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Chapter 1

Introduction

1.1 The Toda system

The Toda system

−∆ui(x) =

N∑

j=1

aije
uj(x), x ∈ Σ, i = 1, . . . , N, (1.1)

where ∆ is the Laplace operator and A = (aij)ij the Cartan matrix of SU(N + 1),

A =




2 −1 0 . . . . . . 0
−1 2 −1 0 . . . 0
0 −1 2 −1 . . . 0
. . . . . . . . . . . . . . . . . .
0 . . . . . . −1 2 −1
0 . . . . . . 0 −1 2



,

plays an important role in geometry and mathematical physics. In geometry it appears in the description
of holomorphic curves in CPn, see [11], [16], [24], [50]. In mathematical physics, it is a model for non-
abelian Chern-Simons vortices, which might have applications in high-temperature superconductivity and
which appear in a much wider variety compared to the Yang-Mills framework, see e.g. [92], [93] and [98]
for further details and an up-to-date set of references.

The existence of abelian Chern-Simons vortices has been quite deeply investigated in the literature,
see e.g. [14], [18], [79], [87], [91]. The study of the non-abelian case is more recent, and we refer for
example to [38], [55], [58], [66], [80], [95].

We will be interested in the following problem on a compact surface Σ. For the sake of simplicity, we
will assume that V olg(Σ) = 1.




−∆u1 = 2ρ1

(
h1e

u1´
Σ
h1eu1dVg

− 1
)
− ρ2

(
h2e

u2´
Σ
h2eu2dVg

− 1
)
− 4π

∑m
j=1 α1,j(δpj − 1),

−∆u2 = 2ρ2

(
h2e

u2´
Σ
h2eu2dVg

− 1
)
− ρ1

(
h1e

u1´
Σ
h1eu1dVg

− 1
)
− 4π

∑m
j=1 α2,j(δpj − 1).

(1.2)

Here ρ1, ρ2 are real parameters, h1, h2 are smooth positive functions and αi,j ≥ 0. The above system
arises specifically from gauged self-dual Schrödinger equations, see e.g. Chapter 6 in [98]: the Dirac deltas
represent vortices of the wave function, namely points where the latter vanishes.

To describe the history and the main features of the problem, we first desingularize the equation using
a simple change of variables. Consider indeed the fundamental solution Gp(x) of the Laplace equation
on Σ with pole at p, i.e. the unique solution to

−∆Gp(x) = δp −
1

|Σ| on Σ, with

ˆ
Σ

Gp(x) dVg(x) = 0. (1.3)

By the substitution

ui(x) 7→ ui(x) + 4π

m∑

j=1

αi,jGpj (x), hi(x) 7→ h̃i(x) = hi(x)e−4π
∑m
j=1 αi,jGpj (x) (1.4)
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1. Introduction

problem (1.2) transforms into an equation of the type




−∆u1 = 2ρ1

(
h̃1e

u1´
Σ
h̃1eu1dVg

− 1

)
− ρ2

(
h̃2e

u2´
Σ
h̃2eu2dVg

− 1

)
,

−∆u2 = 2ρ2

(
h̃2e

u2´
Σ
h̃2eu2dVg

− 1

)
− ρ1

(
h̃1e

u1´
Σ
h̃1eu1dVg

− 1

)
,

(1.5)

where the functions h̃j satisfy

h̃i > 0 on Σ \ {p1, . . . , pm}; h̃i(x) ' d(x, pj)
2αi,j , near pj , i = 1, 2. (1.6)

Problem (1.5) is variational, and solutions can be found as critical points of the Euler-Lagrange
functional Jρ : H1(Σ)×H1(Σ)→ R (ρ = (ρ1, ρ2)) given by

Jρ(u1, u2) =

ˆ
Σ

Q(u1, u2) dVg +

2∑

i=1

ρi

(ˆ
Σ

uidVg − log

ˆ
Σ

h̃ie
uidVg

)
, (1.7)

where Q(u1, u2) is defined as:

Q(u1, u2) =
1

3

(
|∇u1|2 + |∇u2|2 +∇u1 · ∇u2

)
. (1.8)

The main difficulties in attacking (1.5) are mainly of two kinds: compactness issues and the Morse-
structure of the functional, which we are going to describe below.

As many geometric problems, also (1.5) presents loss of compactness phenomena, as its solutions might
blow-up. To describe the general phenomenon it is first convenient to discuss the case of the scalar
counterpart of (1.5), namely a Liouville equation in the form

−∆u = 2ρ

(
h̃ eu´

Σ
h̃ eudVg

− 1

)
, (1.9)

where ρ ∈ R and h̃ behaves as in (1.6) near the singularities. Equation (1.9) rules the change of Gaussian
curvature under conformal deformation of the metric, see [1], [19], [20], [59] and [86]. More precisely,
letting g̃ = e2vg, the Laplace-Beltrami operator of the deformed metric is given by ∆g̃ = e−2v∆g and the
change of the Gauss curvature is ruled by

−∆gv = Kg̃e
2v −Kg,

where Kg and Kg̃ are the Gauss curvatures of (Σ, g) and of (Σ, g̃) respectively. Another motivation for
the study of (1.9) is in mathematical physics as it models the mean field equation of Euler flows, see
[15] and [56]. This equation has been very much studied in the literature; there are by now many results
regarding existence, compactness of solutions, bubbling behavior, etc. We refer the interested reader to
[6], [17], [29], [30], [31], [32], [35], [36], [67] and the reviews [68], [93].

Concerning (1.9) it was proved in [13], [60] and [61] that for the regular case a blow-up point xR
for a sequence (un)n of solutions relatively to (ρn)n, i.e. there exists a sequence xn → xR such that
un(xn)→ +∞ as n→ +∞, satisfies the following quantization property:

lim
r→0

lim
n→+∞

ρn

´
Br(xR)

h̃ eun dVg´
Σ
h̃ eun dVg

= 4π. (1.10)

Somehow, each blow-up point has a quantized local mass. Furthermore, the limit profile of solutions is
close to a bubble, namely a function Uλ,p defined as

Uλ,p(y) = log

(
4λ

(
1 + λ d(p, y)2

)2

)
,

where y ∈ Σ, d(p, y) stands for the geodesic distance and λ is a large parameter. In other words, the
limit function is the logarithm of the conformal factor of the stereographic projection from S2 onto R2,
composed with a dilation.
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1.1. The Toda system

For the singular case instead, it was proven in [7] and [5] that if blow-up occurs at a singular point
xS with weight −4πα then one has

lim
r→0

lim
n→+∞

ρn

´
Br(xS)

h̃ eun dVg´
Σ
h̃ eun dVg

= 4π(1 + α), (1.11)

whereas (1.10) still holds true if blow-up occurs at a regular point.

This behaviour helps to explain the blow-up feature for system (1.5), which inherits some character from
the scalar case. Consider first the regular case, that is, (1.2) with αi,j = 0. Here a sequence of solutions
can blow-up in three different ways: one component blows-up and the other does not; one component
blows-up faster than the other; both components blow-up at the same rate.

It was proved in [49] and [51] that the quantization values for the two components are respectively
(4π, 0) or (0, 4π) in the first case, (8π, 4π) or (4π, 8π) in the second case and (8π, 8π) in the third one.
Notice that, by the results in [33], [39] and [75], all the five alternatives may indeed happen. See also [27]
and [28] for further analysis in this direction.

When singular sources are present a similar phenomenon happens, which has been investigated in the
paper [63]. If blow-up occurs at a point p with singular weights α1, α2 (we may allow them to vanish),
the corresponding blow-up values would be

(4π(1 + α1), 0); (0, 4π(1 + α2)); (4π(1 + α1), 4π(2 + α1 + α2));

(4π(2 + α1 + α2), 4π(1 + α2)); (4π(2 + α1 + α2), 4π(2 + α1 + α2)).
(1.12)

Other (finitely-many) blow-up values are indeed allowed, as more involved situations are not yet excluded
(or known to exist). Consider a point p at which (1.2) has singular weights α1 = α1(p), α2 = α2(p) in
the first and the second component of the equation. We give then the following two definitions.

Definition 1.1.1 Given a couple of non-negative numbers (α1, α2) we let Γα1,α2
be the subset of an

ellipse in R2 defined by the equation

Γα1,α2
:=

{
(σ1, σ2) : σ1, σ2 ≥ 0, σ2

1 − σ1σ2 + σ2
2 = 2(1 + α1)σ1 + 2(1 + α2)σ2

}
.

We then let Λα1,α2
⊆ Γα1,α2

be the set constructed via the following rules:

1. the points (0, 0), (2(1 + α1), 0), (0, 2(1 + α2)), (2(1 + α1), 2(2 + α1 + α2)), (2(2 + α1 + α2), 2(1 + α2)),
(2(2 + α1 + α2), 2(2 + α1 + α2)) belong to Λα1,α2 ;

2. if (a, b) ∈ Λα1,α2
then also any (c, d) ∈ Γα1,α2

with c = a+ 2m, m ∈ N∪ {0}, d ≥ b belongs to Λα1,α2
;

3. if (a, b) ∈ Λa1,α2 then also any (c, d) ∈ Γα1,α2 with d = b+ 2n, n ∈ N ∪ {0}, c ≥ a belongs to Λα1,α2 .

Definition 1.1.2 Given Λα1,α2 as in Definition 1.1.1, we set

Λ0 = 2π



(2p, 2q) +

m∑

j=1

nj(aj , bj) : p, q ∈ N ∪ {0}, nj ∈ {0, 1}, (aj , bj) ∈ Λα1,j ,α2,j



 ;

Λi = 4π



n+

m∑

j=1

(1 + αi,j)nj , n ∈ N ∪ {0}, nj ∈ {0, 1}



 , i = 1, 2.

We finally set
Λ = Λ0 ∪ (Λ1 × R) ∪ (R× Λ2) ⊆ R2.
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1. Introduction

Remark 1.1.3 Observe that in the regular case, namely for αi,j = 0 for all i, j, the set Λ is reduced to
the standard critical set

Λ = (4πN× R) ∪ (R× 4πN).

From the local quantization results in [63] and [49] for the singular and for the regular case respectively,
and some standard analysis (see in particular Section 1 in [13] and [10]) one finds the following global
compactness result.

Theorem 1.1.4 ([10],[49],[63]) For (ρ1, ρ2) in a fixed compact set of R2 \ Λ the family of solutions to
(1.5) is uniformly bounded in C2,β for some β > 0.

Remark 1.1.5 There is actually an improvement of the latter result; in fact, Prof. Wei and Prof. Zhang
recently informed us that under the assumption αi,j ≤ C for some positive constant C, the corresponding
blow-up values are just those stated in (1.12), as one would expect.

Remark 1.1.6 The set of lines Λ1 × R, R × Λ2 refer to the case of blowing-up solutions in which one
component remains bounded, so it is not quantized. The quantization of the blowing-up component was
obtained in [6] for the singular scalar case.

Instead, the set Λ0 refers to couples (u1, u2) for which both components blow-up. Observe that Λα1,α2

is finite, and it coincides with the five elements (4π, 0), (0, 4π), (8π, 4π), (4π, 8π), (8π, 8π) when both α1

and α2 vanish. Then, Λ0 is a discrete set.
In particular, Λ is a closed set in R2 with zero Lebesgue measure.

Let us now show how we can study the sub-levels of the functional and conclude existence of solutions
via min-max methods. We present here the strategy for the scalar case (1.9); to make the argument clear

let us assume that there are no singular sources in the equation or, in other words, let us assume h̃ = h
in (1.9) to be a positive smooth function. We recall next the classical Moser-Trudinger inequality, in its
weak form

log

ˆ
Σ

eu−u dVg ≤
1

16π

ˆ
Σ

|∇u|2 dVg + C; u ∈ H1(Σ), (1.13)

where C is a constant depending only on Σ and the metric g. The main tool in the variational study
of this kind of problems is the so-called Chen-Li inequality, see [23]. In the scalar case, it implies that
a suitable spreading of the term eu yields a better constant in the Moser-Trudinger inequality, which in
turn might imply a lower bound on the Euler functional J̃ρ of (1.9)

J̃ρ(u) =
1

2

ˆ
Σ

|∇u|2dVg + 2ρ

(ˆ
Σ

u dVg − log

ˆ
Σ

h eudVg

)
, u ∈ H1(Σ). (1.14)

The consequence of this fact is that if ρ < 4(k + 1)π, k ∈ N, and if J̃ρ(u) is large negative (i.e. when
lower bounds fail) eu accumulates near at most k points of Σ, see e.g. [36]. This suggests to introduce the
family of unit measures Σk which are supported in at most k points of Σ, known as formal barycenters
of Σ of order k

Σk =





k∑

j=1

tjδxj :

k∑

j=1

tj = 1, xj ∈ Σ



 . (1.15)

One can show that, for any integer k, Σk is not contractible and that its homology is mapped injectively
into that of the low sub-levels of J̃ρ. This allows to prove existence of solutions via suitable min-max
schemes for every ρ /∈ 4πN.

The values 4πN are critical and the existence problem becomes subtler due to a loss of compactness,
see [21], [34] and [78] for discussion in this framework. To solve equation (1.9) (or equation (1.5)) in this
case, one always needs geometry conditions, see [34], [99]. For example, for equation (1.9) with ρ1 = 4π
and ρ2 ∈ (0, 4π], in [99] the author gave an existence result under suitable conditions on the Gaussian
curvature K(x) of Σ, namely K(x) should satisfy

4π − ρ2 −K(x) > 0 for any x ∈ Σ.
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1.1. The Toda system

We return now to the Toda system; as we observed, a basic tool for studying functionals like Jρ is the
Moser-Trudinger inequality, see (1.13). Its analogue for the Toda system has been obtained in [50] and
reads as

4π

2∑

i=1

(
log

ˆ
Σ

hie
uidVg −

ˆ
Σ

uidVg

)
≤
ˆ

Σ

Q(u1, u2) dVg + C ∀u1, u2 ∈ H1(Σ), (1.16)

for some C = C(Σ). This inequality immediately allows to find a global minimum of Jρ provided both
ρ1 and ρ2 are less than 4π. For larger values of the parameters ρi Jρ is unbounded from below and the
problem becomes more challenging.

Concerning the regular Toda system, a first existence result in this direction was presented in [69] for
ρ1 ∈ (4kπ, 4(k + 1)π), k ∈ N and ρ2 < 4π. When one of the two parameters is small, the system (1.5)
resembles the scalar case (1.9) and one can adapt the above argument to this framework as well. When
both parameters exceed the value 4π, the description of the low sub-levels becomes more involved due to
the interaction of the two components u1 and u2.

The first variational approach to understand this interaction was given in [71], where the authors
obtained an existence result for (ρ1, ρ2) ∈ (4π, 8π)2. This was done in particular by showing that if both
components of the system concentrate near the same point and with the same rate, then the constants
in the left-hand side of (1.16) can be nearly doubled.

The study of more general non-coercive regimes is the topic of Chapters 2, 3, see the next subsections.

1.1.1 A general existence result on compact surfaces of positive genus: Chap-
ter 2

In the Chapter 2 we use min-max theory to find a critical point of Jρ in a general non-coercive regime.
Our main result, which is obtained in [9], is the following:

Theorem 1.1.7 Let αi,j ≥ 0 and let Λ ⊂ R2 be as in Definition 1.1.2. Let Σ be a compact surface
neither homeomorphic to S2 nor to RP2, and assume that (ρ1, ρ2) 6∈ Λ. Then the singular Toda system
(1.2) is solvable.

Let us point out that Λ ⊆ R2 is an explicit set formed by an union of straight lines and discrete
points, see Remark 1.1.6. In particular it is a closed set with zero Lebesgue measure.

Up to our knowledge, there is no previous existence result in the literature for the singular Toda
system. Our result is hence the first one in this direction, and is generic in the choice of parameters ρ1

and ρ2. In the regular case there are some previous existence results, see [49], [66], [69] and [71], some of
which have a counterpart in [35] and [36] for the scalar case (1.9) (see also [37] for a higher order problem
and [7], [4], [17] and [70] for the singular case). However, these require an upper bound either on one of
the ρi’s or both: hence our result covers most of the unknown cases also for the regular problem.

When both ρ1 and ρ2 are larger than 4π the description of the sub-levels becomes more involved, since
the two components u1 and u2 interact in a non-trivial way. See [71] on this respect. We obtain here
a partial topological characterization of the low energy levels of Jρ, which is however sufficient for our
purposes. This strategy has been used in [3] and in [2] for the singular scalar equation and for a model
in electroweak theory respectively, while here the general non-abelian case is treated for the first time.

First, we construct two disjoint simple non-contractible curves γ1, γ2 which do not intersect singular
points, and define global retractions Π1,Π2 of Σ onto these two curves. Such curves do not exist for
Σ = S2 or RP2, and hence our arguments do not work in those cases.

Combining arguments from [23], [69] and [71] we prove that if ρ1 < 4(k + 1)π and ρ2 < 4(l + 1)π,

k, l ∈ N, then either h̃1e
u1 is close to Σk or h̃2e

u2 is close to Σl in the distributional sense. Then we
can map continuously (and naturally) h̃1e

u1 to Σk or h̃2e
u2 to Σl; using then the retractions Πi one can

restrict himself to targets in (γ1)k or (γ2)l only. This alternative can be expressed naturally in terms of
the topological join (γ1)k ∗ (γ2)l. Roughly speaking, given two topological spaces A and B, the join A ∗B

9



1. Introduction

is the formal set of segments joining elements of A with elements of B. More precisely, the topological
join of two sets A,B is defined as the family of elements of the form

{(a, b, s) : a ∈ A, b ∈ B, s ∈ [0, 1]}
R

, (1.17)

where R is an equivalence relation such that

(a1, b, 1)
R∼ (a2, b, 1) ∀a1, a2 ∈ A, b ∈ B and (a, b1, 0)

R∼ (a, b2, 0) ∀a ∈ A, b1, b2 ∈ B.

The elements of the join are usually written as formal sums (1− s)a+ sb.
In this way, we are able to define a global projection Ψ from low sub-levels of Jρ onto (γ1)k ∗ (γ2)l.

We can also construct a reverse map Φλ (where λ is a large parameter) from (γ1)k∗(γ2)l into arbitrarily
low sub-levels of Jρ using suitable test functions. Moreover, we show that the composition of both maps is
homotopic to the identity map. Finally, (γ1)k ∗(γ2)l is homeomorphic to a sphere of dimension 2k+2l−1
see Remark 2.1.2: in particular it is not contractible, and this allows us to apply a min-max argument.

In this step a compactness property is needed, like the Palais-Smale’s. The latter is indeed not
known for this problem, but there is a way around it using a monotonicity method from [88]. For that,
compactness of solutions comes to rescue, and here we use the results of [49] and [63], see Theorem 1.1.4.
This is the reason why we assume (ρ1, ρ2) /∈ Λ.

1.1.2 The case of compact surfaces of arbitrary genus: Chapter 3

In Chapter 3 we focus on the regular Toda system, namely



−∆u1 = 2ρ1

(
h1e

u1´
Σ
h1eu1dVg

− 1
)
− ρ2

(
h2e

u2´
Σ
h2eu2dVg

− 1
)
,

−∆u2 = 2ρ2

(
h2e

u2´
Σ
h2eu2dVg

− 1
)
− ρ1

(
h1e

u1´
Σ
h1eu1dVg

− 1
)
,

(1.18)

where ρ1, ρ2 are real parameters and h1, h2 two positive smooth functions. Notice that in the above
equation, differently from equation (1.2), we do not have the presence of singular terms in the right-hand
side. We prove here the following result, see [48], which for the first time applies to surfaces of arbitrary
genus when both parameters ρi are supercritical and one of them also arbitrarily large.

Theorem 1.1.8 Let h1, h2 be two positive smooth functions and let Σ be any compact surface. Suppose
that ρ1 ∈ (4kπ, 4(k + 1)π), k ∈ N and ρ2 ∈ (4π, 8π). Then problem (1.18) has a solution.

Remark 1.1.9 Theorem 1.1.8 is new when Σ is a sphere and k ≥ 3. As we already discussed, the case
of surfaces with positive genus was covered in [9]. The case of Σ ' S2 and k = 1 was covered in [71],
while for k = 2 it was covered in [62]. In the latter paper the authors indeed computed the Leray-Schauder
degree of the equation for the range of ρi’s in Theorem 1.1.8. It turns out that the degree of (1.18) is
zero for the sphere when k ≥ 3: since solutions do exist by Theorem 1.1.8, it means that either they are
degenerate, or that degrees of multiple ones cancel, so a global degree counting does not detect them. A
similar phenomenon occurs for (1.9) on the sphere, when ρ > 12π, see [22]. Even for positive genus,
we believe that our approach could be useful in computing the degree of the equation, as it happened in
[67] for the scalar equation (1.9). More precisely we speculate that the degree should be computable as
1−χ(Y ), where the set Y is given in (3.41). This is verified for example in the case of the sphere thanks
to Lemma 3.4.4.

Other results on the degree of the system, but for different ranges of parameters, are available in [72].

