML|−1(B)→ H̃2KL+|ML|−1(A∪B)→ . . .

which means, by the exactness of the Mayer-Vietoris sequence,

H̃2KL+|ML|−1(A)⊕ H̃2KL+|ML|−1(B) ↪→ H̃2KL+|ML|−1(A ∪B).

Therefore, applying the inductive hypothesis and Lemma 3.9, we get

b̃2KL+|ML|−1(A ∪B)

≥ b̃2KL+|ML|−1(A) + b̃2KL+|ML|−1(B)

≥

K + |M|+
[
−χ(Σ)

2

]
|M|+

[
−χ(Σ)

2

]
+

L−1∑
l=1

Kl + |Ml|+
[
−χ(Σ)

2

]
|Ml|+

[
−χ(Σ)

2

]
 δ2KL+|ML|−1,2Kl+Ml−1

=

L∑
l=1

Kl + |Ml|+
[
−χ(Σ)

2

]
|Ml|+

[
−χ(Σ)

2

]
 δ2KL+|ML|−1,2Kl+Ml−1,

hence the claim.

Finally, by Proposition 1.16, we get some information on the homology of the join.

Corollary 3.10.
Suppose (γi)ρi,α′i has the decomposition (3.15) in maximal strata, with Li,K1, . . . ,KLi ∈ N and
Mi1, . . . ,MiLi ⊂ {1, . . . , Li}. Then, it holds

+∞∑
q=0

b̃q (X ) ≥
L1∑
l1=1

L2∑
l2=1

Kl1 + |Ml1 |+
[
−χ(Σ)

2

]
|Ml1 |+

[
−χ(Σ)

2

]
Kl2 + |Ml2 |+

[
−χ(Σ)

2

]
|Ml2 |+

[
−χ(Σ)

2

]
 .

In particular, if L1, L2 ≥ 1, then b̃q (X ) 6= 0 for some q 6= 0.

3.2 Topology of the space X ′

In this Section, we will prove that, under the assumptions of Theorem 3.5, the space X ′ defined by
(3.10) is not contractible. In particular, we will prove that it has a non-trivial homology group.
By the assumption ρi ≤ ρi, the weighted barycenters Σρi,αi are actually discrete sets, hence their
join will be just a finite union of segments. Therefore X ′ will be a quite simple object, especially
compared with the spaces studied in the previous section. Some examples are pictured in Figures
3.1 and 3.2.
The main result of this section is the following:
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Theorem 3.11.
Let M1,M2,M3 be as in (3.11) and X ′ be as in (3.10) and suppose

(M1,M2,M3) 6∈ {(1,m, 0), (m, 1, 0), (2, 2, 1), (2, 3, 2), (3, 2, 2), m ∈ N}. (3.16)

Then, the space X ′ has non-trivial homology groups. In particular, it is not contractible.

The assumptions on the M1,M2,M3, that is, respectively on the cardinality of Σρ1,α1
, Σρ2,α2

and
on the number of midpoints to be removed, are actually sharp.
This can be seen clearly from the Figure 3.1: the configurations M1 = 1, M3 = 0 are star-shaped,
and even in the two remaining case it is easy to see X ′ has trivial topology. On the other hand,
Figure 2 shows a non-contractible configuration.

1

2 3 4

1

2

2 3
2 31

1

2

Figure 3.1: The space X ′ in the cases (M1,M2,M3) ∈ {(1, 3, 0), (2, 2, 1), (2, 3, 2)} (contractible).

2 31 4

1

2

Figure 3.2: The space X ′ in the case M1 = 2, M2 = 4, M3 = 2 (not contractible).

Proof of Theorem 3.11.
The spaces Σρi,αi are discrete sets of Mi points, for i = 1, 2, that is a wedge sum of Mi − 1 copies

of S0. Therefore, by Theorem 1.28, Σρ1,α1
? Σρ2,α2

has the same homology as
(
S1
)∨(M1−1)(M2−1)

.
The set we have to remove from the join is made up by M3 singular points {pm1

, . . . , pmM3
} for

some {m1, . . . ,mM3
} ⊂ {1, . . . ,M}.

Defining then, for some fixed δ <
1

2
, Y :=

M3⋃
j=1

Bδ

(
pmj , pmj ,

1

2

)
, Y retracts on

{
pm1 , . . . , pmM3

}
.

On the other hand, X ′ ∩ Y is a disjoint union of M3 punctured intervals, that is a discrete set of
2M3 points, and X ′ ∪ Y is the whole join. Therefore, the Mayer-Vietoris sequence yields

H1(X ′ ∩ Y)︸ ︷︷ ︸
0

→ H1(X ′)⊕H1(Y)︸ ︷︷ ︸
0

→ H1(X ′ ∪ Y)︸ ︷︷ ︸
Z(M1−1)(M2−1)

→ H̃0(X ′ ∩ Y)︸ ︷︷ ︸
Z2M3−1

→ H̃0(X ′)⊕ H̃0(Y)︸ ︷︷ ︸
ZM3−1

→ H̃0(X ′ ∪ Y)︸ ︷︷ ︸
0

.

The exactness of the sequence implies that b1(X ′) − b̃0(X ′) = (M1 − 1)(M2 − 1) −M3, so if the
latter number is not zero we get at least a non-trivial homology group.
Simple algebraic computations show that, under the assumption M1,M2 ≥M3, (M1−1)(M2−1) 6=
M3 is equivalent to (3.16), therefore the proof is complete.
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3.3 Test functions

In this section, we will introduce some test function from the spaces X ,X ′ to arbitrarily low sub-
levels of Jρ.

Such test functions will be mostly inspired to the standard bubbles (2.17) introduced in Chapter 2,
though with several modifications.
As a first thing, in both the case of X and X ′, we have to be careful about the two endpoints of
the join, that is when one of the two weighted barycenters is identified to a point. In this case, the
test functions must depend only on the elements of the other barycenters set.
When we are dealing with (γi)ρi,αi , we have to interpolate the parameter αi(x), which cannot switch
suddenly from 0 to α′im in presence of a singular point p′im. Moreover, here we will take smooth
bubbles rather than truncated because, since they are centered in more than one point, truncating
does not simplify calculations.

Concerning the cases considered in Theorem 3.5, we will need two more profiles for the construction
of test functions. These profile are quite a natural choice, since they resemble the entire solutions
of the singular Liouville equation and of the A2 Toda system:

ϕ′
λ,x

= −2 log max
{

1, (λd(·, x))2(2+α1(x)+α2(x))
}

ϕ′′
λ,x

= −2 log max
{

1, λ2(2+α1(x)+α2(x))d(·, x)2(1+α1(x))
}
.

This is because, when u1 and u2 are centered in the same points, a higher amount of energy is due
to the expression of Q(u) which penalizes parallel gradients.

The test functions needed in Theorem 3.6 are very similar to the ones used in Theorem 3.2, though
simpler in their definition because of the lack of singularities.

Since the explicit definition of such test functions is quite lengthy, it will be postponed in the proof
of the theorems, rather than in its statement.

Theorem 3.12.
Let X be defined by (3.5).
Then, there exists a family of maps

{
Φλ
}
λ>2

: X → H1(Σ)2 such that

JA2,ρ

(
Φλ(ζ)

)
−→

λ→+∞
−∞ uniformly for ζ ∈ X .

Proof.
To define Φλ we first fix a δ > 0 sufficiently small to make negligible the interaction between the
singular points pm. A suitable choice is:

δ = min

{
min

i=1,2,m=1,...,M ′0

d(γi, p
′
0m),

mini=1,2,m 6=m′=1,...,M ′i
d(p′im, p

′
im′)

2

}
. (3.17)

We then need to define, as stated before, an exponent βi(x) which interpolates between 0 and α′im
for x ∈ γi near a point p′im: we define

β1(x) =


0 if d := min

m
d(x, p′1m) ≥ δ

α′1m̃ log δ
d

log max{2, λ(1− t)} − α′1m̃ log δ
d

if d = d(x, p′1m̃) ∈
[
max{2, λ(1− t)}

− 1
1+α′

1m̃ δ, δ

)
α′1m̃ if d < max{2, λ(1− t)}

− 1
1+α′

1m̃ δ

.

(3.18)
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and similarly β2(x).
Such a choice will verify the condition

max{2, λ(1− t)}
β1(x)

α1m̃(1+β1(x)) =
δ

d
max{2, λt}

β2(x)

α2m̃(1+β2(x)) =
δ

d
.

Given an element

σi =
∑

xik∈Ji

tikδxik ∈ (γi)ρi,α′i for i = 1, 2, ζ = (σ1, σ2, t) ∈ X

we define, for λ > 0,

Φλ(ζ) =
(
ϕ1 −

ϕ2

2
, ϕ2 −

ϕ1

2

)
,

with

ϕ1 = ϕλ1 (ζ) = log
∑

x1k∈J1

t1k(
1 + (λ(1− t))2d(·, x1k)2(1+β1k)

)2 (3.19)

ϕ2 = ϕλ2 (ζ) = log
∑

x2k∈J2

t2k(
1 + (λt)2d(·, x2k)2(1+β2k)

)2 ,
with βik := βi(xik).
The proof of this theorem will be a consequence of the three following lemmas, each of which
provides estimates for a different part of the functional JA2,ρ.

Lemma 3.13.
Let ζ, Φλ(ζ) be as in the proof of Theorem 3.12. Then,

ˆ
Σ

QA2

(
ϕ1 −

ϕ2

2
, ϕ2 −

ϕ1

2

)
dVg ≤ 8πωα′1(J1) log max{1, (λ(1−t))}+8πωα′2(J2) log max{1, λt}+C.

Proof.
First of all, we write

QA2

(
ϕ1 −

ϕ2

2
, ϕ2 −

ϕ1

2

)
=

1

4

(
|∇ϕ1|2 −∇ϕ1 · ∇ϕ2 + |∇ϕ2|2

)
. (3.20)

Since |∇d(·, xik)| = 1 almost everywhere, then

|∇ϕ1|

=

∣∣∣∣∣∣∣∣
∑
k
−4(1+β1k)t1k(λ(1−t))2d(·,x1k)1+2β1k∇d(·,x1k)(

1+(λ(1−t))2d(·,x1k)2(1+β1(xik))
)2∑

k
t1k

1+(λ(1−t))2d(·,x1k)2(1+β1k)

∣∣∣∣∣∣∣∣
≤

∑
k

4(1+β1k)t1k(λ(1−t))2d(·,x1k)1+2β1k(
1+(λ(1−t))2d(·,x1k)2(1+β1(xik))

)2∑
k

t1k

1+(λ(1−t))2d(·,x1k)2(1+β1(xk))

≤ max
k

4(1 + β1k)(λ(1− t))2d(·, x1k)1+2β1k

1 + (λ(1− t))2d(·, x1k)2(1+β1k)︸ ︷︷ ︸
=:M1k

. (3.21)

In view of these estimates, we divide Σ into a finite number of regions depending on which of the
M1k’s attains the maximum:

Ω1k :=

{
x ∈ Σ : M1k(x) = max

k′
M1k′(x)

}
.
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By similar estimates on |∇ϕ2| we get |∇ϕ2| ≤M2k and we will define:

Ω2k :=

{
x ∈ Σ : M2k(x) = max

k′
M2k′(x)

}
.

Moreover, we can easily see that the following estimates hold for Mik:

M1k ≤


4 (1 + β1k)

d (·, x1k)
4(1 + β1k)(λ(1− t))2d(·, x1k)1+2β1k

, (3.22)

M2k ≤


4 (1 + β2k)

d (·, x2k)
4(1 + β2k)(λt)2d(·, x2k)1+2β2k

.

We will estimate the mixed term first. Basically, since the points xik belong to γi and the curves
γi’s are disjoint, we only have summable singularities and therefore the integral of ∇ϕ1 · ∇ϕ2 is
uniformly bounded.
Therefore, from (3.21) and the first inequality in (3.22), one finds∣∣∣∣ˆ

Σ

∇ϕ1 · ∇ϕ2dVg

∣∣∣∣
≤

∑
k,k′

ˆ
Ω1k∩Ω2k′

|∇ϕ1||∇ϕ2|dVg

≤
∑
k,k′

16(1 + β1k)(1 + β2k)

ˆ
Ω1k∩Ω2k′

dVg
d(·, x1k)d(·, x2k′)

.

We then notice that, by the definition of (3.17), the distance between γ1 and γ2 is at least 2δ, so
Bδ(x1k) ∩Bδ(x2k′) = ∅ for any choice of k, k′. Therefore,

ˆ
Ω1k∩Ω2k′

dVg
d(·, x1k)d(·, x2k′)

≤
ˆ

Ω1k∩Ω2k′\Bδ(x1k)

dVg
δd(·, x2k′)

+

ˆ
Ω1k∩Ω2k′\Bδ(x2k′ )

dVg
δd(·, x1k)

≤ 1

δ

ˆ
Σ

(
1

d(·, x2k′)
+

1

d(·, x1k)

)
dVg

≤ Cδ,

hence, being the number of k, k′ bounded from above depending on ρ and α′im’s only, we obtain∣∣∣∣ˆ
Σ

∇ϕ1 · ∇ϕ2dVg

∣∣∣∣ ≤ C. (3.23)

Now, we consider the term involving |∇ϕ1|2. We split the integral into the sets Ω1k defined above.
ˆ

Σ

|∇ϕ1|2dVg

≤
∑
k

ˆ
Ω1k

M2
1kdVg

≤
∑
k

ˆ
Σ\B

(λ(1−t))
− 1

1+β1k

(x1k)

M2
1kdVg +

ˆ
B

(λ(1−t))
− 1

1+β1k

(x1k)

M2
1kdVg

 (3.24)

Outside the balls we will apply the first estimate in (3.21):
ˆ

Σ\B
(λ(1−t))

− 1
1+β1k

(x1k)

|∇ϕ1|2dVg
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≤ 16(1 + β1k)2

ˆ
Σ\B

(λ(1−t))
− 1

1+β1k

(x1k)

dVg
d(·, x1k)2

≤ 32π(1 + β1k)2 log max
{

1, (λ(1− t))
1

1+β1k

}
+ C

≤ 32π(1 + β1k) log max{1, (λ(1− t))}+ C. (3.25)

The integral inside the balls is actually uniformly bounded, as can be seen using now the second
estimate in (3.21):

ˆ
B

(λ(1−t))
− 1

1+β1k

(x1k)

|∇ϕ1|2dVg

≤ 16(1 + β1k)2(λ(1− t))4

ˆ
B

(λ(1−t))
− 1

1+β1k

(x1k)

d(·, x1k)2(1+2β1k)dVg

≤ Cβ1k
(λ(1− t))4

(
(λ(1− t))−

1
1+β1k

)4(1+β1k)

≤ C (3.26)

Observing that, from the definitions of (1.15) and (3.18), one has
∑
k

(1 + β1k) ≤ ωα′1(J1), one can

now deduce from (3.24), (3.25), (3.26):

ˆ
Σ

|∇ϕ1|2 ≤ 32πωα′1(J1) log max{1, (λ(1− t))}+ C. (3.27)

The same argument gives a similar estimate for

ˆ
Σ

|∇ϕ2|2, therefore putting together (3.27) with

(3.23) and (3.20) we get the conclusion.

Lemma 3.14.
Let ζ, ϕi be as in the proof of Theorem 3.12. Then,

ˆ
Σ

ϕ1dVg = −4 log max{1, λ(1− t)}+O(1),

ˆ
Σ

ϕ2dVg = −4 log max{1, λt}+O(1).

Proof.
We will give the proof for i = 1, since the argument for the case i = 2 is the same.
From the elementary inequality max{1, x} ≤ 1 + x ≤ 2 max{1, x} for x ≥ 0 we deduce

v1 = log
∑

x1k∈J1

t1k

max {1, λ(1− t)d(·, x1k)1+β1k}4
+O(1).

Therefore, we can give an estimate from above:

ˆ
Σ

ϕ1dVg

≤
ˆ

Σ

log max
k

{
1

max {1, λ(1− t)d(·, x1k)1+β1k}4

}
dVg + C

=

ˆ
Σ

log min

{
1,

1

(λ(1− t))4 mink d(·, x1k)4(1+β1k)

}
dVg + C

=

ˆ
Σ\
⋃
k B

(λ(1−t))
− 1

1+β1k

(x1k)

log
1

(λ(1− t))4 mink d(·, x1k)4(1+β1k)
+ C
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= −4 log

(
la(1− t)

∣∣∣∣∣Σ \⋃
k

B
(λ(1−t))

− 1
1+β1k

(x1k)

∣∣∣∣∣
)

− 4

ˆ
Σ\
⋃
k B

(λ(1−t))
− 1

1+β1k

(x1k)

min
k
{(1 + β1k) log d(·, x1k)}+ C

≤ −4 log max{1, λ(1− t)}+ C.

We conclude the proof getting, in a similar way, a lower estimate:ˆ
Σ

ϕ1dVg

≥
ˆ

Σ

log min
k

{
1

max {1, λ(1− t)d(·, x1k)1+β1k}4

}
dVg + C

=

ˆ
Σ

log min

{
1,

1

(λ(1− t))4 maxk d(·, x1k)4(1+β1k)

}
dVg + C

=

ˆ
Σ\
⋂
k B

(λ(1−t))
− 1

1+β1k

(x1k)

log
1

(λ(1− t))4 maxk d(·, x1k)4(1+β1k)
+ C

= −4 log

(
λ(1− t)

∣∣∣∣∣Σ \⋂
k

B
(λ(1−t))

− 1
1+β1k

(x1k)

∣∣∣∣∣
)

− 4

ˆ
Σ\
⋂
k B

(λ(1−t))
− 1

1+β1k

(x1k)

max
k
{(1 + β1k) log d(·, x1k)}+ C

≥ −4 log max{1, λ(1− t)}+ C.

Lemma 3.15.
Let ζ, ϕi be as in the proof of Theorem 3.12. Then,

log

ˆ
Σ

h̃1e
ϕ1−ϕ2

2 dVg = −2 log max{1, λ(1− t)}+ 2 log max{1, λt}+O(1).

log

ˆ
Σ

h̃1e
ϕ2−ϕ1

2 dVg = −2 log max{1, λt}+ 2 log max{1, λ(1− t)}+O(1).

Proof.
As in the proof of Lemma 3.14, it is not restrictive to suppose i = 1.
It is easy to notice that ˆ

Σ\
⋃
k Bδ(x1k)

h̃1e
ϕ1dVg ≤

C

max{1, λ(1− t)}4
.

Moreover, since

ϕ2 ≥ −4 log max{1, λt} − C on Σ, ϕ2 ≤ −4 log max{1, λt}+ C on
⋃
k

Bδ(x1k),

then we can write
ˆ

Σ

h̃1e
ϕ1−ϕ2

2 dVg ∼ C max{1, λt}2
∑
k

t1k

ˆ
Bδ(x1k)

h̃1(
1 + (λ(1− t))2d(·, x1k)2(1+β1k)

)2 dVg.

Therefore, the lemma will follow by showing that, for any k, the following holds true:

ˆ
Bδ(x1k)

h̃1(
1 + (λ(1− t))2d(·, x1k)2(1+β1k)

)2 dVg ∼
1

max{1, λ(1− t)}2
.
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We will provide the estimate in three cases depending on how β1k is defined in (3.18).
In the first case the ball Bδ(x1k) does not contain any singular point, therefore using normal
coordinates and a change of variables we get

ˆ
Bδ(x1k)

h̃1(
1 + (λ(1− t))2d(·, x1k)2(1+β1k)

)2 dVg

∼
ˆ
Bδ(0)

dx

(1 + (λ(1− t))2|x|2)
2

∼ 1

(λ(1− t))2

ˆ
Bλ(1−t)δ(0)

dy

(1 + |y|2)
2

∼ 1

max{1, λ(1− t)}2
.

If instead x1k is distant at most δ from a point p = p′1m̃ with a singularity α = α′1m̃, by the definition
of δ this will be the only singular point in the ball we are considering, so arguing as before we find:

ˆ
Bδ(x1k)

h̃1(
1 + (λ(1− t))2d(·, x1k)2(1+β1k)

)2 dVg

∼
ˆ
Bδ(0)

|x− p|2α(
1 + (λ(1− t))2|x|2(1+β1k)

)2 dx

∼ 1

(λ(1− t))2

ˆ
B

(λ(1−t))
1

1+β1k δ

(0)

∣∣∣∣(λ(1− t))
β1k−α

(1+β1k)α y − (λ(1− t))
β1k

(1+β1k)α p

∣∣∣∣2α(
1 + |y|2(1+β1k)

)2 dy

To conclude the proof, it will suffice to show that the last integral is bounded from above and below
when λ(1− t) is large, since the starting quantity is clearly bounded if λ(1− t) is small. If we are
in the second alternative in the definition of (3.18), we have

ˆ
B
λ(1−t)( δ

|p| )
α (0)

∣∣∣∣ 1
λ(1−t)

(
δ
|p|

)1+α

y − δ p
|p|

∣∣∣∣2α(
1 + |y|2(1+β1k)

)2 dy,

which is uniformly bounded because in this case δ(λ(1− t))−
1

1+α ≤ |p| ≤ δ, so the radius of the ball
is greater or equal to λ(1− t) and the quantity which multiplies y is less or equal to 1.
Finally, when β1k = α, we find

ˆ
B

(λ(1−t))
1

1+α δ

(0)

∣∣∣y − (λ(1− t))
1

1+α p
∣∣∣2α(

1 + |y|2(1+α)
)2 dy,

which again is bounded because this time the vector preceded by the minus sign has a norm smaller
or equal than δ.

Proof of Theorem 3.12, continued.

Since on (γi)ρi,α′i one has ρi < 4πωα′i(Ji), and moreover max{λ(1− t), λt} ≥ λ

2
, Lemmas 3.13, 3.14

and 3.15 yield

Jρ

(
ϕ1 −

ϕ2

2
, ϕ2 −

ϕ1

2

)
=

ˆ
Σ

Q
(
ϕ1 −

ϕ2

2
, ϕ2 −

ϕ1

2

)
dVg −

2∑
i=1

ρi

(
log

ˆ
Σ

h̃ie
ϕi−

ϕ3−i
2 dVg −

ˆ
Σ

(
ϕi −

ϕ3−i

2

)
dVg

)
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≤
(
8πωα′1(J1)− 2ρ1

)
log max{1, λ(1− t)}+

(
8πωα′2(J2)− ρ2

)
log max{1, λt}+ C

≤ max{8πωα′1(J1)− 2ρ1, 8πωα′2(J2)− 2ρ2} log max{1, λ(1− t), λt}+ C

≤ max{8πωα′1(J1)− 2ρ1, 8πωα′2(J2)− 2ρ2} log max{1, λ}+ C

−→
λ→+∞

−∞

uniformly in ζ ∈ X , which is what we wished to prove.

The following theorem will use truncated test functions centered at only one point, therefore it will
use some estimates from Lemma 2.23.

Theorem 3.16.
Let X ′ be defined by (3.10).

Then, there exists a family of maps
{

Φ′
λ
}
λ>2

: X ′ → H1(Σ)2 such that

JA2,ρ

(
Φ′
λ
(ζ)
)
−→

λ→+∞
−∞ uniformly for ζ ∈ X ′.

Proof.

Let us start by defining Φλ(ζ) =
(
ϕ1 −

ϕ2

2
, ϕ2 −

ϕ1

2

)
when ζ = (pm, pm, t) for some m. Φλ will be

defined in different ways, depending on the relative positions of ρ1, ρ2, α1m, α2m in R.

(<<) ρ1, ρ2 < 4π(2 + α1m + α2m):

ϕ1 :=


−2 log max

{
1, (λd(·, pm))2(1+α1m)

}
if t <

1

2

0 if t >
1

2

ϕ2 :=


0 if t <

1

2

−2 log max
{

1, (λd(·, pm))2(1+α2m)
}

if t >
1

2
.

(<>) ρ1 < 4π(2 + α1m + α2m) < ρ2:

ϕ1 := −2 log max
{

1,max
{

1, (λt)2(1+α2m)
}

(λd(·, pm))2(1+α1m)
}

ϕ2 := −2 log max
{

1, (λtd(·, pm))2(2+α1m+α2m)
}
.

(><) ρ2 < 4π(2 + α1m + α2m) < ρ1:

ϕ1 := −2 log max
{

1, (λ(1− t)d(·, pm))2(2+α1m+α2m)
}

ϕ2 := −2 log max
{

1,max
{

1, (λ(1− t))2(1+α1m)
}

(λd(·, pm))2(1+α2m)
}
.

(>>) ρ1, ρ2 > 4π(2 + α1m + α2m):

ϕ1 := −2 log max

{
1,

(
λ

max{1, λt}
max{1, λ(1− t)}

)2+α1m+α2m

d(·, pm)2(1+α1m), (λd(·, pm))2(2+α1m+α2m)

}

ϕ2 := −2 log max

{
1,

(
λ

max{1, λ(1− t)}
max{1, λt}

)2+α1m+α2m

d(·, pm)2(1+α2m), (λd(·, pm))2(2+α1m+α2m)

}
.
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By arguing as in the proof of Lemma 2.23, we deduce the following estimates, which will be presented
in three separates lemmas.

Lemma 3.17.
Let ϕ1, ϕ2 be as in Theorem 3.16.

Then, in each case the following estimates hold true for Q :=

ˆ
Σ

QA2

(
ϕ1 −

ϕ2

2
, ϕ2 −

ϕ1

2

)
dVg:

(<<)

Q =


8π(1 + α1m)2 log λ+O(1) if t <

1

2

8π(1 + α2m)2 log λ+O(1) if t >
1

2

.

(<>)

Q = 8π(2 + α1m + α2m)2 log max{1, λt}+ 8π(1 + α1m)2 log min

{
λ,

1

t

}
+O(1).

(><)

Q = 8π(2 + α1m + α2m)2 log max{1, λ(1− t)}+ 8π(1 + α2m)2 log min

{
λ,

1

1− t

}
+O(1).

(>>)
Q = 8π(2 + α1m + α2m)2 log λ+O(1).

Lemma 3.18.
Let ϕ1, ϕ2 be as above. Then, in each case we have:

(<<)

ˆ
Σ

ϕ1dVg =


−4(1 + α1m) log λ+O(1) if t <

1

2

0 if t >
1

2

ˆ
Σ

ϕ2dVg =


0 if t <

1

2

−4(1 + α2m) log λ+O(1) if t >
1

2
.

(<>) ˆ
Σ

ϕ1dVg = −4(1 + α1m) log λ− 4(1 + α2m) log max{1, λt}+O(1),

ˆ
Σ

ϕ2dVg = −4(2 + α1m + α2m) log max{1, λt}+O(1).

(><) ˆ
Σ

ϕ1dVg = −4(2 + α1m + α2m) log max{1, λ(1− t)}+O(1),

ˆ
Σ

ϕ2dVg = −4(1 + α2m) log λ− 4(1 + α1m) log max{1, λ(1− t)}+O(1).
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(>>) ˆ
Σ

ϕ1dVg =

ˆ
Σ

ϕ2dVg +O(1) = −4(2 + α1m + α2m) log λ+O(1).

Lemma 3.19. Let ϕ1, ϕ2 be as above. Then, in each case we have:

(<<)

log

ˆ
Σ

h̃1e
ϕ1−ϕ2

2 dVg =


−2(1 + α1m) log λ+O(1) if t <

1

2

2(1 + α2m) log λ+O(1) if t >
1

2

,

log

ˆ
Σ

h̃2e
ϕ2−ϕ1

2 dVg =


2(1 + α1m) log λ+O(1) if t <

1

2

−2(1 + α2m) log λ+O(1) if t >
1

2
.
.

(<>)

log

ˆ
Σ

h̃1e
ϕ1−ϕ2

2 dVg = −2(1 + α1m) log λ− 2(1 + α2m) log max{1, λt},

log

ˆ
Σ

h̃2e
ϕ2−ϕ1

2 dVg = 2(1 + α1m) min

{
λ,

1

t

}
.

(><)

log

ˆ
Σ

h̃1e
ϕ1−ϕ2

2 dVg = 2(1 + α2m) min

{
λ,

1

1− t

}
,

log

ˆ
Σ

h̃2e
ϕ2−ϕ1

2 dVg = −2(1 + α2m) log λ− 2(1 + α1m) log max{1, λ(1− t)}.

(>>)

log

ˆ
Σ

h̃1e
ϕ1−ϕ2

2 dVg = −(2 + α1m + α2m) log

(
λ

max{1, λt}
max{1, λ(1− t)}

)
+O(1)

log

ˆ
Σ

h̃2e
ϕ2−ϕ1

2 dVg = −(2 + α1m + α2m) log

(
λ

max{1, λ(1− t)}
max{1, λt}

)
+O(1)

Proof of Theorem 3.16, continued.
We can now easily prove the Theorem in the case x1 = x2. In fact, by the explicit expression of Jρ,
we get, in each case,

(<<)

Jρ

(
ϕ1 −

ϕ2

2
, ϕ2 −

ϕ1

2

)
=


2(1 + α1m)(4π(2 + α1m)− ρ1) log λ+O(1) if t <

1

2

2(1 + α2m)(4π(2 + α2m)− ρ2) log λ+O(1) if t >
1

2

,

(<>)

Jρ

(
ϕ1 −

ϕ2

2
, ϕ2 −

ϕ1

2

)
= 2(1 + α1m)(4π(1 + α1m)− ρ1) log min

{
λ,

1

t

}
+ 2(2 + α1m + α2m)(4π(2 + α1m + α2m)− ρ2) log max{1, λt}+O(1),
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(><)

Jρ

(
ϕ1 −

ϕ2

2
, ϕ2 −

ϕ1

2

)
= 2(2 + α1m + α2m)(4π(2 + α1m + α2m)− ρ1) log max{1, λ(1− t)}

+ 2(1 + α2m)(4π(1 + α2m)− ρ2) log min

{
λ,

1

1− t

}
+O(1),

(>>)

Jρ

(
ϕ1 −

ϕ2

2
, ϕ2 −

ϕ1

2

)
= (2 + α1m + α2m)(4π(2 + α1m + α2m)− ρ1) log

(
λ

max{1, λ(1− t)}
max{1, λt}

)
+ (2 + α1m + α2m)(4π(2 + α1m + α2m)− ρ2) log

(
λ

max{1, λt}
max{1, λ(1− t)}

)
+O(1),

which all tend to −∞ independently of t.

Let us now consider the case x1 6= x2.
Here, we define Φλ just by interpolating linearly between the test functions defined before:

Φλ(x1, x2, t) = Φλ(1−t)(x1, x1, 0) + Φλt(x2, x2, 1).

Since d(pm, pm′) ≥ δ > 0, then the bubbles centered at pm and pm′ do not interact, therefore the
estimates from Lemmas 3.17, 3.18, 3.19 also work for such test functions.
We will show this fact in detail in the case ρ1, ρ2 < 4π(2 + α1m + α2m), 4π(2 + α1m′ + α2m′).
Writing

(ϕ1, ϕ2) =
(
−2 log max

{
1, (λ(1− t)d(·, pm))2(1+α1m)

}
,−2 log max

{
1, (λtd(·, pm′))2(1+α2m′ )

})
,

by the previous explicit computation of ∇ϕ1,∇ϕ2 we get

Q

=
1

4

ˆ
Bδ(pm)

|∇ϕ1|2dVg +
1

4

ˆ
Bδ(pm′ )

|∇ϕ2|2dVg +O(1)

= 8π(1 + α1m)2 log max{1, λ(1− t)}+ 8π(2 + α2m′)
2 log max{1, λt}+O(1). (3.28)

Moreover, by linearity,
ˆ

Σ

ϕ1dVg = −4(1 + α1m) log max{1, λ(1− t)}+O(1)

ˆ
Σ

ϕ2dVg = −4(1 + α2m′) log max{1, λt}+O(1). (3.29)

Finally, as before the integral of h̃1e
ϕ1−ϕ2

2 is negligible outside Bδ(pm), and inside the ball we have
1

Cδ
≤
∣∣∣∣ϕ2 −

ˆ
Σ

ϕ2dVg

∣∣∣∣ ≤ C on Bδ(pm), hence

log

ˆ
Σ

h̃1e
ϕ1−ϕ2

2 dVg

= log

max{1, λt}2(1+α2m′ )

ˆ
B 1

max{1,λ(1−t)}
(pm)

d(·, pm)2α1mdVg

+ max{1, λt}2(1+α2m′ ) max{1, λ(1− t)}2(1+α1m)

ˆ
A 1
λ
,δ

(pm)

dVg
d(·, pm)2(2+α1m)

+O(1)
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= 2(1 + α2m′) log max{1, λt} − 2(1 + α1m) log max{1, λ(1− t)}+O(1) (3.30)

and similarly

log

ˆ
Σ

h̃2e
ϕ2−ϕ1

2 dVg = 2(1 + α1m) log max{1, λ(1− t)} − 2(1 + α1m′) log max{1, λt}+O(1).

Therefore, by (3.28), (3.29) and (3.30) we deduce

Jρ

(
ϕ1 −

ϕ2

2
, ϕ2 −

ϕ1

2

)
= 2(1 + α1m)(4π(1 + α1m)− ρ1) log max{1, λ(1− t)}

+ 2(1 + α2m′)(4π(1 + α2m′)− ρ2) log max{1, λt}+O(1).

This concludes the proof.

To prove the last main result of this section we will not need new auxiliary lemmas, but rather we
will use the ones used to prove Theorem 3.12.

Theorem 3.20.
Let X ′′ be defined by

X ′′ = X ′′K1,K2
:= (γ1)K1

? (γ2)K2
, (3.31)

with K1,K2 such that (3.12) holds.
Then, there exist two a family of maps

{
ΦλB2

}
λ>2

,
{

ΦλG2

}
λ>2

: X ′′ → H1(Σ)2 such that

JB2,ρ

(
ΦλB2

(ζ)
)
−→

λ→+∞
−∞

JG2,ρ

(
ΦλG2

(ζ)
)
−→

λ→+∞
−∞ uniformly in ζ ∈ X ′′.

Proof.
We define

ΦλB2
(ζ) =

(
ϕ1 −

ϕ2

2
, ϕ2 − ϕ1

)
ΦλG2

(ζ) =

(
ϕ1 −

ϕ2

2
, ϕ2 −

3

2
ϕ1

)
,

with

ϕ1 = ϕλ1 (ζ) = log

K1∑
k=1

t1k

(1 + (λ(1− t)d(·, x1k))2)
2 ϕ2 = ϕλ2 (ζ) = log

K2∑
k=1

t2k

(1 + (λtd(·, x2k))2)
2 .

Notice that the ϕ1, ϕ2 are defined in the very same way as in Theorem 3.12 when there are no
singularities.
Since there holds

QB2

(
ϕ1 −

ϕ2

2
, ϕ2 − ϕ1

)
=

1

4

ˆ
Σ

|∇ϕ1|2dVg −
1

4

ˆ
Σ

∇ϕ1 · ∇ϕ2dVg +
1

8

ˆ
Σ

|∇ϕ2|2dVg

QG2

(
ϕ1 −

ϕ2

2
, ϕ2 −

3

2
ϕ1

)
=

1

4

ˆ
Σ

|∇ϕ1|2dVg −
1

4

ˆ
Σ

∇ϕ1 · ∇ϕ2dVg +
1

12

ˆ
Σ

|∇ϕ2|2dVg,

then arguing as in Lemma 3.13 gives
ˆ

Σ

QB2

(
ϕ1 −

ϕ2

2
, ϕ2 − ϕ1

)
dVg ≤ 8K1π log max{1, λ(1− t)}+ 4K2π log max{1, λt}+ C

ˆ
Σ

QG2

(
ϕ1 −

ϕ2

2
, ϕ2 −

3

2
ϕ1

)
dVg ≤ 8K1π log max{1, λ(1− t)}+

8

3
K2π log max{1, λt}+ C.

Moreover, from Lemma 3.14 we deduce
ˆ

Σ

ϕ1dVg = −4 log max{1, λ(1− t)}+O(1),

ˆ
Σ

ϕ2dVg = −4 log max{1, λt}+O(1).
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Finally, the same argument as Lemma 3.15 yields

log

ˆ
Σ

h1e
ϕ1−ϕ2

2 dVg = −2 log max{1, λ(1− t)}+ 2 log max{1, λt}+O(1),

log

ˆ
Σ

h2e
ϕ2−ϕ1dVg = −2 log max{1, λt}+ 4 log max{1, λ(1− t)}+O(1),

log

ˆ
Σ

h2e
ϕ2− 3

2ϕ1dVg = −2 log max{1, λt}+ 6 log max{1, λ(1− t)}+O(1).

From these estimates the theorem follows easily.

3.4 Macroscopic improved Moser-Trudinger inequalities

Here we will perform an analysis of the sub-levels of the functional Jρ, which will permit to prove
the existence of a map Ψ = J−Lρ → X in the cases covered by Theorems 3.2, 3.6.

We prove an improved Moser-Trudinger inequality, that is we show that, under certain conditions
on the spreading of u1 and u2, the constant in Moser-Trudinger inequalities (3.1), (3.2), (3.3) can
be improved. This fact will give, after some technical work, some information about the sub-levels.

Theorem 3.21.
Let Γ,Γ0 as in (2.13), fi,u as in (1.13) and ρ ∈ R2

>0 \ Γ be given.

Then, for any ε > 0 there exists L = Lε > 0 such that any u ∈ J−LA2,ρ
verifies, for some i = 1, 2,

dLip′
(
fi,u,Σρi,α′i

)
< ε.

The same holds true if ρ ∈ R2
>0 \ Γ0 and u ∈ J−LB2,ρ

or u ∈ J−LG2,ρ
.

To adapt the original argument to the case of Toda system we first need a covering lemma, inspired
by [59], [61].
With respect to the previous works, we have to take into account the singularities and consider sets
which contain at most one negative singularity.

Lemma 3.22.
Let δ > 0, J1,K1, J2,K2 ∈ N be given numbers, {mi1, . . . ,miJi} ⊂ {1, . . . ,M ′i} selections of indices,

f1, f2 ∈ L1(Σ) be non-negative functions with

ˆ
Σ

fidVg = 1 and {Ωij}j=1,...,Ji+Ki
i=1,2 be measurable

subsets of Σ such that

d(Ωij ,Ωij′) ≥ δ ∀ i = 1, 2, ∀ j, j′ = 1, . . . , Ji +Ki, j 6= j′,

d(p′im,Ωij) ≥ δ ∀ i = 1, 2, ∀ j = 1, . . . , Ji +Ki, ∀m = 1, . . . ,M ′i , m 6= mij ,ˆ
Ωij

fidVg ≥ δ ∀ i = 1, 2, ∀ j = 1, . . . , Ji +Ki.

Then, there exist δ′ > 0, independent of f1, f2, and {Ωj}j=1,...,maxi{Ji+Ki} such that

d(Ωj ,Ωj′) ≥ δ ∀ j, j′ = 1, . . . ,max
i=1,2
{Ji +Ki}, j 6= j′,

d(p′im,Ωj) ≥ δ ∀ i = 1, 2, ∀ j = 1, . . . ,max
i=1,2
{Ji +Ki}, ∀m = 1, . . . ,M ′i , m 6= mij ,

ˆ
Ωj

fidVg ≥ δ ∀ i = 1, 2, ∀ j = 1, . . . ,max
i=1,2
{Ji +Ki}.
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Proof.
It is not restrictive to suppose J1 +K1 ≥ J2 +K2.

We choose δ1 =
δ

8
and we consider the open cover {Bδ1(x)}x∈Σ of Σ. By compactness, we can

extract a finite sub-cover {Bδ1(xl)}Ll=1 with L = Lδ1,Σ.
We then take, for i and m as in the statement of the Lemma, xij ∈ {xl}Ll=1 such that

ˆ
Bδ1 (xij)

fidVg = max

{ˆ
Bδ1 (xl)

fidVg : Bδ1(xl) ∩ Ωij 6= ∅

}
.

Since we have, for any j 6= j′,

d(xij , xij′) ≥ d(Ωij ,Ωij′)− d(xij ,Ωij)− d(xij′ ,Ωij′) ≥ δ − 2δ1 = 6δ1,

then for a given j = 1, . . . , J1 +K1 there exists at most one j′(j) satisfying d(x1j , x2j′) < 3δ1, with
j 7→ j′(j) being injective as long as it is defined.
We can then reorder the indices j and j′ so that j′(j) = j. Now, we define

Ωj :=

{
Bδ′(x1j) ∪Bδ′(x2j) if j = 1, . . . , J2 +K2

Bδ′(x1j) if j = J2 +K2 + 1, . . . , J1 +K1
.

Basically, we built these sets by joining two balls Bδ1(x1j), Bδ1(x2j) if they are close to each other
or, if there are no disks sufficiently close to Bδ1(x1j), making arbitrary unions.
Let us now check that the theses of the Lemmas are verified. The sets Ωj ’s are distant at least δ1
one to each other since

d(Ωj ,Ωj′) = inf
i,i′=1,2

d (Bδ1(xij), Bδ1(xi′j′)) ≥ inf
i,i′=1,2

d(xij , xi′j′)− 2δ1 ≥ δ1.

Moreover, for m 6= mij ,

d(p′im,Ωj) ≥ inf
i=1,2

d (p′im, Bδ1(xij)) ≥ inf
i=1,2

(d(p′im,Ωij)− d (Ωij , Bδ1(xij))) ≥ δ − 2δ1 ≥ δ1.

Finally, from the choice of the points xij ,ˆ
Ωj

fidVg ≥
ˆ
Bδ′ (xij)

fidVg ≥
1

L

ˆ
Ωij

fidVg ≥
δ

L
=: δ2.

The lemma follows by choosing δ′ := min{δ1, δ2}

The next lemma is what is usually called an improved Moser-Trudinger inequality.
It essentially states that if both u1 and u2 are spread in sets which contain at most one singular
point, then the constant 4π in (3.1) can be multiplied by a number depending on how many these
sets are and on the singular points they contain. Such a phenomenon was first pointed out by Moser
[63] and Aubin [2] for the scalar case.
It will be the most important step towards the proof of Theorem 3.21.

Lemma 3.23.
Let δ > 0,M1,K1,M2,K2 ∈ N be given numbers, {mi1, . . . ,miJi} ⊂ {1, . . . ,M ′i} selections of

indices and {Ωij}j=1,...,Ji+Ki
i=1,2 be measurable subsets of Σ such that

d(Ωij ,Ωij′) ≥ δ ∀ i = 1, 2, ∀ j, j′ = 1, . . . , Ji +Ki, j 6= j′,

d(p′im,Ωij) ≥ δ ∀ i = 1, 2, ∀ j = 1, . . . , Ji +Ki, ∀m = 1, . . . ,M ′i , m 6= mij ,

Then, for any ε > 0 there exists C > 0, not depending on u, such that any u = (u1, u2) ∈ H1(Σ)2

satisfying ˆ
Ωij

fi,udVg ≥ δ ∀ i = 1, 2, ∀ j = 1, . . . , Ji +Ki
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verifies

2∑
i=1

Ki +

Ji∑
j=1

(
1 + α′imij

)(log

ˆ
Σ

h̃ie
uidVg −

ˆ
Σ

uidVg

)
≤ 1 + ε

4π

ˆ
Σ

Q(u)dVg + C.

Proof.
It will not be restrictive to suppose J1 +K1 ≥ J2 +K2.
We apply Lemma 3.22 with fi = fi,u and we get a family of sets {Ωj}J1+K1

j=1 satisfying

d(Ωj ,Ωj′) ≥ δ′ > 0 ∀ j 6= j′,

ˆ
Ωj

fi,u ≥ δ′ > 0 ∀ j = 1, . . . , Ji +Ki.

Let us now consider, for any j = 1, . . . , J1 +K1, a cut-off function satisfying

0 ≤ χj ≤ 1 χj |Ωj ≡ 1 χj |Σ\Ω′j ≡ 0 with Ω′j = B δ′
2

(Ωj) |∇χj | ≤ Cδ′ . (3.32)

We now take vi ∈ L∞(Σ) with

ˆ
Σ

vidVg = 0 and we set wi := ui − vi −
ˆ

Σ

uidVg (which will also

have null average). Therefore, we find

log

ˆ
Σ

h̃ie
uidVg −

ˆ
Σ

uidVg

≤ log

(
1

δ′

ˆ
Ωj

h̃ie
uidVg −

ˆ
Σ

uidVg

)

= log

(
1

δ′

ˆ
Ωj

h̃ie
vi+widVg

)

≤ log

ˆ
Ωj

h̃ie
widVg + ‖vi‖L∞(Ωj) + log

1

δ′
,

≤ log

ˆ
Σ

h̃ie
χjwidVg + ‖vi‖L∞(Σ) + C. (3.33)

Since χj ∈ Lip(Σ), then χjwi ∈ H1(Σ), so we can apply a Moser-Trudinger inequality on it.
To this purpose, we notice that, for any ε > 0,

ˆ
Σ

|∇(χjw1)|2dVg

=

ˆ
Σ

|χj∇w1 + w1∇χj |2dVg

=

ˆ
Σ

(
χ2
j |∇w1|2 + 2(χj∇w1) · (w1∇χj) + w2

1|∇χj |2
)

dVg

≤
ˆ

Σ

(
(1 + ε)χ2

j |∇w1|2 +

(
1 +

1

ε

)
w2

1|∇χj |2
)

dVg

≤ (1 + ε)

ˆ
Ω′j

|∇w1|2dVg + Cε,δ′,Σ

ˆ
Ω′j

w2
1dVg.

In the same way, writing

1

3

(
|x|2 + x · y + |y|2

)
=

1

4
|x|2 +

1

12
|x− 2y|2, (3.34)

we get

ˆ
Σ

Q(χjw)dVg ≤ (1 + ε)

ˆ
Ω′j

Q(w)dVg + Cε,δ′,Σ

ˆ
Ω′j

1

3

(
w2

1 + w1w2 + w2
2

)
dVg. (3.35)
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At this point, we choose properly wi (hence vi) in such a way to have a control of its L2 norm.

Taking an orthonormal frame {ϕn}∞n=1 of eigenfunctions for −∆ on H
1
(Σ) with a non-decreasing

sequence of associated positive eigenvalues {λn}∞n=1 and writing ui =

ˆ
Σ

uidVg +

∞∑
n=1

uni ϕ
n, we set

vi =

N∑
n=1

uni ϕ
n for

N = Nε,δ′,Σ := max

{
n ∈ N : λn <

Cε,δ′,Σ
ε

}
.

This choice gives

Cε,δ′,Σ

ˆ
Σ

w2
1dVg ≤ ε

ˆ
Σ

|∇w1|2dVg ≤ ε
ˆ

Σ

|∇u1|2dVg

and, through (3.34),

Cε,δ′,Σ

ˆ
Σ

1

3

(
w2

1 + w1w2 + w2
2

)
dVg ≤ ε

ˆ
Σ

Q(w)dVg ≤ ε
ˆ

Σ

Q(u)dVg. (3.36)

Moreover, we get

ˆ
Σ

|wi|dVg ≤ CΣ‖∇wi‖L2(Σ) ≤ ε
ˆ

Σ

Q(w)dVg + C ≤ ε
ˆ

Σ

Q(u)dVg + C (3.37)

and, since vi belongs to a finite-dimensional space of smooth function,

‖vi‖L∞(Σ) ≤ CN‖∇ϕi‖L2(Σ) ≤ ε
ˆ

Σ

Q(v)dVg + C ≤ ε
ˆ

Σ

Q(u)dVg + C. (3.38)

Now, if m = 1, . . . , J2 + K2, we apply the Moser-Trudinger inequality (3.1) to χjw. Since these

functions are supported on Ω′j , we can replace h̃i by a smooth interpolation which is constant
outside a neighborhood of Ω′j : we take ηj ∈ C∞(Σ) satisfying

ηj(x) :=

{
1 if x ∈ Ω′j
0 if x 6∈ B δ′

4 (Ω′j)
h̃ij := ηj h̃i + 1− ηj =

{
h̃i if x ∈ Ω′j
1 if x 6∈ B δ′

4 (Ω′j)
.