As described above, in the situation of Theorem 1.1.8 it is natural to characterize low sub-levels of the
Euler-Lagrange energy Jρ by means of the topological join Σk ∗ Σ1 (notice that Σ1 ' Σ), see (1.17).
However, differently from [9], we crucially take into account the interaction between the two components
u1 and u2. As one can see from (1.8), the quadratic energy Q penalizes situations in which the gradients
of the two components are aligned, and we would like to make a quantitative description of this effect.
Our proof uses four new main ingredients.
• A refinement of the projection from low-energy sub-levels onto the topological join Σk ∗ Σ1 from

[9], see Section 3.2, which uses the scales of concentration of the two components, and which extends

10



1.2. A mean field equation

some construction in [71]. Having to deal with arbitrarily high values of ρ1, differently from [71] we also
need to take into account of the stratified structure of Σk and to the closeness in measure sense to its
substrata.
• A new, scaling invariant improved Moser-Trudinger inequality for system (1.18), see Proposi-

tion 3.2.5. This is inspired from another one in [4] for singular Liouville equations, i.e. of the form
(1.9) but with Dirac masses on the right-hand side. The link between the two problems arises in the
situation when one of the two components in (1.18) is much more concentrated than the other: in this
case the measure associated to its exponential function resembles a Dirac delta compared to the other
one. The above improved inequality gives extra constraints to the projection on the topological join, see
Proposition 3.2.7 and Corollary 3.2.8.
• A new set of test functions showing that the characterisation of low energy levels of Jρ is sharp, as a

subset Y of Σk ∗Σ1. We need indeed to build test functions modelled on a set which contains Σk−1 ∗Σ1,
and the stratified nature of Σk−1 makes it hard to obtain uniform upper estimates on such functions.
• A new topological argument showing the non-contractibility of the above set Y , which we use then

crucially to develop our min-max scheme. The fact that Y is simply connected and has Euler characteristic
equal to 1 forces us to use rather sophisticated tools from algebraic topology.

We expect that our approach might extend to the case of general physical parameters ρ1, ρ2, including
the positive genus case and the singular Toda system with αi,j ≥ 0, in which Dirac masses (corresponding
to ramification or vortex points) appear in the right-hand side of (1.18), see also [8] for some results with
this approach.

1.2 A mean field equation

The second topic of the thesis is the following class of mean field equations with two parameters on a
compact surface Σ, namely a Liouville-type equation:

−∆u = ρ1

(
h1 e

u´
Σ
h1 eudVg

− 1

)
− ρ2

(
h2 e

−u´
Σ
h2 e−udVg

− 1

)
, (1.19)

where ρ1, ρ2 are real parameters and h1, h2 are two smooth positive functions. We recall that we are
always assuming V olg(Σ) = 1, for the sake of simplicity.

This equation arises in mathematical physics as a mean field equation of the equilibrium turbulence
with arbitrarily signed vortices. The mean field limit was first studied by Joyce and Montgomery [53] and
by Pointin and Lundgren [83] by means of different statistical arguments. Later, many authors adopted
this model, see for example [25], [64], [77] and the references therein. The case ρ1 = ρ2 plays also an
important role in the study of constant mean curvature surfaces, see [96], [97].

Equation (1.19) has a variational structure with associated functional Iρ : H1(Σ) → R, with ρ =
(ρ1, ρ2), defined by

Iρ(u) =
1

2

ˆ
Σ

|∇u|2 dVg − ρ1

(
log

ˆ
Σ

h1 e
u dVg −

ˆ
Σ

u dVg

)
− ρ2

(
log

ˆ
Σ

h2 e
−u dVg +

ˆ
Σ

u dVg

)
. (1.20)

In [82] the authors derived a Moser-Trudinger inequality for eu and e−u simultaneously, namely

log

ˆ
Σ

eu−u dVg + log

ˆ
Σ

e−u+u dVg ≤
1

16π

ˆ
Σ

|∇u|2 dVg + C, (1.21)

with C depending only of Σ. By this result, solutions to (1.19) can be found immediately as global
minima of the functional Iρ whenever both ρ1 and ρ2 are less than 8π. For ρi ≥ 8π the existence problem
becomes subtler and there are very few results.

The blow-up behavior of solutions of equation (1.19) is not yet developed in full generality; this
analysis was carried out in [52], [81] and [82] under the assumption that h1 = h2, see in particular
Theorem 1.1, Corollary 1.2 and Remark 4.5 in the latter paper. The following quantization property for
a blow-up point x and a sequence (un)n of solutions relatively to (ρ1,n, ρ2,n)n was obtained:

lim
r→0

lim
n→+∞

ρ1,n

´
Br(x)

h eun dVg´
Σ
h eun dVg

∈ 8πN, lim
r→0

lim
n→+∞

ρ2,n

´
Br(x)

h e−un dVg´
Σ
h e−un dVg

∈ 8πN. (1.22)

11



1. Introduction

As for the Toda system, the case of multiples of 8π may indeed occur, see [40] and [42].

Let now define the set Λ̃ by
Λ̃ = (8πN× R) ∪ (R× 8πN) ⊆ R2.

Combining (1.22) and some standard analysis (see the argument before Theorem 1.1.4) one finds the
following result.

Theorem 1.2.1 ([52],[10]) Let (ρ1, ρ2) be in a fixed compact set of R2 \ Λ̃ and assume h1 = h2. Then
the set of solutions to (1.19) is uniformly bounded in C2,β for some β > 0.

Remark 1.2.2 It seems that above condition h1 = h2 can be relaxed and that the compactness result
holds true for any choice of h1, h2. This follows from an improvement of the quantization property (1.22)
and it is an ongoing project we have with Prof. Jun-cheng Wei and Wen Yang.

Before introducing our main results we collect here some known existence results. The first one is given in
[52] and treats the case ρ1 ∈ (8π, 16π) and ρ2 < 8π. Via a blow-up analysis the authors proved existence
of solutions on a smooth, bounded, non simply-connected domain Σ in R2 with homogeneous Dirichlet
boundary condition. Later, this result is generalized in [100] to any compact surface without boundary
by using variational methods. The strategy is carried out in the same spirit as in [68] and [69] for the
Liouville equation (1.9) and the Toda system (1.5), respectively. The proof relies on some improved
Moser-Trudinger inequalities obtained in [23]. The idea is that, in a certain sense, one can recover the
topology of low sub-levels of the functional Iρ just from the behaviour of eu. Indeed the condition ρ2 < 8π
guarantees that e−u does not affect the variational structure of the problem.

The doubly supercritical regime, namely ρi > 8π, has to be attacked with a different strategy and is
the topic of Chapters 4, 5 and 5.3, see the next subsections.

1.2.1 A first existence result in a doubly supercritical case: Chapter 4

In Chapter 4 for the first time we consider a doubly supercritical case, namely when both parameters
ρi are greater than 8π. Via a min-max scheme we obtain an existence result without any geometry and
topology conditions. Our main theorem is stated in [45] and is the following:

Theorem 1.2.3 Let h1, h2 be two smooth positive functions. Assume that ρ1, ρ2 ∈ (8π, 16π). Then there
exists a solution to equation (1.19).

The method to prove this existence result relies on a min-max scheme introduced by Malchiodi and
Ruiz in [71] for the study of Toda systems; roughly speaking, the idea is that the role of eu2 is played
here by e−u. Such a scheme is based on study of the topological properties of the low sub-levels of Iρ.

We shall see that on low sub-levels at least one of the functions eu or e−u is very concentrated around
some point of Σ. Moreover, both eu and e−u can concentrate at two points that could eventually coincide,
but in this case the scale of concentration must be different. Roughly speaking, if eu and e−u concentrate
around the same point at the same rate, then Iρ is bounded from below. The same phenomenon is present
in the regular Toda system (1.18), where the role of −u is played by u2, see [71]. We next make this
statement more formal.

First, following the argument in [71], we define a continuous rate of concentration σ = σ(f) of a positive
function f ∈ Σ, normalized in L1. Somehow the smaller is σ, the higher is the rate of concentration of f .
Moreover we define a continuous center of mass β = β(f) ∈ Σ. This can be done when σ ≤ δ for some
fixed δ, therefore we have a map ψ : H1(Σ)→ Σδ,

ψ(u) =
(
β(f1), σ(f1)

)
, ψ(−u) =

(
β(f2), σ(f2)

)
,

where we have set

f1 =
eu´

Σ
eu dVg

, f2 =
e−u´

Σ
e−u dVg

.

12



1.2. A mean field equation

Here Σδ is the topological cone over Σ, where we make the identification to a point when σ ≥ δ for some
δ > 0 fixed, see (1.26). We point out that the argument presented here, involving the topological cone,
is equivalent to the construction based on the topological join (1.17) in the spirit of Chapter 3.

The improvement of the Moser-Trudinger inequality discussed above is made rigorous in the following
way: if ψ(f1) = ψ(f2), then Iρ(u) is bounded from below, see Proposition 4.2.6. The proof is based on
local versions of the Moser-Trudinger inequality on small balls and on annuli with small internal radius
(see [71] for the argument for the regular Toda system (1.18)). We point out that our improved inequality
is scaling invariant, differently from those proved by Chen-Li and Zhou (see [23] and [100]).

Using this fact, for L > 0 large we can introduce a continuous map:

I−Lρ
(ψ,ψ)−−−→ X :=

(
Σδ × Σδ

)
\D,

where D is the diagonal of Σδ × Σδ and I−Lρ is the sub-level of the functional, see the notation in
Section 1.3. On the other hand, it is also possible to do the converse, namely to map (a retraction of)
the set X into appropriate sub-levels of Iρ. We next construct a family of test functions parametrized on
(a suitable subset of) X on which Iρ attains arbitrarily low values, see Proposition 4.3.4. Letting

X
φ−→ I−Lρ

the corresponding map, it turns out that the composition of these two maps is homotopic to the identity
on X, see Proposition 4.3.7.

Exploiting the fact that X is not contractible, we are able to introduce a min-max argument to find a
critical point of Iρ. In this framework, an essential point is to use the monotonicity argument introduced
by Struwe in [88] jointly with a compactness result stated in Theorem 4.1.1, since it is not known whether
the Palais-Smale condition holds or not.

1.2.2 Existence and multiplicity results: Chapter 5

In Chapter 5 we consider more generic non-coercive regimes for the equation

−∆u = ρ1

(
h eu´

Σ
h eu dVg

− 1

)
− ρ2

(
h e−u´

Σ
h e−u dVg

− 1

)
, (1.23)

on a compact surface Σ, where ρ1, ρ2 are real parameters and h is a smooth positive function. Notice
that we consider here just one potential h, differently from equation (1.19). The reason is that in this
case we are allowed to use the general compactness result in Theorem 1.2.1.

The chapter is divided into three parts; the purpose of the first two parts (Sections 5.1 and 5.2) is to
give both a general existence result and to address the multiplicity issue. We start by suitably adapting
the argument presented for the Toda system in [9], see Subsection 1.1.1, to get the following existence
result (still part of the paper [9]), see Section 5.1.

Theorem 1.2.4 Let h be a smooth positive function. Suppose Σ is not homeomorphic to S2 nor RP2,
and that ρi /∈ 8πN for i = 1, 2. Then (1.23) has a solution.

The second part is devoted to the multiplicity problem of equation (1.23) and is part of the paper [47].
The goal is to present the first multiplicity result for this class of equations, see Section 5.2.

Theorem 1.2.5 Let ρ1 ∈ (8kπ, 8(k + 1)π) and ρ2 ∈ (8lπ, 8(l + 1)π), k, l ∈ N and let Σ be a compact
surface with genus g(Σ) > 0. Then, for a generic choice of the metric g and of the function h it holds

#
{

solutions of (1.23)
}
≥
(
k + g(Σ)− 1

g(Σ)− 1

)(
l + g(Σ)− 1

g(Σ)− 1

)
.

Here, by generic choice of (g, h) we mean that it can be taken in an open dense subset ofM2×C 2(Σ)+,
where M2 stands for the space of Riemannian metrics on Σ equipped with the C 2 norm, see Proposi-
tion 5.2.4.
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1. Introduction

The proof is carried out by means of the Morse theory in the same spirit of [3] and [8], where the
problem of prescribing conformal metrics on surfaces with conical singularities and the Toda system are
considered, respectively. The argument is based on the analysis developed in Chapter 2, paper [9] (see
also Section 1.1.1): in particular we will exploit the topological descriptions of the low sub-levels of Iρ to
get a lower bound on the number of solutions to (1.23). It will turn out indeed that the high sub-levels
of Iρ are contractible, while the low sub-levels carry some non trivial topology. In fact, we will describe
the topology of the sub-levels by means of that of a bouquet BN of N circles, where BN is defined as
BN = ∪Ni=1Si, where Si is homeomorphic to S1 and Si ∩ Sj = {c}, and c is called the center of the
bouquet, see Figure 5.2. We will finally apply the weak Morse inequalities to deduce the estimate on
the number of solutions by means of the latter change of topology. Somehow, one expects that the more
the topology of the surface Σ is involved, the higher is the number of solutions. In fact, we will exploit
the genus of Σ to describe the topology of low sub-levels of Iρ by means of some bouquet of circles, see
Lemma 5.2.5 and Proposition 5.2.7. In this way we will capture the topological informations of Σ and
provide a better bound on the number of solutions to (1.23).

Aim of the last part of the chapter (Section 5.3) is to present, differently from Chapter 4 and the first
two parts of Chapter 5, an approach to problem (1.23) based on the associated Leray-Schauder degree.
This argument is stated in the note [46] and yields new existence results, see Theorem 1.2.6.

Regarding the regular one-parameter case, namely the classic Liouville equation (1.9), combining the
local quantization (1.10) with some further analysis, see for example [10], [13], we have that the set of
solutions is uniformly bounded in C2,α, for any fixed α ∈ (0, 1), provided ρ /∈ 4πN. It follows that one
can define the Leray-Schauder degree associated to problem (1.9) with ρ ∈ (4kπ, 4(k + 1)π), k ∈ N. In
[60] it was shown that the degree is 1 when ρ < 4π. By the homotopic invariance of the degree, it is easy
to see that the same is independent of the function h, the metric of Σ and it is constant on each interval
(4kπ, 4(k + 1)π). In fact it depends only on k ∈ N and the topological structure of Σ, as was proved in
[22], where the authors provide the degree-counting formula

deg(ρ) =
1

k!
(−χ(Σ) + 1) · · · (−χ(Σ) + k), (1.24)

where χ(Σ) denotes the Euler characteristic of Σ. The proof of this result is carried out by analyzing the
jump values of the degree after ρ crossing the critical thresholds. Later, this result was rephrased in [67]
with a Morse theory point of view.

On the other hand, concerning the mean field equation with two parameters (1.23), by the compactness
property in Theore 1.2.1, the associated degree can still be defined for ρi /∈ 8πN, i = 1, 2. However, this
strategy has not been yet investigated and the existence results mostly rely on a variational approach.

Goal of Section 5.3 is to attack the problem with a different point of view and for the first time analyze
the associated Leray-Schauder degree. This is done in the spirit of [72], where the Toda system (1.18)
was analyzed. More precisely, we study its parity and we observe that when both parameters stay in the
same interval, i.e. ρi ∈ (8kπ, 8(k + 1)π), k ∈ N for i = 1, 2, the degree is always odd. The main result is
the following.

Theorem 1.2.6 Let h > 0 be a smooth function and suppose ρi ∈ (8kπ, 8(k + 1)π), k ∈ N for i = 1, 2.
Then problem (1.23) has a solution.

Observe that we recover the result of [45] (see Chapter 4 and Subsection 1.2.1) and some cases of [9]
(see Chapter 2 and Subsection 1.1.1): when Σ is homeomorphic to S2 the above theorem yields a new
existence result.

Remark 1.2.7 Concerning the Leray-Schauder degree associated to equation (1.23), in an ongoing project
we have with Prof. Jun-cheng Wei and Wen Yang we provide a degree counting formula for parameters
ρ1 ∈ (0, 8π) ∪ (8π, 16π) and ρ2 /∈ 8πN by computing the degree contributed by the blow-up solutions.
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1.3. Notation

1.3 Notation

In this section we collect some useful notation we will use through the thesis.
Given points x, y ∈ Σ, d(x, y) will stand for the metric distance between x and y on Σ. Similarly, for

any p ∈ Σ, Ω,Ω′ ⊆ Σ, we set:

d(p,Ω) = inf {d(p, x) : x ∈ Ω} , d(Ω,Ω′) = inf {d(x, y) : x ∈ Ω, y ∈ Ω′} .
The symbol Bs(p) stands for the open metric ball of radius s and centre p, while Ap(r1, r2) is the open
annulus of radii r1, r2 and centre p. For the complement of a set Ω in Σ we will write Ωc.

Given a function u ∈ L1(Σ) and Ω ⊂ Σ, the average of u on Ω is denoted by the symbol

 
Ω

u dVg =
1

|Ω|

ˆ
Ω

u dVg.

We denote by u the average of u in Σ: since we are assuming |Σ| = 1, we have

u =

ˆ
Σ

u dVg =

 
Σ

u dVg.

The sub-levels of the functional Jρ will be indicated as

Jaρ :=
{
u = (u1, u2) ∈ H1(Σ)×H1(Σ) : Jρ(u1, u2) ≤ a

}
.

As it is mentioned in the introduction, some useful information arising from Moser-Trudinger type
inequalities and their improvements are the concentration of eu when u belongs to a low sub-level. To
express this rigorously, we denote M(Σ) the set of all Radon measures on Σ, and introduce a norm by
using duality versus Lipschitz functions, that is, we set:

d(ν1, ν2) = sup
‖f‖Lip(Σ)≤1

∣∣∣∣
ˆ

Σ

f dν1 −
ˆ

Σ

f dν2

∣∣∣∣ ; ν1, ν2 ∈M(Σ). (1.25)

This is known as the Kantorovich-Rubinstein distance.

Given δ > 0, we define the topological cone:

Σδ =
Σ× (0,+∞)

Σ× [δ,+∞)
, (1.26)

where the equivalence relation identifies Σ× [δ,+∞) to a single point.

Given q ∈ N and a topological space X, we will denote by Hq(X) its q-th homology group with
coefficient in Z. For a subspace A ⊆ X we write Hq(X,A) for the q-th relative homology group of

(X,A). We will denote by H̃q(X) the reduced q-th homology group, i.e. H0(X) = H̃0(X) ⊕ Z and

Hq(X) = H̃q(X) for all q > 0.

The q-th Betti number of X will be indicated by βq(X), namely βq(X) = rank (Hq(X)), while β̃q(X)
will correspond to the rank of the reduced homology group.

Throughout the paper the letter C will stand for large constants which are allowed to vary among
different formulas or even within the same lines. When we want to stress the dependence of the constants
on some parameter (or parameters), we add subscripts to C, as Cδ, etc. We will write oα(1) to denote
quantities that tend to 0 as α → 0 or α → +∞; we will similarly use the symbol Oα(1) for bounded
quantities.
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Chapter 2

The Toda system: a general
existence result

We consider here the following problem on a compact surface Σ:




−∆u1 = 2ρ1

(
h1e

u1´
Σ
h1eu1dVg

− 1
)
− ρ2

(
h2e

u2´
Σ
h2eu2dVg

− 1
)
− 4π

∑m
j=1 α1,j(δpj − 1),

−∆u2 = 2ρ2

(
h2e

u2´
Σ
h2eu2dVg

− 1
)
− ρ1

(
h1e

u1´
Σ
h1eu1dVg

− 1
)
− 4π

∑m
j=1 α2,j(δpj − 1),

(2.1)

where ρ1, ρ2 are real parameters, h1, h2 are smooth positive functions and αi,j ≥ 0. For an introduction
to this topic see Section 1.1 and Subsection 1.1.1. The arguments of this chapter are collected in the
paper [9]. We will give here the following existence result in a general non-coercive regime.

Theorem 2.0.1 Let αi,j ≥ 0 and let Λ ⊂ R2 be as in Definition 1.1.2. Let Σ be a compact surface
neither homeomorphic to S2 nor to RP2, and assume that (ρ1, ρ2) 6∈ Λ. Then the above Toda system is
solvable.

The plan of this chapter is the following: in Section 2.1 we construct a family of test functions with
low energy modelled on the topological join of (γ1)k and (γ2)l, see (1.15) and (1.17). In Section 2.2 we
derive suitable improved Moser-Trudinger inequalities to construct projections from low sub-levels of the
associated energy functional Jρ into (γ1)k ∗ (γ2)l. In Section 2.3 we prove our existence theorem using
the min-max argument. In Section 2.4 we present some topological properties of the barycenter set Σk,
which we will use through Chapters 2 and 3.

2.1 The test functions

We begin this section with an easy topological result, which will be essential in our analysis:

Lemma 2.1.1 Let Σ be a compact surface not homeomorphic to S2 nor RP2. Then, there exist two
simple closed curves γ1, γ2 ⊆ Σ satisfying (see Figure 2.1)

1. γ1, γ2 do not intersect each other nor any of the singular points pj, j = 1 . . .m;

2. there exist global retractions Πi : Σ→ γi, i = 1, 2.

Proof. The result is quite evident for the torus. For the Klein bottle, consider its fundamental square
ABAB−1. We can take γ1 as the segment B, and γ2 a segment parallel to B and passing by the center of
the square. The retractions are given by just freezing one cartesian component of the point in the square.

Observe that we can assume that pi do not intersect those curves.
For any other Σ under the conditions of the lemma, Dyck’s Theorem implies that it is the connected

sum of a torus and another compact surface, Σ = T2#M . Then, one can modify the retractions of the
torus so that they are constant on M .
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2.1. The test functions

Σ

γ1
γ2

p1

pj
p2

Figure 2.1: The curves γi.

Remark 2.1.1 Observe that each curve γi generates a free subgroup in the first co-homology group of Σ.
Then, Lemma 2.1.1 cannot hold for S2 or RP2.

For ρ1 ∈ (4kπ, 4(k + 1)π) and ρ2 ∈ (4lπ, 4(l + 1)π) we would like to build a family of test functions
modelled on the topological join (γ1)k ∗ (γ2)l, involving the formal barycenters of the curves γ1, γ2, see
(1.15).

Remark 2.1.2 Since each γi is homeomorphic to S1, it follows from Proposition 3.2 in [4] that (γ1)k
is homeomorphic to S2k−1 and (γ2)l to S2l−1 (the homotopy equivalence was found before in [54]). As
it is well-known, the join Sm ∗ Sn is homeomorphic to Sm+n+1 (see for example [43]), and therefore
(γ1)k ∗ (γ2)l is homeomorphic to the sphere S2k+2l−1.

Let ζ = (1− s)σ2 + sσ1 ∈ (γ1)k ∗ (γ2)l, where:

σ1 :=

k∑

i=1

tiδxi ∈ (γ1)k and σ2 :=

l∑

j=1

sjδyj ∈ (γ2)l.

Our goal is to define a test function modelled uniformly on any ζ ∈ (γ1)k ∗ (γ2)l, depending on a positive
parameter λ and belonging to low sub-levels of J for large λ, that is a map

Φλ : (γ1)k ∗ (γ2)l → J−Lρ ; L� 0.

For any λ > 0, we define the parameters

λ1,s = (1− s)λ; λ2,s = sλ.

We introduce Φλ(ζ) = ϕλ,ζ whose components are defined by

(
ϕ1(x)
ϕ2(x)

)
=




log
∑k
i=1 ti

(
1

1+λ2
1,sd(x,xi)2

)2

− 1
2 log

∑l
j=1 sj

(
1

1+λ2
2,sd(x,yj)2

)2

− 1
2 log

∑k
i=1 ti

(
1

1+λ2
1,sd(x,xi)2

)2

+ log
∑l
j=1 sj

(
1

1+λ2
2,sd(x,yj)2

)2


 . (2.2)

Notice that when s = 0 we have that λ2,s = 0, and therefore, as
∑l
j=1 sj = 1, the second terms in both

rows are constant, independent of σ2; a similar consideration holds when s = 1. These arguments imply
that the function Φλ is indeed well defined on (γ1)k ∗ (γ2)l.

We have then the following result.

Proposition 2.1.3 Suppose ρ1 ∈ (4kπ, 4(k + 1)π) and ρ2 ∈ (4lπ, 4(l + 1)π). Then one has

Jρ(ϕλ,ζ)→ −∞ as λ→ +∞ uniformly in ζ ∈ (γ1)k ∗ (γ2)l.

Proof. We define v1, v2 : Σ→ R as follows;

v1(x) = log

k∑

i=1

ti

(
1

1 + λ2
1,sd(x, xi)2

)2

, v2(x) = log

l∑

j=1

sj

(
1

1 + λ2
2,sd(x, yj)2

)2

.
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With this notation the components of ϕ(x) are given by
(
ϕ1(x)
ϕ2(x)

)
=

(
v1(x)− 1

2 v2(x)
− 1

2 v1(x) + v2(x)

)
.

We first prove two estimates on the gradients of v1 and v2.

|∇vi(x)| ≤ Cλi,s, for every x ∈ Σ and s ∈ [0, 1], i = 1, 2, (2.3)

where C is a constant independent of λ, ζ ∈ (γ1)k ∗ (γ2)l, and

|∇vi(x)| ≤ 4

d i,min(x)
, for every x ∈ Σ, i = 1, 2, (2.4)

where d1,min(x) = min
i=1,...,k

d(x, xi) and d2,min(x) = min
j=1,...,l

d(x, yj).

We show the inequalities just for v1, as for v2 the proof is similar. We have that

∇v1(x) = −2λ2
1,s

∑k
i=1 ti

(
1 + λ2

1,sd
2(x, xi)

)−3∇
(
d2(x, xi)

)
∑k
j=1 tj

(
1 + λ2

1,sd
2(x, xj)

)−2 .

Using the estimate
∣∣∇
(
d2(x, xi)

)∣∣ ≤ 2d(x, xi) and the following inequality

λ2
1,sd(x, xi)

1 + λ2
1,sd

2(x, xi)
≤ Cλ1,s, i = 1, . . . , k,

with C a fixed constant, we obtain (2.3). For proving (2.4) we observe that if λ1,s = 0 the inequality is
trivially satisfied. If instead λ1,s > 0 we have

|∇v1(x)| ≤ 4λ2
1,s

∑k
i=1 ti

(
1 + λ2

1,sd
2(x, xi)

)−3
d(x, xi)

∑k
j=1 tj

(
1 + λ2

1,sd
2(x, xj)

)−2 ≤ 4λ2
1,s

∑k
i=1 ti

(
1 + λ2

1,sd
2(x, xi)

)−2 d(x,xi)
λ2

1,sd
2(x,xi)

∑k
j=1 tj

(
1 + λ2

1,sd
2(x, xy)

)−2

≤ 4

∑k
i=1 ti

(
1 + λ2

1,sd
2(x, xi)

)−2 1
d 1,min(x)

∑k
j=1 tj

(
1 + λ2

1,sd
2(x, xj)

)−2 =
4

d 1,min(x)
,

which proves (2.4).
We consider now the Dirichlet part of the functional Jρ. Taking into account the definition of ϕ1, ϕ2

we haveˆ
Σ

Q(ϕ1, ϕ2) dVg =
1

3

ˆ
Σ

(
|∇ϕ1|2 + |∇ϕ2|2 +∇ϕ1 · ∇ϕ2

)
dVg

=
1

3

ˆ
Σ

(
|∇v1|2 +

1

4
|∇v2|2 −∇v1 · ∇v2

)
dVg +

1

3

ˆ
Σ

(
|∇v2|2 +

1

4
|∇v1|2 −∇v2 · ∇v1

)
dVg +

+
1

3

ˆ
Σ

(
−1

2
|∇v1|2 −

1

2
|∇v2|2 +

5

4
(∇v1 · ∇v2)

)
dVg

=
1

4

ˆ
Σ

|∇v1|2 dVg +
1

4

ˆ
Σ

|∇v2|2 dVg −
1

4

ˆ
Σ

∇v1 · ∇v2 dVg.

We first observe that the part involving the mixed term ∇v1 · ∇v2 is bounded by a constant depending
only on Σ. Indeed, we introduce the sets

Ai =

{
x ∈ Σ : d(x, xi) =

k
min
j=1

d(x, xj)

}
. (2.5)

Using then (2.4) we have
ˆ

Σ

∇v1 · ∇v2 dVg ≤
ˆ

Σ

|∇v1||∇v2| dVg ≤ 16

ˆ
Σ

1

d1,min(x) d2,min(x)
dVg(x)

≤ 16

k∑

i=1

ˆ
Ai

1

d(x, xi) d2,min(x)
dVg(x).
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2.1. The test functions

We take now δ > 0 such that

δ =
1

2
min

{
min

i∈{1,...k},j∈{1,...l}
d(xi, yj), min

m, n∈{1,...k},m 6=n
d(xm, xn)

}

and we split each Ai into Ai = Bδ(xi)∪ (Ai \Bδ(xi)), i = 1, . . . k. By a change of variables and exploiting
the fact that d2,min(x) ≥ 1

C in Bδ(xi) we obtain

k∑

i=1

ˆ
Bδ(xi)

1

d(x, xi) d2,min(x)
dVg(x) ≤ C.

Using the same argument for the part Ai \ Bδ(xi) with some modifications and exchanging the role of
d1,min and d2,min we finally deduce that

ˆ
Σ

∇v1 · ∇v2 dVg ≤ C. (2.6)

We want now to estimate the remaining part of the Dirichlet energy. For convenience we treat the cases
s = 0 and s = 1 separately. Consider first the case s = 0: we then have ∇v2(x) = 0 and we get

ˆ
Σ

Q(ϕ1, ϕ2) dVg =
1

4

ˆ
Σ

|∇v1(x)|2 dVg(x).

We divide now the integral into two parts;

1

4

ˆ
Σ

|∇v1(x)|2 dVg(x) =
1

4

ˆ
⋃
i B 1

λ
(xi)

|∇v1(x)|2 dVg(x) +
1

4

ˆ
Σ\
⋃
i B 1

λ
(xi)

|∇v1(x)|2 dVg(x).

From (2.3) we deduce that ˆ
⋃
i B 1

λ
(xi)

|∇v1(x)|2 dVg(x) ≤ C.

Using then (2.4) for the second part of the integral, recalling the definition (2.5) of the sets Ai, one finds
that

1

4

ˆ
Σ\
⋃
i B 1

λ
(xi)

|∇v1(x)|2(x) dVg ≤ 4

ˆ
Σ\
⋃
i B 1

λ
(xi)

1

d2
1,min(x)

dVg(x) + C

≤ 4

k∑

i=1

ˆ
Ai\B 1

λ
(xi)

1

d2
1,min(x)

dVg(x) + C

≤ 8kπ
(
1 + oλ(1)

)
log λ+ C,

where oλ(1)→ 0 as λ→ +∞. Therefore we have

ˆ
Σ

Q(ϕ1, ϕ2) dVg ≤ 8kπ
(
1 + oλ(1)

)
log λ+ C. (2.7)

Reasoning as in [68], Proposition 4.2 part (ii), it is possible to show that

ˆ
Σ

v1 dVg = −4
(
1 + oλ(1)

)
log λ; log

ˆ
Σ

ev1 dVg = −2
(
1 + oλ(1)

)
log λ

log

ˆ
Σ

e−
1
2v1 dVg = 2

(
1 + oλ(1)

)
log λ,

and clearly

ˆ
Σ

v2 dVg = O(1); log

ˆ
Σ

ev2 dVg = O(1); log

ˆ
Σ

e−
1
2v2 dVg = O(1).
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Therefore we get
ˆ

Σ

ϕ1 dVg = −4
(
1 + oλ(1)

)
log λ; log

ˆ
Σ

eϕ1 dVg = −2
(
1 + oλ(1)

)
log λ;

ˆ
Σ

ϕ2 dVg = 2(1 + oλ(1)) log λ; log

ˆ
Σ

eϕ2 dVg = −2(1 + oλ(1)) log λ.

Inserting the latter equalities in the expression of the functional Jρ and using the fact that h̃i ≥ 1
C , i = 1, 2

outside a small neighbourhood of the singular points (which are avoided by the curves γ1, γ2), we obtain

Jρ(ϕ1, ϕ2) ≤
(
8kπ − 2ρ1 + oλ(1)

)
log λ+ C,

where C is independent of λ and σ1, σ2.
For the case s = 1, by the same argument we have that

Jρ(ϕ1, ϕ2) ≤
(
8lπ − 2ρ2 + oλ(1)

)
log λ+ C.

We consider now the case s ∈ (0, 1). By (2.6) the Dirichlet part can be estimated by

ˆ
Σ

Q(ϕ1, ϕ2) dVg ≤
1

4

ˆ
Σ

|∇v1(x)|2 dVg(x) +
1

4

ˆ
Σ

|∇v2(x)|2 dVg(x) + C.

For a general s one can just substitute λ with λ1,s in (2.7) (and similarly for the v2), to get the following
estimateˆ

Σ

Q(ϕ1, ϕ2) dVg ≤ 8kπ
(
1 + oλ(1)

)
log
(
λ1,s + δ1,s

)
+ 8lπ

(
1 + oλ(1)

)
log
(
λ2,s + δ2,s

)
+ C, (2.8)

where δ1,s > δ > 0 as s → 1 and δ2,s > δ > 0 as s → 0, for some fixed δ. The same argument as for
s = 0, 1 leads to
ˆ

Σ

v1 dVg = −4
(
1 + oλ(1)

)
log
(
λ1,s + δ1,s

)
+O(1);

ˆ
Σ

v2 dVg = −4
(
1 + oλ(1)

)
log
(
λ2,s + δ2,s

)
+O(1),

therefore we obtainˆ
Σ

ϕ1 dVg = −4
(
1 + oλ(1)

)
log
(
λ1,s + δ1,s

)
+ 2
(
1 + oλ(1)

)
log
(
λ2,s + δ2,s

)
+O(1), (2.9)

ˆ
Σ

ϕ2 dVg = 2
(
1 + oλ(1)

)
log
(
λ1,s + δ1,s

)
− 4
(
1 + oλ(1)

)
log
(
λ2,s + δ2,s

)
+O(1). (2.10)

We consider now the exponential term. We have

ˆ
Σ

eϕ1 dVg =

k∑

i=1

ti

ˆ
Σ

1
(
1 + λ2

1,sd(x, xi)2
)2




l∑

j=1

sj
1

(
1 + λ2

2,sd(x, yj)2
)2



− 1

2

dVg(x).

Clearly it is enough to estimate the term

ˆ
Σ

1
(
1 + λ2

1,sd(x, x)2
)2




l∑

j=1

sj
1

(
1 + λ2

2,sd(x, yj)2
)2



− 1

2

dVg(x)

with x ∈ {x1, . . . xk}. Letting δ =
minj{d(x, yj)}

2
we divide the domain into two regions as follows:

Σ = Bδ(x) ∪ (Σ \ Bδ(x)). When we integrate in Bδ(x) we perform a change of variables for the part
involving λ1,r and observing that 1

C ≤ d(x, yj) ≤ C, j = 1, . . . , l, for every x ∈ Bδ(x), we deduce

ˆ
Bδ(x)

1
(
1 + λ2

1,sd(x, x)2
)2




l∑

j=1

sj
1

(
1 + λ2

2,sd(x, yj)2
)2



− 1

2

dVg(x) =

(
λ2,s + δ2,s

)2
(
λ1,s + δ1,s

)2
(
1 +O(1)

)
.
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On the other hand for the integral over Σ \Bδ(x) we use that 1
C ≤ d(x, x) ≤ C to get that this part is a

higher-order term and can be absorbed by the latter estimate. Recall now that h̃1 stays bounded away
from zero in a neighbourhood of the curve γ1 (see the beginning of the section). Therefore, since the
contribution of the integral outside a neighbourhood of γ1 is negligible, we can conclude that

log

ˆ
Σ

h̃1e
ϕ1 dVg = 2 log

(
λ2,s + δ2,s

)
− 2 log

(
λ1,s + δ1,s

)
+O(1). (2.11)

Similarly we have that

log

ˆ
Σ

h̃2e
ϕ2 dVg = 2 log

(
λ1,s + δ1,s

)
− 2 log

(
λ2,s + δ2,s

)
+O(1). (2.12)

Using the estimates (2.8), (2.9), (2.10), (2.11) and (2.12) we finally obtain

Jρ(ϕ1, ϕ2) ≤
(
8kπ − 2ρ1 + oλ(1)

)
log
(
λ1,s + δ1,s

)
+
(
8lπ − 2ρ2 + oλ(1)

)
log
(
λ2,s + δ2,s

)
+O(1).

Recalling that ρ1 > 4kπ, ρ2 > 4lπ and observing that max
s∈[0,1]

{λ1,s, λ2,s} → +∞ as λ → ∞, we conclude

the proof.

2.2 Moser-Trudinger inequalities and topological join

In this section we are going to give an improved version of the Moser-Trudinger inequality (1.16), where

the constant 4π can be replaced by an integer multiple under the assumption that the integral of h̃ie
ui

is distributed on different sets with positive mutual distance. The improved inequality implies that if
Jρ(u1, u2) attains very low values, then h̃ie

ui has to concentrate near a given number (depending on ρi)
of points for some i ∈ {1, 2}. As anticipated in the introduction, we will see that this induces a natural
map from low sub-levels of Jρ to the topological join of some sets of barycenters. This extends some
analysis from [49] and [69], where the authors considered the case ρ2 < 4π, and from [71], where both
parameters belong to the range (4π, 8π). We start with a covering lemma:

Lemma 2.2.1 Let δ > 0, θ > 0, k, l ∈ N with k ≥ l, fi ∈ L1(Σ) be non-negative functions with ‖fi‖L1(Σ) = 1
for i = 1, 2 and {Ω1,i,Ω2,j}i∈{0,...,k},j∈{0,...,l} ⊂ Σ such that

d(Ω1,i,Ω1,i′) ≥ δ ∀ i, i′ ∈ {0, . . . , k} with i 6= i′;

d(Ω2,j ,Ω2,j′) ≥ δ ∀ j, j′ ∈ {0, . . . , l} with j 6= j′,

and ˆ
Ω1,i

f1dVg ≥ θ ∀ i ∈ {0, . . . , k};

ˆ
Ω2,j

f2dVg ≥ θ ∀ j ∈ {0, . . . , l}.

Then, there exist δ > 0, θ > 0, independent of fi, and {Ωn}kn=1 ⊂ Σ such that

d(Ωn,Ω
′
n) ≥ δ ∀ n, n′ ∈ {0, . . . , k} with n 6= n′

and

|Ωn| ≥ θ ∀ n ∈ {0, . . . , k};
ˆ

Ωn

f1dVg ≥ θ ∀ n ∈ {0, . . . , k};

ˆ
Ωn

f2dVg ≥ θ ∀ n ∈ {0, . . . , l}.
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Proof. We set δ =
δ

8
and consider the open cover

{
Bδ(x)

}
x∈Σ

of Σ; by compactness, Σ ⊂
H⋃

h=1

Bδ(xh)

for some {xh}Hh=1 ⊂ Σ, H = H
(
δ,Σ

)
.

We choose {y1,i, y2,j}i∈{0,...,k},j∈{0,...,l} ⊂ {xh}Hh=1 such that

ˆ
Bδ(y1,i)

f1dVg = max

{ˆ
Bδ(xh)

f1dVg : Bδ(xh) ∩ Ω1,i 6= ∅
}

;

ˆ
Bδ(y2,j)

f2dVg = max

{ˆ
Bδ(xh)

f2dVg : Bδ(xh) ∩ Ω2,j 6= ∅
}

Since d(y1,i,Ω1,i) < δ, we have that d(y1,i, y1,i′) ≥ 6δ for i 6= i′. Analogously, d(y2,j , y2,j′) ≥ 6δ if j 6= j′.
In particular, this implies that for any i ∈ {0, . . . , k} there exists at most one j(i) such that d(y2,j(i), y1,i) < 3δ.
We relabel the index i so that for i = 1, . . . l such j(i) exists, and we relabel the index j so that j(i) = i.
We now define:

Ωn :=

{
Bδ(y1,n) ∪Bδ(y2,n) if n ∈ {0, . . . , l}
Bδ(y1,n) if n ∈ {l + 1, . . . , k}.

In other words, we make unions of balls Bδ(y1,n) ∪ Bδ(y2,n) if they are close to each other: for separate
balls, we make arbitrary unions. If k > l, the remaining balls are considered alone.

It is easy to check that those sets satisfy the theses of Lemma 2.2.1.

To show the improved Moser-Trudinger inequality, we will need a localized version of the inequality (1.16),
which was proved in [71].

Lemma 2.2.2 ([71]) Let δ > 0 and Ω b Ω̃ ⊂ Σ be such that d
(

Ω, ∂Ω̃
)
≥ δ.

Then, for any ε > 0 there exists C = C(ε, δ) such that for any u = (u1, u2) ∈ H1(Σ)×H1(Σ)

log

ˆ
Ω

eu1−
ffl
Ω̃
u1dVgdVg + log

ˆ
Ω

eu2−
ffl
Ω̃
u2dVgdVg ≤

1

4π

ˆ
Ω̃

Q(u1, u2)dVg + ε

ˆ
Σ

Q(u1, u2)dVg + C.

Here comes the improved inequality: basically, if the mass of both h̃1e
u1 and h̃2e

u2 is spread respectively
on at least k + 1 and l + 1 different sets, then the logarithms in (1.16) can be multiplied by k + 1 and
l + 1 respectively.
Notice that this result was given in [69] in the case l = 0 and in [71] in the case k = l = 1.

Lemma 2.2.3 Let δ > 0, θ > 0, k, l ∈ N and {Ω1,i,Ω2,j}i∈{0,...,k},j∈{0,...,l} ⊂ Σ be such that

d(Ω1,i,Ω1,i′) ≥ δ ∀ i, i′ ∈ {0, . . . , k} with i 6= i′;

d(Ω2,j ,Ω2,j′) ≥ δ ∀ j, j′ ∈ {0, . . . , l} with j 6= j′.

Then, for any ε > 0 there exists C = C (ε, δ, θ, k, l,Σ) such that any u = (u1, u2) ∈ H1(Σ)×H1(Σ) sat-
isfying ˆ

Ω1,i

h̃1e
u1dVg ≥ θ

ˆ
Σ

h̃1e
u1dVg ∀ i ∈ {0, . . . , k};

ˆ
Ω2,j

h̃2e
u2dVg ≥ θ

ˆ
Σ

h̃2e
u2dVg ∀ j ∈ {0, . . . , l}

verifies

(k + 1) log

ˆ
Σ

h̃1e
u1−u1dVg + (l + 1) log

ˆ
Σ

h̃2e
u2−u2dVg ≤

1 + ε

4π

ˆ
Σ

Q(u1, u2)dVg + C.
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Proof. In the proof we assume that u1 = u2 = 0. After relabelling the indexes, we can suppose k ≥ l

and apply Lemma 2.2.1 with fi =
h̃ie

ui´
Σ
h̃ieuidVg

to get {Ωj}kj=0 ⊂ Σ with

d(Ωi,Ωj) ≥ δ ∀ i, j ∈ {0, . . . , k} with i 6= j

and ˆ
Ωi

h̃1e
u1dVg ≥ θ

ˆ
Σ

h̃1e
u1dVg ∀ i ∈ {0, . . . , k};

ˆ
Ωj

h̃2e
u2dVg ≥ θ

ˆ
Σ

h̃2e
u2dVg ∀ j ∈ {0, . . . , l}.