In this way, we can consider only the singularities p′1m1j
, p′2m1j

which lie inside Ωj (if there are any);
from (3.35) and (3.37) we get

2∑
i=1

(
1 + α′imij

)
log

ˆ
Σ

h̃ie
χjwidVg

=

2∑
i=1

(
1 + α′imij

)
log

ˆ
Σ

h̃ije
χjwidVg

≤
2∑
i=1

(
1 + α′imij

)ˆ
Σ

χjwidVg +
1

4π

ˆ
Σ

Q(χjw)dVg + C

≤
2∑
i=1

(
1 + α′imij

)(
‖χj‖L∞(Σ)

ˆ
Σ

|wi|dVg
)

+
1 + ε

4π

ˆ
Ω′j

Q(w)dVg

+
Cε,δ′,Σ

4π

ˆ
Ω′j

1

3

(
w2

1 + w1w2 + w2
2

)
dVg + C

≤
ˆ

Σ

|w1|dVg +

ˆ
Σ

|w2|dVg +
1 + ε

4π

ˆ
Ω′j

Q(w)dVg +
Cε,δ′,Σ

4π

ˆ
Ω′j

1

3

(
w2

1 + w1w2 + w2
2

)
dVg + C

≤ 2ε

ˆ
Σ

Q(u)dVg +
1 + ε

4π

ˆ
Ω′j

Q(w)dVg +
Cε,δ′,Σ

4π

ˆ
Ω′j

1

3

(
w2

1 + w1w2 + w2
2

)
dVg + C.
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Therefore, from (3.33) and (3.38) we deduce

2∑
i=1

(
1 + α′imij

)(
log

ˆ
Σ

h̃ie
uidVg −

ˆ
Σ

uidVg

)

≤
2∑
i=1

(
1 + α′imij

)(
log

ˆ
Σ

h̃ie
χjwidVg + ‖vi‖L∞(Σ) + C

)
≤ 3ε

ˆ
Σ

Q(u)dVg +
1 + ε

4π

ˆ
Ω′j

Q(w)dVg +
Cε,δ′,Σ

4π

ˆ
Ω′j

1

3

(
w2

1 + w1w2 + w2
2

)
dVg + C. (3.39)

For m = J2 + K2 + 1, . . . , J1 + K1 we have estimates only for u1 on Ωj , so we apply the scalar
Moser-Trudinger inequality (1.6). By (3.34) we get the integral of Q(χjw), then we argue as before.
Notice that if j > Mi, then p′imj is not defined so these calculations would not make sense, but in

this case both the previous and the following calculations hold replacing α′imj with 0.(
1 + α′1m1j

)
log

ˆ
Σ

h̃1e
χjw1dVg

=
(

1 + α′1m1j

)
log

ˆ
Σ

h̃1me
χjw1dVg

≤
(

1 + α′1m1j

)ˆ
Σ

χjw1dVg +
1

16π

ˆ
Σ

|∇(χjw1)|2dVg + C

≤
ˆ

Σ

|w1|dVg +
1

4π

ˆ
Σ

Q(χjw)dVg + C

≤ ε

ˆ
Σ

Q(u)dVg +
1 + ε

4π

ˆ
Ω′j

Q(w)dVg +
Cε,δ′,Σ

4π

ˆ
Ω′j

1

3

(
w2

1 + w1w2 + w2
2

)
dVg + C.

Then in this case we deduce(
1 + α′1m1j

)(
log

ˆ
Σ

h̃1e
u1dVg −

ˆ
Σ

u1dVg

)
≤

(
1 + α′1m1j

)(
log

ˆ
Σ

h̃ie
χjw1dVg + ‖v1‖L∞(Σ) + C

)
≤ 2ε

ˆ
Σ

Q(u)dVg +
1 + ε

4π

ˆ
Ω′j

Q(w)dVg +
Cε,δ′,Σ

4π

ˆ
Ω′j

1

3

(
w2

1 + w1w2 + w2
2

)
dVg + C. (3.40)

Finally, we sum up together (3.39) and (3.40) for all the m’s, exploiting (3.36) and the disjointness
of the Ω′j :

2∑
i=1

Ki +

Ji∑
j=1

(
1 + α′imij

)(log

ˆ
Σ

h̃ie
uidVg −

ˆ
Σ

uidVg

)

=

2∑
i=1

J2+K2∑
m=1

(
1 + α′imij

)(
log

ˆ
Σ

h̃ie
uidVg −

ˆ
Σ

uidVg

)

+

J1+K1∑
m=J2+K2+1

(
1 + α′1mij

)(
log

ˆ
Σ

h̃1e
u1dVg −

ˆ
Σ

u1dVg

)
≤ (2J1 + 2K1 + J2 +K2)ε

ˆ
Σ

Q(u)dVg +
1 + ε

4π

ˆ
Σ

Q(w)dVg

+
Cε,δ′,Σ

4π

ˆ
Σ

1

3

(
w2

1 + w1w2 + w2
2

)
dVg + C

≤ (2J1 + 2K1 + J2 +K2)ε

ˆ
Σ

Q(u)dVg +
1 + 2ε

4π

ˆ
Σ

Q(u)dVg + C

which is, renaming ε properly, what we desired.
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Now we need another technical lemma, which relates the condition of spreading, needed for Lemma
3.23, and of concentration around a finite number of points.
Through this lemma, we can then use the improved Moser-Trudinger inequality to get information
about the concentration which occurs on sub-levels J−Lρ .
The following results will be extensions of the ones contained in [36, 59, 61] with suitable changes
to take into account the singularities.

Lemma 3.24.
Let i = 1, 2, ω0 > 0, ε > 0 small enough, be such that any J ⊂ Σ satisfying ωα′i(J ) ≤ ω0 verifies

ˆ
⋃
xk∈J

Bε(xk)

fi,udVg < 1− ε.

Then, there exist ε′, r′ > 0, not depending on ui, J,K ∈ N, {m1, . . . ,mJ} ⊂ {1, . . . ,M ′i} and{
x′j
}J+K

j=1
satisfying

K +

J∑
j=1

(
1 + α′imj

)
> ω0, d

(
x′j , p

′
imj

)
≤ 2r′ ≤ d

(
x′j , p

′
im

)
∀ j = 1, . . . , J +K, m 6= mj ,

B2r′
(
x′j
)
∩B2r′

(
x′j′
)

= ∅ ∀ j 6= j′,

ˆ
Br′(x′j)

fi,udVg ≥ ε′ ∀ j = 1, . . . , J +K. (3.41)

Proof.

We fix r′ :=
ε

10
and we cover Σ with a finite number of disks {Br′(yl)}Ll=1 with L = Lr′,Σ. Up to

relabeling, there exists a L′ ≤ L such that

ˆ
Br′ (yl)

fi,udVg ≥
ε

L
:= ε′ ⇐⇒ l ≤ L′.

In fact, if none of the yl’s satisfied the above condition, this would imply

ˆ
Σ

fi,udVg ≤
L∑
l=1

ˆ
Br′ (yl)

fi,udVg ≤ Lε′ = ε,

that is a contradiction if ε < 1.
Now, select inductively the points

{
x′j
}
⊂ {yl}L

′

l=1: we set x′1 := y1 and define

Ω1 :=

L′⋃
l=1

{Br′(yl) : B2r′(yl) ∩B2r′(x
′
1) 6= ∅} ⊂ B5r′(x

′
1).

If there exists yl0 such that B2r′ (yl0) ∩B2r′(x
′
1) = ∅, then we set x′2 := yl0 and define

Ω2 :=

L′⋃
l=1

{Br′(yl) : B2r′(yl) ∩B2r′(x
′
2) 6= ∅} ⊂ B5r′(x

′
2).

In the same way, we find a finite number of points x′j and sets Ωj .
If ε ≤ min

m,m′∈{1,...,Mi},m 6=m′
d(p′im, p

′
im′), each x′j can have at most one of the p′im at a distance strictly

smaller than 2r′ ≤ ε

2
, and each p′im can have at most one x′j closer than 2r′; if it exists we call this

point p′imj . Denote the number of points for which the 2r′-close point exists as J and the number
of points for which it does not as K.
Therefore, we get d

(
x′j , p

′
im

)
≥ 2r′ for any m 6= mj , whereas condition (3.41) holds by construction,

73



so the thesis will follow by showing K +

J∑
j=1

(
1 + α′imj

)
> ω0.

Take now xj = p′imj for j ∈ {1, . . . , J} and xj = x′j for j ∈ {J + 1, . . . , J + K} and suppose by

contradiction K +

J∑
j=1

(
1 + α′imj

)
= ωα′i(J ) ≤ ω0. By hypothesis, this would imply

ˆ
Σ\
⋃
xk∈J

Bε(xk)

fi,udVg ≥ ε

However, since

L′⋃
l=1

Br′(yl) ⊂
J+K⋃
j=1

Ωj ⊂
J+K⋃
j=1

B5r′
(
x′j
)
⊂
J+K⋃
j=1

B ε
2

(
x′j
)
⊂
⋃
xk∈J

Bε(xk),

then we findˆ
Σ\
⋃
xk∈J

Bε(xk)

fi,udVg ≤
ˆ

Σ\
⋃L′
l=1 Br′ (yl)

fi,udVg ≤
ˆ
⋃L
l=L′+1

Br′ (yl)

fi,udVg ≤ (L− L′)ε′ < ε,

that is we get a contradiction, hence the proof is complete.

This is the last step needed to prove Theorem 3.21. We see that, if Jρ(u) is very very low, then
either f1,u or f2,u has all its mass concentrated around a finite number of points, depending on ρi, α

′
i.

Lemma 3.25.
For any ε > 0 small enough, there exists L > 0 such that, if u ∈ J−LA2,ρ

, then for at least one i = 1, 2
there exists J ⊂ Σ satisfying 4πωα′i(Ji) ≤ ρi and

ˆ
⋃
xk∈Ji

Bε(xk)

fi,udVg ≥ 1− ε.

Proof.
Suppose by contradiction that the statement is not true. This means that there exist ε > 0 small
enough and {un}n∈N ⊂ H1(Σ)2 such that JA2,ρ(u

n) −→
n→+∞

−∞ and

ˆ
⋃
xik∈Ji

Bε(xik)

fi,undVg < 1− ε

for any J1,J2 ⊂ Σ satisfying 4πωα′i(J ) ≤ ρi. Then, we can apply Lemma 3.24 to fi,un with

ω0 =
ρi
4π

; we find ε′, r′ > 0, not depending on n, Ki,Mi ∈ N, {mi1, . . . ,miJi} ⊂ {1, . . . ,M ′i} and{
x′ij
}Ji+Ki
j=1

satisfying

4π

Ki +

Ji∑
j=1

(
1 + α′imij

) > ρi, d
(
x′ij , p

′
im

)
≥ 2r′ ∀m 6= mij ,

B2r′
(
x′ij
)
∩B2r′

(
x′ij′
)

= ∅ ∀ j 6= j′,

ˆ
Br′(x′ij)

fi,undVg ≥ ε′ ∀ j.

We can then apply Lemma 3.23 with δ = min{ε′, r′} and Ωij = Br′
(
x′ij
)

to obtain an improved
Moser-Trudinger for the un. Moreover, Jensen’s inequality yields

log

ˆ
Σ

h̃ie
uni dVg −

ˆ
Σ

uni dVg ≥ −C.
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Therefore, choosing

ε ∈

0, min
i=1,2

4π

ρi

Ki +

Ji∑
j=1

(
1 + α′imij

)− 1

 ,

we get, for both i = 1, 2,

4π

1 + ε

Ki +

Ji∑
j=1

(
1 + α′imij

)− ρi > 0;

hence

−∞
←−

n→+∞
JA2,ρ(u

n)

≥
2∑
i=1

 4π

1 + ε

Ki +

Ji∑
j=1

(
1 + α′imij

)− ρi
(log

ˆ
Σ

h̃ie
uni dVg −

ˆ
Σ

uni dVg

)
− C

≥ −C
2∑
i=1

 4π

1 + ε

Ki +

Ji∑
j=1

(
1 + α′imij

)− ρi
− C,

≥ −C

which is a contradiction.

Now we have all the tools to prove Theorem 3.21 in the case of A2.
To treat the case of B2, G2 we need the following counter-part of Lemma 3.23. From this and
Lemma 3.24 will follow the counterpart of Lemma 3.25.
Since the proof will be similar to the one of Lemma 3.23, we will be sketchy.

Lemma 3.26.
Let δ > 0,K1,K2 ∈ N, {Ω1k}K1

k=1, {Ω2k}K2

k=1 satisfy

d(Ωik,Ωik′) ≥ δ ∀ i = 1, 2, k, k′ = 1, . . . ,Ki, k 6= k′,ˆ
Ωik

fi,udVg ≥ δ ∀ i = 1, 2, k = 1, . . . ,Ki.

Then, for any ε > 0 there exists C > 0, not depending on u, such that

4πK1

(
log

ˆ
Σ

eu1dVg −
ˆ

Σ

u1dVg

)
+2πK2

(
log

ˆ
Σ

eu2dVg −
ˆ

Σ

u2dVg

)
≤ (1+ε)

ˆ
Σ

QB2(u)dVg+C,

4πK1

(
log

ˆ
Σ

eu1dVg −
ˆ

Σ

u1dVg

)
+

4

3
πK2

(
log

ˆ
Σ

eu2dVg −
ˆ

Σ

u2dVg

)
≤ (1+ε)

ˆ
Σ

QG2(u)dVg+C.

Proof.
We apply Lemma 3.22 to f1,u, f2,u and we get {Ωk}K1

k=1 such that

d(Ωk,Ωk′) ≥ δ′
ˆ

Ωk

fi,udVg ≥ δ′.

We then consider, for k = 1, . . . ,K1, some cut-off functions χk satisfying (3.32) and we split

ui −
ˆ

Σ

uidVg = vi + wi as in the proof of Lemma 3.23. As before,

log

ˆ
Σ

euidVg −
ˆ

Σ

uidVg ≤ log

ˆ
Σ

eχkwidVg + ‖vi‖L∞(Σ) + C
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and ˆ
Σ

|∇(χkwi)|2dVg ≤ (1 + ε)

ˆ
Ω′k

|∇wi|2dVg + C

ˆ
Ω′k

w2
i dVg.

Using the elementary equalities

|x|2

2
+
x · y

2
+
|y|2

4
=
|x|2

4
+
|x+ y|2

4
|x|2 + x · y +

|y|2

3
=
|x|2

4
+
|3x+ 2y|2

12
, (3.42)

we similarly get

ˆ
Σ

QB2(χkw)dVg ≤ (1 + ε)

ˆ
Ω′k

QB2(w)dVg + Cε,δ′

ˆ
Ω′k

(
w2

1

2
+
w1w2

2
+
w2

2

4

)
dVg

ˆ
Σ

QG2
(χkw)dVg ≤ (1 + ε)

ˆ
Ω′k

QG2
(w)dVg + Cε,δ′

ˆ
Ω′k

(
w2

1 + w1w2 +
w2

2

3

)
dVg.

By the choice of vi, wi we have:

Cε,δ′

ˆ
Σ

(
w2

1

2
+
w1w2

2
+
w2

2

4

)
dVg ≤ ε

ˆ
Σ

QB2(w)dVg ≤ ε
ˆ

Σ

QB2(u)dVg

Cε,δ′

ˆ
Σ

(
w2

1 + w1w2 +
w2

2

3

)
dVg ≤ ε

ˆ
Σ

QG2(w)dVg ≤ ε
ˆ

Σ

QG2(u)dVg,

ˆ
Σ

|wi|dVg ≤ εmin

{ˆ
Σ

QB2(u)dVg,

ˆ
Σ

QG2(u)dVg

}
+ Cε,

‖vi‖L∞(Σ) ≤ εmin

{ˆ
Σ

QB2
(u)dVg,

ˆ
Σ

QG2
(u)dVg

}
+ Cε.

At this point, for k = 1, . . . ,K2 we apply Theorem 3.2 to χkw:

4π

(
log

ˆ
Σ

eu1dVg −
ˆ

Σ

u1dVg

)
+ 2π

(
log

ˆ
Σ

eu2dVg −
ˆ

Σ

u2dVg

)
≤ 4π log

ˆ
Σ

eχkw1dVg + 2π log

ˆ
Σ

eχkw2 + 4π‖v1‖L∞(Σ) + 2π‖v2‖L∞(Σ) + C

≤
ˆ

Ω′k

QB2
(w)dVg + ε′

ˆ
Σ

QB2
(u)dVg + C. (3.43)

For k = K2 + 1, . . . ,K1 we apply the scalar Moser-Trudinger inequality (1.6). By (3.34) we get
again the integral of QB2 :

4π

(
log

ˆ
Σ

eu1dVg −
ˆ

Σ

u1dVg

)
≤ 4π log

ˆ
Σ

eχkw1dVg + 4π‖v1‖L∞(Σ) + C

≤ 1

4

ˆ
Ω′k

|∇(χkw1)|2dVg + ε

ˆ
Σ

QB2(u)dVg + C

≤
ˆ

Ω′k

QB2
(w)dVg + ε′

ˆ
Σ

QB2
(u)dVg + C. (3.44)

Putting together (3.43) and (3.44) we concluded the proof for JB2,ρ.
The improved inequality concerning JG2,ρ can be proved in the very same way.
When K2 ≥ K1 consider, in place of (3.42),

|x|2

2
+
x · y

2
+
|y|2

4
=
|y|2

8
+
|2x+ y|2

8
|x|2 + x · y +

|y|2

3
=
|y|2

12
+
|2x+ y|2

4

76



Proof of Theorem 3.21.
It suffices to prove the statement concerning J−LA2,ρ

for small ε.

We apply Lemma 3.25 with
ε

3
. It is not restrictive to suppose that the thesis of the lemma holds

for i = 1, since the case i = 2 can be treated in the same way. Therefore, we get J ⊂ Σ, and we
define

σu :=
∑
xk∈J

tkδxk

where

tk =

ˆ
B ε

3
(xk)\

⋃k−1

k′=1
B ε

3
(xk′ )

f1,udVg +
1

|J |

ˆ
Σ\
⋃
x
k′∈J

Br′ (xk′ )

f1,udVg.

Notice that σu ∈ Σρ1,α′1
because, from Lemma 3.25 we find ωα′1(J ) ≤ ρ1 and the last inequality is

actually strict because we are supposing ρ 6∈ Γ.
To conclude the proof it would suffice to get∣∣∣∣ˆ

Σ

(f1,u − σu)φdVg

∣∣∣∣ ≤ ε‖φ‖Lip(Σ) ∀φ ∈ Lip(Σ). (3.45)

In fact, following the definition of dLip′ , this would imply

dLip′
(
f1,u,Σρ1,α′1

)
≤ dLip′(f1,u, σu) = sup

φ∈Lip(Σ),‖φ‖Lip(Σ)≤1

∣∣∣∣ˆ
Σ

(f1,u − σu)φdVg

∣∣∣∣ < ε. (3.46)

We will divide the integral in (3.45) into two points, studying separately what happens inside and

outside the union of the
ε

3
-disks centered at the points xm’s.

Outside the disks, for any φ ∈ Lip(Σ) we have∣∣∣∣∣
ˆ

Σ\
⋃
xk∈J

B ε
3

(xk)

(f1,u − σu)φdVg

∣∣∣∣∣
=

∣∣∣∣∣
ˆ

Σ\
⋃
xk∈J

B ε
3

(xk)

f1,uφdVg

∣∣∣∣∣
≤ ‖φ‖L∞(Σ)

ˆ
Σ\
⋃
xk∈J

B ε
3

(xk)

f1,udVg

<
ε

3
‖φ‖Lip(Σ). (3.47)

On the other hand, we also find∣∣∣∣∣
ˆ
⋃
xk∈J

B ε
3

(xk)

(f1,u − σu)φdVg

∣∣∣∣∣
=

∣∣∣∣∣
ˆ
⋃
xk∈J

B ε
3

(xk)

f1,uφdVg −
∑
xk∈J

(ˆ
B ε

3
(xk)\

⋃k
k′=1

B ε
3

(xk′ )

f1,udVg+

+
1

|J |

ˆ
Σ\
⋃
x
k′∈J

B ε
3

(xk′ )

f1,udVg

)
φ(xk)

∣∣∣∣∣
=

∣∣∣∣∣ ∑
xk∈J

(ˆ
B ε

3
(xk)\

⋃k
k′=1

B ε
3

(xk′ )

f1,u(φ− φ(xk))dVg −
1

|J |

ˆ
Σ\
⋃
x
k′∈J

B ε
3

(xk′ )

f1,udVgφ(xk)

)∣∣∣∣∣
≤ ‖∇φ‖L∞(Σ)

∑
xk∈J

ˆ
B ε

3
(xk)\

⋃k
k′=1

B ε
3

(xk′ )

f1,ud(·, xk)dVg‖φ‖L∞(Σ) +

ˆ
Σ\
⋃
x
k′∈J

B ε
3

(xk′ )

f1,udVg

<
ε

3
‖∇φ‖L∞(Σ)

ˆ
⋃
x
k′∈J

B ε
3

(xk′ )

f1,udVg +
ε

3
‖φ‖L∞(Σ)
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≤ ε

3
‖∇φ‖L∞(Σ) +

ε

3
‖φ‖L∞(Σ)

≤ 2

3
ε‖φ‖Lip(Σ). (3.48)

Therefore, from (3.47) and (3.48) we deduce (3.45), hence (3.46).

3.5 Scale-invariant improved Moser-Trudinger inequalities

In this section we will prove a new kind of improved Moser-Trudinger inequality, which will be es-
sential for the analysis of sub-levels of the energy functional Jρ in the case considered by Theorem
3.5. Since we will only consider the A2 Toda system, we will omit the subscript A2 throughout all
the section.

The main difference with respect to the results proved in the previous section is basically the follow-
ing: in Section 3.4 we got improved inequalities under the assumption that fi,u attains some mass
in a Bδ(x) for some δ > 0, but we did not really need to know how large or small δ was; this led us
to call macroscopic such inequalities. On the other hand, here we want to get new information on
how fast fi,u concentrates around x.

To this purpose, we need a suitable definition of center of mass and scale of concentration. The idea
is taken from [61] (Proposition 3.1), but with several modifications which take into account that
we want to choose the center of mass in a given finite set F ⊂ Σ (which will be, in our application,
the set of weighted barycenter Σρi,αi). As in [61], we map the space A of positive normalized L1

functions (defined by (1.12)) on the topological cone based on F of height δ, namely

CδF :=
F × [0, δ]

∼
, (3.49)

The meaning of such an identification is the following: if a function f ∈ A does not concentrate
around any point x ∈ F , then we cannot define a center of mass; in this case we set the scale equals
δ, that is large.

Lemma 3.27.
Let F := {x1, . . . , xK} ⊂ Σ be a given finite set and A, Cδ be defined by (1.12) and (3.49).
Then, for δ > 0 small enough there exists a map ψ = (β, ς) = (βF , ςF ) : A → CδF such that:

• If ς(f) = δ, then either

ˆ
Σ\
⋃
x∈F Bδ(x)

fdVg ≥ δ or there exists x′, x′′ ∈ F with x′ 6= x′′ and

ˆ
Bδ(x′)

fdVg ≥ δ
ˆ
Bδ(x′′)

fdVg ≥ δ

• If ς(f) < δ, then ˆ
Bς(f)(β(f))

fdVg ≥ δ
ˆ

Σ\Bς(f)(β(f))

fdVg ≥ δ.

Moreover, if fn −→
n→+∞

δx for some x ∈ F , then (β(fn), ς(fn)) −→
n→+∞

(x, 0).

Proof.

Fix τ ∈
(

1

2
, 1

)
, take δ ≤ minx,x′∈F, x 6=x′ d(x, x′)

2
and define, for k = 1, . . . ,K,

Ik(f) :=

ˆ
Bδ(xk)

fdVg; I0(f) :=

ˆ
Σ\
⋃
x∈F Bδ(x)

fdVg = 1−
k∑
k=1

Ik(f),
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Choose now indices k̃, k̂ such that

Ik̃(f) := max
k∈{0,...,K}

Ik(f) Ik̂(f) := max
k 6=k̃

Ik(f).

We will define the map ψ depending on k̃ and Ik̃(f):

• k̃ = 0. Since f has little mass around each of the points xk, we set ς(f) = δ and do not
define β(f), as it would be irrelevant by the equivalence relation in (3.49). The assertion of
the Lemma is verified, up to taking a smaller δ, because

ˆ
Σ\
⋃
x∈F Bδ(x)

fdVg = I0(f) ≥ 1

K + 1
≥ δ

• k̃ ≥ 1, Ik̃(f) ≤ Kτ

1− τ
Ik̂(f). Here, f has still little mass around the point xk̃ (which could not

be uniquely defined), so again we set ς(f) := δ. It is easy to see that Ik̂(f) ≥ 1− τ
K

, so

ˆ
Bδ(xk̃)

fdVg ≥
ˆ
Bδ(xk̂)

fdVg ≥
1− τ
K
≥ δ.