Notice that:

log

ˆ
Σ

h̃ie
uidVg =

 
Ω̃j

uidVg + log

ˆ
Σ

h̃1e
ui−

ffl
Ω̃j
uidVg

dVg, i = 1, 2.

The average on Ω̃j can be estimated by Poincaré inequality:

 
Ω̃j

uidVg ≤
1∣∣∣Ω̃j
∣∣∣

ˆ
Σ

|ui|dVg ≤ C
(ˆ

Σ

|∇ui|2dVg
)1/2

≤ C + ε

ˆ
Σ

|∇ui|2dVg, i = 1, 2. (2.13)

We now apply, for any j ∈ {0, . . . , k} Lemma 2.2.2 with , Ω = Ωj and Ω̃ = Ω̃j :=

{
x ∈ Σ : d(x,Ωj) <

δ

2

}
:

for j ∈ {0, . . . , l} we get

log

ˆ
Σ

h̃1e
u1−

ffl
Ω̃j
u1dVg

dVg + log

ˆ
Σ

h̃2e
u2−

ffl
Ω̃j
u2dVg

dVg (2.14)

≤ 2 log
1

θ
+ log

ˆ
Ωj

h̃1e
u1−

ffl
Ω̃j
u1dVg

dVg + log

ˆ
Ωj

h̃2e
u2−

ffl
Ω̃j
u2dVg

dVg

≤ C + log

ˆ
Ωj

e
u1−

ffl
Ω̃j
u1dVg

dVg + log

ˆ
Ωj

e
u2−

ffl
Ω̃j
u2dVg

dVg

≤ C +
1

4π

ˆ
Ω̃j

Q(u1, u2)dVg + ε

ˆ
Σ

Q(u1, u2)dVg, j = 1, . . . l.

For j ∈ {l + 1, . . . , k} we have

log

ˆ
Σ

h̃1e
u1−

ffl
Ω̃j
u1dVg

dVg ≤ log
1

θ
+
∥∥∥h̃1

∥∥∥
L∞(Σ)

+ log

ˆ
Ωj

e
u1−

ffl
Ω̃j
u1dVg

dVg (2.15)

≤ C − log

ˆ
Ωj

e
u2−

ffl
Ω̃j
u2dVg

dVg +
1

4π

ˆ
Ω̃j

Q(u1, u2)dVg + ε

ˆ
Σ

Q(u1, u2)dVg.

The exponential term on the second component can be estimated by using Jensen’s inequality:

log

ˆ
Ωj

e
u2−

ffl
Ω̃j
u2dVg

dVg = log |Ωj |+ log

 
Ωj

e
u2−

ffl
Ω̃j
u2dVg

dVg (2.16)

≥ log |Ωj | ≥ −C.

Putting together (2.16) and (2.17), we have:

log

ˆ
Σ

h̃1e
u1−

ffl
Ω̃j
u1dVg

dVg ≤
1

4π

ˆ
Ω̃j

Q(u1, u2)dVg + ε

ˆ
Σ

Q(u1, u2)dVg + C, j = l + 1 . . . k. (2.17)

Summing over all j ∈ {0, . . . , k} and taking into account (2.14), (2.17), we obtain the result, renaming ε
appropriately.

We will now use a technical result that gives sufficient conditions to apply Lemma 2.2.3. Its proof can
be found for instance in [36, 69].
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Lemma 2.2.4 ([69], [71]) Let f ∈ L1(Σ) be a non-negative function with ‖f‖L1(Σ) = 1 and let m ∈ N be
such that there exist ε > 0, r > 0 with

ˆ
⋃m
j=0 Br(xj)

fdVg < 1− ε ∀ {xj}mj=0 ⊂ Σ.

Then there exist ε > 0, r > 0, not depending on f , and {xj}mj=1 ⊂ Σ satisfying

ˆ
Br(xj)

fdVg > ε ∀ j ∈ {1, . . . ,m},

B2r (xi) ∩B2r (xj) = ∅ ∀ i, j ∈ {1, . . . ,m}, i 6= j.

Now we have enough tools to obtain information on the structure of very low sub-levels of Jρ:

Lemma 2.2.5 Suppose ρ1 ∈ (4kπ, 4(k + 1)π) and ρ2 ∈ (4lπ, 4(l + 1)π). Then, for any ε > 0, r > 0,
there exists L = L(ε, r) > 0 such that for any u ∈ J−Lρ there are either some {xi}ki=1 ⊂ Σ verifying

´⋃k
i=1 Br(xi)

h̃1e
u1dVg´

Σ
h̃1eu1dVg

≥ 1− ε

or some {yj}lj=1 ⊂ Σ verifying ´⋃l
j=1 Br(yj)

h̃2e
u2dVg´

Σ
h̃2eu2dVg

≥ 1− ε.

Proof. Suppose by contradiction that the statement is not true, that is there are ε1, ε2 > 0, r1, r2 > 0,
and {un = (u1,n, u2,n)}n∈N ⊂ H1(Σ)×H1(Σ) such that Jρ(u1,n, u2,n) −→

n→+∞
−∞ and

´⋃k
i=1 Br1 (xi)

h̃1e
u1,ndVg´

Σ
h̃1eu1,ndVg

< 1− ε1;

´⋃l
j=1 Br2 (yj)

h̃2e
u2,ndVg´

Σ
h̃2eu2,ndVg

< 1− ε2, ∀ {xi}ki=1, {yj}lj=1 ⊂ Σ.

Then, we may apply twice Lemma 2.2.4 with f =
h̃ie

ui´
Σ
h̃ieuidVg

, ε̃ = εi, r̃ = ri and find ε1, ε2 > 0, r1, r2 > 0

and {xi}ki=0, {yj}lj=0 with

ˆ
Br1 (xi)

h̃1e
u1dVg ≥ ε1

ˆ
Σ

h̃1e
u1dVg ∀ i ∈ {0, . . . , k};

ˆ
Br2(yj)

h̃2e
u2dVg ≥ ε2

ˆ
Σ

h̃2e
u2dVg ∀ j ∈ {0, . . . , l},

and
B2r1 (xi) ∩B2r1 (xj) = ∅ ∀ i, j ∈ {0, . . . , k} with i 6= j;

B2r2

(
yj
)
∩B2r2

(
yj
)

= ∅ ∀ i, j ∈ {0, . . . , l} with i 6= j.

Hence, we obtain an improved Moser-Trudinger inequality for un = (u1,n, u2,n) applying Lemma 2.2.3

with δ̃ := 2 min{r1, r2}, θ̃ := min{ε1, ε2} and Ω1,i := Br1 (xi), Ω2,j := Br2

(
yj
)
.

Moreover, Jensen’s inequality gives

ˆ
Σ

h̃ie
ui,n−ui,ndVg =

ˆ
Σ

elog h̃i+ui,n−ui,ndVg ≥ e
´
Σ

log h̃idVg ,

so, choosing

ε̃ ∈
(

0,min

{
4π(k + 1)

ρ1
− 1,

4π(l + 1)

ρ2
− 1

})
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we get

−∞ ←−
n→+∞

Jρ(u1,n, u2,n)

≥
(

4π(k + 1)

1 + ε̃
− ρ1

)
log

ˆ
Σ

h̃1e
u1,n−u1,ndVg

+

(
4π(l + 1)

1 + ε̃
− ρ2

)
log

ˆ
Σ

h̃2e
u2,n−u2,ndVg − C

≥
(

4π(k + 1)

1 + ε̃
− ρ1

)ˆ
Σ

log h̃1dVg +

(
4π(l + 1)

1 + ε̃
− ρ2

)ˆ
Σ

log h̃2dVg − C

≥ −C

that is a contradiction.

Recall the distance d defined in (1.25). An immediate consequence of the previous lemma is that at least

one of the two h̃ie
ui ’s (once normalized in L1) has to be very close respectively to the sets of k-barycenters

or l-barycenters over Σ:

Proposition 2.2.6 Suppose ρ1 ∈ (4kπ, 4(k + 1)π) and ρ2 ∈ (4lπ, 4(l + 1)π). Then, for any ε > 0, there
exists L > 0 such that any u ∈ J−Lρ verifies either

d

(
h̃1e

u1´
Σ
h̃1eu1dVg

,Σk

)
< ε or d

(
h̃2e

u2´
Σ
h̃2eu2dVg

,Σl

)
< ε.

Proof. We apply Lemma 2.2.5 with ε̃ =
ε

4
, r̃ =

ε

2
; it is not restrictive to suppose that the first al-

ternative occurs and that

ˆ
Σ

h̃1e
u1dVg = 1. Hence we get L and {xi}ki=1 and we define, for such an

u = (u1, u2) ∈ J−Lρ ,

σ1(u) =

k∑

i=1

ti(u)δxi ∈ Σk where ti(u) =

ˆ
Br̃(xi)\

⋃i−1
j=1 Br̃(xj)

h̃1e
u1dVg +

1

k

ˆ
Σ\
⋃k
j=1 Br̃(xj)

h̃1e
u1dVg.

Then, for any φ ∈ Lip(Σ),

∣∣∣∣∣

ˆ
Σ\
⋃k
i=1 Br̃(xi)

(
h̃1e

u1´
Σ
h̃1eu1dVg

− σ1(u)

)
φdVg

∣∣∣∣∣ =

=

ˆ
Σ\
⋃k
i=1 Br̃(xi)

h̃1e
u1φdVg ≤

ˆ
Σ\
⋃k
i=1 Br̃(xi)

h̃1e
u1dVg‖φ‖L∞(Σ) < ε̃‖φ‖L∞(Σ)

and

∣∣∣∣∣

ˆ
⋃k
i=1 Br̃(xi)

(
h̃1e

u1´
Σ
h̃1eu1dVg

− σ1(u)

)
φdVg

∣∣∣∣∣

=

∣∣∣∣∣

ˆ
⋃k
i=1 Br̃(xi)

h̃1e
u1φdVg −

k∑

i=1

(ˆ
Br̃(xi)\

⋃i−1
j=1 Br̃(xj)

h̃1e
u1dVg +

1

k

ˆ
Σ\
⋃k
j=1 Br̃(xj)

h̃1e
u1dVg

)
φ(xi)

∣∣∣∣∣

=

∣∣∣∣∣

ˆ
⋃k
i=1(Br̃(xi)\

⋃i−1
j=1 Br̃(xj))

h̃1e
u1(φ− φ(xi))dVg −

ˆ
Σ\
⋃k
j=1 Br̃(xj)

h̃1e
u1dVgφ(xi)

∣∣∣∣∣

≤ r̃‖∇φ‖L∞(Σ)

ˆ
⋃k
i=1(Br̃(xi)\

⋃i−1
j=1 Br̃(xj))

h̃1e
u1dVg + ‖φ‖L∞(Σ)

ˆ
Σ\
⋃k
j=1 Br̃(xj)

h̃1e
u1dVg

< r̃‖∇φ‖L∞(Σ) + ε̃‖φ‖L∞(Σ).
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Hence we can conclude the proof:

d

(
h̃1e

u1´
Σ
h̃1eu1dVg

,Σk

)
≤ d

(
h̃1e

u1´
Σ
h̃1eu1dVg

, σ1(u)

)
= sup
‖φ‖Lip(Σ)=1

∣∣∣∣∣

ˆ
Σ

(
h̃1e

u1´
Σ
h̃1eu1dVg

− σ1(u)

)
φdVg

∣∣∣∣∣

= sup
‖φ‖Lip(Σ)=1

∣∣∣∣∣

ˆ
Σ\
⋃k
i=1 Br̃(xi)

(
h̃1e

u1´
Σ
h̃1eu1dVg

− σ1(u)

)
φdVg

∣∣∣∣∣

+ sup
‖φ‖Lip(Σ)=1

∣∣∣∣∣

ˆ
⋃k
i=1 Br̃(xi)

(
h̃1e

u1´
Σ
h̃1eu1dVg

− σ1(u)

)
φdVg

∣∣∣∣∣
< sup

‖φ‖Lip(Σ)=1

2ε̃‖φ‖L∞(Σ) + r̃‖∇φ‖L∞(Σ) ≤ 2ε̃+ r̃ = ε,

as desired.

When a measure is close in the Lip′ sense to an element in Σl, it is then possible to map it continuously
to a nearby element in this set, see Proposition 2.4.1. With the previous estimates, recalling the definition
of ψl in the latter proposition, it is now easy to define a projection map in the following form:

Proposition 2.2.7 Suppose ρ1 ∈ (4kπ, 4(k + 1)π), ρ2 ∈ (4lπ, 4(l+ 1)π) and let Φλ be as in (2.2). Then
for L sufficiently large there exists a continuous map

Ψ : J−Lρ → (γ1)k ∗ (γ2)l

such that the composition

(γ1)k ∗ (γ2)l
Φλ−→ J−Lρ

Ψ−→ (γ1)k ∗ (γ2)l

is homotopically equivalent to the identity map on (γ1)k ∗ (γ2)l provided that λ is large enough.

The rest of this section is devoted to the proof of this proposition.

By Proposition 2.2.6 we know that either ψk

(
h̃1e

u1´
Σ
h̃1eu1dVg

)
or ψl

(
h̃2e

u2´
Σ
h̃2eu2dVg

)
is well defined (or

both), since either d

(
h̃1e

u1´
Σ
h̃1eu1dVg

,Σk

)
< ε or d

(
h̃2e

u2´
Σ
h̃2eu2dVg

,Σl

)
< ε (or both).

We then set

d1 = d

(
h̃1e

u1´
Σ
h̃1eu1dVg

,Σk

)
; d2 = d

(
h̃2e

u2´
Σ
h̃2eu2dVg

,Σl

)
,

and consider a function s̃ = s̃(d1, d2) defined as

s̃(d1, d2) = f

(
d1

d1 + d2

)
, (2.18)

where f is such that

f(z) =





0 if z ∈ [0, 1/4],
2z − 1

2 if z ∈ (1/4, 3/4),
1 if z ∈ [3/4, 1].

(2.19)

Consider the global retractions Π1 : Σ→ γ1 and Π2 : Σ→ γ2 given in Lemma 2.1.1, and define:

Ψ(u1, u2) = (1− s̃)(Π1)∗ψk

(
h̃1e

u1´
Σ
h̃1eu1dVg

)
+ s̃(Π2)∗ψl

(
h̃2e

u2´
Σ
h̃2eu2dVg

)
, (2.20)

where (Πi)∗ stands for the push-forward of the map Πi. Notice that when one of the two ψ’s is not
defined the other necessarily is, and the map is well defined by the equivalence relation.

In what follows, we are going to need the following auxiliary lemma:
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Lemma 2.2.8 Given n ∈ N, define χλ as χλ(x) =

n∑

i=1

ti

(
λ

1 + λ2d(x, xi)2

)2

. Take a L∞ function τ :

Σ→ R satisfying:

i) τ(x) > m > 0 for all x ∈ B(xi, δ).

ii) |τ(x)| ≤M for all x ∈ Σ.

Then, there exist constants c > 0, C > 0 depending only on Σ, m, M , such that for every λ > 0,

c0 min

{
1,

1

λ

}
< d

(
τ χλ´

Σ
τ χλ dVg

,Σn

)
<
C0

λ
.

Proof. We show the proof for n = 1; the general case uses the same ideas and will be skipped. We
also assume λ > 1. First of all, observe that

C >

ˆ
Σ

χλ(x) dVg(x) > c > 0

for some positive constants c, C.
For the upper estimate, it suffices to show that for any f Lipschitz, ‖f‖Lip(Σ) ≤ 1,

ˆ
Σ

τ(x)

(
λ

1 + λ2d(x, x0)2

)2

(f(x)− f(x0)) dVg(x) ≤ C

λ
.

Indeed, by ii), ˆ
(Bδ(x0))c

τ(x)

(
λ

1 + λ2d(x, x0)2

)2

dVg(x) ≤ C

λ2
,

and using geodesic coordinates x centered at x0, we find

∣∣∣∣∣

ˆ
Bδ(x0)

τ(x)

(
λ

1 + λ2d(x, x0)2

)2

(f(x)− f(x0)) dVg(x)

∣∣∣∣∣

≤ C
ˆ
Bδλ(0))

τ
(
x0 +

y

λ

)( 1

1 + |y|2
)2 ∣∣∣f

(
x0 +

y

λ

)
− f(x0)

∣∣∣ dy

≤ C
ˆ
R2

(
1

1 + y2

)2 ∣∣∣ y
λ

∣∣∣ dy ≤ C

λ
.

We now prove the estimate from below. Given p ∈ Σ, we estimate d(χλ, δp). Define the Lipschitz
function f(x) = d(x, p). We now show that:

min
p∈Σ

ˆ
Σ

τ(x)

(
λ

1 + λ2d(x, x0)2

)2

d(x, p) dVg(x) ≥ c

λ
.

As above, the integral in the exterior of Bδ(x0) is negligible. Moreover, in the same coordinates as
above, and taking into account i), we obtain:

ˆ
Bδ(x0)

τ(x)

(
λ

1 + λ2|x− x0|2
)2

d(x, p) dVg(x) ∼
ˆ
Bδλ(0)

τ(x)
(
x0 +

y

λ

)( 1

1 + |y|2
)2 ∣∣∣x0 − p+

y

λ

∣∣∣ dy

≥ m

λ

ˆ
Bδ(0)

(
1

1 + |y|2
)2

|y + λ(x0 − p)| dy.

It suffices to show that we cannot choose pλ so that

ˆ
Bδ(0)

(
1

1 + |y|2
)2

|y + λ(x0 − pλ)| dx→ 0 as λ→ +∞. (2.21)
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Indeed, if λ|x0 − pλ| → +∞, the expression (2.21) diverges. If not, we can assume that λ(x0 − pλ)→
z ∈ R2. Then, (2.21) converges to

ˆ
Bδ(0)

(
1

1 + |y|2
)2

|y + z| dx > 0.

which concludes the proof.

From the previous lemma we deduce the following.

Proposition 2.2.9 Let ϕi be defined by (2.2). Then there exist constants c > 0, C > 0 such that for
every λ > 1 and every s ∈ (0, 1) one has

c0 min

{
1,

1

λ1,s

}
≤ d

(
h̃1e

ϕ1´
Σ
h̃1eϕ1 dVg

,Σk

)
≤ C0

λ1,s
; c0 min

{
1,

1

λ2,s

}
≤ d

(
h̃2e

ϕ2´
Σ
h̃2eϕ2 dVg

,Σl

)
≤ C0

λ2,s
.

Proof. Clearly, it suffices to prove the estimates for ϕ1 in the case λ1,s > 1. By the normalization, it
suffices to prove it to the function ς = ϕ1 − 2 log (λ1,s max{1, λ2,s}).

Observe now that we can write eς = χλ1,s(x) τ(x), with:

τ(x) = h̃1(x)




l∑

j=1

sj

(
max{1, λ2,s}2

1 + λ2
2,sd(x, yj)2

)2


−1/2

.

It suffices to show that τ satisfy the conditions of Lemma 2.2.8 to conclude.

We are now in position to prove that the composition Ψ ◦Φλ is homotopic to the identity, where Ψ is as
in (2.20) and Φλ(ζ) = ϕλ,ζ is as in (2.2). Take ζ = (1− s)σ1 + sσ2 ∈ (γ1)k ∗ (γ2)l, with

σ1 =

k∑

i=1

tiδxi , σ2 =

l∑

j=1

sjδyj .

Set d1 = d

(
h̃1e

ϕ1´
Σ
h̃1eϕ1dVg

,Σk

)
, d2 = d

(
h̃2e

ϕ2´
Σ
h̃2eϕ2dVg

,Σl

)
. By the previous proposition and the

definition of λ1,s, λ2,s, there exist constants 0 < c0 < C0 such that

c0 min

{
1,

1

λ(1− s)

}
≤ d1 ≤

C0

λ(1− s) , c0 min

{
1,

1

λs

}
≤ d2 ≤

C0

λs
.

Observe then that at least one between d1 and d2 must be smaller than 2C0

λ . Given δ > 0 sufficiently
small, we have:

s < δ ⇒





d1

d1+d2
≤

C0

λ(1−s)
c0

λ(1−s) + c0
λs

=
C0

c0
s if λ s ≥ 1;

d1

d1+d2
≤

C0

λ(1−s)

c0 + c0
λ(1−s)

≤ C0

c0

1

λ
if λ s ≤ 1.

In any case, by choosing λ, δ adequately, we obtain that s̃ = 0. This fact is important, since the

projection ψl

(
h̃2e

ϕ2´
Σ
h̃2eϕ2dVg

)
could not be well defined.

Analogously, we have that if s > (1 − δ), then the projection ψk

(
h̃1e

ϕ1´
Σ
h̃1eϕ1dVg

)
could not be

well defined, but s̃ = 1. Moreover, if δ ≤ s ≤ (1 − δ), then di ≤ C
δλ , and hence both projections

ψk

(
h̃1e

ϕ1´
Σ
h̃1eϕ1dVg

)
, ψl

(
h̃2e

ϕ2´
Σ
h̃2eϕ2dVg

)
are well defined.
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Letting ζ̃λ = Ψ ◦ Φλ(ζ) = (1− s̃λ)σ̃1,λ + s̃λσ̃2,λ, we consider the following homotopy:

H1 : (0, 1]× ((γ1)k ∗ (γ2)l)→ ((γ1)k ∗ (γ2)l) ,

H1(µ, (1− s)σ1 + sσ2) = (1− sµ,λ)σ̃1,λµ
+ sµ,λσ̃2,λµ

,

where sµ,λ = (1− µ)f(s) + µs̃λ, and f is given by (2.19). Observe that H1(1, ·) = Ψ ◦ Φλ.