• k̃ ≥ 1, Ik̃(f) ≥ Kτ

1− τ
Ik̂(f). Now, Ik̃(f) > τ , so one can define a scale of concentration

s
(
xk̃, f

)
∈ (0, δ) of f around xk̃, uniquely determined by

ˆ
B
s(xk̃,f)

(xk̃)
fdVg = τ.

We can also define a center of mass β(f) = xk̃ but we have to interpolate for the scale:

– Case Ik̃(f) ≤ 2Kτ

1− τ
Ik̂(f): setting

ς(f) = s
(
xk̃, f

)
+

Ik̃(f)
Kτ
1−τ Ik̂(f)

(
δ − s

(
xk̃, f

))
,

we get s
(
xk̃, f

)
< ς(f) < δ; moreover, Ik̂(f) ≥ 1− τ

K(1 + τ)
, hence

ˆ
Bς(f)(β(f))

fdVg ≥
ˆ
B
s(xk̃,f)

(xk̃)
fdVg = τ ≥ δ

ˆ
Σ\Bς(f)(β(f))

fdVg ≥
ˆ

Σ\Bδ(xk̃)
fdVg ≥

1− τ
K(1 + τ)

≥ δ

– Case Ik̃(f) ≥ 2Kτ

1− τ
Ik̂(f): we just set ς(f) : s

(
xk̃, f

)
and we get

ˆ
Bς(f)(β(f))

fdVg = τ ≥ δ
ˆ

Σ\Bς(f)(β(f))

fdVg = 1− τ ≥ δ.

To prove the final assertion, write (up to sub-sequences), (β∞, ς∞) = lim
n→+∞

(β(fn), ς(fn)).

For large n we will have

ˆ
Σ\
⋃
x′∈F Bδ(x

′)

fndVg ≤
δ

2

ˆ
Bδ(x′′)

fndVg ≤
δ

2
for any x′′ ∈ F \ {x},

79



which excludes ς∞ = δ.
We also exclude ς∞ ∈ (0, δ) because it would give

ˆ
B 3

2
ς∞

(β∞)

fndVg ≥ δ
ˆ

Σ\B ς∞
2

(β∞)

fndVg ≥ δ.

which is a contradictions since F ∩
(
A ς∞

2 , 32 ς∞
(β∞)

)
= ∅.

Finally, we exclude β∞ 6= x because we would get the following contradiction:
ˆ
Bδ(β∞)

fndVg ≥ δ.

The number τ in the proof of Lemma 3.27 will be chosen later in Section 3.6 in such a way that it
verifies some good properties when evaluated on the test functions introduced in Section 3.3.

The main result from this section is the following: we will prove that if both β1 = β2 and ς1 = ς2,
then Jρ(u) is bounded from below for a largest range of ρ.

Theorem 3.28.
Let δ, ψ be as in Lemma 3.27 and define, for u ∈ H1(Σ)2,

β1(u) = βΣρ1,α1
(f1,u), ς1(u) = ςΣρ1,α1

(f2,u),

β2(u) = βΣρ2,α2
(f2,u), ς2(u) = ςΣρ2,α2

(f2,u).

There exists L� 0 such that if{
β1(u) = β2(u) = pm with ρ1, ρ2 < 4π(2 + α1m + α2m)
ς1(u) = ς2(u)

,

then Jρ(u) ≥ −L.

A first piece of information can be deduced from the macroscopic improved inequalities. In par-
ticular, if the scale of concentration is not too small, Lemma 3.23 gives an upper bound with few
difficulties.

Corollary 3.29. Let βi(u), ςi(u) be as in Theorem 3.28.
Then for any δ′ > 0 there exists Lδ′ such that if ςi(u) ≥ δ′ for both i = 1, 2, then Jρ(u) ≥ −Lδ′ .

Proof.
Assume first ς1(u) = δ: from the statement of Lemma 3.29, we get one of the following:

•
ˆ

Σ\
⋃M
p=1 Bδ(pm)

f1,udVg ≥
δ

2
,

•
ˆ
Bδ(pm)

f1,udVg ≥
δ

2M
for some pm 6∈ Σρ1,α1

,

•
ˆ
Bδ(p′m)

f1,udVg ≥ δ,
ˆ
Bδ(pm′′ )

f1,udVg ≥ δ for some m′ 6= m′′.

Depending on which possibility occurs, define respectively

• Ω11 := Σ \
M⋃
p=1

Bδ(pm),
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• Ω11 := Bδ(pm),

• Ω11 := Bδ(pm′), Ω12 := Bδ(pm′′).

It is easy to verify that such sets satisfy the hypotheses of Lemma 3.23, up to eventually redefining

the map ψ with a smaller δ ≤ minm6=m′ d(pm, pm′)

4
. Notice that Lemma 3.23 still holds under

the assumptions of Theorem 3.5; all singular points are allowed ({pm1
, . . . , pmiJi} ⊂ {p1, . . . , pM})

but the best constants are multiplied by Ki +

Ji∑
j=1

(
1− α−imij

)
, since positive singularities do not

affect Moser-Trudinger inequality (3.1) In the first case, we have J1 = 0,K1 = 1, in the second
case either J1 = 0,K1 = 1 or J1 = 1,K1 = 0 but ρ < 4π(1 + α1m), and in the third case we have
J1 = 2,K1 = 0.

If δ′ ≤ ς1(u) < δ, then

ˆ
Σ\Bδ′ (β1(u))

f1,udVg ≥ δ, so we have one between:

•
ˆ

Σ\
⋃M
m=1 Bδ(x)

f1,udVg ≥
δ

2

•
ˆ
Bδ(β1(u))

f1,udVg ≥ δ,
ˆ
Bδ(pm)

f1,udVg ≥
δ

2M
for some pm 6= β1(u).

•
ˆ
Aδ′,δ(β1(u))

f1,udVg.

Depending on which is the case, define:

• Ω11 := Σ \
M⋃
m=1

Bδ(pm).

• Ω11 := Bδ(u)(β1(u)), Ω12 := Bδ(pm).

• Ω11 := Aδ′,δ(β1(u))

Repeat the same argument for u2 to get similarly Ω21, and possibly Ω22. Now apply Lemma 3.23
and you will get Jρ(u) ≥ −Lδ′ .

To prove Theorem 3.28 we will study the behavior of u around a small neighborhood of the center
of mass β, we will need a localized version of the Moser-Trudinger inequality.
It can be deduced by the standard Moser-Trudinger inequality by arguing via cut-off and Fourier
decomposition, very similarly to the proof of Lemma 3.23.
We will give a version holding on the Euclidean unit disk, since we will use Theorem 1.18 which
holds in a Euclidean setting.

Lemma 3.30.
For any ε > 0, α1, α2 ∈ (−1, 0] there exists C = Cε such that for any u ∈ H1(B1(0))2

4π

2∑
i=1

(1 + αi)

log

ˆ
B 1

2
(0)

|x|2αieui(x)dx−
 
B1(0)

ui(x)dx

 ≤ (1 + ε)

ˆ
B1(0)

Q(u(x))dx+ C, (3.50)

4π(1 + α1)

log

ˆ
B 1

8
(0)

|x|2α1eu1(x)dx−
 
B1(0)

u1(x)dx

+ 2π

log

ˆ
A 1

4
,1

(0)

eu2(x)dx−
 
B1(0)

u2(x)dx


≤ (1 + ε)

ˆ
B

Q(u(x))dx+ C. (3.51)
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Proof.
Consider a closed surface Σ in which B1(0) is smoothly embedded and a cut-off function χ defined
on Σ satisfying

0 ≤ χ ≤ 1, χ|B 1
2

(0) ≡ 1, χ|Σ\B1(0) ≡ 0, |∇χ| ≤ C.

We split ui similarly as the proof of Lemma 3.23, but using truncations in Fourier modes on

H
1
(B1(0)): we take an orthonormal frame {ϕn}∞n=1 of eigenfunctions for −∆ on H

1
(B1(0)) with a

non-decreasing sequence of positive eigenvalues {λn}∞n=1. Writing ui =

ˆ
B1(0)

ui(x)dx+

∞∑
n=1

uni ϕ
n,

we set vi =

N∑
n=1

uni ϕ
n for N := max

{
n ∈ N : λn <

C

ε

}
. Such a choice gives

ˆ
B1(0)

|wi(x)|dx ≤ ε
ˆ
B1(0)

Q(u(x))dx+ C, ‖vi‖L∞(B1(0)) ≤ ε
ˆ
B1(0)

Q(u(x))dx+ C, (3.52)

ˆ
Σ

Q(χw)dVg ≤ (1 + ε)

ˆ
B1(0)

Q(u(x))dx+ C.

Therefore, by arguing as in the proof of Lemma 3.23,

2∑
i=1

(1 + αi) log

ˆ
B 1

2
(0)

|x|2αieui(x)dx−
 
B1(0)

ui(x)dx


≤

2∑
i=1

(
(1 + αi) log

ˆ
Σ

d(·, 0)2αieχwidVg + ‖vi‖
L∞

(
B 1

2
(0)

)
)

+ C

≤
2∑
i=1

(
(1 + αi)

ˆ
Σ

χwidVg +
1

4π

ˆ
Σ

Q(χw)dVg + ε

ˆ
B1(0)

Q(u(x))dx

)
+ C

≤ 1 + ε′

4π

ˆ
B1(0)

Q(u(x))dx+ C,

which proves the first inequality.

For the second inequality, we consider two similar cut-off on B 1
8
(0) and A 1

4 ,1
(0), respectively:

0 ≤ χ′ ≤ 1, χ′|B 1
8

(0) ≡ 1, χ′|Σ\B 3
16

(0) ≡ 0 |∇χ′| ≤ C,

0 ≤ χ′′ ≤ 1, χ′′|A 1
4
,1

(0) ≡ 1, χ′′|Σ\A 3
16
,2

(0) ≡ 0 |∇χ′′| ≤ C.

We then argue as before, writing u1 −
 
B 3

16
(0)

u1(x)dx = v1 + w1 and u2 −
 
A 3

16
,1

(0)

u2(x)dx =

v2+w2, with v1, v2 obtained via Fourier decomposition of −∆u on H
1
(
B 3

16
(0)
)

and H
1
(
A 3

16 ,1
(0)
)

,

respectively. In such a way, v1 and w1 can be estimated by means of ε

ˆ
B1(0)

|∇u1|2 as in (3.52).

For the terms involving u1, we suffice to apply to χ′w1 a scalar inequalities, much like in (3.40):

(1 + α1) log

ˆ
B 1

8
(0)

|x|2α1eu1(x)dx−
 
B 3

16
(0)

u1(x)dx

≤ (1 + α1) log

ˆ
Σ

d(·, 0)2α1eχ
′w1dVg + ‖v1‖

L∞
(
B 3

16
(0)

) + C

≤ (1 + α1)

ˆ
Σ

χ′w1dVg +
1

16π

ˆ
Σ

|∇(χ′w1)|2dVg + ε

ˆ
B 3

16
(0)

Q(u(x))dx+ C
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≤ 1

16π

ˆ
B 3

16
(0)

|∇u1(x)|2dx+ ε

ˆ
B 3

16
(0)

Q(u(x))dx+ C

≤ 1 + ε′

4π

ˆ
B 3

16
(0)

Q(u(x))dx+ C. (3.53)

As for u2, we want to localize the inequality (1.7).
Therefore, we study u2 only on B1(0) and we apply (1.7) to (χ′′w2)|B1(0):

log

ˆ
A 1

4
,1

(0)

eu2(x)dx−
 
A 3

16
,1

(0)

u2(x)dx

log

ˆ
B1(0)

eχ
′′(x)w2(x)dx+ ‖v2‖

L∞
(
A 3

16
,1

(0)

)

≤
ˆ
B1(0)

χ′′(x)w2(x)dx+
1

8π

ˆ
B1(0)

|∇(χ′′(x)w2(x))|2dx+ C

≤ 1

8π

ˆ
A 3

16
,1

(0)

|∇u(x)|2dx+ ε

ˆ
A 3

16
,1

(0)

Q(u(x))dx+ C

≤ 1 + ε′

4π

ˆ
A 3

16
,1

(0)

Q(u(x))dx+ C. (3.54)

The conclusion follows by summing (3.53) and (3.54) and by applying Lemma 1.19 to replace the
two averages with the ones taken on B1(0).

The proof of Theorem 3.28 is based on the following two lemmas, inspired by [61].
Basically, we assume u1 and u2 to have the same center and scale of concentration and we provide
local estimates in a ball which is roughly centered at the center of mass and whose radius is roughly
the same as the scale of concentration. Inner estimates use a dilation argument, outer estimates
use a Kelvin transform.
With respect to the above-cited paper, we also have to consider concentration around the boundary
of the ball, hence we will combine those arguments with Theorem 1.18 and Lemma 3.30.

Lemma 3.31.
For any ε > 0, α1, α2 ∈ (−1, 0] there exists C = Cε such that for any p ∈ Σ, s > 0 small enough
and u ∈ H1(Σ)2 one has

4π

2∑
i=1

(1 + αi)

(
log

ˆ
B s

2
(p)

d(·, p)2αieuidVg −
 
Bs(p)

uidVg

)
+ 8π

(
(1 + α1)2 + (1 + α2)2

)
log s

≤ (1 + ε)

ˆ
Bs(p)

Q(u)dVg + C, (3.55)

4π(1 + α1)

(
log

ˆ
B s

8
(p)

d(·, p)2α1eu1dVg −
 
Bs(p)

u1dVg

)

+ 2πmin{1, 2 + α1 + α2}

(
log

ˆ
A s

4
,s(p)

d(·, p)2α2eu2dVg −
 
Bs(p)

u2dVg

)
+ 4π

(
2(1 + α1)2 + min{1, 2 + α1 + α2}(1 + α2)

)
log s

≤ (1 + ε)

ˆ
Bs(p)

Q(u)dVg + C, (3.56)

2π

2∑
i=1

min{1, 2 + α1 + α2}

(
log

ˆ
A s

2
,s(p)

d(·, p)2αieuidVg −
 
Bs(p)

uidVg

)
+ 4πmin

{
2 + α1 + α2, (2 + α1 + α2)2

}
log s
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≤ (1 + ε)

ˆ
Bs(p)

Q(u)dVg + C. (3.57)

The last statement holds true if Bs(p) is replaced by Ωs simply connected belonging to Aδs (see
(1.8)) and such that B( 1

2 +δ)s(p) ⊂ Ωs ⊂ B s
δ
(p) for some δ > 0, with C replaced with some Cδ > 0.

Proof.
By assuming s small enough, we can suppose the metric to be flat on Bs(p), up to negligible
remainder terms.
Therefore, we will assume to work on a Euclidean ball centered at the origin: we will indicate such
balls simply as Bs, omitting their center, and we will use a similar convention for annuli. Moreover,
we will write |x| for d(x, p).

Consider the dilation vi(z) = ui(sz) for z ∈ B1. It verifies, for r ∈
{

1

8
,

1

4
,

1

2

}
ˆ
Br

|z|2αievi(z)dz = s−2−2αi

ˆ
Brs

|x|2αieui(x)dx,

ˆ
Ar,1

|z|2αievi(z)dz = s−2−2αi

ˆ
Ars,s

|x|2αieui(x)dx.

ˆ
B1

Q(v(z))dz =

ˆ
Bs

Q(u(x))dx,

 
B1

v(z)dz =

 
Bs

u(x)dx,

To get (3.55), it suffices to apply (3.50) to v = (v1, v2):

4π

2∑
i=1

(1 + αi)

(
log

ˆ
B s

2

|x|2αieui(x)dx−
 
Bs

ui(x)dx+ 2(1 + αi) log s

)

≤ 4π

2∑
i=1

(1 + αi)

log

ˆ
B 1

2

|z|2αievi(z)dz −
 
B1

vi(z)dz


≤ (1 + ε)

ˆ
B1

Q(v(z))dz + C

= (1 + ε)

ˆ
Bs

Q(u(x))dx+ C.

For (3.56), one has to use (3.51) on v, and the elementary fact that
1

C
≤ |z|2α2 ≤ C on A 1

4 ,1
:

4π(1 + α1)

(
log

ˆ
B s

8

|x|2α1eu1(x)dx−
 
Bs

u1(x)dx+ 2(1 + α1) log s

)

+ 2πmin{1, 2 + α1 + α2}

(
log

ˆ
A s

4
,s

|x|2α2eu2(x)dVg(x)−
 
Bs

u2(x)dx+ 2(1 + α2) log s

)

≤ 4π(1 + α1)

log

ˆ
B 1

8

|z|2α1ev1(z)dz −
 
B1

v1(z)dx


+ 2πmin{1, 2 + α1 + α2}

log

ˆ
A 1

4
,1

ev2(z)dVg(z)−
 
B1

v2(z)dz

+ C

≤ (1 + ε)

ˆ
B1

Q(v(z))dz + C

= (1 + ε)

ˆ
Bs

Q(u(x))dx+ C.
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Finally, (3.57) follows by Theorem 1.18:

2π

2∑
i=1

min{1, 2 + α1 + α2}

(
log

ˆ
A s

2
,s

|x|2αieui(x)dx−
 
Bs

ui(x)dx+ 2(1 + αi) log s

)

≤ 2π

2∑
i=1

min{1, 2 + α1 + α2}

log

ˆ
A 1

2
,1

evi(z)dz −
 
B1

vi(z)dz

+ C

≤ (1 + ε)

ˆ
B1

Q(v(z))dz + C

= (1 + ε)

ˆ
Bs

Q(u(x))dx+ C.

The final remark holds true because of the final remarks in Lemmas 1.18 and 1.19.

Lemma 3.32.

For any ε > 0, α1, α2 ∈ (−1, 0], d > 0 small there exists C = Cε such that for any p ∈ Σ, s ∈
(

0,
d

8

)
and u ∈ H1(Σ)2 with ui|∂Bd(p) ≡ 0 one has

4π

2∑
i=1

(1 + α3−i) log

ˆ
A2s,d(p)

d(·, p)2αieuidVg + 4π(1 + ε)

2∑
i=1

(1 + αi)

 
Bs(p)

uidVg

− 8π(1 + ε)
(
(1 + α1)2 + (1 + α2)2

)
log s

≤
ˆ
As,d(p)

Q(u)dVg + ε

ˆ
Bd(p)

Q(u)dVg + C, (3.58)

4π(1 + α2) log

ˆ
A8s,d(p)

d(·, p)2α1eu1dVg + 4π(1 + ε)(1 + α1)

 
Bs(p)

u1dVg

+ 2πmin{1, 2 + α1 + α2}

(
log

ˆ
As,4s(p)

d(·, p)2α2eu2dVg + (1 + ε)

 
Bs(p)

u2dVg

)
− 4π(1 + ε)

(
2(1 + α1)2 + min{1, 2 + α1 + α2}(1 + α2)

)
log s

≤
ˆ
As,d(p)

Q(u)dVg + ε

ˆ
Bd(p)

Q(u)dVg + C, (3.59)

2π

2∑
i=1

min{1, 2 + α1 + α2}

(
log

ˆ
As,2s(p)

d(·, p)2αieuidVg + (1 + ε)

 
Bs(p)

uidVg

)
− 4π(1 + ε) min

{
2 + α1 + α2, (2 + α1 + α2)2

}
log s (3.60)

≤
ˆ
As,d(p)

Q(u)dVg + ε

ˆ
Bd(p)

Q(u)dVg + C.

The last statement holds true if Bs(p) is replaced by a simply connected domain Ωs belonging to
Aδs and such that Bδs(p) ⊂ Ωs ⊂ B(2+ 1

δ )s
(p) for some δ > 0, with the constant C is replaced with

some Cδ > 0.

Proof.
Just like Lemma 3.32, we will work with flat Euclidean balls, whose centers will be omitted. More-

over, it will not be restrictive to assume

 
Bd

ui(x)dx = 0 for both i’s.

Define, for z ∈ Bd and c1, c2 ≤ −2(2 + α1 + α2),

vi(z) :=

 (2ci − c3−i) log s if z ∈ Bs
ui

(
ds

z

|z|2

)
+ (2ci − c3−i) log |z| if z ∈ As,d
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By a change of variable, we find, for r ∈
{

1

8
,

1

4
,

1

2

}
,

ˆ
As,rd

|z|−4−2αi−2ci+c3−ievi(z)dz =

ˆ
Bs,rd

|z|−4−2αie
ui
(
ds z
|z|2

)
dz = (ds)−2−2αi

ˆ
A s
r
,d

|x|2αieui(x)dx

ˆ
Ard,d

evi(z)dz ∼
ˆ
Ard,d

|z|−4−2αi−2ci+c3−ievi(z)dz = (ds)−2−2αi

ˆ
As, s

r

|x|2αieui(x)dx.

Moreover, by Lemma 1.19, we get∣∣∣∣ 
Bs

ui(x)dx−
 
Bd

vi(z)dz

∣∣∣∣
≤

∣∣∣∣ 
Bs

ui(x)dx−
 
∂Bs

ui(x)dx

∣∣∣∣+

∣∣∣∣ 
∂Bs

ui(x)dx−
 
∂Bd

vi(z)dz

∣∣∣∣+

∣∣∣∣ 
Bd

vi(z)dz −
 
Bd

vi(z)dz

∣∣∣∣
≤ C

√ˆ
Bs

|∇u(x)|2dx+ |(2ci − c3−i) log d|+ C

√ˆ
Bd

|∇v(z)|2dz ≤

≤ ε′
ˆ
Bs

Q(u(x))dx+ ε′
ˆ
Bd

Q(v(z))dz + Cd.

Concerning the Dirichlet integral, we can write
ˆ
Bd

∇vi(z) · ∇vj(z)dz

=

ˆ
As,d

(
d2s2

|z|4
∇ui

(
ds

z

|z|2

)
· ∇uj

(
ds

z

|z|2

)
− (2ci − c3−i)ds

z

|z|2
· ∇uj

(
ds

z

|z|2

)
− (2cj − c3−j)ds

z

|z|2
· ∇ui

(
ds

z

|z|2

)
+

(2ci − c3−i)(2cj − c3−j)
|z|2

)
dz

=

ˆ
As,d

∇ui(x) · ∇uj(x)dx− (2ci − c3−i)
ˆ
As,d

x

|x|2
· ∇uj(x)dx

− (2cj − c3−j)
ˆ
As,d

x

|x|2
· ∇ui(x)dx− 2π(2ci − c3−i)(2cj − c3−j) log s

+ 2π(2ci − c3−i)(2cj − c3−j) log d

=

ˆ
As,d

∇ui(x) · ∇uj(x)dx+ 2π(2ci − c3−i)
 
∂Bs

uj(x)dx+ 2π(2cj − c3−j)
 
∂Bs

ui(x)dx

− 2π(2ci − c3−i)(2cj − c3−j) log s+ Cd,

therefore, since v has constant components in Bs,

ˆ
Bd

Q(v(z))dz =

ˆ
As,d

Q(u(x))dx+ 2π

2∑
i=1

ci

 
∂Bs

ui(x)dx− 2π
(
c21 − c1c2 + c22

)
log s+ C.

The assertion of the Lemma follows by applying Lemma 3.30 on Bd to v with different choices of
c1, c2.
If we take c1 = c2 = −2(2 + α1 + α2), then we get

4π

2∑
i=1

(1 + α3−i) log

ˆ
A2s,d

|x|2αieui(x)dx

≤ 4π

2∑
i=1

(1 + α3−i)

log

ˆ
B d

2

|z|2α3−ievi(z)dz + 2(1 + αi) log s

+ C

≤ (1 + ε′)

ˆ
Bd

Q(v(z))dz + 4π

2∑
i=1

(1 + α3−i)

 
Bd

vi(z)dz + 16π(1 + α1)(1 + α2) log s+ C
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≤ (1 + ε′′)

ˆ
As,d

Q(u(x))dx+ ε′′
ˆ
Bd

Q(u(x))dx

+ 4π

2∑
i=1

(1 + α3−i)

 
Bs

ui(x)dx− 4π(1 + ε′′)(2 + α1 + α2)

2∑
i=2

 
∂Bs

ui(x)dx

+ 8π
(
2(1 + α1)(1 + α2)− (1 + ε′′)(2 + α1 + α2)2

)
log s+ C

≤ (1 + ε′′′)

ˆ
Bs

Q(u(x))dx+ ε′′′
ˆ
Bd

Q(u(x))dx

+ 4π

2∑
i=1

((1 + α3−i)− (1 + ε′′′)(2 + α1 + α2))

 
Bs

ui(x)dx

+ 8π
(
2(1 + α1)(1 + α2)− (1 + ε′′′)(2 + α1 + α2)2

)
log s+ C,

that is, re-naming ε properly, (3.58).