Suppose now µ tends to zero. Then, as λ is fixed, λµ → +∞, and hence
h̃ie

ϕ
i, λ
µ´

Σ
h̃ie

ϕ
i, λ
µ dVg

⇀ σi. Proposi-

tion 2.4.1 implies that ψk

(
h̃1e

ϕ1´
Σ
h̃1eϕ1dVg

)
→ σ1, ψl

(
h̃2e

ϕ2´
Σ
h̃2eϕ2dVg

)
→ σ2. Since Πi are retractions, we

conclude that σ̃i,λµ
→ σi. In other words,

lim
µ→0

H1(µ, (1− s)σ1 + sσ2) = (1− f(s))σ1 + f(s)σ2.

We now define:

H2 : [0, 1]× ((γ1)k ∗ (γ2)l)→ ((γ1)k ∗ (γ2)l) ,

H2(µ, (1− s)σ1 + sσ2) = [1− (µf(s) + (1− µ)s)]σ1 + (µf(s) + (1− µ)s)σ2.

The concatenation of H1 and H2 gives the desired homotopy.

2.3 Min-max scheme

We now introduce the variational scheme which yields existence of solutions: this remaining part follows
the ideas of [35] (see also [67]).

By Proposition 2.1.3, given any L > 0, there exists λ so large that Jρ(ϕλ,ζ) < −L for any ζ ∈
(γ1)k ∗ (γ2)l. We choose L so large that Proposition 2.2.7 applies: we then have that the following
composition

(γ1)k ∗ (γ2)l
Φλ−→ J−Lρ

Ψ−→ (γ1)k ∗ (γ2)l

is homotopic to the identity map. In this situation it is said that the set J−Lρ dominates (γ1)k ∗ (γ2)l (see
[43], page 528). Since (γ1)k ∗ (γ2)l is not contractible, this implies that

Φλ((γ1)k ∗ (γ2)l) is not contractible in J−Lρ .

Moreover, we can take λ larger so that Φλ((γ1)k ∗ (γ2)l) ⊂ J−2L
ρ .

Define the topological cone with base (γ1)k ∗ (γ2)l via the equivalence relation

C =
(γ1)k ∗ (γ2)l × [0, 1]

(γ1)k ∗ (γ2)l × {0}
:

notice that, since (γ1)k ∗ (γ2)l ' S2k+2l−1, then C is homeomorphic to a Euclidean ball of dimension
2k + 2l.

We now define the min-max value:

m = inf
ξ∈Γ

max
u∈C

J(ξ(u)),

where
Γ = {ξ : C → H1(Σ)×H1(Σ) : ξ(ζ) = ϕλ,ζ ∀ ζ ∈ ∂C}. (2.22)

Observe that tΦλ : C → H1(Σ)×H1(Σ) belongs to Γ, so this is a non-empty set. Moreover,

sup
ζ∈∂C

Jρ(ξ(ζ)) = sup
ζ∈(γ1)k∗(γ2)l

Jρ(ϕλ,ζ) ≤ −2L.

We now show that m ≥ −L. Indeed, ∂C is contractible in C, and hence in ξ(C) for any ξ ∈ Γ. Since
∂C is not contractible in J−Lρ , we conclude that ξ(C) is not contained in J−Lρ . Being this valid for any
arbitrary ξ ∈ Γ, we conclude that m ≥ −L.
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From the above discussion, the functional Jρ satisfies the geometrical properties required by min-max
theory, see [90]. However, we cannot directly conclude the existence of a critical point, since it is not
known whether the Palais-Smale condition holds or not. The conclusion needs a different argument,
which has been used intensively (see for instance [35], [37]), so we will be sketchy.

We take ν̃ > 0 such that

[ρ1 − ν̃, ρ1 + ν̃]× [ρ2 − ν̃, ρ2 + ν̃] ⊂ R2\Λ,

where Λ is the set defined as in Definition 1.1.2.

Consider now ν � ν̃ and the parameter µ ∈ [1 − ν, 1 + ν]. It is clear that the min-max scheme
described above works uniformly for any µ in this range and µρ = (µρ1, µρ2). In other words, for any
L > 0, there exists λ large enough so that

sup
ζ∈∂C

Jµρ(ξ(ζ)) < −2L; mµ := inf
ξ∈Γ

sup
ζ∈C

Jµρ(ξ(ζ)) ≥ −L, µρ = (µρ1, µρ2). (2.23)

In this way, we are led to a problem depending on the parameter µ that satisfies a uniform min-max
structure. In this framework, the following lemma is well-known, usually taking the name monotonicity
trick. This technique was first used by Struwe in [88]; a first abstract version was made in [44] (see also
[35], [65]).

Lemma 2.3.1 There exists Υ ⊂ [1− ν, 1 + ν] satisfying:

1.
∣∣[1− ν, 1 + ν] \Υ

∣∣ = 0.

2. For any µ ∈ Υ, the functional Jµρ possesses a bounded Palais-Smale sequence (u1,n, u2,n)n at level
mµ.

Proof. We give here the idea of the proof for the reader’s convenience. Recalling the definition of the
functional Jρ given in (1.7), observe that for µ′ ≥ µ we get

Jµρ(u)

µ
− Jµ′ρ(u)

µ′
=

(
1

µ
− 1

µ′

)ˆ
Σ

Q(u1, u2) dVg ≥ 0.

Therefore, it follows also that
mµ

µ
− mµ′

µ′
≥ 0.

In other words, the function µ 7→ mµ
µ is non-increasing and hence is almost everywhere differentiable. We

define Υ to be the set where the latter function is differentiable. Using Struwe’s monotonicity argument,
see [88], one can see that at the points where

mµ
µ is differentiable Jµρ admits a bounded Palais-Smale

sequence at level mµ.

Conclusion. Consider first µ ∈ Υ. Passing to a subsequence, the bounded Palais-Smale sequence can
be assumed to converge weakly. Standard arguments show that the weak limit is indeed strong and that
it is a critical point of Jµρ.

Consider now µn ∈ Υ, µn → 1, and let (u1,n, u2,n) denote the corresponding solutions. It is then
sufficient to apply the compactness result in Theorem 1.1.4, which yields convergence of (u1,n, u2,n) to a
solution of (1.5).

2.4 Appendix: on the topology of Barycenter Spaces

In this appendix we collect some useful properties of the barycenter space concerning its CW structure
and the existence of a projection map, see the next subsections.
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2.4. Appendix: on the topology of Barycenter Spaces

2.4.1 CW structure of Barycenter Spaces

In this subsection we show that barycenter spaces of CW-complexes are again CW. The notation here
is independent of the rest of the thesis, and the proofs use arguments from algebraic topology. The
argument presented here was introduced by Prof. Sadok Kallel and is stated in the Appendix of [9].

We adopt the notation Bn for barycenter and Sym∗n for symmetric join, see [54]. We also need the
notation

∆k−1 =
{

(t1, . . . , tk) ∈ [0, 1]k |
∑

ti = 1
}

for the (k− 1)-dimensional complex. This we view as a CW-complex with faces being subcomplexes. For
k < n, we write as ∆k−1 ↪→ ∆n−1 the standard face inclusion given by adjoining trivial coordinate entries
(t1, . . . , tk) 7→ (t1, . . . , tk, 0, . . . , 0). Similarly for based X, with basepoint x0, we embed Xk ↪→ Xn by
adjoining basepoints.

Proposition 2.4.1 If X is a based connected CW-complex, then Bn(X) can be equipped with a CW
structure so that all vertical projections in the following diagram are cellular maps and all horizontal
maps are subcomplex inclusions

∆k−1 ×Xk �
� //

��

∆n−1 ×Xn

��
Bk(X) �

� // Bn(X).

The proof uses standard facts about CW complexes which we now review.

(1) If (X,A) is a relative CW complex, then the quotient space X/A is a CW complex with a vertex
corresponding to A.

(2) More generally if A is a subcomplex of a CW complex X,Y is a CW complex, and f : A −→ Y is
a cellular map, then the pushout Y ∪f X has an induced CW complex structure that contains Y as
a subcomplex and has one cell for each cell of X that is not in A. We represent this construction
by a diagram

A �
� i //

f

��

X

��
Y // X ∪f Y

with the understanding that all maps arriving at X ∪f Y are cellular with respect to the induced
cell structure there.

(3) A finite group, or more generally a discrete group G acts cellularly on X means that: (i) if σ is an
open cell of X then gσ is again an open cell in X for all g ∈ G, and (ii) if g ∈ G fixes an open cell σ,
that is gσ = σ, then it fixes σ pointwise (i.e. gx = x for all x ∈ σ). A CW-complex is a cellular G-
space if G acts cellularly on X. If a finite group G acts cellulary on X, then X/G is a CW-complex.
Furthermore, if f : X −→ Y is a G-equivariant cellular map between cellular G-spaces, then the
induced map X/G −→ Y/G is cellular with respect to the induced CW-structures.

Properties (1) and (2) can be found in ([73], Chapter 10.2). Property (3) follows from Proposition 1.15
and Ex. 1.17 of [94] (Chapter 2). Throughout we endow X with a CW-structure so that the permutation
action of Sn on Xn is cellular, and so that x0 is a 0-cell or vertex.

Proof of Proposition 2.4.1. We recall the definition of the barycenter spaces. Given X a space,
then its n-th barycenter space is the quotient space

Bn(X) :=

n∐

k=1

∆k−1 ×Sk X
k/∼
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2. The Toda system: a general existence result

where ∆k−1 ×Sk X
k is the quotient of ∆k−1 × Xk by the symmetric group Sk acting diagonally, and

where ∼ is the equivalence relation generated by:

(i) [t1, . . . , ti−1, 0, ti+1, . . . , tn;x1, . . . , xi, . . . xn]

∼ [t1, . . . , ti−1, ti+1, . . . , tn;x1, . . . , x̂i, . . . xn]

(here x̂i means the i-th entry has been suppressed), and by

(ii) [t1, . . . , ti, . . . , tj , . . . , tn;x1, . . . , xi, . . . , xj , . . . , xn]

∼ [t1, . . . , ti−1, ti + tj , ti+1, . . . , t̂j , . . . , tn;x1, . . . , xi, . . . , x̂j , . . . , xn] if xi = xj .

An intermediate construction is to consider the symmetric join Sym∗n(X) which is the quotient of∐n
k=1 ∆k−1 ×Sk X

k by the equivalence relation (i) only. There are quotient projections

∆n−1 ×Xn −→ ∆n−1 ×Sn X
n −→ Sym∗n(X) −→ Bn(X)

and it is convenient to write an equivalence class in ∆n−1 ×Sn X
n or any of its images in Sym∗nX and

Bn(X) by
n∑

i=1

tixi := [t1, . . . , tn;x1, . . . , xn].

Addition means the sum is abelian and this reflects the symmetric group action. The relation (i) means
the entry 0xi is suppressed, and relation (ii) means that tix+ tjx = (ti + tj)x.

To show that Bn(X) is CW, we proceed by induction. When n = 1, B1X = X so there is nothing to
prove. For the general case, write

BnX = Bn−1X ∪ (∆n−1 ×Sn X
n) /∼

and write Xn
fat ⊂ Xn the fat diagonal consisting of all n-tuples (x1, . . . , xn) with xi = xj for some i 6= j.

Denote by

Wn = (∂∆n−1 ×Sn X
n)
⋃ (

∆n−1 ×Sn X
n
fat

)

the subspace of ∆n−1 ×Sn X
n consisting of all classes

∑
tixi with ti = 0 for some i or xi = xj for some

i 6= j. Then Wn is a CW subcomplex of Xn because the Sn-equivariant decomposition of Xn can always
be arranged so that ∆fat is a subcomplex. There is a well-defined quotient map f : Wn −→ Bn−1 sending

∑
tjxj 7−→

∑

j 6=i

tjxj if ti = 0

∑
tjxj 7−→ t1x1 + · · ·+ (ti + tj)xi + · · ·+ t̂jxj + · · ·+ tnxn if xi = xj

and we have the pushout diagram

(∗) Wn
� � //

f

��

∆n−1 ×Sn X
n

��
Bn−1X // Bn(X).

If we can show that f is cellular, then by property (2) and induction, Bn(X) will be CW as desired.

The map f has two restrictions f1 and f2 on the pieces ∂∆n−1 ×Sn X
n and ∆n−1 ×Sn X

n
fat ⊂ Wn

respectively. To see that f1 is cellular, write ∂∆n−1 as a union of faces Fi = {(t1, . . . , tn), ti = 0} each
homeomorphic to ∆n−2. Write Xn

i = {(x1, . . . , xn) ∈ Xn | xi = x0} where x0 ∈ X is the basepoint. The
maps Fi ×Xn −→ Fi ×Xn

i , (t1, . . . , tn;x1, . . . , xn) 7→ (t1, . . . , tn;x1, . . . , x0, . . . , xn); which for a given i
replaces xi by x0, are cellular and so is their union

⋃

i

Fi ×Xn −→
⋃

i

Fi ×Xn
i .
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2.4. Appendix: on the topology of Barycenter Spaces

This map is Sn-equivariant and so passes to a cellular map between quotients

(
⋃
i Fi ×Xn) /Sn // (

⋃
i Fi ×Xn

i ) /Sn

∂∆n−1 ×Sn X
n g // ∆n−2 ×Sn−1

Xn−1.

The restriction f1 is now the composite of cellular maps

∂∆n−1 ×Sn X
n g // ∆n−2 ×Sn−1

Xn−1 // Bn−1(X)

thus it is cellular. We proceed the same way for the restriction f2. Write Xn
fat =

⋃
i<j X

n
ij where

Xn
ij = {(x1, . . . , xn) ∈ Xn | xi = xj , i < j}. Each Xn

ij is identified with Xn−1. There are maps
τij : ∆n−1 ×Xn

ij −→ Fi ×Xn
i sending

(t1, . . . , tn, x1, . . . , xn)

7−→ (t1, . . . , ti−1, 0, ti+1, . . . , tj−1, ti + tj , tj+1, . . . , tn;x1, . . . , xi−1, x0, xi+1, . . . , xn)

which are cellular being the product of cellular maps (i.e it can be checked that the map ∆n−1 −→ ∂∆n−1

sending (t1, . . . , tn) −→ (t1, . . . , ti−1, 0, ti+1, . . . , tj−1, ti + tj , tj+1, . . . , tn) sends faces to faces and hence
is cellular). The map

⋃
τij is not Sn-equivariant, but the composite

⋃
i<j ∆n−1 ×Xn

ij
// ⋃

i Fi ×Xn
i

// (
⋃
i Fi ×Xn

i ) /Sn

factors through the Sn-quotient. More precisely, we have the diagram

(⋃
i<j ∆n−1 ×Xn

ij

)
/Sn

// (
⋃
i Fi ×Xn

i ) /Sn

∆n−1 ×Sn X
n
fat

τ // ∆n−2 ×Sn−1
Xn−1 // Bn−1(X)

with all maps in this diagram cellular. The bottom composite f2 must therefore be cellular.
In conclusion, the map f = f1 ∪ f2 in the diagram (*) is cellular and this completes the proof.

Example 2.4.2 We take a special look at B2(X). Consider Sym∗2X which consists of elements of the
form t1x + t2y with t1 + t2 = 1 and the identification 0x + 1y = y. By using the order on the ti’s in
I = [0, 1], this can be written as

Sym∗2(X) = {(t1, t2, x1, x2) | t1 ≤ t2, t1 + t2 = 1}/∼
= J × (X ×X)/∼

where J = {0 ≤ t1 ≤ t2 ≤ 1, t1 + t2 = 1} is a copy of the one-simplex, and the identification ∼ is such
that (0, 1, x, y) ∼ (0, 1, x′, y) and ( 1

2 ,
1
2 , x, y) ∼ ( 1

2 ,
1
2 , y, x). Note that (0, 1) and ( 1

2 ,
1
2 ) are precisely the

faces or endpoints of J . This is saying that Sym∗2X is precisely the double mapping cylinder

X2 × {(0, 1)} tX2 × {( 1
2 ,

1
2 )} � � //

p2tπ
��

X2 × J

��
X t SP2X // Sym∗2X

where p2 is the projection onto the second factor X2 −→ X, and π is the Z2-quotient map X2 −→ SP2X
(see [54]). Both maps p2 and π are cellular (property (3)). This gives Sym∗2(X) a CW-structure according
to property (3). We can now consider the pushout diagram

J ×X //

��

Sym∗2X

��
X // B2X

(2.24)
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2. The Toda system: a general existence result

where the left vertical map J×X −→ X is projection hence cellular, while the top map J×X −→ Sym∗2X,
((t1, t2), x) 7→ t1x+ t2x, is a subcomplex inclusion. By property (2), B2(X) is CW.

2.4.2 A projection onto the Barycenter Space

Recall the definition of the distance d given by (1.25). When a measure is d-close to an element in Σl,
see (1.15), it is then possible to map it continuously to a nearby element in this set. The next proposition
collects some properties of this map, which has been proved in [37], but we give here a much shorter and
self-consistent proof, using the results of Subsection 2.4.1 (here Σl = Bl(Σ)).

Proposition 2.4.1 Given l ∈ N, for εl sufficiently small there exists a continuous retraction

ψl : {ν ∈M(Σ), d(ν,Σl) < 2εl} → Σl.

Here continuity is referred to the distance d. In particular, if νn ⇀ ν in the sense of measures, with
ν ∈ Σl, then ψl(νn)→ ν.

Furthermore, the following property holds: given any ε > 0 there exists ε′ � ε, ε′ depending on l and
ε such that if d(ν,Σl−1) > ε then there exist l points x1, . . . , , xl such that

d(xi, xj) > 2ε′ for i 6= j;

ˆ
Bε′ (xi)

ν > ε′ for all i = 1, . . . , l.

Proof. Observe that the inclusion Lip(Σ) ⊂ C(Σ) is compact: therefore, M(Σ) = C(Σ)′ ⊂ Lip(Σ)′ is
also compact. Of course, the set Σl ⊂M(Σ), and then it is inside Lip(Σ)′. Since Σl is a CW complex it
follows that it is a Euclidean Neighbourhood Retract (ENR) (see Appendix E of [12]). Therefore, there
exists a neighbourhood V ⊃ Σl in the Lip′ topology, and a continuous retraction ψl : V → Σl.

Now, if νn ⇀ ν ∈ Σl in the sense of measures, by compactness, νn → ν in Lip′, and by continuity,
ψl(νn)→ ψl(ν). But, since ψl is a retraction, ψl(ν) = ν.

The last property of the statement of the proposition is proved in Lemma 2.3 in [37] (together with
the proof of Lemma 3.10).
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Chapter 3

The Toda system on compact
surfaces of arbitrary genus

We are interested here in the regular Toda system on a compact surface Σ, namely




−∆u1 = 2ρ1

(
h1e

u1´
Σ
h1eu1dVg

− 1
)
− ρ2

(
h2e

u2´
Σ
h2eu2dVg

− 1
)
,

−∆u2 = 2ρ2

(
h2e

u2´
Σ
h2eu2dVg

− 1
)
− ρ1

(
h1e

u1´
Σ
h1eu1dVg

− 1
)
,

(3.1)

where ρ1, ρ2 are real parameters and h1, h2 two smooth positive functions. We prove here the first
existence result for surfaces of arbitrary genus when both parameters ρi are supercritical and one of them
also arbitrarily large. For an introduction concerning this problem see Section 1.1 and Subsection 1.1.2.
The following result is stated in [48].

Theorem 3.0.1 Let h1, h2 be two positive smooth functions and let Σ be any compact surface. Suppose
that ρ1 ∈ (4kπ, 4(k + 1)π), k ∈ N and ρ2 ∈ (4π, 8π). Then the above Toda system has a solution.

The chapter is organized as follows. In Section 3.1 we recall some improved versions of the Moser-
Trudinger inequality, first some which rely on the macroscopic spreading of the components u1, u2 and
then some refined ones, which are scaling invariant. In Section 3.2 we derive a new - still scaling invariant
- improved version of the Moser-Trudinger inequality for systems, and we use it to find a characterization
of low energy levels of the associated energy functional Jρ by means of a subset Y of the topological join
Σk ∗ Σ1, see (1.17). In Section 3.3 we construct then suitable test functions which show the optimality
of the above characterization. In Section 3.4 we finally introduce the variational method to prove the
existence of solutions.

3.1 Preliminaries

In the next two subsections we will recall and discuss some improved versions of the Moser-Trudinger
inequality (1.16) which hold under suitable assumptions on the components of the system. The first
type of inequality relies on the spreading of the (exponentials of the) components over the surface (see
Section 2.2). The second one, from [71], relies instead on comparing the scales of concentration of the
two components.

3.1.1 Macroscopic improved inequalities

The first kind of improved inequality was already introduced in Section 2.2. We repeat here the argument
for the reader’s convenience, as we will need it later on. Basically, if the mass of both eu1 and eu2 is spread
respectively on at least k + 1 and l + 1 different sets, then the logarithms in (1.16) can be multiplied by
k + 1 and l + 1 respectively. The proof relies on localizing (1.16) by using cut-off functions near the
regions of volume concentration.
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3. The Toda system on compact surfaces of arbitrary genus

Lemma 3.1.1 ([9]) Let δ > 0, θ > 0, k, l ∈ N and {Ω1,i,Ω2,j}i∈{0,...,k},j∈{0,...,l} ⊂ Σ be such that

d(Ω1,i,Ω1,i′) ≥ δ ∀ i, i′ ∈ {0, . . . , k} with i 6= i′;

d(Ω2,j ,Ω2,j′) ≥ δ ∀ j, j′ ∈ {0, . . . , l} with j 6= j′.