Choosing c1 = −2(2 + α1 + α2) and c2 = −2 min{1, 2 + α1 + α2} =: −2m, we get

4π(1 + α2) log

ˆ
A8s,d

|x|2α1eu1(x)dx+ 2πm log

ˆ
As,4s

|x|2α2eu2(x)dx

≤ 4π(1 + α2) log

ˆ
B d

8

|z|max{2+2α1+4α2,2α2}ev1(z)dz + 2πm log

ˆ
A d

4
,d

ev2(z)dz

+ 4π(2(1 + α1)(1 + α2) +m(1 + α2)) log s+ C

≤ (1 + ε′)

ˆ
Bd

Q(v(z))dz + 4π(1 + α2)

 
Bd

v1(z)dz + 2πm

 
Bd

v2(z)dz

+ 4π(1 + α2)(2(1 + α1) +m) log s+ C

≤ (1 + ε′′)

ˆ
As,d

Q(u(x))dx+ ε′′
ˆ
Bd

Q(u(x))dx+ 4π(1 + α2)

 
Bs

u1(x)dx+ 2πm

 
Bs

u2(x)dx

− 4π(1 + ε′′)(2 + α1 + α2)

 
∂Bs

u1(x)dx− 4π(1 + ε′′)m

 
∂Bs

u2(x)dx

+ 4π
(
(1 + α2)(2(1 + α1) +m)− 2(1 + ε′′)

(
(2 + α1 + α2)2 −m(2 + α1 + α2) +m2

))
log s+ C

≤ (1 + ε′′′)

ˆ
As,d

Q(u(x))dx+ ε′′′
ˆ
Bd

Q(u(x))dx

+ 4π((1 + α2)− (1 + ε′′′)(2 + α1 + α2))

 
Bs

u1(x)dx− 2π(1 + 2ε′′′)m

 
Bs

u2(x)dx

+ 4π((1 + α2)(2(1 + α1) +m)− 2(1 + ε′′′)((1 + α1)(2 + α1 + α2) + (1 + α2)m)) log s+ C,

namely (3.59).

Finally, taking c1 = c2 = −2m one finds (3.60):

2π

2∑
i=1

min{1, 2 + α1 + α2} log

ˆ
As,2s

|x|2αieui(x)dx

≤ 2π

2∑
i=1

m

log

ˆ
A d

2
,d

evi(z)dz + 2(1 + αi) log s

+ C

≤ (1 + ε′)

ˆ
Bd

Q(v(z))dz + 2πm

2∑
i=1

 
Bd

vi(z)dz + 4πm(2 + α1 + α2) log s+ C

≤ (1 + ε′′)

ˆ
Bd

Q(u(x))dx+ ε′′
ˆ
Bd

Q(u(x))dx+ 2πm

2∑
i=1

 
Bs

ui(x)dx

− 4π(1 + ε′′)m

2∑
i=1

 
∂Bs

ui(x)dx+ 4π
(
m(2 + α1 + α2)− 2(1 + ε′′)m2

)
log s+ C
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≤ (1 + ε′′)

ˆ
Bd

Q(u(x))dx+ ε′′′
ˆ
Bd

Q(u(x))dx− 2π(1 + 2ε′′′)m

2∑
i=1

 
Bs

ui(x)dx

− 4π(1 + 2ε′′′)m(2 + α1 + α2) log s+ C.

The final remark holds true, like in Lemma 3.31, because of the final remarks in Lemmas 1.18 and
1.19.
In particular, when integrating by parts, one getsˆ

Bδ\Ωs

x

|x|2
· ∇ui(x)dx =

ˆ
∂Ωs

ui(x)
x

|x|2
· ν(x)︸ ︷︷ ︸

=:f(x)

dx,

with

ˆ
∂Ωs

f(x)dx = 2π and |f(x)| ≤ C

s
≤ C

|Ωs|
, therefore, by the Poincaré-Wirtinger inequality∣∣∣∣ˆ

∂Ωs

ui(x)f(x)dx− 2π

ˆ
∂Ωs

ui(y)dy

∣∣∣∣
=

∣∣∣∣ˆ
∂Ωs

f(x)

(
ui(x)−

 
∂Ωs

ui(y)dy

)
dy

∣∣∣∣
≤ C

 
∂Ωs

∣∣∣∣ui(x)−
 
∂Ωs

u(y)dy

∣∣∣∣dx
≤ C

ˆ
Ωs

|∇ui(x)|2dx

≤ ε

ˆ
Ωs

Q(u(x))dx+ Cε,

and

∣∣∣∣ 
∂Ωs

ui(x)dx−
 
∂Bs

ui(x)dx

∣∣∣∣ ≤ ε ˆ
Ωs

Q(u(x))dx+ Cε by Lemma 1.19.

To prove Theorem 3.28 we also need the following lemma.
It basically allows us to divide a disk in two domains in such a way that the integrals of two given
functions are both split exactly in two.

Lemma 3.33.
Consider B := B1(0) ⊂ R2 and f1, f2 ∈ L1(B) such that fi > 0 a.e. x ∈ B for both i = 1, 2 andˆ
B

f1(x)dx =

ˆ
B

f2(x)dx = 1.

Then, there exists θ ∈ S1 and a ∈ (−1, 1) such thatˆ
{x∈B: x·θ<a}

f1(x)dx =

ˆ
{x∈B: x·θ>a}

f2(x)dx =
1

2

Proof.
Define, for (θ, a) ∈ S1 × (−1, 1),

I1(θ, a) :=

ˆ
{x∈B: x·θ<a1(θ)}

f1(x)dx.

For any given θ there exists a unique a1(θ), smoothly depending on θ such that I1(θ, a1(θ)) =
1

2
.

Define similarly I2(θ, a) and a2(θ).
Let us now show the existence of θ such that a1(θ) = a2(θ) := a, hence the proof of the Lemma
will follow. Suppose, by contradiction, that a1(θ) < a2(θ) for any θ. Then, by definition, we get

a1(−θ) = −a1(θ) > −a2(θ) = a2(−θ),

which is a contradiction. One similarly excludes the case a1(θ) > a2(θ).
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Proof of Theorem 3.28. From Lemma 3.27 we have β ∈ Σρ1,α1
∩ Σρ1,α2

, ς ∈ (0, δ) such that

ˆ
Bς(β)

f1,udVg ≥ δ,
ˆ

Σ\Bς(β)

f1,udVg ≥ δ,

ˆ
Bς(β)

f2,udVg ≥ δ,
ˆ

Σ\Bς(β)

f2,udVg ≥ δ.

Moreover, from Corollary 3.29, we will suffice to prove the Theorem for ς ≤ 2−
6
ε−4δ.

We have to consider several cases, roughly following the proof of Proposition 3.2 in [61].

Case 1 :

ˆ
Aς,δ′ (β)

fi,udVg ≥
δ

2
for both i = 1, 2, where δ′ := 2−

3
ε δ.

As a first thing, we modify u so that it vanishes outside Bδ(β): we take n ∈
[
1,

2

ε

]
such that

ˆ
A2n−1δ′,2n+1δ′ (β)

Q(u)dVg ≤ ε
ˆ

Σ

Q(u)dVg

and we define u′i as the solution of
−∆u′i = 0 in A2n−1δ′,2n+1δ′(β)

u′i = ui −
 
B2nδ′ (β)

uidVg on ∂B2nδ′(β)

u′i = 0 on ∂B2n+1δ′(β)

u′i verifies, by Lemma 1.20,

ˆ
A2n−1δ′,2n+1δ′ (β)

Q(u′)dVg ≤ C
ˆ
A2n−1δ′,2n+1δ′ (β)

Q(u)dVg ≤ Cε
ˆ

Σ

Q(u)dVg.

We obtained a function for which Lemma 3.32 can be applied on Bδ(β). This was done at a
little price, since the Dirichlet integral only increased by ε; moreover, u′ and u coincide (up
to an additive constant) on Bδ′(β), which is where both fi,u’s attain most of their mass.

Case 1.a :

ˆ
B ς

4
(β)

fi,udVg ≥
δ

2
for both i = 1, 2.

We apply Lemma 3.31 to u on B ς
2 (β), with αi := αim for i = 1, 2. From (3.55) we get

4π

2∑
i=1

(1 + αim)

(
log

ˆ
Σ

h̃ie
uidVg −

 
B ς

2
(β)

uidVg

)
+ 8π

(
(1 + α1m)2 + (1 + α2m)2

)
log

ς

2

≤ 4π

2∑
i=1

(1 + αim)

(
log

ˆ
B ς

4
(β)

h̃ie
uidVg −

 
B ς

2
(β)

uidVg

)

+ 8π
(
(1 + α1m)2 + (1 + α2m)2

)
log

ς

2
+ 4π(2 + α1m + α2m) log

2

δ

≤ 4π

2∑
i=1

(1 + αim)

(
log

ˆ
B ς

4
(β)

d(·, β)2αimeuidVg −
 
B ς

2
(β)

uidVg

)
+ 8π

(
(1 + α1m)2 + (1 + α2m)2

)
log

ς

2
+ C

≤ (1 + ε)

ˆ
B ς

2
(β)

Q(u)dVg + C. (3.61)
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We then apply Lemma 3.32 to u′ on Bδ(β) \B ς
2
(β).

4π

2∑
i=1

(1 + α3−i,m) log

ˆ
Σ

h̃ie
uidVg + 4π(1 + ε)

2∑
i=1

(1 + αim)

 
B ς

2
(β)

uidVg

− 8π(1 + ε)
(
(1 + α1m)2 + (1 + α2m)2

)
log

ς

2

≤ 4π

2∑
i=1

(1 + α3−i,m) log

ˆ
Aς,δ′ (β)

h̃ie
u′idVg + 4π(1 + ε)

2∑
i=1

(1 + αim)

 
B ς

2
(β)

u′idVg

− 8π(1 + ε)
(
(1 + α1m)2 + (1 + α2m)2

)
log

ς

2
+ 4π(2 + α1m + α2m) log

2

δ

≤ 4π

2∑
i=1

(1 + α3−i,m) log

ˆ
Aς,δ′ (β)

d(·, β)2αimeu
′
idVg + 4π(1 + ε)

2∑
i=1

(1 + αim)

 
B ς

2
(β)

u′idVg

− 8π(1 + ε)
(
(1 + α1m)2 + (1 + α2m)2

)
log

ς

2
+ C

≤
ˆ
A ς

2
,δ′ (β)

Q(u′)dVg + ε

ˆ
Bδ′ (β)

Q(u′)dVg + C

≤
ˆ
A ς

2
,δ′ (β)

Q(u)dVg + Cε

ˆ
Σ

Q(u)dVg + C. (3.62)

By summing (3.61) and (3.62) and re-naming properly ε we get Jρε,ρε(u) ≥ −L for
ρε := 4π(2 + α1m + α2m)− ε, which means, being ε arbitrary, Jρ(u) ≥ −L.

Case 1.b :

ˆ
A4ς,δ′ (β)

fi,udVg ≥
δ

4
for both i = 1, 2.

The result follows arguing as before, still applying Lemmas 3.31, 3.32, but this time on
B2ς(β) and A2ς,δ′(β).

Case 1.c : ˆ
B ς

8
(β)

f1,udVg ≥
δ

2
,

ˆ
A8ς,δ′ (β)

f1,udVg ≥
δ

4
,

ˆ
A ς

4
,ς(β)

f2,udVg ≥
δ

2
,

ˆ
Aς,4ς(β)

f2,udVg ≥
δ

4
.

We still apply Lemmas 3.31 and 3.32, respectively on Bς(β) and Aς,δ′(β), but this time
we will exploit (3.56) and (3.59): we get

4π(1 + α1m)

(
log

ˆ
Σ

h̃1e
u1dVg −

 
Bς(β)

u1dVg

)

+ 2πmin{1, 2 + α1m + α2m}

(
log

ˆ
Σ

h̃2e
u2dVg −

 
Bς(β)

u2dVg

)
+ 4π

(
2(1 + α1m)2 + min{1, 2 + α1m + α2m}(1 + α2m)

)
log ς + C

≤ 4π(1 + α1m)

(
log

ˆ
B ς

8
(β)

d(·, β)2α1meu1dVg −
 
Bς(β)

u1dVg

)

+ 2πmin{1, 2 + α1m + α2m}

(
log

ˆ
A ς

4
,ς(β)

d(·, β)2α2meu2dVg −
 
Bς(β)

u2dVg

)
+ 4π

(
2(1 + α1m)2 + min{1, 2 + α1m + α2m}(1 + α2m)

)
log ς + C

≤ (1 + ε)

ˆ
Bς(β)

Q(u)dVg + C, (3.63)
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and

4π(1 + α2m) log

ˆ
Σ

h̃1e
u1dVg + 4π(1 + ε)(1 + α1m)

 
Bς(p)

u1dVg

+ 2πmin{1, 2 + α1m + α2m}

(
log

ˆ
Σ

h̃2e
u2dVg + (1 + ε)

 
Bς(p)

u1dVg

)
− 4π(1 + ε)

(
2(1 + α1m)2 + min{1, 2 + α1m + α2m}(1 + α2m)

)
log ς

≤ 4π(1 + α2m) log

ˆ
A8ς,d(p)

d(·, p)2α1meu
′
1dVg + 4π(1 + ε)(1 + α1m)

 
Bς(p)

u′1dVg

+ 2πmin{1, 2 + α1m + α2m}

(
log

ˆ
Aς,4ς(p)

d(·, p)2α2meu
′
2dVg + (1 + ε)

 
Bς(p)

u′2dVg

)
− 4π(1 + ε)

(
2(1 + α1m)2 + min{1, 2 + α1m + α2m}(1 + α2m)

)
log ς + C

≤
ˆ
Aς,δ′ (β)

Q(u′)dVg + ε

ˆ
Bδ′ (β)

Q(u′)dVg + C,

≤
ˆ
Aς,δ′ (β)

Q(u)dVg + Cε

ˆ
Σ

Q(u)dVg + C, (3.64)

As before, Jρ(u) ≥ −L follows from (3.63), (3.64) and a suitable redefinition of ε.

Case 1.d : ˆ
A ς

4
,ς(β)

f1,udVg ≥
δ

2
,

ˆ
Aς,4ς(β)

f1,udVg ≥
δ

4
,

ˆ
B ς

8
(β)

f2,udVg ≥
δ

2
,

ˆ
A8ς,δ′ (β)

f2,udVg ≥
δ

4
.

Here we argue as in case 1.b, just exchanging the roles of u1 and u2.

Case 1.e :

ˆ
A ς

8
,8ς(β)

fi,udVg ≥
δ

4
for both i = 1, 2.

We would like to apply (3.57) and (3.60) and argue as in the previous cases. Anyway,
we first need to define Ως such that both components have some mass in both sets.

We coverA ς
8 ,8ς

(β) with balls of radius
ς

64
; by compactness, we haveA ς

8 ,8ς
(β) =

L⋃
l=1

B ς
64

(xl),

with L not depending on ς, therefore there will be xl1 , xl2 such that

ˆ
B ς

64
(xli)

fi,udVg ≥

δ

4L
.

We will proceed differently depending whether xl1 and xl2 are close or not.

Case 1.e′ : d(xl1 , xl2) ≥ ς

16
.

We divide each of the balls B ς
64

(xl1), B ς
64

(xl2) with a segment {x : (x−xli) ·θi = ai},
with θi ∈ S1 and ai ∈

(
− ς

64
,
ς

64

)
, in such a way that

ˆ
{
x∈B ς

64
(xli),(x−xli)·θi<ai

} fi,udVg ≥
δ

8L

ˆ
{
x∈B ς

64
(xli),(x−xli)·θi>ai

} fi,udVg ≥
δ

8L
.

We can define Ως as the region of Bδ′(β) delimited by the curve defined in the
following way:

Since d
(
B ς

32
(xl1), B ς

32
(xl2)

)
≥ ς

32
, we can attach smoothly one endpoint of each

segment without intersecting the two balls. We then join the other endpoint of each
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segment winding around β.
Since B ς

64
(xl1) ⊂ A ς

16 ,9ς
(β), we can build Ως in such a way that ∂Ως ⊂ A ς

32 ,10ς(β)

and Ως ∈ Aδς (see (1.8) pictures below). Moreover, by construction,

ˆ
Bδ′ (β)\Ως

fi,udVg ≥
δ

8L

ˆ
Ως

fi,udVg ≥
δ

8L
,

hence Lemmas 3.31 and 3.32 still yield the proof.

Case 1.e′′ : d(xl1 , xl2) ≤ ς

16
.

SinceB ς
64

(xl1)∪B ς
64

(xl2) ⊂ B 5
64 ς

(xl1), we apply Lemma 3.33 to fi :=
h̃ie

ui´
B 5

64
ς(xl1) h̃ie

uidVg

to find θ ∈ S1, a ∈
(
− 5

64
ς,

5

64
ς

)
such that

ˆ{
x∈B 5

64
ς(xl1),(x−xl1)·θ<a

} fi,udVg ≥
δ

8L

ˆ{
x∈B 5

64
ς(xl1),(x−xl1)·θ>a

} fi,udVg ≥
δ

8L
.

We now join smoothly (and without intersecting the balls) the endpoints of the
segment {x : (x−xl2) · θ = a} with an arc winding around β. Then, we define Ως as
the region of Bδ′(β) delimited by the curve made by such an arc and that segment.
Since B 5

64 ς
(xl1) ⊂ A 3

64 ς,9ς
(β), as before we will have B ς

32
(β) ⊂ Ως ⊂ B10ς(β) and

Ως ∈ Aδς , and we can argue again as before because clearly

ˆ
Bδ′ (β)\Ως

fi,udVg ≥
δ

8L

ˆ
Ως

fi,udVg ≥
δ

8L
.

B ς
8
(β)

B8ς(β)

B ς
64

(xl1)

B ς
64

(xl2)

Ως

B ς
8
(β)

B8ς(β)

B ς
64

(xl1)

B ς
64

(xl2)

B 5
64ς

(xl1)

Ως

Figure 3.3: The set Ως , respectively in the cases 1.e′ and 1.e′′.

Case 2 :

ˆ
Σ\Bδ′ (β)

fi,udVg ≥
δ

2
for some i.

It will be not restrictive to assume i = 1. If we also have

ˆ
Σ\Bδ′′ (β)

f2,udVg ≥
δ

2
, with

δ′′ : 2−
3
ε δ′, then we get Jρ(u) ≥ −L by applying Lemma 3.23, as in the proof of Corollary

3.29. Therefore will will assume ˆ
Aς,δ′′ (β)

f2,udVg ≥
δ

2
.
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The idea is to combine the previous arguments with a macroscopic improved Moser-Trudinger
inequality.
As a first thing, define u′′ as the solution of

−∆u′′i = 0 in A2n−1δ′′,2n+1δ′′(β)

u′′i = ui −
 
B2nδ′′ (β)

uidVg on ∂B2nδ′′(β)

u′′i = 0 on ∂B2n+1δ′′(β)

with n ∈
[
1,

2

ε

]
such that

ˆ
A2n−1δ′′,2n+1δ′ (β)

Q(u′′)dVg ≤ C
ˆ
A2n−1δ′′,2n+1δ′′ (β)

Q(u)dVg ≤ Cε
ˆ

Σ

Q(u)dVg.

Suppose u satisfies the hypotheses of Case 1.a, that is

ˆ
Aς,δ′′ (β)

fi,udVg ≥
δ

2
for both i = 1, 2.

Then, clearly (3.61) still holds, whereas (3.62) does not because we cannot estimate the

integral of

ˆ
Σ

h̃1e
u1dVg with the same integral evaluated over Aς,δ′′ .

Anyway, by Jensen’s inequality and Lemma 1.19 we get

log

ˆ
Aς,δ′′ (β)

h̃1e
u′1dVg

≥ log

ˆ
A δ′′

2
,δ′′

(β)

h̃1e
u1dVg −

 
B2nδ′′ (β)

u1dVg

≥
 
A δ′′

2
,δ′′

(β)

u1dVg + log
∣∣∣A δ′′

2 ,δ
′′(β)

∣∣∣+

 
A δ′′

2
,δ′′

(β)

log h̃1dVg −
 
B2nδ′′ (β)

u1dVg

≥ −ε
ˆ

Σ

Q(u)dVg − C,

hence we obtain

4π(1 + α2m)

 
B2nδ′′ (β)

u1dVg + 4π(1 + α1m) log

ˆ
Σ

h̃2e
u2dVg

+ 4π(1 + ε)

2∑
i=1

(1 + αim)

 
B ς

2
(β)

uidVg − 8π(1 + ε)
(
(1 + α1m)2 + (1 + α2m)2

)
log

ς

2

≤
ˆ
A ς

2
,δ′′ (β)

Q(u)dVg + Cε

ˆ
Σ

Q(u)dVg + C. (3.65)

Now, by Jensen’s inequality and a variation of the localized Moser-Trudinger inequality (3.50),

4π

(
1 + min

m′ 6=m
α1m′

)(
log

ˆ
Σ\Bδ′ (β)

h̃1e
u1dVg −

ˆ
Σ

u1dVg

)

≤ 4π

2∑
i=1

(
1, 1 + min

m′ 6=m
αim′

)(
log

ˆ
Σ\Bδ′ (β)

h̃ie
uidVg −

ˆ
Σ

uidVg

)
+ C

≤ (1 + ε)

ˆ
Σ\B δ′

2

(β)

Q(u)dVg + C. (3.66)

By summing (3.61), (3.65) and (3.66) we get Jρ1ε,ρ2ε(u) ≥ −L, with

ρ1ε := 4πmin

{
2 + α1m + α2m, 1 + α1m + min

m′ 6=m
(1 + α1m′)

}
−ε ρ2ε := 4π(2+α1m+α2m)−ε,

therefore Jρ(u) ≥ −L.

We argue similarly if we are under the condition of Cases 1.b, 1.b, 1.d, 1.e.
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The proof is thereby concluded.

3.6 Proof of Theorems 3.2, 3.3, 3.5, 3.6

We are finally in position to prove all the theorems stated at the beginning of this chapter.
All such proofs will follow by showing that low energy sub-levels are dominated (see [40], page 528)
by the space X X ′ or X ′′ which is not contractible.

Lemma 3.34.
Let X be defined by (3.5).
Then, there exists L > 0 and two maps Φ : X ′ → J−LA2,ρ

and Ψ : J−LA2,ρ
→ X ′ such that Ψ ◦ Φ is

homotopically equivalent to IdX .

Lemma 3.35.
Let X ′ be defined by (3.10).
Then, there exists L > 0 and two maps Φ′ : X ′ → J−LA2,ρ

and Ψ′ : J−LA2,ρ
→ X ′ such that Ψ′ ◦ Φ′ is

homotopically equivalent to IdX ′ .

Lemma 3.36.
Let X ′′ be defined by (3.31).
Then, there exists L > 0 and maps

ΦB2
: X ′′ → J−LB2,ρ

, ΨB2
: J−LB2,ρ

→ X ′′, ΦG2
: X ′′ → J−LG2,ρ

, ΨG2
: J−LG2,ρ

→ X ′′

such that ΨB2 ◦ ΦB2 and ΨG2 ◦ ΦG2 are homotopically equivalent to IdX ′′ .

Proof of Theorems 3.2, 3.5, 3.6 (first part).
Suppose by contradiction that the system (9) has no solutions under the hypotheses of Theorem
3.2.
By Corollary 2.17, J−Lρ is a deformation retract of JLA2,ρ, which is contractible for large L.
Let F (ζ, s) : X × [0, 1] → X be the homotopy equivalence defined in Lemma 3.34 and let F ′ be a
homotopy equivalence between a constant map and IdJ−LA2,ρ

.

Then F ′′(ζ, s) = Ψ(F ′(Φ(ζ), s)) : X × [0, 1] → X is an equivalence between the maps Ψ ◦ Φ and
a constant and F ′′ ∗ F is an equivalence between IdX and a constant map. This means that X is
contractible, in contradiction with Corollary 3.10.
The same argument proves Theorems 3.5 and the part of 3.6 concerning existence of solutions. It
suffices to use the homotopy equivalence from Lemmas 3.35, 3.36 and the fact that X ′, X ′′ are not
contractible, by Proposition 1.25, Remark 1.29 and Theorem 3.11, respectively.

Such Lemmas give also easily the proof of multiplicity results.

Proof of Theorems 3.3, 3.6 (second part).
Under the assumptions of theorem 3.3, we can decompose each (γi)ρi,α′i in maximal strata

(γi)ρi,α′i =

Li⋃
li=1

(γ)Kli ,Mli ∪
L′i⋃
l′i=1

(γ)
K′
l′
i
,M′

l′
i .
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Take the set of initial data such that Jρ is a Morse function, which by Theorem 1.32 is a dense open
set.

By the functorial properties of the homology, then Hq (X )
Φ∗,q
↪→ Hq

(
J−Lρ

)
. Therefore, applying

Lemma 1.31 and Theorem 3.7 we get:

#Solutions of (9)

≥
+∞∑
q=0

b̃q

(
J−LA2,ρ

)

≥
+∞∑
q=0

b̃q (X )

≥
∑
l1,l2

Kl1 + |Ml1 |+
[
−χ(Σ)

2

]
|Ml1 |+

[
−χ(Σ)

2

]
Kl2 + |Ml2 |+

[
−χ(Σ)

2

]
|Ml2 |+

[
−χ(Σ)

2

]
 ,

that is the thesis of Theorem 3.3.
As for theorem 3.6, we use Proposition 1.25 and Remark 1.29:

#Solutions of (10) ≥
+∞∑
q=0

b̃q

(
J−LB2,ρ

)
≥

+∞∑
q=0

b̃q (X ′′) =

K1 +
[
−χ(Σ)

2

]
[
−χ(Σ)

2

]
K2 +

[
−χ(Σ)

2

]
[
−χ(Σ)

2

]
 ,

#Solutions of (11) ≥
+∞∑
q=0

b̃q

(
J−LG2,ρ

)
≥

+∞∑
q=0

b̃q (X ′′) =

K1 +
[
−χ(Σ)

2

]
[
−χ(Σ)

2

]
K2 +

[
−χ(Σ)

2

]
[
−χ(Σ)

2

]
 .

To prove Lemmas 3.34, 3.35, 3.36 we will need a few technical estimates.
In the case of Lemmas 3.34 and 3.36, we need to consider the distance between fi,u and the space
of (weighted) barycenters. The following Lemma gives some information in this direction.

Lemma 3.37.
Let σi, ζ,Φ

λ(ζ), βik be as in Theorem 3.12.
Then, there exists C > 0 such that, for any i = 1, 2, λ > 2, ζ ∈ X ,

1

C
H(σ1, λ(1− t)) ≤ dLip′

(
f1,Φλ(ζ),Σρ1,α′1

)
≤ CH(σ1, λ(1− t)),

1

C
H(σ2, λt) ≤ dLip′

(
f2,Φλ(ζ),Σρ2,α′2

)
≤ CH(σ2, λt),

with

H(σi, λ
′) :=

∑
xik∈Ji

tik

max{1, λ′}min
{

2, 1
1+βik

} .
Moreover, if t < 1 we have

f1,Φλ(ζ) ⇀
λ→∞

σ′1 :=
∑
x1k∈J

t′1kδx1k
,

and if t > 0 we have

f2,Φλ(ζ) ⇀
λ→∞

σ2 :=
∑
x2k∈J

t′2kδx2k
,

for some tik verifying
tik
C
≤ t′ik ≤ Ctik.
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Proof.
It clearly suffices to give the proof for i = 1 and for large λ(1− t).
For the upper bound, we will show that

dLip′
(
f1,Φλ(ζ), σ

λ
1

)
≤ C

∑
x1k∈J1

t1k

(λ(1− t))min
{

2, 1
1+β1k

}
with

σλ1 :=
∑

x1k∈J1

tλ1kδx1k
, tλ1k = t1k

´
Σ

h̃1(
1+(λ(1−t))2d(·,x1k)2(1+β1k)

)2 e−
ϕ2
2 dVg.

´
Σ
h̃1eϕ1−ϕ2

2 dVg
.

From Lemma 3.15, given any φ ∈ Lip(Σ) with ‖φ‖Lip(Σ) ≤ 1 we find∣∣∣∣ˆ
Σ

(
f1,Φλ(ζ) − σλ1

)
φdVg

∣∣∣∣
=

1´
Σ
h̃1eϕ1−ϕ2

2 dVg

∣∣∣∣ˆ
Σ

(
h̃1e

ϕ1−ϕ2
2 −

ˆ
Σ

h̃1e
ϕ1−ϕ2

2 dVgσ
λ
1

)
φdVg

∣∣∣∣
≤ C

(λ(1− t))2

max{1, λt}2

ˆ
Σ

h̃1e
ϕ1−ϕ2

2

∣∣∣∣∣φ− ∑
x1k∈J1

tλ1kφ(x1k)

∣∣∣∣∣ dVg
=

(λ(1− t))2

max{1, λt}2

∣∣∣∣∣
ˆ

Σ

( ∑
x1k∈J1

t1k
h̃1(

1 + (λ(1− t))2d(·, x1k)2(1+β1k′ )
)2 e−ϕ2

2

)
(φ− φ(x1k))dVg

∣∣∣∣∣
≤ C(λ(1− t))2

∣∣∣∣∣
ˆ

Σ

∑
k

t1k
h̃1(

1 + (λ(1− t))2d(·, x1k)2(1+β1k′ )
)2 (φ− φ(x1k))dVg

∣∣∣∣∣
≤ C(λ(1− t))2

∑
k

t1k

ˆ
Σ

h̃1d(·, x1k)(
1 + (λ(1− t))2d(·, x1k)2(1+β1k′ )

)2 dVg,

hence the estimate will follow if we show

(λ(1− t))2

ˆ
Σ

h̃1d(·, x)(
1 + (λ(1− t))2d(·, x)2(1+β)

)2 dVg ≤
C

(λ(1− t))min{2, 1
1+β}

for any x = x1k, β = β1k.
We easily find

(λ(1− t))2

ˆ
Σ\Bδ(x)

h̃1d(·, x)(
1 + (λ(1− t))2d(·, x)2(1+β)

)2 dVg ≤
C

(λ(1− t))2
;

on the other hand, using normal coordinates and a change of variable we get

(λ(1− t))2

ˆ
Bδ(x)

h̃1d(·, x)(
1 + (λ(1− t))2d(·, x)2(1+β)

)2 dVg

≤ C

(λ(1− t))
1

1+β

ˆ
B

(λ(1−t))
1

1+β δ

(0)

∣∣∣(λ(1− t))
β−α

(1+β)α y − (λ(1− t))
β

(1+β)α p
∣∣∣2α |y|(

1 + |y|2(1+β)
)2 dy,

where p = p′1m, α = α′1m is the closest to x.
The last integral can be verified to be bounded from above by arguing as in the proof of Lemma
3.15. This concludes the proof of the upper bound.

To give a lower bound, it suffices to prove that, however we take σ = σλ, there exists a 1 − Lip
function φσ which satisfies∣∣∣∣ˆ

Σ

(
f1,Φλ(ζ) − σ

)
φσdVg

∣∣∣∣ ≥ 1

C

∑
x1k∈J1

t1k

(λ(1− t))min
{

2, 1
1+β1k

} .
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Precisely, we choose

φσ = min
xk′∈J ′

d(·, xk′) if σ =
∑

xk′∈J ′
tk′δxk′ .

It holds ∣∣∣∣ˆ
Σ

(
f1,Φλ(ζ) − σ

)
φσdVg

∣∣∣∣
=

1´
Σ
h̃1eϕ1−ϕ2

2 dVg

∣∣∣∣ˆ
Σ

(
h̃1e

ϕ1−ϕ2
2 −

ˆ
Σ

h̃1e
ϕ1−ϕ2

2 dVgσ

)
φσdVg

∣∣∣∣
=

1´
Σ
h̃1eϕ1−ϕ2

2 dVg

ˆ
Σ

h̃1e
ϕ1−ϕ2

2 min
k′

d(·, xk′)dVg

≥ C
(λ(1− t))2

max{1, λt}2

ˆ
Σ

h̃1e
ϕ1−ϕ2

2 min
k′

d(·, xk′)dVg

≥ C(λ(1− t))2
∑
xk∈J1

t1k

ˆ
Σ

h̃1 mink′ d(·, xk′)(
1 + d(·, x1k)2(1+β1k′ )

)2 dVg.

Again, it is easy to see that any single integral outside a ball Bδ(x1,k) is greater or equal to constant
times (λ(1− t))−2.
Therefore, since the number of k′ is at most K = K(ρ1, α

′
1), we will suffice to show that any integral

on the same ball can be estimated from below with constant times (λ(1 − t))−
1

1+β1k . Arguing as
before,

(λ(1− t))2

ˆ
Bδ(x)

h̃1 mink′ d(·, xk′)(
1 + (λ(1− t))2d(·, x)2(1+β)

)2 dVg

≥ 1

C(λ(1− t))
1

1+β

ˆ
B

(λ(1−t))
1

1+β δ

(0)

∣∣∣(λ(1− t))
β−α

(1+β)α y − (λ(1− t))
β

(1+β)α p
∣∣∣2α mink′

∣∣∣y − (λ(1− t))
1

1+β xk′
∣∣∣(

1 + |y|2(1+β)
)2 dy.

To see that the last integral is bounded from above, we restrict ourselves to a portion of a ball
where the minimum is attained by x′ = xk′ . Since the number of k′ is uniformly bounded, for at

least one index the portion we are considering measures at least
1

K
of the measure of the whole

ball.
If we take x′ = x′λ so that (λ(1 − t))

1
1+β x′λ goes to infinity, the integral will tend to +∞ as well.

If instead the last quantity converges, we will get the integral of a function which is uniformly
bounded from both above and below, as in the proof of the upper estimates a few lines before.
To get the last claim, just set t′ik := lim

λ→∞
tλik. We have tλik ∼ tik because of the estimates proved in

Lemma 3.15.

With the same argument we can also prove:

Lemma 3.38.
Let ΦλB2

, ΦλG2
be as in Theorem 3.20 and suppose ρ ∈ (4K1π, 4(K1 + 1)π)× (4K2π, 4(K2 + 1)π).

Then, there exists C > 0 such that for any ζ ∈ (γ1)K1
? (γ2)K2

one has

1

C max{1, λ(1− t)}
≤ d

(
f1,ΦλB2

(ζ), (Σ)K1

)
≤ C

max{1, λ(1− t)}
,

1

C max{1, λ(1− t)}
≤ d

(
f1,ΦλG2

(ζ), (Σ)K1

)
≤ C

max{1, λ(1− t)}
,

1

C max{1, λt}
≤ d

(
f2,ΦλB2

(ζ), (Σ)K2

)
≤ C

max{1, λt}
,
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1

C max{1, λt}
≤ d

(
f2,ΦλG2

(ζ), (Σ)K2

)
≤ C

max{1, λt}
.

Moreover, if t < 1 one has

f1,ΦλB2
(ζ) ⇀

λ→+∞
σ′1 :=

K1∑
k=1

t′1kδx1k
f1,ΦλG2

(ζ) ⇀
λ→+∞

σ′1,

whereas if t > 0 one has

f2,ΦλB2
(ζ) ⇀

λ→+∞
σ′2 :=

K2∑
k=1

t′2kδx2k
f2,ΦλG2

(ζ) ⇀
λ→+∞

σ′2,

for some tik verifying
tik
C
≤ t′ik ≤ Ctik.

We are now in a position to prove Lemmas 3.34, 3.36.

Proof of Lemmas 3.34, 3.36.
Take C as in Lemma 3.37, ε0 and ψi := ψρi,α′i as in Lemma 1.27 and apply Theorem 3.21 with

ε :=
ε0

C2
; take L = Lε > 0 as in Theorem 3.21. Define Φ := Φλ0 as in Theorem 3.12, with λ0 such

that Φλ(X ) ⊂ J−Lρ for any λ ≥ λ0.

As for Ψ : J−Lρ → X , consider the push-forward (Πi)∗ of the maps Πi = Σ→ γi defined by Lemma
1.22 and

t′(d1, d2) :=


0 if d2 ≥ ε

ε− d2

2ε− d1 − d2
if d1, d2 < ε

1 if d1 ≥ ε
where di = dLip′

(
fi,u, (Σ)ρi,α′i

)
;

then, define
Ψ(u) := ((Π1)∗(ψ1(f1,u)), (Π2)∗(ψ2(f2,u), t′(d1, d2)) .

First of all, t′ is well-defined and continuous, because on J−Lρ at least one of d1 and d2 is less than
ε.
This map is well-defined as well because, from the construction of t′, when ψ1 is not defined one
has d1 ≥ ε0 > ε, hence t′ = 1, and similarly t′ = 0 when ψ2 is not defined.

Let us now compose the maps Φ and Ψ and see what happens if we let λ tend to +∞.
From the previous corollary, fi,Φλ(ζ) converges weakly to a barycenter σ′i centered at the same points
as σi, and the same convergence still holds after applying ψi and (Πi)∗, since both are retractions.
However, the coefficients in σ′i are different from the ones in σi, and moreover the parameter t in
the join will be different in general from t′.
Following these considerations, we will construct the homotopy between Ψ ◦ Φ and the identity in
three steps: first letting λ to +∞, then rescaling the coefficients in σ′i and finally rescaling the
parameter t in the join.
Writing Φ

(
Ψλ(ζ)

)
=
(
(Π1)∗

(
ψλ1 (ζ)

)
, (Π1)∗

(
ψλ2 (ζ)

)
, t′λ(ζ)

)
, the homotopy map H : X × [0, 1]→ X

will be the composition F := F3 ∗ (F2 ∗ F1), where:

F1 : (ζ, s) = ((σ1, σ2, t), s) 7→
(

(Π1)∗

(
ψ

λ0
1−s
1 (ζ)

)
, (Π2)∗

(
ψ

λ0
1−s
2 (ζ)

)
, t′λ0

)
F2 :

((
σ′1, σ

′
2, t
′λ0
)
, s
)
7→

(
((1− s)σ′1 + sσ1), ((1− s)σ′2 + sσ2), t′λ0

)
F3 :

((
σ1, σ2, t

′λ0
)
, s
)
7→

(
σ1, σ2,

(
(1− s)t′λ0 + st

))
.

Let us now verify that the maps are well defined.
In the definition of the map F1, Lemma 3.37 ensures that the retraction ψ1 is defined if we have
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H

(
σ1,

λ0(1− t)
1− s

)
<

ε0

C
. If the latter quantity is greater or equal to

ε0

C
, then ψ1 might not be

defined, but in this case we have

d1 ≥ dLip′

(
f

1,Φ
λ0

1−s (ζ)
,Σρ1,α′1

)
≥ ε0

C2
= ε,

hence t′ = 1 and therefore everything makes sense. For the same reason we can compose ψ2 and t′.
In H2, the convex combination of σ′i and σi are allowed in (γi)ρi,α′i because the centers of the Dirac
masses which define them are the same.
Finally, it is immediate to see that the composition makes sense because the last assertion of Lemma
3.37 yields F1(·, 1) = F2(·, 0); it is immediate to verify and F2(·, 1) = F3(·, 0), that F (·, 0) = Ψ ◦ Φ
and F (·, 1) = IdX , and that everything is continuous.
A very similar construction proves Lemma 3.36: we consider ΦλB2

, ΦλG2
in place of Φλ and we use

Lemma 3.38 rather than Lemma 3.37 to verify the well-posedness of the homotopy equivalence.

To get Lemma 3.35 we will need some estimates on the scales of concentration ς1, ς2.
Due to the different definition of the test functions Φ′λ, we do not have uniform estimates like
Lemma 3.37. Anyway, a suitable choice of τ will give a large first scale of Φ′λ for t close to 1 and a
similar result for ς2.

Notice that no assumption have been made up to now on τ , except for being strictly between
1

2
and 1 (see the proof of Lemma 3.27). Its value plays a role only in this lemma, hence it will be
chosen here to let the following result be true.

Lemma 3.39.
Let δ be as in Lemma 3.27, βi(u), ςi(u) be as in Theorem 3.28 and Φ′λ as in Theorem 3.16.
Then, for a suitable choice of τ , there exists C0 > 0, δ′ ∈ (0, δ) such that:

• If either t ≥ 1− C0

λ
or


t >

1

2
x1 = x2 =: pm
ρ1, ρ2 < 4π(2 + α1m + α2m)

, then ς1
(
Φ′λ(ζ)

)
≥ δ′;

otherwise, ς1
(
Φ′λ(ζ)

)
< δ and β1

(
Φ′λ(ζ)

)
= x1.

• If either t ≤ C0

λ
or


t <

1

2
x1 = x2 =: pm
ρ1, ρ2 < 4π(2 + α1m + α2m)

, then ς2
(
Φ′λ(ζ)

)
≥ δ′;

otherwise, ς2
(
Φ′λ(ζ)

)
< δ and β2

(
Φ′λ(ζ)

)
= x2.

Proof.
We will only prove the statements involving ς1 and f1,Φλ(ζ), since the same proof will work for the
rest, up to switching indexes i = 1, 2.
We will show the proof only in the case x2 = p′m, ρ2 > 4π(2 + α1m′ + α2m′), which is somehow

trickier because ϕ1 does not vanish when t ≥ 1− 1

λ
.

Let us write

ϕ1 =
(
ϕ
λ(1−t)
1,pm

+ ϕλt1,pm′

)
=
(
ϕ
λ(1−t)
1,pm

− 2 log max
{

1, (λt)2(2+α1m′+α2m′ )d(·, pm′)2(1+α1m′ )
})

,

ϕ2 =
(
ϕ
λ(1−t)
2,pm

+ ϕλt2,pm′

)
=
(
ϕ
λ(1−t)
2,pm

− 2 log max
{

1, (λtd(·, pm′))2(2+α1m′+α2m′ )
})

.

From the definition of ς1, we have to show that, if t ≥ 1− C0

λ
, then

ˆ
Bδ′ (pm′′ )

f1,Φ′λ(ζ)dVg < τ ∀m′′ = 1, . . . ,M.

99



It is not hard to see that, for any m′′ 6= m,m′,ˆ
Bδ′ (pm′′ )

f1,Φ′λ(ζ)dVg ≤ C ′δ′
2(1+α1m′′ ),

which is smaller than any given τ if δ′ is taken small enough.
Roughly speaking, f1,Φ′λ(ζ) cannot attain mass too near pm because its scale depends on λ(1 − t)
which is bounded from above. Moreover, ϕ

λ(1−t)
1,pm

is constant in B
(λ(1−t))

− 2+α1m+α2m
1+α1m

(pm), hence for

large C0ˆ
B

C
−1− (2+α1m+α2m)

1+α1m
0

(pm)

f1,Φ′λ(ζ)dVg ≤ CC
2(1+α1m)
0

ˆ
B

C
− (2+α1m+α2m)

1+α1m
0

(pm)

d(·, pm)2α1mdVg ≤
1

2
< τ.

On the other hand, a part of the mass of f1,Φ′λ(ζ) could actually concentrate near p′m, but not all
of it. Here, we will have to take τ properly.
Since ˆ

B δ
2

(pm′ )

h̃1e
ϕ1−ϕ2

2 dVg

≤ Ce

´
Σ

(
ϕ
λ(1−t)
1,pm

−
ϕ
λ(1−t)
2,pm

2

)
dVg

ˆ
B

(λt)
−

2+α
1m′+α2m′
1+α

1m′

(pm′ )

d(·, pm′)2α1m′dVg

+ (λt)−4(2+α1m′+α2m′ )

ˆ
A

(λt)
−

2+α
1m′+α2m′
1+α

1m′ , 1
λt

(pm′ )

d(·, pm)−2(2+α1m′ )dVg

+ (λt)−4(2+α1m′+α2m′ )

ˆ
A 1
λt
, δ
2

(pm′ )

d(·, pm′)2α2m′dVg


≤ Ce

´
Σ

(
ϕ
λ(1−t)
1,pm

−
ϕ
λ(1−t)
2,pm

2

)
dVg

(λt)−4(2+α1m′+α2m′ ),

and ˆ
A δ

2
,δ

(pm′ )

h̃1e
ϕ1−ϕ2

2 dVg

≥ 1

C
e

´
Σ

(
ϕ
λ(1−t)
1,pm

−
ϕ
λ(1−t)
2,pm

2

)
dVg

(λt)−4(2+α1m′+α2m′ )

ˆ
A δ

2
,δ

(pm′ )

d(·, pm′)2α2m′dVg

≥ 1

C
e

´
Σ

(
ϕ
λ(1−t)
1,pm

−
ϕ
λ(1−t)
2,pm

2

)
dVg

(λt)−4(2+α1m′+α2m′ ),

then ˆ
B δ

2
(pm′ )

f1,Φ′λ(ζ)dVg <

´
B δ

2
(pm′ )

f1,Φ′λ(ζ)dVg´
Bδ(pm′ )

f1,Φ′λ(ζ)dVg
≤ C2

1 + C2
.

Therefore, setting τ :=
C2

1 + C2
, we proved the first part of the Lemma.

Let us now assume t ≤ 1− C0

λ
.

From the proof of Lemma 3.19 (and of Lemma 2.23), we deduce that the ratio

´
Bδ(pm)

f1,Φ′λ(ζ)dVg´
Bδ(pm′′ )

f1,Φ′λ(ζ)dVg
increases arbitrarily as λ(1− t) increases. Therefore, for large C0, most of the mass of f1,Φ′λ(ζ) will

be around pm, hence by definition we will have and β1

(
Φ′λ(ζ)

)
= pm and ς1

(
Φ′λ(ζ)

)
< δ.
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Proof of Lemma 3.35.
Take δ as in Lemma 3.27, βi(u), ςi(u) as in Theorem 3.28, δ′ be as in Lemma 3.39 and L so large
that Corollary 3.29 and Theorem 3.28 apply.
Define Φ′ := Φ′λ0 as in Theorem 3.16, with λ0 such that Φ′λ(X ′) ⊂ J−2L

ρ for any λ ≥ λ0.

As for Ψ′ : J−2L
ρ → X ′, define

t′(ς1(u), ς2(u)) :=


0 if ς2(u) ≥ δ′

δ′ − ς2(u)

2δ′ − ς1(u)− ς2(u)
if ς1(u), ς2(u) ≤ δ′

1 if ς1(u) ≥ δ′

and
Ψ′(u) := (β1(u), β2(u), t′(ς1(u), ς2(u))) .

Let us verify the well-posedness of Ψ′.
The definition of t′ makes sense because, from Corollary 3.29, Jρ(u) < −L implies min{ς1(u), ς2(u)} ≤
δ′. Moreover, if t′ > 0 (respectively, t′ < 1), then ς1 < δ is well-defined (respectively, ς2 < δ is
well-defined), hence β1 (respectively, β2) is also defined.
Finally, Ψ′ is mapped on X ′ because, from Theorem 3.28, when Jρ(u) < −L we cannot have

(β1(u), β2(u), t′(ς1(u), ς2(u))) =

(
pm, pm,

1

2

)
with ρ1, ρ2 < 4π(2 + α1m + α2m).

To get a homotopy between the two maps, we first let λ tend to +∞, in order to get x1 and x2,
then we apply a linear interpolation for the parameter t.
Writing Ψ′

(
Φ′λ(ζ)

)
=
(
βλ1 (ζ), βλ2 (ζ), t′λ(ζ)

)
, we have F = F2 ∗ F1, with

F1 : (ζ, s) = ((x1, x2, t), s) 7→
(
β

λ0
1−s
1 (ζ), β

λ0
1−s
2 (ζ), t′λ0(ζ)

)
F2 :

(
x1, x2, t

′λ0(ζ)
)
7→

(
x1, x2, (1− s)t′λ0(ζ) + st

)
.

We have to verify that all is well-defined.

If we cannot define β
λ0

1−s
1 (ζ), then by Lemma 3.39 we either have t ≥ 1− C0(1− s)

λ0
≥ 1− C0

λ0
or we

are on the first half of the punctured segment. By the same Lemma, we get ς1
(
Φ′λ0(ζ)

)
≥ δ′,that

is t′λ0(ζ) = 1. For the same reason, if β
λ0

1−s
2 (ζ) is not defined, then t′λ0(ζ) = 0, so F1 : X ′ × [0, 1]→

Σρ1,α1
? Σρ2,α2

makes sense.