Then, for any ε > 0 there exists C = C (ε, δ, θ, k, l,Σ) such that any (u1, u2) ∈ H1(Σ)×H1(Σ) satisfying

ˆ
Ω1,i

eu1 dVg ≥ θ
ˆ

Σ

eu1 dVg ∀ i ∈ {0, . . . , k};

ˆ
Ω2,j

eu2 dVg ≥ θ
ˆ

Σ

eu2 dVg ∀ j ∈ {0, . . . , l}

verifies

4π(k + 1) log

ˆ
Σ

eu1−u1 dVg + 4π(l + 1) log

ˆ
Σ

eu2−u2 dVg ≤ (1 + ε)

ˆ
Σ

Q(u1, u2) dVg + C.

As one can see, larger constants in the left-hand side of (1.16) can be helpful in obtaining lower bounds
on the functional Jρ even when the coefficients ρ1, ρ2 exceed the threshold value (4π, 4π). A consequence
of this fact is that when the energy Jρ(u1, u2) is large negative, then eu1 , eu2 are forced to concentrate
near certain points in Σ whose number depends on ρ1, ρ2.

In Section 2.2, using the improved inequality from Lemma 2.2.3, the following result was proven.

Proposition 3.1.2 ([9]) Suppose ρ1 ∈ (4kπ, 4(k + 1)π) and ρ2 ∈ (4lπ, 4(l + 1)π). Then, for any ε > 0,
there exists L > 0 such that any (u1, u2) ∈ J−Lρ verifies either

d

(
eu1´

Σ
eu1 dVg

,Σk

)
< ε or d

(
eu2´

Σ
eu2 dVg

,Σl

)
< ε.

This alternative can be expressed naturally in terms of the topological join of Σk ∗Σl, see (1.17). Indeed,
for ρ1 ∈ (4kπ, 4(k + 1)π) and ρ2 ∈ (4lπ, 4(l + 1)π) we can define a continuous map Ψ from the low
sub-levels J−Lρ onto this set, see Proposition 2.2.7:

Ψ : J−Lρ → Σk ∗ Σl,

Ψ(u1, u2) = (1− s̃)ψk
(

eu1´
Σ
eu1 dVg

)
+ s̃ ψl

(
eu2´

Σ
eu2 dVg

)
, (3.2)

where s̃ is defined as in (2.18). Notice that we consider a slight modification of the map Ψ introduced
in Proposition 2.2.7, where the retractions Πi from Lemma 2.1.1 are involved. With a little abuse of
notation we continue to denote by Ψ the above modified map.

3.1.2 Scaling-invariant improved inequalities

In [71] the authors set up a tool to deal with situations to which Lemma 2.2.3 does not apply, for example
in cases when both eu1 , eu2 are concentrated around only one point. They provided a definition of the
center and the scale of concentration of such functions, to obtain new improved inequalities in terms
of these (see Section 4.2 for a brief summary of this argument). We are interested here in measures
concentrated around possibly multiple points. We need therefore a localized version of the argument in
[71], which applies to measures supported in a ball and sufficiently concentrated around its center.

Given x0 ∈ Σ and r > 0 small, consider the set

Ax0,r =

{
f ∈ L1(Br(x0)) : f > 0 a. e. and

ˆ
Br(x0)

f dVg = 1

}
,

endowed with the topology inherited from L1(Σ).
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Fix a constant R > 1 and let R0 = 3R. Define σ : Br(x0)×Ax0,r → (0,+∞) such that:ˆ
Bσ(x,f)(x)∩Br(x0)

f dVg =

ˆ
(BR0σ(x,f)(x))

c∩Br(x0)

f dVg. (3.3)

It is easy to check that σ(x, f) is uniquely determined and continuous (both in x ∈ Br(x0) and in f ∈ L1).
Moreover, see (3.2) in [71], σ satisfies:

d(x, y) ≤ R0 max{σ(x, f), σ(y, f)}+ min{σ(x, f), σ(y, f)}. (3.4)

We now define T : Br(x0)×Ax0,r → R as

T (x, f) =

ˆ
Bσ(x,f)(x)∩Br(x0)

f dVg.

Lemma 3.1.3 ([71], with minor adaptations) If x̄ ∈ Br(x0) is such that T (x̄, f) = max
y∈Br(x0)

T (y, f),

then σ(x̄, f) < 3σ(x, f) for any other x ∈ Br(x0).

As a consequence of the previous lemma and of a covering argument, one can obtain the following:

Lemma 3.1.4 ([71], with minor adaptations) There exists a fixed τ > 0 such that

max
x∈Br(x0)

T (x, f) > τ > 0 for all f ∈ Ax0,r.

Let us define σ : Ax0,r → R by

σ(f) = 3 min
{
σ(x, f) : x ∈ Br(x0)

}
,

which is obviously a continuous function.
Given τ as in Lemma 3.1.4, consider the set:

S(f) =
{
x ∈ Br(x0) : T (x, f) > τ, σ(x, f) < σ(f)

}
. (3.5)

If x̄ ∈ Br(x0) is such that T (x̄, f) = max
x∈Br(x0)

T (x, f), then Lemmas 3.1.3 and 3.1.4 imply that

x̄ ∈ S(f). Therefore, S(f) is a non-empty set for any f ∈ Ax0,r. Moreover, recalling (3.3) and the
notation before it, from (3.4) we have that:

diam(S(f)) ≤ (R0 + 1)σ(f). (3.6)

We will now restrict ourselves to a class of functions in L1(Br(x0)) which are almost entirely concentrated
near the center x0. In this case one expects σ(f) to be small and points in S(f) to be close to x0: see
Remark 3.1.5 for precise estimates in this spirit. Given ε > 0 small, let us introduce the class of functions

Cε,r(x0) =

{
f ∈ Ax0,r :

ˆ
Bε(x0)

f dVg > 1− ε
}
. (3.7)

Remark 3.1.5 For this class of functions we claim that T (x, f) ≤ ε when d(x, x0) > 2ε. In fact, if
σ(x, f) ≤ d(x, x0)− ε then we are done, since

T (x, f) =

ˆ
Bσ(x,f)(x)∩Br(x0)

f dVg ≤
ˆ
Bε(x0)c∩Br(x0)

f dVg ≤ ε.

If this is not the case, i.e. σ(x, f) > d(x, x0)− ε, then using d(x, x0) > 2ε we obtain

R0σ(x, f) > R0(d(x, x0)− ε) >
R0

2
d(x, x0)

> d(x, x0) + ε.

Similarly as before we get

T (x, f) =

ˆ
(BR0σ(x,f)(x))

c∩Br(x0)

f dVg ≤
ˆ
Bε(x0)c∩Br(x0)

f dVg ≤ ε.

Being τ universal, ε can be taken so small that (T (x, f)− τ)+ = 0 outside B2ε(x0), ∀f ∈ Cε,r(x0).
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By the Nash embedding theorem, we can assume that Σ ⊂ RN isometrically, N ∈ N. Take an open
tubular neighborhood Σ ⊂ U ⊂ RN of Σ, and δ > 0 small enough so that:

co
[
B(R0+1)δ(x) ∩ Σ

]
⊂ U ∀x ∈ Σ, (3.8)

where co denotes the convex hull in RN .
For f ∈ Cε,r(x0) we define now

η(f) =

ˆ
Σ

(T (x, f)− τ)+ (σ(f)− σ(x, f))
+
x dVgˆ

Σ

(T (x, f)− τ)+ (σ(f)− σ(x, f))
+
dVg

∈ RN ,

which is well-defined, see Remark 3.1.5. The map η yields a sort of center of mass in RN of the measure
induced by f . Observe that the integrands become non-zero only on the set S(f). However, whenever
σ(f) ≤ δ, (3.6) and (3.8) imply that η(f) ∈ U , and so we can define:

β : {f ∈ Ax0,r : σ(f) ≤ δ} → Σ, β(f) = P ◦ η(f),

where P : U → Σ is the orthogonal projection.
We finally define the map ψ : Cε,r(x0)→ Σ× (0, r), which will be the main tool of this subsection.

ψ(f) = (β, σ). (3.9)

Roughly, this map expresses the center of mass of f and its scale of concentration around this point.

In [71] it was proved that if both components (u1, u2) of the Toda system concentrate around the same
point in Σ, with the same scale of concentration, then the constants in the left-hand side of (1.16) can
be nearly doubled.

Remark 3.1.6 The core of the argument of the improved inequality in [71] consists in proving that

ψ

(
eu1´

Br(x)
eu1 dVg

)
= ψ

(
eu2´

Br(y)
eu2 dVg

)

implies the existence of σ > 0 and of two balls Bσ(z1), Bσ(z2) such that
ˆ
Bσ(zi)

eui dVg
ˆ

Σ

eui dVg

≥ γ0,

ˆ
(BRσ(zi))c∩Br(zi)

eui dVg
ˆ

Σ

eui dVg

≥ γ0, for i = 1, 2 with d(z1, z2) . σ, (3.10)

for some fixed positive constant γ0. Once this is achieved, the improved inequality is obtained by scaling
arguments and Kelvin inversions (see Section 3 in [71] for full details).

Even when eu1 , eu2 are not necessarily concentrated near a single point, the assumptions of the next
proposition still allow to obtain (3.10), and hence again nearly double constants in the left-hand side
of (1.16).

Proposition 3.1.7 ([71], with minor changes) Let ε̃ > 0 and δ′ > 0. Then there exist R = R(ε̃) and ψ
as in definition (3.9) such that: for any (u1, u2) ∈ H1(Σ)×H1(Σ) such that there exist x, y ∈ Σ with

ˆ
Br(x)

eu1 dVg ≥ δ′
ˆ

Σ

eu1 dVg,

ˆ
Br(y)

eu2 dVg ≥ δ′
ˆ

Σ

eu1 dVg;

eu1´
Br(x)

eu1 dVg
∈ Cε,r(x),

eu2´
Br(y)

eu2 dVg
∈ Cε,r(y)

and

ψ

(
eu1´

Br(x)
eu1 dVg

)
= ψ

(
eu2´

Br(y)
eu2 dVg

)
, (3.11)
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the following inequality holds:

8π

(
log

ˆ
Σ

eu1−u1 dVg + log

ˆ
Σ

eu2−u2 dVg

)
≤ (1 + ε̃)

ˆ
Σ

Q(u1, u2) dVg + C, (3.12)

for some C = C(ε̃, δ′,Σ).

Remark 3.1.8 (i) Condition (3.11) can be relaxed. In fact, let C1 > 1 and C2 > 0 be two positive
constants and define

ψ

(
eu1´

Br(x)
eu1 dVg

)
= (β1, σ1), ψ

(
eu2´

Br(y)
eu2 dVg

)
= (β2, σ2).

Then, the result still holds true if

1

C1
≤ σ1

σ2
≤ C1, d(β1, β2) ≤ C2 σ1.

In such case, the constant C would also depend on C1 and C2.

(ii) In the right-hand side of (3.12) one can actually integrate Q(u1, u2) only in any set compactly contain-
ing Br(x)∪Br(y). This can be seen using suitable cut-off functions, see the comments before Lemma 2.2.3.

We can now improve this result for situations in which the first component of the system is concentrated
around l points of Σ, l ∈ N. The proof relies on combining the argument for Proposition 3.1.7 with the
macroscopic improved inequality of Lemma 2.2.3 (see also Remark 3.1.8 (ii)).

Proposition 3.1.9 Let ε̃ > 0, δ′ > 0 and k ∈ N. Then there exist R = R(ε̃) and ψ as in definition (3.9)
such that: for any (u1, u2) ∈ H1(Σ)×H1(Σ) with the property that there exist {xi}i∈{1,...,k} ⊂ Σ, y ∈ Σ
with

d(xi, xj) > 4δ′ ∀ i, j ∈ {1, . . . , k} with i 6= j;ˆ
Bδ′ (xi)

eu1 dVg ≥ δ′
ˆ

Σ

eu1 dVg for i = 1, . . . , k;

ˆ
Bδ′ (y)

eu2 dVg ≥ δ′
ˆ

Σ

eu2 dVg,

such that
eu1´

Bδ′ (xi)
eu1 dVg

∈ Cε,δ′(xi) for i = 1, . . . , k;
eu2´

Bδ′ (y)
eu2 dVg

∈ Cε,δ′(y)

and

ψ

(
eu1´

Bδ′ (xl)
eu1 dVg

)
= ψ

(
eu2´

Bδ′ (y)
eu2 dVg

)
for some l ∈ {1, . . . , k},

the following inequality holds:

4π(k + 1) log

ˆ
Σ

eu1−u1 dVg + 8π log

ˆ
Σ

eu2−u2 dVg ≤ (1 + ε̃)

ˆ
Σ

Q(u1, u2) dVg + C,

for some C = C(ε̃, δ′, l,Σ).

In the next section we will derive a new improved inequality for the Toda system with scaling invariant
features, see Proposition 3.2.5. The result is inspired by arguments developed in [4] for the singular
Liouville equation where a Dirac delta is involved, see Remark 3.2.6, and for the first time this type of
inequality is presented for a two-component problem.

3.2 A refined projection onto the topological join

Suppose that ρ1 ∈ (4kπ, 4(k + 1)π) and ρ2 ∈ (4π, 8π). Let Ψ by the map introduced in (3.2) from the
low sub-levels of Jρ onto the topological join Σk ∗ Σ1, see (1.17). We will need next to take also into
account the fine structure of the measures eu1 and eu2 , as described in (3.9). For this reason we will
modify the map Ψ so that the join parameter s in (1.17) will depend on the local centres of mass and the
local scales defined in (3.9) and (3.13). We will see in the sequel that this will provide extra information
for describing functions in the low sub-levels of Jρ.

39



3. The Toda system on compact surfaces of arbitrary genus

3.2.1 Construction

We start by defining the local centres of mass and the local scales of functions which are concentrated
around l well separated points of Σ.

Let l ≥ 2 and consider 0 < εl � εl−1 � 1 as given in Proposition 2.4.1 and suppose it holds

d
(

eu1´
Σ
eu1 dVg

,Σl

)
< 2εl so that ψl is well-defined. Assume moreover d

(
eu1´

Σ
eu1 dVg

,Σl−1

)
> εl−1. By the

second part of Proposition 2.4.1 there exist ε′l−1 � εl−1 and l points xl1, . . . , x
l
l such that

d
(
xli, x

l
j

)
> 2ε′l−1 for i 6= j;

ˆ
Bε′

l−1
(xli)

eu1 dVg > ε′l−1

ˆ
Σ

eu1 dVg for all i = 1, . . . , l.

We localize then u1 around the point xli and define

f
xli
loc(u1) =

eu1χBε′
l−1

(xli)ˆ
Bε′

l−1
(xli)

eu1 dVg

.

Given ε > 0, by the second assertion of Proposition 2.4.1, taking εl sufficiently small one getsˆ
Bε(xli)

f
xli
loc(u1) dVg > 1− ε; for d

(
eu1´

Σ
eu1 dVg

,Σl

)
< 2εl.

It follows that f
xli
loc(u1) ∈ Cε,ε′l−1

(xli), see (3.7), and hence the map ψ in (3.9) is well-defined on f
xli
loc(u1).

We then set (
βxli , σxli

)
:= ψ

(
f
xli
loc(u1)

)
. (3.13)

In this way, starting from a function with d
(

eu1´
Σ
eu1 dVg

,Σl

)
< 2εl and such that d

(
eu1´

Σ
eu1 dVg

,Σl−1

)
> εl−1

we obtain, around each point xli, a notion of local center of mass and scale of concentration.
When l = 1 we have to deal with just one point x1

1 of Σ. We then apply the map ψ to the function

f
x1

1

loc directly.

As we discussed above, we would like to map low energy sub-levels of Jρ into the topological join
Σk ∗ Σ1 taking the above scales into account. More precisely, the parameter s in (1.17) will depend on
the local scale σxli only of the points nearby the center of mass of eu2 (in case of ambiguity, we will define

a sort of averaged scale).
To proceed rigorously, let 0 < εk � εk−1 � · · · � ε1 � 1 be as before. We consider cut-off functions

f, gl, h for l = 1, . . . , k − 1 such that

f(t) =

{
0 t ≥ 2εk,
1 t ≤ εk, gl(t) =

{
0 t ≥ 2εl,
1 t ≤ εl, l = 1, . . . , k − 1, (3.14)

h(t) =





0 t ≥ ε′k−1

8 ,

1 t ≤ ε′k−1

16 .
(3.15)

We define now a global scale σ1(u1) ∈ (0, 1] for eu1 in three steps. Suppose d
(

eu2´
Σ
eu2 dVg

,Σ1

)
< 2ε1, so

that ψ(fzloc(u2)) = (βz, σz) is well-defined.
First of all, we define an averaged scale for eu1 by recurrence in the following way. If we have

d
(

eu1´
Σ
eu1 dVg

,Σ1

)
< 2ε1, we set C1(u1) = σx1

1
. For l ∈ {2, . . . , k − 1}, we define recursively

Cl(u1) = gl−1

(
d

(
eu1´

Σ
eu1 dVg

,Σl−1

))
Cl−1(u1) +

(
1− gl−1

(
d

(
eu1´

Σ
eu1 dVg

,Σl−1

)))
1

l

l∑

i=1

σlxi .

Secondly, we interpolate between Ck−1(u1) and the local scale of the closest point to βz among the βxki ’s

(provided they are well-defined), setting

B(u1, u2) = h
(
d(βz,

{
βxk1 , . . . , βxkk}

))
σx +

(
1− h

(
d
(
βz, {βxk1 , . . . , βxkk}

))) 1

k

k∑

i=1

σxki ,
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3.2. A refined projection onto the topological join

A(u1, u2) = gk−1

(
d

(
eu1´

Σ
eu1 dVg

,Σk−1

))
Ck−1(u1) +

(
1− gk−1

(
d

(
eu1´

Σ
eu1 dVg

,Σk−1

)))
B(u1, u2),

where x = xkj was chosen so that it realizes the minimum of d
(
βz, {βxk1 , . . . , βxkk}

)
: notice that since

d(xkj , x
k
l ) ≥ 2ε′k−1 for j 6= l, by (3.15) the point realizing the latter minimum is unique if h 6= 0.

As a third and final step, to check whether eu1 is d-close to Σk, we set

σ1(u1) = f

(
d

(
eu1´

Σ
eu1 dVg

,Σk

))
A(u1, u2) +

(
1− f

(
d

(
eu1´

Σ
eu1 dVg

,Σk

)))
.

We define next the global scale σ2(u2) ∈ (0, 1] of eu2 . We will be interested here in functions concentrated
near just one point of Σ. Therefore we just need the single local scale C1(u2) = σz if ψ(fzloc(u2)) = (βz, σz)
is well-defined. Moreover, we have to check the d-closeness of eu2 to Σ1. Hence the scale reads

σ2(u2) = g1

(
d

(
eu2´

Σ
eu2 dVg

,Σ1

))
σz +

(
1− g1

(
d

(
eu2´

Σ
eu2 dVg

,Σ1

)))
.

We can now specify the join parameter s in (1.17). Fix a constant M � 1 and consider the function

FM (t) =





0 t ≤ 1/M,

t

1 + t
t ∈
[

2
M ,M

]
,

1 t ≥ 2M.

We then define

s(u1, u2) = FM

(
σ1(u1)

σ2(u2)

)
. (3.16)

We now pass to considering the maps ψk and ψ1 which are needed in the projection onto the join Σk ∗Σ1,
see (3.2). As mentioned in the introduction of this section, it is convenient to modify these maps in such
a way that they take into account the local centres of mass defined in (3.9) and (3.13). More precisely,
when eu1 is concentrated in k well separated points of Σ, we rather consider the local centres of mass βxli
in (3.13) than the supports of the map ψk in Proposition 2.4.1.

Suppose d
(

eu1´
Σ
eu1 dVg

,Σk

)
< 2εk so that ψk is well-defined and suppose d

(
eu1´

Σ
eu1 dVg

,Σk−1

)
> εk−1

so that βxki are defined for i = 1, . . . , k. Let

ψk

(
eu1´

Σ
eu1 dVg

,Σk

)
=

k∑

i=1

tiδyi , ti ∈ [0, 1], yi ∈ Σ.

Observe that, by construction and by the second statement in Proposition 2.4.1, d(βxki , yi)→ 0 as εk → 0.
Hence there exists a geodesic γi joining yi and βxki in unit time. We then perform an interpolation in the
following way:

ψ̃k

(
eu1´

Σ
eu1 dVg

)
=





∑k
i=1 tiδyi if d

(
eu1´

Σ
eu1 dVg

,Σk−1

)
≤ εk−1,

∑k
i=1 tiδγi

(
1

εk−1
d
(

eu1´
Σ eu1 dVg

,Σk−1

)
−1
) if d

(
eu1´

Σ
eu1 dVg

,Σk−1

)
∈ (εk−1, 2εk−1),

∑k
i=1 tiδβxk

i

if d
(

eu1´
Σ
eu1 dVg

,Σk−1

)
≥ 2εk−1.

(3.17)

For a function u2 with d
(

eu2´
Σ
eu2 dVg

,Σ1

)
< 2ε1, letting ψ1

(
eu2´

Σ
eu2 dVg

)
= δz we let

ψ̃1

(
eu2´

Σ
eu2 dVg

)
= δβz . (3.18)

With these maps and this join parameter we finally define the refined projection Ψ̃ : J−Lρ → Σk ∗ Σ1 as

Ψ̃(u1, u2) = (1− s)ψ̃k
(

eu1´
Σ
eu1 dVg

)
+ s ψ̃1

(
eu2´

Σ
eu2 dVg

)
. (3.19)
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3.2.2 A new improved Moser-Trudinger inequality

Using the improved geometric inequality in [4] for the singular Liouville equation we can provide a
dilation-invariant improved inequality for system (1.18). Before stating the main result we prove some
auxiliary lemmas; we first recall our notation on annuli in Section 1.3.