Its image is actually contained in X ′ because, from Lemma 3.39, if x1 = x2 and ρ < 4π
(
ωα1

(x) + ωα2
(x)
)
,

then either t′λ0(ζ) ∈ {0, 1}, hence in particular it does not equal
1

2
.

Concerning F2, the previous Lemma implies β
λ0

1−s
1 (ζ) = x1 if t ≤ 1 − C0

λ
(1 − s), hence in par-

ticular passing to the limit as s → 1, if t < 1. A similar condition holds for β2, which gives
F2(·, 0) = F1(·, 1).
If x1 is not defined then t′λ0(ζ) = 1, hence (1 − s)t′λ0(ζ) + st = 1, and similarly there are no
issues when x2 cannot be defined. Finally, by the argument used before, if x1 = x2 = pm and

ρ1, ρ2 < 4π(2 + α1m + α2m), then (1− s)t′λ0(ζ) + st 6= 1

2
.

We conclude by giving the proof of Theorem 3.4, which is mostly a variation of Theorem 3.2.

Proof of Theorem 3.4.
Due to the assumption ρ2 < 4π(1 + α2max), we can write

(γ2)ρ2,α′2
:=

{ ∑
m∈M

t2mδp′2m : t2m ≥ 0,
∑
m∈M

t2m = 1, 4π
∑
m∈M

(1 + α′2m) < ρ

}
.

101



If this set is not empty, that is if α2max > α̃2, we can still consider Φλ as in Theorem 3.12, since
again, by construction, d(γ1, p

′
2m) ≥ δ > 0 for any l ∈ {0, . . . , L2}.

Therefore we have, as in Theorem 3.12, a map Φ : X → J−Lρ and, as in Lemma 3.34, Ψ : J−Lρ → X
such that Ψ ◦ Φ ' IdX . Hence, the sub-levels inherit the homology of the join, so existence and
multiplicity of solutions follow by the estimating the Betti numbers as in Theorem 3.7.

On the other hand, if α2max = min
m

α2m, then the set (γ2)ρ2,α′2
is empty. However, Φλ can still be

defined on (γ1)ρ1,α′1
by restricting the map in Theorem 3.12 to the end t = 0 of the join. Since we

are just considering a restriction of the map, the estimates of the theorem still hold.
Moreover, being ρ2 small enough, Lemma 3.25 can only hold for i = 1, so in Theorem 3.21 we
must have f1,u to be arbitrarily close to Σρ1,α′1

as Jρ is lower. Therefore, we can define Ψ : J−Lρ →
(γ1)ρ1,α′1

by Ψ(u) = (Π1)∗ψ1(f1,u) (with ψ1 := ψρ1,α′1
as in Lemma 1.27).

A homotopy map between Ψ ◦ Φ and Id(γ1)ρ1,α′1
is given by restricting to t = 0 the map F defined

in the proof of Lemma 3.34. Therefore, we can again deduce existence and multiplicity of solution
by estimating the number of solutions as in the proofs of Theorems 3.2 and 3.3.
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Chapter 4

Non-existence of solutions

The last chapter of this thesis is devoted to proving three different non-existence result for systems
(3). All these result are from the paper [13].

We begin by considering a simple situation: the unit disk of R2 with a singularity at the origin, and
solutions satisfying Dirichlet boundary conditions. We find that, to ensure existence of solutions, ρ
must satisfy an algebraic condition which involves the same quantities defined in (2.2).

Theorem 4.1.
Let

(
B2, g0

)
be the standard unit disk, suppose hi ≡ 1, M = 1 and let α1, . . . , αN > −1 be the

singular weights of the point p = 0 ∈ B.
If ρ satisfies

Λ{1,...,N},p(ρ) = 8π

N∑
i=1

(1 + αi)ρi −
N∑

i,j=1

aijρiρj ≤ 0,

then there are no solutions for the system −∆ui =

N∑
j=1

aijρj
| · |2αjeuj´

B |x|2αjeujdx
in B

ui = 0 on ∂B
. (4.1)

This result is proved via a Pohožaev identity, and extends a scalar one from [4] (Proposition 5.7).

With a similar argument, one can find non-existence for (3) on the standard sphere with one sin-
gular point or two antipodal ones. We get again necessary algebraic conditions of ρ, similar as
Theorem 4.1 but weaker.
It is still inspired by [4] (Proposition 5.8).

Theorem 4.2.
Let (Σ, g) =

(
S2, g0

)
be the standard sphere, suppose h1, h2 ≡ 1, M = 2, let (α11, . . . , αN1) 6=

(α12, . . . , αN2) be the weights of the antipodal points p1, p2 ∈ S2, with αim > −1, and let ΛI,x be
defined by (2.2).
If either

ΛI,p1
(ρ) ≥ Λ{1,...,N}\I,p2

(ρ) ∀ I ⊂ {1, . . . , N} (4.2)

and at least one inequality is strict, or if all the opposite inequalities hold, then system (3) admits
no solutions.

The last result we present makes no assumptions on the topology of Σ but it only works for the
SU(3) Toda system (9).
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In fact, its proof will use a localized blow-up analysis around one singular point, which in turn uses
the compactness theorem 2.16. This argument recall [20], Theorem 1.10.

Theorem 4.3.
Let Γα11̂,α21̂

⊂ R2
>0 be as in (2.13), with αi1̂ := (αi2, . . . , αiM ) and let ρ ∈ R2

>0 \ Γα11̂,α21̂
and

α12, . . . , α1M , α22, . . . , α2M be fixed.
Then, there exists α∗ ∈ (−1, 0) such that the system (9) is not solvable for α11, α12 ≤ α∗. Moreover,
α∗ can be chosen uniformly for ρ in a given K b R2

>0 \ Γα11̂,α21̂
.

This result shows in particular that in Theorem 3.1 the assumption of having all the singularities
to be non-negative is sharp. In fact, the statement still holds true if we allow all the coefficients
α12, . . . , α1M , α22, . . . , α2M to be positive and only α11, α12 < 0.

This chapter is divided into two sections. The first contains the proof of Theorems 4.1 and 4.2, the
second contains the proof of Theorem 4.3.

4.1 Proof of Theorems 4.1, 4.2

Before showing the proof of Theorems 4.1, 4.2, let us compare such results with the existence result
proved in Chapters 2, 3.

We start by considering the case of the unit disk (B, g0) with one singularity in its center.
Even though it is not a closed surface, most of the variational theory for the Liouville equations and
systems can be applied in the very same way to Euclidean domains (or surfaces with boundary)
with Dirichlet boundary conditions. This was explicitly pointed out in [4, 9] for the scalar equation,
but still holds true for systems, in view of Remark 2.28.
We can extend both Theorem 2.1, to get minimizing solution for Liouville systems on any Euclidean
domain, and Theorems 3.1, 3.2, 3.5, 3.6 can be extended, for the case of (9), (10), (11), to get min-
max solutions.
Theorems 3.1, 3.2, 3.6, which require the surface Σ to have non-positive Euler characteristic, also
give existence of solutions on any non-simply connected open domain of the plane, because such
domains can be retracted on a bouquet of circles.
It is interesting to notice that multiplicity results cannot hold in the same form because, for instance,
a twice-punctured disk retracts on a “figure-eight”, but does not on two disjoint ones. Anyway,
retracting on a single circle avoids issues for the purpose of existence of solutions.

From Theorem 4.1 we see that, whereas Theorem 2.1 gives existence of solutions for ρ in the bounded
region {Λ > 0} (colored in orange in Figure 4.1), solutions cannot exist outside the bigger bounded
region

{
Λ{1,...,N},p ≥ 0

}
(colored in blue).

For the case of the SU(3) Toda system, Theorem 3.5 gives min-max solutions in the configuration
(M1,M2,M3) = (1, 1, 0), namely on the green rectangle (ρ1, ρ2) ∈ (4π(1+α1), ρ1)×(4π(1+α2), ρ2).
Something similar also holds if α1 = α2 = 0, that is if we consider the regular Toda system. Here,
arguing as in [61], we still have solutions in the second square (4π, 8π)2, because we get low sub-
levels being dominated by a space which is homeomorphic to R6 \ R3 ' S2. This was confirmed in
[50], where the degree for the Toda system is computed and in this case it equals −1.
Figure 4.1 shows that there might not be solutions in each of all the other squared which are de-
limited by integer numbers of 4π. In particular, this shows that the degree is 0 in all these regions.

Proof of Theorem 4.1.
Let u = (u1, . . . , uN ) be a solution of (4.1). Since both components vanish on the boundary, then
for any x ∈ ∂B one has ∇ui(x) = (∇ui(x) · ν(x))ν(x) =: ∂νui(x)ν(x) for all i’s.
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Figure 4.1: Values of ρ which yield existence and non-existence results for
(
B2, g0

)
.

Therefore, one can apply a standard Pohožaev identity:

N∑
i,j=1

aij
ˆ
∂B
∂νui∂νujdσ

= 2

N∑
i,j=1

aij
ˆ
∂B

(
∂νui∂νuj −

∇ui · ∇uj
2

)
dσ

= 2

N∑
i,j=1

aij
ˆ
B
(x · ∇ui(x))∆uj(x)dx

= −2

N∑
i=1

ρi´
B |x|2αieui(x)dx

ˆ
B
(x · ∇ui(x))|x|2αieui(x)dx

= 4

N∑
i=1

ρi

( ´
∂B | · |

2αieuidσ´
B |x|2αieui(x)dx

+ 1 + αi

)
.

For the boundary integral, take a orthogonal matrix M = (mij)i,j=1,...,N which diagonalizes A−1,

namely such that

N∑
i,j=1

aijxixj =

N∑
i=1

λi

 N∑
j=1

mijxj

2

, for positive λ1, . . . , λN .

By performing an algebraic manipulation, using Hölder’s inequality and then integrating by parts
we get

N∑
i,j=1

aij
ˆ
∂B
∂νui∂νujdσ

=

N∑
i=1

λi

ˆ
∂B

 N∑
j=1

mij∂νuj

2

dσ

≥ 1

2π

N∑
i=1

λi

ˆ
∂B

N∑
j=1

mij∂νujdσ

2

=
1

2π

N∑
i,j=1

aij
(ˆ

∂B
∂νuidσ

)(ˆ
∂B
∂νujdσ

)

=
1

2π

N∑
i,j=1

aij
(ˆ

B
∆ui(x)dx

)(ˆ
B

∆uj(x)dx

)

=
1

2π

N∑
i,j=1

aijρiρj .
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Therefore, we get as a necessary condition for existence of solutions:

N∑
i,j=1

aijρiρj ≥ 8π

N∑
i=1

ρi

( ´
∂B | · |

2αieuidσ´
B |x|2αieui(x)dx

+ 1 + αi

)
> 8π

N∑
i=1

(1 + αi)ρi.

This concludes the proof.

Let us now consider the standard sphere
(
S2, g0

)
with two antipodal singularities.

In Theorem 4.2 we perform a stereographic projection which transforms the solutions of (9) on
S2 on entire solutions on the plane, and then we use a Pohožaev identity for the latter problem
(Theorem 1.21), getting necessary algebraic condition for the existence of solutions.

We get non-existence of solutions for the parameter ρ belonging to some regions of the positive
orthant.
In particular, if we consider the SU(3) Toda system and compare Theorems 4.2 and 3.1, we see
that, to get such a general existence result, we need to assume that χ(Σ) ≤ 0, not only that αim ≥ 0
for all i,m.
On the other hand, considering Theorem 3.5, we see that, in most of the regions where we the
variational analysis gives no information, system (9) may actually have no solutions.
As before, regions where no solutions exist are blue, regions with minimizing solutions are orange
and regions with min-max solutions are green.
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Figure 4.2: Values of ρ which yield existence and non-existence results for
(
S2, g0

)
, in two different

configurations of α11, α12, α21, α22.

Proof of Theorem 4.2.
Let u = (u1, . . . , uN ) be a solution of

−∆g0
ui =

N∑
j=1

aijρj

(
euj´

S2 eujdVg0

− 1

4π

)
−4παi1

(
δp1
− 1

4π

)
−4παi2

(
δp2
− 1

4π

)
i = 1, . . . , N,

and let Π : S2 \ {p2} → R2 the stereographic projection.
Consider now, for x ∈ R2,

Ui(x) := ui
(
Π−1(x)

)
+log(4ρi)−log

ˆ
S2

euidVg0−2αi1 log |x|+

 1

4π

N∑
j=1

aijρj − αi1 − αi2

 log
(
1 + |x|2

)
.
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U = (U1, . . . , UN ) solves
−∆Ui =

N∑
j=1

aijHje
Uj

ˆ
R2

Hi(x)eUi(x)dx = ρi

with Hi(x) :=
|x|2αi1

(1 + |x|2)
2+αi1+αi2− 1

4π

∑N
j=1 aijρj

.

We are in position to apply Theorem 1.21, hence a necessary condition for existence of solutions is
(1.10).
By the definition of H1, . . . ,HN , we have

x · ∇Hi(x) = 2αi1Hi(x)− 2

2 + αi1 + αi2 −
1

4π

N∑
j=1

aijρj

 |x|2

1 + |x|2
Hi(x)

for both i’s, hence we get

τi = 2αi1ρi − 2

2 + αi1 + αi2 −
1

4π

N∑
j=1

aijρj

 τ ′i with τ ′i :=

ˆ
R2

|x|2

1 + |x|2
Hi(x)dx.

Therefore the necessary condition (1.10) becomes

N∑
i,j=1

aijρiρj + 8π

N∑
i=1

2 + αi1 + αi2 −
1

4π

N∑
j=1

aijρj

 τ ′i − (1 + αi1)ρi

 = 0. (4.3)

Since 0 < τ ′i < ρi, one can discuss the cases 2 + αi1 + αi2 S
1

4π

N∑
j=1

aijρj and see, by tedious but

not difficult algebraic computation, that (4.2) and their opposite inequalities are in contradiction
with the aforementioned necessary condition.

Notice that if 2 + αi1 + αi2 =
1

4π

N∑
i=1

aijρj for all i, then (4.3) just becomes Λ{1,...,N},p1
(ρ) = 0.

Anyway, one can easily see that these two conditions are equivalent to ΛI,p1(ρ) = Λ{1,...,N}\I,p2
(ρ)

for all I; this is the reason why we need to assume at least one inequality to be strict.

4.2 Proof of Theorem 4.3

We will prove Theorem 4.3 by arguing by contradiction, following [20] (Theorem 4.1).
Basically, we will assume that a solution exists for some αn11, α

n
12 −→

n→+∞
−1. We will consider such

a sequence of solutions un, we will perform a blow-up analysis, following Theorem 2.4 and we will
reach a contradiction.

Proof of Theorem 4.3.
Assume the thesis is false. Then, for some given α11̂, α21̂, ρ 6∈ Γα11̂,α21̂

, there exist a sequence
(αn11, α

n
21) −→

n→+∞
(−1,−1) and a sequence un = (un1 , u

n
2 ) of solutions of


−∆un1 = 2ρ1

(
h̃n1 e

un1´
Σ
h̃n1 e

un1 dVg
− 1

)
− ρ2

(
h̃n2 e

un2´
Σ
h̃n2 e

un2 dVg
− 1

)

−∆un2 = 2ρ2

(
h̃n2 e

un2´
Σ
h̃n2 e

un2 dVg
− 1

)
− ρ1

(
h̃n1 e

un1´
Σ
h̃n1 e

un1 dVg
− 1

) ,
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with h̃n1 , h̃
n
2 such that h̃ni ∼ d(·, p1)2αni1 . It is not restrictive to assume

ˆ
Σ

h̃n1 e
un1 dVg =

ˆ
Σ

h̃n2 e
un2 dVg = 1.

We would like to apply Theorem 2.4 to the sequence un.
Anyway, since the coefficients αni1 are not bounded away from −1, we cannot use such a Theorem
on the whole Σ, but we have to remove a neighborhood of p1. This can be done with suitable
modifications, as pointed out in Remark 2.28. A first piece of information about blow-up is given
by the following Lemma, inspired by [20], Lemma 4.3.

Lemma 4.4.
Let δ > 0 small be given and un be as in the proof of Theorem 4.3.
Then, un1 , u

n
2 cannot be both uniformly bounded from below on ∂Bδ(p1).

Proof.

Assume by contradiction that inf
∂Bδ(p1)

uni ≥ −C for both i’s and define vn :=
2un1 + un2

3
.

Then {
−∆vn = ρ1

(
h̃n1 e

un1 − 1
)
≥ −ρ1 in Bδ(p1)

vn ≥ −C on ∂Bδ(p1)
.

By the maximum principle, vn ≥ −C on Bδ(p1), therefore by the convexity of the exponential
function we get the following contradiction:

+∞

←−
n→+∞

ˆ
Bδ(p1)

d(·, p1)2 max{αn11,α
n
21}dVg

≤ C

ˆ
Bδ(p1)

d(·, p1)2 max{αn11,α
n
21}ev

n

dVg

≤ C

(
2

3

ˆ
Bδ(p1)

d(·, p1)2 max{αn11,α
n
21}eu

n
1 dVg +

1

3

ˆ
Bδ(p1)

d(·, p1)2 max{αn11,α
n
21}eu

n
2 dVg

)

≤ C

(ˆ
Bδ(p1)

h̃n1 e
un1 dVg +

ˆ
Bδ(p1)

h̃n2 e
un2 dVg

)
≤ C.

This concludes the proof.

Proof of Theorem 4.3, continued.
Let us apply Theorem 2.4 to un on Ω := Σ \B δ

2
(p1) for some given small δ > 0.

By Lemma 4.4, boundedness from below cannot occur for both component, therefore we either have
Concentration or (up to switching the indexes) un1 −→

n→+∞
−∞ uniformly on Σ \ Bδ(p1). In other

words,

ρ1
h̃n1 e

un1´
Σ
h̃n1 e

un1 dVg

⌊
Σ\Bδ(p1)

⇀
n→+∞

∑
x∈S

σ1(x)δx ρ2
h̃n2 e

un2´
Σ
h̃n2 e

un2 dVg

⌊
Σ\Bδ(p1)

⇀
n→+∞

f2 +
∑
x∈S

σ2(x)δx,

where we set S = ∅ if Concentration does not occur. Anyway, being δ arbitrary, a diagonal argument
gives

ρ1
h̃n1 e

un1´
Σ
h̃n1 e

un1 dVg
⇀

n→+∞

∑
x∈S

σ1(x)δx+σ1(p1)δp1
ρ2

h̃n2 e
un2´

Σ
h̃n2 e

un2 dVg
⇀

n→+∞
f2+

∑
x∈S

σ2(x)δx+σ2(p1)δp1
,
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with σ1(p1) = ρ1 −
∑
x∈S

σ1(x) and σ2(p1) = ρ2 −
∑
x∈S

σ2(x)−
ˆ

Σ

f2dVg.

By arguing as in the proof of Theorem 2.9, we get

σ1(p1)2 − σ1(p1)σ2(p1) + σ2(p1)2 = 0,

that is σ1(p) = σ2(p) = 0.

In particular, we get ρ1 =
∑
x∈S

σ1(x), which means either ρ1 = 0 or ρ ∈ Γα11̂,α21̂
This contradicts

the assumptions and proves the Theorem.
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Appendix A

Appendix

A.1 Proof of Theorem 1.32

We will prove here the density result stated in Chapter 1. It will be mostly and adaptation from
the proof given in [32] for the scalar case.
The proof will consider only the SU(3) Toda system with M2(Σ), since all the other cases can be
treated in the very same way.

Theorem 1.32 will be proved by applying to the suitable objects the following abstract transversal-
ity result. The same argument was used, other then in [32], also in [62] for a higher dimensional
problem with polynomial nonlinearities.

Theorem A.1. ([66])
Let X, Y, Z be Banach spaces, U ⊂ X, V ⊂ Y be open subsets, z0 ∈ Z and F : V × U → Z a Ck

map, for k ≥ 1, such that:

• ∀ y ∈ V, F (y, ·) : x 7→ F (y, x) is a Fredholm map of index l, with l ≤ k;

• The set {x ∈ U : F (y, x) = 0, y ∈ K} is relatively compact in U for any K b V;

• z0 is a regular value of F , namely F ′(y0, x0) : Y ×X → Z is onto at any point (y0, x0) such
that F (y0, x0) = z0.

Then, the set
D := {y ∈ V : z0 is a regular value of F (y, ·)}

is a dense open subset of V.

As a first thing, let us introduce the space S2(Σ) of the C2 symmetric matrices on Σ.
To define the norm of this space, take an open coordinate neighborhood {Uα, ψα}α∈A and denote
by {gij}i,j=1,2 the components of any g ∈ S2(Σ) with respect to the coordinates (x1, x2) on Uα;
then, define

‖g‖S2 :=
∑

α∈A,|β|≤2,i,j=1,2

sup
ψα(Uα)

∣∣∣∣∣ ∂2gij

∂xβ1

1 ∂xβ2

2

∣∣∣∣∣ .
Such a space can be proved to be a Banach space, as well as the space of the symmetric Ck l-
covariant tensors on a n-dimensional manifold, which can be defined in the same way.
We then define M2(Σ) ⊂ S2(Σ) as the open subset containing all the positive definite matrices.
We similarly define S2

1 (Σ) ⊂ S2(Σ) as the closed affine subspace of the metrics g such that

110



ˆ
Σ

dVg = 1 and M2
1(Σ) as its open subset of positive definite matrices.

Before proving Theorem 1.32, we notice that the property of being a dense open set is local, namely
D is dense and open if and only if, for any x, D ∩Bδ(x) is dense in Bδ(x) for some δ.
In view of this, we fix g0 ∈M2(Σ), h0 = (h1,0, h2,0) ∈ C2

>0(Σ) and take δ so small that

Gδ :=
{
g ∈ S2(Σ) : ‖g − g0‖S2(Σ) < δ

}
⊂M2(Σ), (A.1)

Hδ :=
{
h = (h1, h2) ∈ C2(Σ)2 : ‖h1 − h1,0‖C2(Σ) + ‖h2 − h2,0‖C2(Σ) < δ

}
⊂ C2

>0(Σ). (A.2)

Then, we just consider (g, h) ∈ Gδ ×Hδ.

We will now define the objects for which Theorem A.1 will be applied.
For any g ∈ Gδ we will consider the spaces H1

g (Σ), Lqg(Σ), with the subscript underlining the
dependence on the metric. Anyway, by the smallness of δ, they will coincide respectively with
H1
g0

(Σ), Lqg0
(Σ).

Moreover, unlike in all the rest of the paper, such metrics will not give, in general, the surface area

of Σ equal to 1; therefore, we will write

 
Σ

fdVg to indicate the average of a function f ∈ L1
g(Σ)

and we will write

ˆ
Σ

dVg for the area of Σ.

We define, for g ∈ Gδ, the operator Ag : L2
g0

(Σ) → H1
g0

(Σ) as the adjoint of the embedding

H1
g (Σ) ↪→ L2

g(Σ), namely

〈Agu, v〉H1
g(Σ) :=

ˆ
Σ

∇g(Agu) · ∇gvdVg =

ˆ
Σ

uvdVg =: 〈u, v〉L2
g(Σ), (A.3)

for any u ∈ L2
g0

(Σ), v ∈ H1
g0

(Σ). From Sobolev embeddings, the domain of Ag can be extended to
Lqg0

(Σ) for any q > 1.
Such an operator depends regularly on g:

Lemma A.2. ([62], Lemma 2.3)
Let q > 1 be given, Ag be defined by (A.3) and L

(
Lqg0

(Σ), H1
g0

(Σ)
)

be the space of linear operators

between Lqg0
(Σ) and H1

g0
(Σ).

Then, the map A : g 7→ Ag is of class C1 from Gδ to L
(
Lqg0

(Σ), H1
g0

(Σ)
)
.

Concerning Hδ, it is convenient to observe that the presence of the singular points pm does not
really affect this analysis.
In fact, the map h 7→ h̃, defined by (4), is linear and continuous from C2(Σ) to Lq(Σ), for a suitable

q > 1. Therefore, assuming h ∈ Hδ will imply
∥∥∥h̃1 − h̃1,0

∥∥∥
Lq(Σ)

+
∥∥∥h̃2 − h̃2,0

∥∥∥
Lq(Σ)

< δ′.

Take now R > 0 such that all the solutions of (9) in H
1

g0
(Σ)2 are contained in B := BR(0).

Theorem A.1 will be applied to X := Z := H
1

g0
(Σ), Y = S2(Σ)×C2(Σ), U := B, V = Gδ×Hδ, z0 :=

0 and F : Gδ ×Hδ × B → H
1

g0
(Σ)2 defined in the following way.

Consider the map Sg : H
1

g0
(Σ)2 → H

1

g(Σ)2

Sg(u1, u2) :=
(
S′g(u1),S′g(u2)

)
=

(
u1 −

 
Σ

u1dVg, u2 −
 

Σ

u2dVg

)
,

and his inverse S−1
g : H

1

g(Σ)2 → H
1

g0
(Σ)2:

S−1
g (v1, v2) =

(
S′
−1
g (v1),S′

−1
g (v2)

)
=

(
v1 −

 
Σ

v1dVg0
, v2 −

 
Σ

v2dVg0

)
;
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define F̃g : Hδ × B → H
1

g(Σ)2 by

F̃g(h, v) :=


u1 −Ag

(
2ρ1

(
h̃1e

v1´
Σ
h̃1ev1dVg

− 1´
Σ

dVg

)
− ρ2

(
h̃2e

v2´
Σ
h̃2ev2dVg

− 1´
Σ

dVg

)
+ u1

)

v2 −Ag

(
2ρ2

(
h̃2e

v2´
Σ
h̃2ev2dVg

− 1´
Σ

dVg

)
− ρ1

(
h̃1e

v1´
Σ
h̃1ev1dVg

− 1´
Σ

dVg

)
+ u2

)
 ;

finally, set

F (g, h, u) := S−1
g

(
F̃g(h,Sg(u))

)
. (A.4)

Such an application of Theorem A.1 would actually prove Theorem 1.32.

In fact, ∂uF (g, h, u) : H
1

g0
→ H

1

g0
is invertible as long as F (g, h, u) = 0 is equivalent to saying that

all the solutions of (9) belonging to B are non-degenerate, and B is chosen so that it contains all
the solutions. Theorem A.1 states that this condition holds on a dense open subset of Gδ ×Hδ.
Therefore, we just suffice to show that the three hypotheses of Theorem A.1 are satisfied, that is
to prove the following three Lemmas.

Lemma A.3.
Let Gδ be as in (A.1), Hδ be as in (A.2) and Fg as in (A.4).
Then, for any (g, h) ∈ Gδ ×Hδ the map u 7→ F (g, h, u) is Fredholm of index 0.

Proof.
We will prove that u 7→ F (g, h, u) is a Fredholm map of index 0. In particular, we will show that
∂uF (g, h, u) can be written as Id

H
1
g0

(Σ)2 −K for some compact operator K.

We can write

∂uF (g, h, u)[w]

= S−1
g

(
∂vF̃g(h,Sg(u))[Sg(w)]

)
=

(
S′g
−1 (

S′g(u1)−Ag

(
2ρ1K1,u(w1)− ρ2K2,u(w2) + S′g(w1)

))
S′g
−1 (

S′g(u2)−Ag

(
2ρ2K2,u(w2)− ρ1K1,u(w1) + S′g(w1)

)) ) ,
=

(
u1 − 2ρ1S′g

−1
(Ag(K1,u(w1)))− ρ2S′g

−1
(Ag(K2,u(w2))) + S′g

−1
(Ag(S

′
g(w1)))

u2 − 2ρ2S′g
−1

(Ag(K2,u(w2)))− ρ1S′g
−1

(Ag(K1,u(w1))) + S′g
−1

(Ag(S
′
g(w2)))

)
,

with Ki,u : H
1

g0
(Σ)→ Lqg(Σ) defined by

Ki,u(wi) :=
h̃ie

uiwi
´

Σ
h̃ie

uidVg − h̃ieui
´

Σ
h̃ie

uiwidVg(´
Σ
h̃ieuidVg

)2 .

Take now {wn = (wn1 , w
n
2 )}n∈N bounded in H

1

g0
(Σ)2 and converging to w = (w1, w2) in Lpg(Σ)2 for

any p < +∞.

By the continuity of Sg, Sg(w) is bounded in H
1

g0
(Σ)2 and Sg(w

n) −→
n→+∞

Sg(w) in any Lpg0
(Σ)2;

therefore, Ag

(
S′g(w

n
i )
)
−→

n→+∞
Ag

(
S′g(wi)

)
in H1

g0
(Σ)2 for both i’s, hence S′

−1
g

(
Ag

(
S′g(w

n
i )
))
−→

n→+∞

S′
−1
g

(
Ag

(
S′g(wi)

))
in H1

g0
(Σ)2.

Similarly, by the continuity of S−1
g and Ag, we will suffice to show that Ki,u(wni ) −→

n→+∞
Ki,u(wi) in

Lq
′

g (Σ) for some q′ > 1:

‖Ki,u(wni − wi)‖Lq′g (Σ)
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≤

∥∥∥h̃ieui(wi − wni )
∥∥∥
Lq
′
g (Σ)∥∥∥h̃ieui∥∥∥

L1
g(Σ)

+

∥∥∥h̃ieui∥∥∥
Lq
′
g (Σ)

∥∥∥h̃ieui(wni − wi)∥∥∥
L1
g(Σ)∥∥∥h̃ieui∥∥∥2

L1
g(Σ)

≤

∥∥∥h̃ieui∥∥∥
Lqg(Σ)

‖wni − wi‖
L
qq′
q−q
g (Σ)∥∥∥h̃ieui∥∥∥

L1
g(Σ)

+

∥∥∥h̃ieui∥∥∥2

Lq
′
g (Σ)

‖wni − wi‖
L

q′
q′−1
g (Σ)∥∥∥h̃ieui∥∥∥2

L1
g(Σ)

−→
n→+∞

0.

Remark A.4.
The very same argument used in the proof of Lemma A.3 also shows that v → ∂vF̃g(h,Sg(u))[v] is
also a Fredholm map of index 0.

Lemma A.5.
Let Gδ be as in (A.1), Hδ be as in (A.2), Fg as in (A.4) and B as before.
Then, the set

{u ∈ B : F (g, h, u) = 0, (g, h) ∈ K}

is relatively compact in B for any K b Gδ ×Hδ.

Proof.
Take {gn, hn}n∈N ⊂ K and un ∈ B. Up to subsequences, we may assume gn −→

n→+∞
g in S2(Σ) and

hn −→
n→+∞

h in C2(Σ)2 for some (g, h) ∈ K, and un −→
n→+∞

u in Lqg(Σ)2 and Lqg0
(Σ)2 for all q < +∞.

To prove the Lemma we will suffice to show that, for both i = 1, 2 and some q′ > 1,

h̃ni e
uni −→

n→+∞
h̃ie

ui in Lq
′

g0
(Σ),

ˆ
Σ

h̃ni e
uni dVgn −→

n→+∞

ˆ
Σ

h̃ie
uidVg. (A.5)

In fact, from this we would get that

fn :=


2ρ1

(
h̃n1 e

un1´
Σ
h̃n1 e

un1 dVgn
− 1´

Σ
dVgn

)
− ρ2

(
h̃n2 e

un2´
Σ
h̃n2 e

un2 dVgn
− 1´

Σ
dVgn

)
+ un1

2ρ2

(
h̃n2 e

un2´
Σ
h̃n2 e

un2 dVgn
− 1´

Σ
dVgn

)
− ρ1

(
h̃n1 e

un1´
Σ
h̃n1 e

un1 dVgn
− 1´

Σ
dVgn

)
+ un2


converges in Lq

′

g0
(Σ)2 to

f :=


2ρ1

(
h̃1e

u1´
Σ
h̃1eu1dVg

− 1´
Σ

dVg

)
− ρ2

(
h̃2e

u2´
Σ
h̃2eu2dVg

− 1´
Σ

dVg

)
+ u1

2ρ2

(
h̃2e

u2´
Σ
h̃2eu2dVg

− 1´
Σ

dVg

)
− ρ1

(
h̃1e

u1´
Σ
h̃1eu1dVg

− 1´
Σ

dVg

)
+ u2

 .

Since, by definition un = Agn(fn), setting u := Ag(f), by the continuity of Ag and Lemma A.2 we
get:

‖un − u‖H1
g0

(Σ)2

≤ ‖Agn(fn)−Ag(f
n)‖H1

g0
(Σ)2 + ‖Ag(f

n)−Ag(f)‖H1
g0

(Σ)2
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= ‖Agn −Ag‖L
(
Lq
′
g0

(Σ),H1
g0

(Σ)
) ‖fn‖Lqg0 (Σ)2 + o(1)

≤ ‖A′‖L
(
Gδ,L

(
Lq
′
g0

(Σ),H1
g0

(Σ)
)) ‖gn − g‖S2(Σ) ‖f

n‖Lqg0 (Σ)2 + o(1)

−→
n→+∞

0.

To prove (A.5), notice that h̃n −→
n→+∞

h̃ and Lqg(Σ) in Lqg0
(Σ).

Moreover, from Lemma 1.13 (see also the proof of Lemma 1.23), any u ∈ H1
g (Σ) verifies

ˆ
Σ

ep|u|dVg ≤ ep
ffl
Σ
|u|dVg+ p2

16π

´
Σ
|∇gu|2dVg < +∞,

and the same holds if it is replace by a sequence which is bounded in H
1

g(Σ). Therefore,

ˆ
Σ

∣∣∣euni − eui∣∣∣p dVg

=

ˆ
Σ

epui
∣∣∣euni −ui − 1

∣∣∣p dVg

≤
ˆ

Σ

epui |uni − ui|
p
ep|u

n
i −ui|dVg

≤
(ˆ

Σ

e3puidVg

) 1
3
(ˆ

Σ

|uni − ui|
3p

dVg

) 1
3
(ˆ

Σ

e3p|uni −ui|dVg

) 1
3

−→
n→+∞

0.

From this estimate, we deduce:∣∣∣∣ˆ
Σ

h̃ni e
uni dVgn −

ˆ
Σ

h̃ie
uidVg

∣∣∣∣
≤

∣∣∣∣ˆ
Σ

h̃ni e
uni dVgn −

ˆ
Σ

h̃ni e
uni dVg

∣∣∣∣+

∣∣∣∣ˆ
Σ

h̃ni e
uni dVg −

ˆ
Σ

h̃ie
uni dVg

∣∣∣∣
+

∣∣∣∣ˆ
Σ

h̃ie
uni dVg −

ˆ
Σ

h̃ie
uidVg

∣∣∣∣
≤ o(1) +

∥∥∥h̃ni − h̃i∥∥∥
Lqg(Σ)

‖eui‖
L

q
q−1
g (Σ)

+
∥∥∥h̃ni ∥∥∥

Lqg(Σ)

∥∥∥eui − euni ∥∥∥
L

q
q−1
g (Σ)

−→
n→+∞

0,

and ∥∥∥h̃ni euni − h̃ieui∥∥∥
Lq
′
g0

(Σ)

≤
∥∥∥h̃ni euni − h̃ni eui∥∥∥

Lq
′
g0

(Σ)
+
∥∥∥h̃ni eui − h̃ieui∥∥∥

Lq
′
g0

(Σ)

≤
∥∥∥h̃ni − h̃i∥∥∥

Lqg0 (Σ)
‖eui‖

L

qq′
q−q′
g0

(Σ)

+
∥∥∥h̃ni ∥∥∥

Lqg0 (Σ)

∥∥∥eui − euni ∥∥∥
L

qq′
q−q′
g0

(Σ)

−→
n→+∞

0,

hence (A.5).

Lemma A.6.
Let Gδ be as in (A.1), Hδ be as in (A.2), Fg as in (A.4) and S2(Σ), B as before.
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Then, for any (g, h, u) ∈ Gδ×Hδ×B such that F (g, h, u) = 0 and for any w ∈ H1

g0
(Σ)2 there exists

(gw, hw, uw) ∈ S2(Σ)× C2(Σ)2 ×H1

g(Σ)2 such that

∂(g,h)F (g, h, u)[gw, hw] + ∂uF (g, h, u)[uw] = w.

Proof.

As a first thing, we notice that, if v ∈ H1

g(Σ)2 satisfies〈
Sg∂(g,h)F (g, h, u)[0, h′], v

〉
H1
g(Σ)2 = 0 ∀h′ ∈ C2(Σ)2,

then v ≡ 0. This follow by writing

0

=
〈
Sg∂(g,h)F (g, h, u)[0, h′], v

〉
H1
g(Σ)2

=
〈
∂hF̃g(h,Sg(u))[h′], v

〉
H1
g(Σ)2

=

(
2ρ1C(h1, h

′
1, v1)− ρ2C(h2, h

′
2, v2)

2ρ2C(h2, h
′
2, v2)− ρ1C(h1, h

′
1, v1)

)
,

namely, for both i = 1, 2,

0 = C(hi, h
′
i, vi) :=

´
Σ
h̃′ie

ui
(
vi
´

Σ
h̃ie

uidVg −
´

Σ
h̃ie

uividVg

)
dVg(´

Σ
h̃ieuidVg

)2 ,

that is vi ≡
´

Σ
h̃ie

uividVg´
Σ
h̃ieuidVg

, but since the only constant in H1
g (Σ), the claim follows.

Now, take g, h, u such that F (g, h, u) = 0. From Remark A.4, ∂vF̃g(h,Sg(u)) is a Fredholm map of
index 0, namely we can write

H
1

g(Σ)2 = Ker
(
∂vF̃g(h,Sg(u))

)
⊕ Im

(
∂vF̃g(h,Sg(u))

)
,

and we indicate as PKer, PIm the two orthogonal projections. In this way, any w ∈ H1

g0
(Σ)2 can be

written uniquely as a w = S−1
g (PKer(Sg(w))) + S−1

g (PIm(Sg(w))).

We claim that there exists hw ∈ C2(Σ)2 such that

PKer(Sg(w)) = PKer(Sg(∂(g,h)F (g, h, u)[0, hw])).

In fact, taking a orthonormal basis {v1, . . . , vD} of Ker
(
∂vF̃g(h,Sg(u))

)
, the linear functionals

L1, . . . ,LD on C2(Σ)2 defined by

Li[h
′] :=

〈
Sg∂(g,h)F (g, h, u)[0, h′], vi

〉
H1
g(Σ)2

are linearly independent, by what was shown at the beginning of this proof. Therefore, taking

h′1, . . . , h
′
D such that Li[h

′
j ] = δij , if PKer(Sg(w)) =

N∑
i=1

civi, we will suffice to take hw :=

N∑
i=1

cih
′
i.

Now, taking vw defined by

PIm

(
Sg
(
w − ∂(g,h)F (g, h, u)[0, hw]

))
= ∂vF̃g(h,Sg(u))[vw]

one gets

w
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= S−1
g (PKer(Sg(w))) + S−1

g (PIm(Sg(w)))

= S−1
g

(
PKer

(
Sg
(
∂(g,h)F (g, h, u)[0, hw]

)))
+ S−1

g (PIm(Sg(w)))

= S−1
g

(
Sg
(
∂(g,h)F (g, h, u)

)
[0, hw]− PIm

(
Sg
(
∂(g,h)F (g, h, u)

)
[0, hw]

))
+ S−1

g (PIm(Sg(w)))

= ∂(g,h)F (g, h, u)[0, hw] + S−1
g

(
PIm

(
Sg
(
w − ∂(g,h)F (g, h, u)

))
[0, hw]

)
= ∂(g,h)F (g, h, u)[0, hw] + S−1

g

(
∂vF̃g(h,Sg(u))[vw]

)
= ∂(g,h)F (g, h, u)[0, hw] + ∂uF (g, h, u)

[
S−1
g (vw)

]
.

Therefore, setting gw := 0, uw := S−1
g (vw), the proof is complete.

A.2 Proof of Theorem 1.21

Here we will prove the algebraic condition (1.10) which has to be satisfied by the masses of the
entire solutions of (1.9).
Notice the similarities between (1.10) and (2.2): in particular, if Hi(x) = |x|2αi , then (1.10) can be
read as Λ{1,...,N},0(ρ) = 0.
Theorem 1.21 is an extension of the results from [25] (Theorems 1, 2, 3) for the case N = 1. The
proof we will show follows quite closely the one of such results. A similar result was also given in
[54] for some regular Liouville systems.

As a first thing, we show that solutions of (1.9) are bounded from above. The following Lemma is
inspired by [16], Theorem 2.

Lemma A.7.
Let U = (U1, . . . , UN ) be a solution of (1.9) and c be as in Theorem 1.21.
Then, | · |ceUi ∈ L∞

(
R2
)

for all i’s.

Proof.
We will suppose, at first, c = 0.
We fix x0 ∈ R2 and we show sup

B 1
2

(x0)

Ui ≤ C for all i’s, with C not depending on x0.

Write Hie
Ui = Fi +Gi with Fi ∈ L∞

(
R2
)

and

ˆ
R2

Gi(y)dy ≤ ε, with ε to be chosen later.

Consider now Vi,Wi defined by{
−∆Vi = Fi in B1(x0)
Vi = 0 on ∂B1(x0)

{
−∆Wi = Gi in B1(x0)
Wi = 0 on ∂B1(x0)

By Lemma 1.1,

ˆ
B1(x0)

e
|Vi(x)|
ε dx ≤ C, and moreover ‖Wi‖L∞(B1(x0)) ≤ C.

Consider now Zi := Ui−
N∑
j=1

a+
ij(Vj+Wj). Since −∆Zi =

N∑
j=1

a−ijHje
Uj ≥ 0, the mean value theorem

for subharmonic functions gives, for x ∈ B 1
2
(x0),

Zi(x)

≤ C

ˆ
B 1

2
(x)

Zi(y)dy

≤ C

ˆ
B 1

2
(x)

U+
i (y)dy +

N∑
j=1

aij

ˆ
B 1

2
(x)

|Vj(y)|dy +

N∑
j=1

aij

ˆ
B 1

2
(x)

|Wj(y)|dy
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≤ C

θ

ˆ
B 1

2
(x)

eθUi(y)dy + C

N∑
j=1

ˆ
B 1

2
(x)

e|Vj(y)|dy + ‖Wj‖L∞(B1(x0))


≤ C

∥∥H−θi ∥∥
L

1
1−θ (B1(x0))

(ˆ
B1(x0)

Hie
UidVg

)θ
+ C

≤ C,

where θ =

 1 if a = 0

∈
(

0,
2

2 + a

)
if a > 0

.

Take now q ∈
(

1,
2

b−

)
, so that ‖Hi‖Lq(B1(x0)) ≤ C, q′ ∈ (1, q) and ε ≤ Nqq′

q − q′
max
i,j

a+
ij :∥∥Hie

Ui
∥∥
Lq′
(
B 1

2
(x0)

)
=

∥∥∥Hie
Zi+

∑N
j=1 a

+
ij(Vj+Wj)

∥∥∥
Lq′
(
B 1

2
(x0)

)

≤ e

‖Z+
i ‖

L∞
(
B 1

2
(x0)

)+
∑N
j=1 a

+
ij‖Wj‖

L∞
(
B 1

2
(x0)

) ∥∥∥Hie
∑N
j=1 a

+
ijVj
∥∥∥
Lq′
(
B 1

2
(x0)

)

≤ C‖Hi‖
Lq
(
B 1

2
(x0)

) N∏
i=1

∥∥∥ea+
ij |Vj |

∥∥∥
L
Nqq′
q−q′

(
B 1

2
(x0)

)
≤ C.

Therefore, by elliptic regularity, Vj and Wj are uniformly bounded in L∞
(
B 1

2
(x0)

)
, hence

sup
B 1

2
(x0)

Ui ≤ sup
B 1

2
(x0)

Z+
i +

N∑
j=1

a+
ij

(
‖Vj‖

L∞
(
B 1

2
(x0)

) + ‖Wj‖
L∞

(
B 1

2
(x0)

)
)
≤ C.

For c > 0, we modify the argument as in [25], Lemma 1.2.
If |x0| ≤ 2, then |x|c ≤ 3c on B1(x0), hence we can argue as before.
If |x0| ≥ 2, we consider U ′i(x) = Ui(x) + a log |x0|, which solves

−∆U ′1 =

N∑
j=1

aijH
′
je
U ′j in R2

ˆ
R2

H ′i(x)eU
′
i(x)dx < +∞

, with H ′i =
Hi

|x0|a
.

Since, for x ∈ B1(x0), one has

0 < H ′(x) ≤ C
(
|x|
|x0|

)c
≤ C

(
1 +
|x− x0|
|x0|

)c
≤ 2cC,

then by the previous argument we get sup
B 1

2
(x0)

U ′ ≤ C with C not depending on x0., therefore for

x ∈ B 1
2
(x0)

Ui(x) + c log |x| ≤ Ui(x) + c log |x0| − c log 2 ≤ C − c log 2,

which concludes the proof.

Let us now define

U0
i (x) :=

1

2π

N∑
j=1

aij

ˆ
R2

log
|y|+ 1

|x− y|
Hj(y)eUj(y)dy. (A.6)
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Thanks to Lemma A.7, U0
i is well-defined in R2 and it verifies −∆

(
Ui − U0

i

)
= 0 on R2. Since Ui

is bounded from above and U0
i it has a sub-logarithmic growth, then by Liouville’s Theorem their

difference must be constant.
Therefore, the estimates of the derivatives on Ui can be done, equivalently, on U0

i , which is easier
because of its explicit expression.

All such considerations are summarized by the following lemma, which we do not prove explicitly
because its can be done in the very same way as Lemmas 1.1, 1.2, 1.3 in [25].

Lemma A.8.
Let U0

i be defined by (A.6).
Then, the following estimates hold true:

sup
x∈R2\Br(0)

∣∣∣∣∣∣ Ui(x)

log |x|
+

1

2π

N∑
j=1

aijρj

∣∣∣∣∣∣ −→r→+∞
0. sup

x∈R2\Br(0)

∣∣∣∣∣∣|x|∇Ui(x)− 1

2π

N∑
j=1

aijρj
x

|x|

∣∣∣∣∣∣ −→r→+∞
0.

Such estimates allow to argue similarly as Theorem 2.9, though integrating by parts on Br(0) and
then letting r go to +∞.

In fact, by the integrability condition in (1.9) implies that

N∑
j=1

aijρj > 2π(2 + c), therefore

r

ˆ
∂Br(0)

Hi(x)eUi(x)dσ(x) −→
r→+∞

0.

This and Lemma A.8 allow to perform the following calculations, which conclude the proof:

1

4π

N∑
i,j=1

aijρiρj

= lim
r→+∞

N∑
i,j=1

aij
ˆ
Br(0)

(x · ∇Ui(x))∆Uj(x)dx

= lim
r→+∞

N∑
i=1

(
−
ˆ
Br(0)

(x · ∇Ui(x))Hi(x)eUi(x)dx

)

= lim
r→+∞

N∑
i=1

(
2

ˆ
Br(0)

Hi(x)eUi(x)dx+

ˆ
Br(0)

(x · ∇Hi(x))eUi(x)dx

+ r

ˆ
∂Br(0)

Hi(x)eUi(x)dσ(x)

)
= 2ρi + τi.
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[24] W. X. Chen. A Trüdinger inequality on surfaces with conical singularities. Proc. Amer. Math.
Soc., 108(3):821–832, 1990.

[25] W. X. Chen and C. Li. Qualitative properties of solutions to some nonlinear elliptic equations
in R2. Duke Math. J., 71(2):427–439, 1993.

[26] S. S. Chern and J. G. Wolfson. Harmonic maps of the two-sphere into a complex Grassmann
manifold. II. Ann. of Math. (2), 125(2):301–335, 1987.

[27] S. Childress and J. K. Percus. Nonlinear aspects of chemotaxis. Math. Biosci., 56(3-4):217–237,
1981.

[28] M. Chipot, I. Shafrir, and G. Wolansky. On the solutions of Liouville systems. J. Differential
Equations, 140(1):59–105, 1997.

[29] M. Chipot, I. Shafrir, and G. Wolansky. Erratum: “On the solutions of Liouville systems”
[J. Differential Equations 140 (1997), no. 1, 59–105; MR1473855 (98j:35053)]. J. Differential
Equations, 178(2):630, 2002.

[30] T. D’Aprile, A. Pistoia, and D. Ruiz. Asymmetric blow-up for the SU(3) Toda System.
preprint, 2014.

[31] T. D’Aprile, A. Pistoia, and D. Ruiz. A continuum of solutions for the SU(3) Toda System
exhibiting partial blow-up. preprint, 2014.

[32] F. De Marchis. Generic multiplicity for a scalar field equation on compact surfaces. J. Funct.
Anal., 259(8):2165–2192, 2010.
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