Lemma 3.2.1 Let γ0 > 0, τ0 > 0, z ∈ Σ and r2 > r1 > 0 (both small) be such that

ˆ
Az(r1,r2)

eu2 dVg
ˆ

Σ

eu2 dVg

> γ0 and sup
y∈Az(r1,r2)

ˆ
Bτ0d(y,z)(y)

eu2 dVg

ˆ
Az(r1,r2)

eu2 dVg

< 1− τ0. (3.20)

Then, for any ε > 0 there exist C = C(ε, τ0, γ0), τ̃0 = τ̃0(τ0, γ0), r̃1 ∈
[
r1
C ,

r1
4

]
, r̃2 ∈ [4r2, Cr2] and

ũ2 ∈ H1(Σ) such that

a) ũ2 is constant in Br̃1(z) and on ∂Br̃2(z);

b)

ˆ
Az(r̃1,r̃2)

|∇ũ2|2 dVg ≤
ˆ
Az(r̃1,r̃2)

|∇u2|2 dVg + ε

ˆ
Σ

|∇u2|2 dVg;

c) sup
y∈Az(r̃1,r̃2)

ˆ
Bτ̃0d(y,z)(y)

eũ2 dVg

ˆ
Az(r̃1,r̃2)

eũ2 dVg

< 1− τ̃0.

Proof. First of all, we modify u2 so it becomes constant in Br̃1(z) and on ∂Br̃2(z). Take ε > 0: we
can find C = C(ε) and properly chosen r̃1 ∈

[
r1
C ,

r1
4

]
, r̃2 ∈ [4r2, Cr2] such that

ˆ
Az(r̃1,2r̃1)

|∇u2|2 dVg ≤ ε
ˆ

Σ

|∇u2|2 dVg,
ˆ
Az(r̃2/2,r̃2)

|∇u2|2 dVg ≤ ε
ˆ

Σ

|∇u2|2 dVg.

We denote by u2(r̃1) and u2(r̃2) the following averages;

u2(r̃1) =

 
Az(r̃1,2r̃1)

u2 dVg, u2(r̃2) =

 
Az(r̃2/2,r̃2)

u2 dVg. (3.21)

Let now χ be a cut-off function, with values in [0, 1], such that

χ =





0 in Br̃1(z),

1 in Az(2r̃1, r̃2/2),

0 in (Br̃2(z))c

and define

ũ2 =





χ(d(x, z))u2 + (1− χ(d(x, z))u2(r̃1)) in B2r̃1(z),

u2 in Az(2r̃1, r̃2/2),

χ(d(x, z))u2 + (1− χ(d(x, z))u2(r̃2)) in (Br̃2/2(z))c.

(3.22)

By Poincaré’s inequality the Dirichlet energy of ũ2 is bounded by

ˆ
Az(r̃1,2r̃1)

|∇ũ2|2 dVg ≤ C̃ε
ˆ

Σ

|∇u2|2 dVg,
ˆ
Az(r̃2/2,r̃2)

|∇ũ2|2 dVg ≤ C̃ε
ˆ

Σ

|∇u2|2 dVg,

where C̃ is a universal constant. Hence one gets

ˆ
Az(r̃1,r̃2)

|∇ũ2|2 dVg ≤
ˆ
Az(r̃1,r̃2)

|∇u2|2 dVg + 2C̃ε

ˆ
Σ

|∇u2|2 dVg.
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We are left with proving that there exists τ̃0 = τ̃0(τ0, γ0) such that

sup
y∈Az(r̃1,r̃2)

ˆ
Bτ̃0d(y,z)(y)

eũ2 dVg

ˆ
Az(r̃1,r̃2)

eũ2 dVg

< 1− τ̃0. (3.23)

If this is not the case, there exist (u2,n)n ⊂ H1(Σ) verifying (3.20), (r̃1,n)n ⊂
[
r1
C ,

r1
4

]
, (r̃2,n)n ⊂ [4r2, Cr2],

cut-off functions (χn)n and (ũ2,n)n ⊂ H1(Σ) defined in analogous way as ũ2 in (3.22), such that

eũ2,nˆ
Az(r̃1,n,r̃2,n)

eũ2,n dVg

⇀ δx̄ (3.24)

in the sense of measures, for some x̄ ∈ Az
(
r1
C , Cr2

)
. We distinguish between three situations.

Case 1. Suppose first that x̄ ∈ Az(r1, 2r2). By the choices of the cut-off functions and (3.22), as ũ2,n

coincides with u2,n on Az(r1/2, 2r2), it follows that

eu2,nˆ
Az(r1,2r2)

eu2,n dVg

=
eũ2,nˆ

Az(r1,2r2)

eũ2,n dVg

⇀ δx̄. (3.25)

Case 1.1. Let x̄ ∈ Az(r1,
3
2r2). To get a contradiction to (3.25), we prove that there exists τ̄0 = τ̄0(τ0, γ0)

such that

sup
y∈Az(r1, 32 r2)

ˆ
Bτ̄0d(y,z)(y)

eu2,n dVg ≤ (1− τ̄0)

ˆ
Az(r1,2r2)

eu2,n dVg. (3.26)

Let τ̄0 = τ0/2. If Bτ̄0d(y,z)(y) ⊆ Az(r1(1 − τ0), r2(1 + τ0)) we can use directly the second part of the
assumption (3.20) on u2,n to get the bound on the left-hand side of (3.26) (taking τ̄0 sufficiently small).
Moreover, by the first part of (3.20) on u2,n we deduce

ˆ
Az(r1,r2)

eu2,n dVg ≥ γ0

ˆ
Σ

eu2,n dVg ≥ γ0

ˆ
Az(r1,2r2)

eu2,n dVg.

Given then Br(y) ⊆ Az(r2, 2r2), since Br(y) ∩ Az(r1, r2) = ∅, by the first inequality in (3.20) it follows
that ˆ

Br(y)

eu2,n dVg ≤ (1− γ0)

ˆ
Az(r1,2r2)

eu2,n dVg for any Br(y) ⊆ Az(r2, 2r2). (3.27)

Now, if Bτ̄0d(y,z)(y) ⊆ Az(r2, 2r2) we exploit (3.27) to deduce the bound on the left-hand side of (3.26)
taking a possibly smaller τ̄0. This concludes the proof of the claim (3.26).

Case 1.2. Suppose x̄ ∈ Az( 5
4r2, 2r2). Using again (3.27) we obtain a contradiction to (3.25).

Case 2. Consider now x̄ ∈ Az (r1/2, r2): reasoning exactly as in Case 1 we get a contradiction.

Case 3. We are left with the case x̄ ∈ (Az (r1/2, 2r2))
c
: notice that differently from the previous two

cases, the cut-off functions χn might not be identically equal to 1 near x̄0. For this choice of x̄ and by
(3.24) one gets ˆ

Az(r1,r2)

eũ2,n dVg
ˆ
Az(r̃1,n,r̃2,n)

eũ2,n dVg

→ 0. (3.28)

Using the definition of ũ2,n in Az(r̃2,n/2, r̃2,n) given by (3.22) and applying Young’s inequality with
1/p = χn and 1/q = 1− χn we have

eũ2,n = eχnu2,ne(1−χn)u2(r̃2,n) ≤ χneu2,n + (1− χn)eu2,n(r̃2,n) in Az(r̃2,n/2, r̃2,n). (3.29)
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3. The Toda system on compact surfaces of arbitrary genus

Recall the notation in (3.21): by Jensen’s inequality it follows that

eu2,n(r̃2,n) ≤
 
Az(r̃2,n/2, r̃2,n)

eu2,n dVg.

Therefore, integrating (3.29) one can show that

ˆ
Az(r̃2,n/2,r̃2,n)

eũ2,n dVg ≤ 2

ˆ
Az(r̃2,n/2,r̃2,n)

eu2,n dVg.

Similarly we get ˆ
Az(r̃1,n,2r̃1,n)

eũ2,n dVg ≤ 2

ˆ
Az(r̃1,n,2r̃1,n)

eu2,n dVg.

In conclusion we have ˆ
Az(r̃1,n,r̃2,n)

eũ2,n dVg ≤ 2

ˆ
Σ

eu2,n dVg.

This, together with (3.28), implies that

ˆ
Az(r1,r2)

eu2,n dVg
ˆ

Σ

eu2,n dVg

≤ 2

ˆ
Az(r1,r2)

eũ2,n dVg
ˆ
Az(r̃1,n,r̃2,n)

eũ2,n dVg

→ 0,

which is in contradiction with (3.20). Therefore we are done.

Lemma 3.2.2 Under the same assumptions of Lemma 3.2.1, let ũ2 ∈ H1(Σ) be the function given there.
Then, property c) can be extended to the following one: there exists τ̄0 > 0 such that

sup
y∈Br̃2 (z),y 6=z

ˆ
Bτ̄0d(y,z)(y)

eũ2 dVg

ˆ
Br̃2 (z)

eũ2 dVg

< 1− τ̄0. (3.30)

Proof. By property c) of Lemma 3.2.1 we just have to show (3.30) for y ∈ Br̃1(z). Observe that, by
definition, ũ2 is constant in Br̃1(z). Therefore, for any Bτ̃0d(y,z)(y) ⊆ Br̃1(z), which implies d(y, z) ≤ r̃1,
we have

ˆ
Bτ̃0d(y,z)(y)

eũ2 dVg =
τ̃2
0 d(y, z)2

r̃2
1

ˆ
Br̃1 (z)

eũ2 dVg ≤ τ̃2
0

ˆ
Br̃1 (z)

eũ2 dVg ≤ τ̃2
0

ˆ
Br̃2 (z)

eũ2 dVg,

and we conclude that (3.30) holds true for τ̃0 small enough. For the same choice of τ̃0 we are left with
the case B := Bτ̃0d(y,z)(y) ∩ (Br̃1(z))c 6= ∅. The integral over B will be bounded by the integral over a
larger ball with center shifted onto ∂Br̃1(z). Using normal coordinates at z consider the shift of center
y 7→ r̃1

y
d(y,z) . Then we have, using the property c);

ˆ
B

eũ2 dVg ≤
ˆ
Bτ̃0r̃1(r̃1 y

d(y,z) )
eũ2 dVg ≤ (1− τ̃0)

ˆ
Br̃2 (z)

eũ2 dVg.

Therefore, we get

ˆ
Bτ̃0d(y,z)(y)

eũ2 dVg ≤ τ̃2
0

ˆ
Br̃2 (z)

eũ2 dVg +

ˆ
B

eũ2 dVg ≤ τ̃2
0

ˆ
Br̃2 (z)

eũ2 dVg + (1− τ̃0)

ˆ
Br̃2 (z)

eũ2 dVg.

Taking τ̄0 possibly smaller we obtain the conclusion.

We recall here the improved geometric inequality stated in Proposition 4.1 of [4], with k = 1 and α = 1.
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Proposition 3.2.3 ([4]) Let p ∈ Σ and let r > 0, τ0 > 0. Then, for any ε > 0 there exists C = C(ε, r)
such that

log

ˆ
Br(p)

d(x, p)2e2v dVg ≤
1 + ε

8π

ˆ
Br(p)

|∇v|2 dVg + C,

for every function v ∈ H1
0 (Br(p)) such that

sup
y∈Br(p); y 6=p

ˆ
Bτ0d(y,p)(y)

d(x, p)2e2v dVg

ˆ
Br(p)

d(x, p)2e2v dVg

< 1− τ0.

We state now the new improved Moser-Trudinger inequality.

Remark 3.2.4 In what follows, the number r is supposed to be small but not tending to zero, while σ
could be arbitrarily small.

Proposition 3.2.5 Let r > 0, γ0 > 0 and τ0 > 0. For any ε > 0 there exists C = C(ε, r, τ0, γ0) such
that, if for some σ ∈

(
0, r

C2

)
and z ∈ Σ it holds

ˆ
Bσ/2(z)

eu1 dVg

ˆ
Σ

eu1 dVg

> γ0,

ˆ
Az(Cσ, rC )

eu2 dVg

ˆ
Σ

eu2 dVg

> γ0 (3.31)

and

sup
y∈Az(Cσ, rC )

ˆ
Bτ0d(y,z)(y)

eu2 dVg

ˆ
Az(Cσ, rC )

eu2 dVg

< 1− τ0, (3.32)

then

4π log

ˆ
Σ

eu1−u1 dVg + 8π log

ˆ
Σ

eu2−u2 dVg ≤
ˆ
Br(z)

Q(u1, u2) dVg + ε

ˆ
Σ

Q(u1, u2) dVg + C.

Proof. Taking r sufficiently small we may suppose that we have the Euclidean flat metric in the ball
BCr(z). Suppose for simplicity that u1 = u2 = 0 and that z = 0. Observe that we can write

log

ˆ
Br(0)

eu2 dVg = log

ˆ
Br(0)

|x|2e2(u2
2 −log |x|) dVg.

We wish to apply Proposition 3.2.3 to u2

2 − log |x|, so we need to modify this function in such a way that it
becomes constant outside a given ball. Moreover, it will be useful to also replace it with a constant inside
a smaller ball. In this process we should not lose the volume-spreading property (3.32). By Lemma 3.2.1
this can be done and we let C = C(ε, τ0, γ0), r̃1 ∈

[
σ, Cσ4

]
, r̃2 ∈

[
4r
C , r

]
and ũ2 ∈ H1(Σ) be as in the

statement of the lemma. By property a) in Lemma 3.2.1 and by Lemma 3.2.2 we are in position to apply
Proposition 3.2.3 to (ũ2 − ũ2(r̃2)) ∈ H1

0 (Br̃2(0)) and get

log

ˆ
Σ

eu2 dVg ≤ log

ˆ
A0(Cσ, rC )

eu2 dVg + C = log

ˆ
A0(Cσ, rC )

|x|2e2(u2
2 −log |x|) dVg + C

≤ log

ˆ
Br̃2 (0)

|x|2e2ũ2 dVg + C = log

ˆ
Br̃2 (0)

|x|2e2(ũ2−ũ2(r̃2)) dVg + ũ2(r̃2) + C

≤ 1 + ε

8π

ˆ
A0(r̃1,r̃2)

|∇ũ2|2 dVg + ũ2(r̃2) + C

≤ 1 + ε

8π

ˆ
A0(r̃1,r̃2)

∣∣∣∇
(u2

2
− log |x|

)∣∣∣
2

dVg + ε

ˆ
Σ

|∇u2|2 dVg + ũ2(r̃2) + C

≤ 1

8π

ˆ
A0(σ,r)

∣∣∣∇
(u2

2
− log |x|

)∣∣∣
2

dVg + ε

ˆ
Σ

Q(u1, u2) dVg + ũ2(r̃2) + C, (3.33)
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where in the first row we exploited (3.31), while in the last one we used the definition of r̃1, r̃2. Observe
that by the definition (3.22) of ũ2 we have

ũ2(r̃2) =

 
Az(r̃2/2,r̃2)

(u2

2
− log |x|

)
dVg.

Applying Hölder’s and Poincaré’s inequalities one gets
 
Az(r̃2/2,r̃2)

(u2

2
− log |x|

)
dVg ≤

 
Az(r̃2/2,r̃2)

|u2| dVg + C̃r ≤ Cr‖u2‖L2(Σ) + C̃r

≤ Cr
(ˆ

Σ

|∇u2|2 dVg
)1/2

+ C̃r ≤ ε
ˆ

Σ

|∇u2|2 dVg +
C̃rCr
ε

.

(3.34)

Inserting the latter estimate into (3.33) we deduce

log

ˆ
Σ

eu2 dVg ≤
1

8π

ˆ
A0(σ,r)

∣∣∣∇
(u2

2
− log |x|

)∣∣∣
2

dVg + ε

ˆ
Σ

Q(u1, u2) dVg + C. (3.35)

Using the integration by parts we get
ˆ
A0(σ,r)

∣∣∣∇
(u2

2
− log |x|

)∣∣∣
2

dVg =
1

4

ˆ
A0(σ,r)

|∇u2|2 dVg−2π log σ+2π

 
∂Bσ(0)

u2 dSg−2π

 
∂Br(0)

u2 dSg.

Observe now that by the L1 embedding of H1 and the trace inequalities, there exists C > 0 such that

∣∣∣∣∣

 
Bσ(0)

u2 dVg −
 
∂Bσ(0)

u2 dSg

∣∣∣∣∣ ≤ C
(ˆ

Bσ(0)

|∇u2|2 dVg
)1/2

,

where C is independent of σ since the latter inequality is dilation invariant. Therefore, reasoning as in
(3.34) we obtain

ˆ
A0(σ,r)

∣∣∣∇
(u2

2
− log |x|

)∣∣∣
2

dVg ≤
1

4

ˆ
A0(σ,r)

|∇u2|2 dVg − 2π log σ + 2πu2(σ) + ε

ˆ
Σ

|∇u2|2 dVg + C,

where u2(σ) =
ffl
Bσ(0)

u2 dVg. Finally, by the fact that

1

4
|∇u2|2 = Q(u1, u2)− 1

12
|∇(u2 + 2u1)|2,

we get
ˆ
A0(σ,r)

∣∣∣∇
(u2

2
− log |x|

)∣∣∣
2

dVg ≤
ˆ
A0(σ,r)

Q(u1, u2) dVg −
1

12

ˆ
A0(σ,r)

|∇(u2 + 2u1)|2 dVg + (3.36)

− 2π log σ + 2πu2(σ) + ε

ˆ
Σ

|∇u2|2 dVg + C.

We claim now that for any ε̃ > 0 one has

ˆ
A0(σ,r)

|∇(u2 + 2u1)|2 dVg ≥ 2π

(
2

ε̃
(u2(σ) + 2u1(σ)) +

1

ε̃2
log σ

)
− ε

ˆ
Σ

Q(u1, u2) dVg − C. (3.37)

Letting v(x) = u2(x) + 2u1(x) we have to prove

ˆ
A0(σ,r)

|∇v|2 dVg ≥ 2π

(
2

ε̃
v(σ) +

1

ε̃2
log σ

)
,

where v(σ) = u2(σ) + 2u1(σ). Choose k ∈ N such that

ˆ
A0(2kσ,2k+1σ)

|∇v|2 dVg ≤ ε
ˆ

Σ

|∇v|2 dVg,
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and define 



ũ(x) = v(σ) if x ∈ B2kσ(0),
∆ũ(x) = 0 if x ∈ A0(2kσ, 2k+1σ),
ũ(x) = v(x) if x /∈ B2k+1σ(0).

Then there exists a universal constant C0 such thatˆ
A0(2kσ,r)

|∇ũ|2 dVg ≤
ˆ
A0(σ,r)

|∇v|2 dVg + C0ε

ˆ
Σ

|∇v|2 dVg

≤
ˆ
A0(σ,r)

|∇v|2 dVg + C0ε

ˆ
Σ

Q(u1, u2) dVg.

Solving the Dirichlet problem in A0(2kσ, r) with constant data v(σ) on ∂B2kσ(0) one gets

{
w(x) = A log σ if |x| > 2kσ,
w(2kσ) = A log(2kσ) = v(σ) if |x| = 2kσ,

for some constant A. We have thatˆ
A0(2kσ,r)

|∇w|2 dVg = 2πA2 log
1

2kσ
− C = 2π

v(σ)2

log 1
2kσ

− C.

Moreover ˆ
A0(2kσ,r)

|∇w|2 dVg ≤
ˆ
A0(2kσ,r)

|∇ũ|2 dVg.

Finally, using Young’s inequality

v(σ) log
1

σ
≤ 1

2

(
ε̃v(σ)2 +

1

ε̃

(
log

1

σ

)2
)
,

we end up with
v(σ)2

log 1
σ

≥
(

2

ε̃
v(σ) +

1

ε̃2
log σ

)
.

Therefore we conclude

2π

(
2

ε̃
v(σ) +

1

ε̃2
log σ

)
− C ≤ 2π

v(σ)2

log 1
σ

− C =

ˆ
A0(2kσ,r)

|∇w|2 dVg

≤
ˆ
A0(2kσ,r)

|∇ũ|2 dVg ≤
ˆ
A0(σ,r)

|∇v|2 dVg + C0ε

ˆ
Σ

Q(u1, u2) dVg,

which proves the claim (3.37).

Inserting (3.37) into (3.36) we have

ˆ
A0(σ,r)

∣∣∣∇
(u2

2
− log |x|

)∣∣∣
2

dVg ≤
ˆ
A0(σ,r)

Q(u1, u2) dVg −
1

12
2π

(
2

ε̃
(u2(σ) + 2u1(σ)) +

1

ε̃2
log σ

)
+

− 2π log σ + 2πu2(σ) + ε

ˆ
Σ

Q(u1, u2) dVg + C.

Choosing ε̃ = 1/6 we obtain
ˆ
A0(σ,r)

∣∣∣∇
(u2

2
− log |x|

)∣∣∣
2

dVg ≤
ˆ
A0(σ,r)

Q(u1, u2) dVg − 4πu1(σ)− 8π log σ + (3.38)

+ ε

ˆ
Σ

Q(u1, u2) dVg + C.

We use then (3.38) in (3.35) to get

8π log

ˆ
Σ

eu2 dVg ≤
ˆ
A0(σ,r)

Q(u1, u2) dVg − 4πu1(σ)− 8π log σ + ε

ˆ
Σ

Q(u1, u2) dVg + C. (3.39)
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For the first component we consider the scalar local Moser-Trudinger inequality, see for example Propo-
sition 2.3 of [71], namely

log

ˆ
Br/2(0)

eu1 dVg ≤ 1

16π

ˆ
Br(0)

|∇u1|2 dVg + ū1(r) + ε

ˆ
Σ

|∇u1|2 dVg + C

≤ 1

4π

ˆ
Br(0)

Q(u1, u2) dVg + ū1(r) + ε

ˆ
Σ

Q(u1, u2) dVg + C.

Performing a dilation to Bσ(0) one gets

4π log

ˆ
Bσ/2(0)

eu1 dVg ≤
ˆ
Bσ(0)

Q(u1, u2) dVg + 4πu1(σ) + 8π log σ + ε

ˆ
Σ

Q(u1, u2) dVg + C.

We then use the assumption (3.31) and we obtain

4π log

ˆ
Σ

eu1 dVg ≤
ˆ
Bσ(0)

Q(u1, u2) dVg + 4πu1(σ) + 8π log σ + ε

ˆ
Σ

Q(u1, u2) dVg + C. (3.40)

Summing equations (3.39) and (3.40) we deduce

4π log

ˆ
Σ

eu1 dVg + 8π log

ˆ
Σ

eu2 dVg ≤
ˆ
Br(z)

Q(u1, u2) dVg + ε

ˆ
Σ

Q(u1, u2) dVg + C,

which concludes the proof.

Remark 3.2.6 The above result is inspired by the work [4] (see in particular Proposition 4.1 there)
where the singular Liouville equation is considered. The authors derive a geometric inequality by means
of the angular distribution of the conformal volume near the singularities. Somehow the singular equation
can be seen as the limit case of the regular one. Roughly speaking, when one component is much more
concentrated with respect to the other one, its effect resembles that of a Dirac delta.

3.2.3 Lower bounds on the functional Jρ.

We are going to exploit the improved inequality stated in Proposition 3.2.5 to derive new lower bounds of
the energy functional Jρ defined in (1.7), see Proposition 3.2.7. This will give us some extra constraints
for the map from the low sub-levels of Jρ onto the topological join Σk ∗ Σ1, see (1.17).

Given a small δ > 0, our aim is to describe the low sub-levels of the functional Jρ by means of the set

Y := (Σk ∗ Σ1) \ S ⊆ Σk ∗ Σ1, (3.41)

where

S =

{(
ν, δz,

1

2

)
∈ Σk ∗ Σ1 : ν =

k∑

i=1

tiδxi ; d(xi, xj) ≥ δ ∀i 6= j, δ ≤ ti ≤ 1− δ ∀i ; z ∈ supp (ν)

}
.

(3.42)

We will show that there is a lower bound for Jρ whenever Ψ̃, which is defined in (3.19), has image inside
S, see Proposition 3.2.7.

Consider Cε,r(x0) as given in (3.7), f ∈ Cε,r(x0) and ψ defined in (3.9). Before stating the next main
result we recall some properties of the map ψ, see Proposition 3.1 in [70] (with minor adaptations).

Fact. Let ψ(f) = (β, σ). Then, given R > 1 there exists p ∈ Σ with the following properties:

d(p, β) ≤ C ′σ for some C ′ = C ′(R);ˆ
Bσ(p)∩Br(x0)

f dVg > τ,

ˆ
(BRσ(p))c∩Br(x0)

f dVg > τ, (3.43)

where τ depends only on R and Σ.

Recall also the distance d between measures in (1.25), the numbers εi > 0 in Proposition 2.4.1, the

projections ψ̃k, ψ̃1 in (3.17), (3.18) and the definition of the parameter s in the topological join given by
(3.16).
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Proposition 3.2.7 Suppose that ρ1 ∈ (4kπ, 4(k + 1)π), ρ2 ∈ (4π, 8π) and that d
(

eu1´
Σ
eu1 dVg

,Σk

)
< 2εk,

d
(

eu2´
Σ
eu2 dVg

,Σ1

)
< ε1. Let

ψ̃k

(
eu1´

Σ
eu1 dVg

)
=

k∑

i=1

tiδxi , ψ̃1

(
eu2´

Σ
eu2 dVg

)
= δβz .

There exist δ > 0 and L > 0 such that, if the following properties hold true:

1) d(xi, xj) ≥ δ ∀i 6= j and ti ∈ [δ, 1− δ] ∀i = 1, . . . , k;

2) s(u1, u2) = 1/2;

3) βz = xl for some l ∈ {1, . . . , k};
then

Jρ(u1, u2) ≥ −L.

Proof. Suppose w.l.o.g. that u1 = u2 = 0. We first observe that exploiting the assumption s(u1, u2) =
1/2 we deduce σ1(u1) = σ2(u2). Secondly, it is not difficult to show that from property 1) it follows

d
(

eu1´
Σ
eu1 dVg

,Σk−1

)
≥ 2εk−1. Therefore, by the definition of ψ̃k we deduce that xi = βxki for i = 1, . . . , k,

where the βxki are the local centres of mass given by (3.13). Hence we get

ψ̃k

(
eu1´

Σ
eu1 dVg

)
=

k∑

i=1

tiδβ
xk
i

.

Recalling that we have set (see Subsection 3.2.1)

σ2(u2) = g1

(
d

(
eu2´

Σ
eu2 dVg

,Σ1

))
σz +

(
1− g1

(
d

(
eu2´

Σ
eu2 dVg

,Σ1

)))
,

using the fact that d
(

eu2´
Σ
eu2 dVg

,Σ1

)
< ε1, by the definition of g1 in (3.14), σ2(u2) reduces to σz. We

recall now also the definition of σ1(u1), namely

σ1(u1) = f

(
d

(
eu1´

Σ
eu1 dVg

,Σk

))
A(u1, u2) +

(
1− f

(
d

(
eu1´

Σ
eu1 dVg

,Σk

)))
,

where A(u1, u2) is defined in Subsection 3.2.1. The assumption d
(

eu1´
Σ
eu1 dVg

,Σk

)
< 2εk implies that

f
(
d
(

eu1´
Σ
eu1 dVg

,Σk

))
> 0. As before, using property 1) we obtain from d

(
eu1´

Σ
eu1 dVg

,Σk−1

)
≥ 2εk−1

that gk−1

(
d
(

eu1´
Σ
eu1 dVg

,Σk−1

))
= 0 and hence A(u1, u2) = B(u1, u2) (see the notation before (3.16)).

Moreover, the condition 3) implies that h
(
d(βz, {βxk1 , . . . , βxkk})

)
= 1. Therefore B(u1, u2) = σxkl . Hence

one finds

σu1
= f

(
d

(
eu1´

Σ
eu1 dVg

,Σk

))
σxkl +

(
1− f

(
d

(
eu1´

Σ
eu1 dVg

,Σk

)))
.

We distinguish between two cases.

Case 1. Suppose first that f
(
d
(

eu1´
Σ
eu1 dVg

,Σk

))
= 1. In this case we obtain σxkl = σ1(u1) = σ2(u2) = σz.

By this fact and by property 3) we get (βxkl , σxkl ) = (βz, σz). Let r = δ/4: from (3.43) and the definition

of βz, βxki , there exists γ̃0 > 0 such that

ˆ
Br

(
β
xk
i

) eu1 dVg ≥ γ̃0

ˆ
Σ

eu1 dVg for i = 1, . . . , k;

ˆ
Br(βz)

eu2 dVg ≥ γ̃0

ˆ
Σ

eu2 dVg. (3.44)

Therefore, we are in position to apply Proposition 3.1.9 and get

4(k + 1)π log

ˆ
Σ

eu1 dVg + 8π log

ˆ
Σ

eu2 dVg ≤ (1 + ε)

ˆ
Σ

Q(u1, u2) dVg + Cr.
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The conclusion then follows from the expression of Jρ and from the upper bounds on ρ1, ρ2.

Case 2. Suppose now that f
(
d
(

eu1´
Σ
eu1 dVg

,Σk

))
< 1: we deduce immediately that d

(
eu1´

Σ
eu1 dVg

,Σk

)
∈

(εk, 2εk).
Given ε > 0, let R = R(ε) be such that Proposition 3.1.7 holds true. Let C ′ = C ′(R) and τ = τ(R)

be as in (3.43). Take τ0 = τ/100, γ0 = γ̃0τ , where γ0 is given as in (3.44), and let C = C(ε, r, τ0, γ0) be

the constant obtained in Proposition 3.2.5. We then define C̃ = max{C ′, C}. Moreover, observe that by
construction σxkl ≤ σ1(u1) = σ2(u2) = σz.

If σxkl ≤ σz ≤ C̃ 8σxkl we still can apply Proposition 3.1.9 as before, see Remark 3.1.8. Consider now

the case C̃ 8σxkl ≤ σz. We distinguish between two situations.

Case 2.1. If r is as in Case 1, suppose thatˆ
BC̃4σ

xk
l

(βz)

eu2 dVg > τ0

ˆ
Br(βz)

eu2 dVg

(
> γ̃0τ0

ˆ
Σ

eu2 dVg : see (3.44)

)
. (3.45)

By the fact that C̃4σxkl � σz, from (3.43) we also get

ˆ
(
BRC̃4σ

xk
l

(βz)
)c
∩Br(βz)

eu2 dVg > τ0

ˆ
Br(βz)

eu2 dVg > γ̃0τ0

ˆ
Σ

eu2 dVg. (3.46)

The conditions on the local scale of u1, given by (βxkl , σxkl ) = ψ
(
f
xkl
loc(u1)

)
, yield by (3.43) the existence

of p ∈ Σ such that ˆ
Bσ

xk
l

(p)

eu1 dVg > τ

ˆ
Br

(
β
xk
l

) eu1 dVg > γ̃0τ

ˆ
Σ

eu1 dVg,

ˆ
(
BRσ

xk
l

(p)
)c
∩Br
(
β
xk
l

) eu1 dVg > τ

ˆ
Br

(
β
xk
l

) eu1 dVg > γ̃0τ

ˆ
Σ

eu1 dVg.

The latter formulas, together with (3.45) and (3.46) imply an improved Moser-Trudinger inequality, see
Remarks 3.1.6 and 3.1.8:

8π

(
log

ˆ
Σ

eu1 dVg + log

ˆ
Σ

eu2 dVg

)
≤ (1 + ε)

ˆ
Br(βz)

Q(u1, u2) dVg + C0(ε, r, τ, γ̃0). (3.47)

Case 2.2. Suppose now that the second situation occurs, namelyˆ
BC̃4σ

xk
l

(z)

eu2 dVg ≤ τ0
ˆ
Br(βz)

eu2 dVg. (3.48)

The goal is to apply the improved inequality stated in Proposition 3.2.5. Take σ = (C ′)2σxkl and

Aβz (Cσ,
r
C ) as the annulus on which we will test the conditions (3.31) and (3.32). We start by considering

(3.31). Observe that ˆ
Bσ/2(z)

eu1 dVg > γ0

ˆ
Σ

eu1 dVg

follows from (3.43) and (3.44) by the choice of σ and γ0. Similarly, using the volume concentration of u2

in (BRσz (p))
c ∩Br(βz) in (3.43) and (recalling the definition of C̃) Cσ � Rσz we getˆ

Aβz (Cσ, rC )

eu2 dVg > γ0

ˆ
Σ

eu2 dVg

by taking ε1 sufficiently small in Proposition 3.2.7. We are left by proving condition (3.32), i.e.

sup
y∈Aβz (Cσ, rC )

ˆ
Bτ0d(y,z)(y)

eu2 dVg

ˆ
Aβz (Cσ, rC )

eu2 dVg

< 1− τ0.
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3.2. A refined projection onto the topological join

If this is not the case, then there exists y ∈ Aβz (Cσ, rC ) such that

ˆ
Bτ0d(y,z)(y)

eu2 dVg ≥ (1− τ0)

ˆ
Aβz (Cσ, rC )

eu2 dVg.

Using the assumption (3.48) and σ < C̃4σxkl we get

ˆ
Bτ0d(y,z)(y)

eu2 dVg ≥ (1− τ0)

ˆ
Aβz (Cσ, rC )

eu2 dVg ≥ (1− τ0)

ˆ
Aβz (Cσ, rC )

eu2 dVg

= (1− τ0)

ˆ
Br(βz)

eu2 dVg − (1− τ0)

ˆ
BCσ(βz)

eu2 dVg ≥ (1− 2τ0)

ˆ
Br(βz)

eu2 dVg.

Moreover, by the property of the local scale of u2 given by (βz, σz) = ψ(fzloc(u2)), see (3.43), we have

ˆ
Bσz(p)

eu2 dVg > τ

ˆ
Br(βz)

eu2 dVg;

ˆ
(BRσz (p))c∩Br(βz)

eu2 dVg > τ

ˆ
Br(βz)

eu2 dVg.

Notice that by the choice of τ0 the three properties above cannot hold simultaneously. Hence, we have a
contradiction. Finally, we are in position to apply Proposition 3.2.5 and deduce that

4π log

ˆ
Σ

eu1 dVg + 8π log

ˆ
Σ

eu2 dVg ≤
ˆ
Br(βz)

Q(u1, u2) dVg + ε

ˆ
Σ

Q(u1, u2) dVg + C.

Observe that by the latter formula and by (3.47), in both Case 2.1 and Case 2.2 we can assert that

4π log

ˆ
Σ

eu1 dVg + 8π log

ˆ
Σ

eu2 dVg ≤
ˆ
Br(βz)

Q(u1, u2) dVg + ε

ˆ
Σ

Q(u1, u2) dVg + C. (3.49)

Recall that under Case 2 we have d
(

eu1´
Σ
eu1 dVg

,Σk

)
> εk. By the second part of Proposition 2.4.1 (applied

with l = k + 1) there exist ε̄k > 0, depending only on εk, and k + 1 points x̄1, . . . , x̄k+1 such that

d(x̄i, x̄j) > 2ε̄k for i 6= j;

ˆ
Bε̄k (x̄i)

eu1 dVg > ε̄k

ˆ
Σ

eu1 dVg for all i = 1, . . . , k + 1.

Without loss of generality we can assume δ < ε̄k/8. By this the choice of δ there exist k points ȳ1, . . . ȳk
such that

d(ȳi, ȳj) > ε̄k for i 6= j; d(ȳi, βxki ) > δ for all i = 1, . . . , k;ˆ
Bε̄k (ȳi)

eu1 dVg > ε̄k

ˆ
Σ

eu1 dVg for all i = 1, . . . , k.

We perform then a local Moser-Trudinger inequality for u1 in each region, see (3.40), and summing up
we have (recall that r = δ/4)

4kπ log

ˆ
Σ

eu1 dVg ≤
ˆ
(
Br

(
β
xk
l

))c Q(u1, u2) dVg + ε

ˆ
Σ

Q(u1, u2) dVg + Cr, (3.50)

where the average was estimated using Hölder’s and Poincaré’s inequalities as in (3.34). By summing
equations (3.49) and (3.50) we deduce

4(k + 1)π log

ˆ
Σ

eu1 dVg + 8π log

ˆ
Σ

eu2 dVg ≤ (1 + ε)

ˆ
Σ

Q(u1, u2) dVg + C,

so we conclude as in Case 1.

By Proposition 3.2.7 we obtain the following corollary.

Corollary 3.2.8 Let S be as in (3.42) and let Y = (Σk ∗ Σ1) \ S. Then, for L̃ > 0 large Ψ̃ (defined in

(3.19)) maps the low sub-levels J−L̃ρ into the set Y .
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3. The Toda system on compact surfaces of arbitrary genus

3.3 Test functions

We show that the lower bound in Proposition 3.2.7 is optimal, see also Corollary 3.2.8. In fact, we will
construct suitable test functions modelled on Y on which Jρ attains arbitrarily negative values.

To describe our construction, let us recall the test functions employed for the scalar case (1.9). When
ρ > 4π, as mentioned in the Introduction, the energy Iρ in (1.14) is unbounded below. One can see that
using test functions of the type

ϕλ,z(x) = log

(
λ

1 + λ2d(x, z)2

)2

, (3.51)

for a given point z ∈ Σ and for λ > 0, as λ→ +∞ these satisfy the properties

eϕλ,z ⇀ δz and Iρ(ϕλ,z)→ −∞ (ρ > 4π), (3.52)

holding uniformly in z ∈ Σ. More in general, if ρ ∈ (4kπ, 4(k + 1)π), a natural family of test functions
can be modelled on Σk, see [36, 37]. In fact, setting

ϕλ,ν(x) = log

k∑

i=1

ti

(
λ

1 + λ2d(x, xi)2

)2

; ν =

k∑

i=1

tiδxi , (3.53)

similarly to (3.52), for λ→ +∞ one has uniformly in ν ∈ Σk

d(eϕλ,ν , ν)→ 0 and Iρ(ϕλ,ν)→ −∞ (ρ ∈ (4kπ, 4(k + 1)π)).

When dealing with the energy functional Jρ in (1.7) one can expect to interpolate between the ϕλ,ν for the
component u1 and the ϕλ,z for u2 when ρ1 ∈ (4kπ, 4(k + 1)π), ρ2 ∈ (4π, 8π). Therefore, the topological
join Σk ∗ Σ1 represents a natural object to parametrize globally this family, with the join parameter s
playing the role of interpolation parameter. However, as mentioned in the Subsection 1.1.2, the cross
term in the quadratic energy penalizes gradients pointing in the same direction. By this reason, not all
elements in Σk ∗Σ1 will give rise to test functions with low energy. It will turn out that the subset Y of
Σk ∗ Σ1, see (3.41), will be the right one to look at.

3.3.1 A convenient deformation of Y ∩
{
s = 1

2

}
.

We construct here a continuous deformation of Y ∩
{
s = 1

2

}
, which is relatively open in the join Σk ∗Σ1,

onto some closed subset: see Corollary 3.3.6. This will allow us to build test functions depending on a
compact space of parameters, which is easier. Before doing this, we recall some facts from Section 3 of
[67].

There exists a deformation retract H0(t , ·) of a neighborhood (with respect to the metric induced by
d in (1.25)) of Σk−1 in Σk onto Σk−1. To see this, one can take a positive δ1 small enough and consider
a non-increasing continuous function F0 : (0,+∞)→ (0,+∞) such that

F0(t) =
1

t
for t ∈ (0, δ1]; F0(t) =

1

2δ1
for t > 2δ1. (3.54)

We then define F : Σk \ Σk−1 → R as

F

(
k∑

i=1

tiδxi

)
=
∑

i6=j

F0(d(xi, xj))

︸ ︷︷ ︸
F1((xi)i)

+

k∑

i=1

1

ti(1− ti)
︸ ︷︷ ︸

F2((ti)i)

. (3.55)

Notice that F is well defined on Σk\Σk−1, as it is invariant under permutation of the couples (ti, xi)i=1,...,k.
Observe also that it tends to +∞ as its argument approaches Σk−1. Moreover, the gradient of F with
respect to the metric of Σk × T0 (where T0 is the simplex containing the k-tuple T := (ti)i) tends to +∞
in norm as

∑k
i=1 tiδxi tends to Σk−1. It follows that, sending L to +∞, we get a deformation retract of
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3.3. Test functions

FL := {F ≥ L} ∪ Σk−1 onto Σk−1 for L sufficiently large. We then obtain H0 by a reparametrization of
the (positive) gradient flow of F .

We introduce now the set Ỹ 1
2
⊆ Y ∩

{
s = 1

2

}
⊆ Σk ∗ Σ1 defined as

Ỹ 1
2

=

{(
ν, δz,

1

2

)
: ν ∈ Σk−1

}
∪
{(

ν, δz,
1

2

)
: ν ∈ Σk \ Σk−1, z /∈ supp (ν)

}
.

The next result holds true.

Lemma 3.3.1 There exists a continuous deformation H̃(t , ·) of the set Y ∩
{
s = 1

2

}
onto Ỹ 1

2
.

Proof. Let δ > 0 be as in (3.42). Consider 0 < δ̃ � δ and let f̃ : (0,+∞) → (0,+∞) be a non-
increasing continuous function given by

f̃(t) =

{
1
t2 in t ≤ δ̃,
0 in t ≥ 2δ̃.

Moreover, recall the deformation retract H0(t , ·) of a neighborhood of Σk−1 in Σk onto Σk−1 constructed

above. To define H̃ we distinguish among four situations, fixing δ̂ � δ̃ (in particular we take δ̂ so small

that H0 is well-defined on 3δ̂-neighbourhood of Σk−1 in the metric d).

(i) d(ν,Σk−1) ≤ δ̂. Recall that elements in Y ∩
{
s = 1

2

}
are triples of the form

(
ν, δz,

1
2

)
with ν ∈ Σk.

In this first case we project ν onto Σk−1, while δz remains fixed. If H0 is the retraction described above,

we simply define H̃ to be

H̃

(
t , ν, δz,

1

2

)
=

(
H0(t , ν), δz,

1

2

)
.

(ii) d(ν,Σk−1) ∈ [δ̂, 2δ̂]. Let

ν1(t) = H0(t, ν) =

k∑

i=1

ti(t)δxi(t).

If f̃ is as before, we introduce the following flow acting on the support of δz:

d

dt
z(t) =

k∑

i=1

ti(t)f
(
d(z(t), xi(t))

)
∇zd

(
z(t), xi(t)

)
. (3.56)

To define H̃ in this case we interpolate from a constant motion in z and (3.56) depending on d(ν,Σk−1):

H̃

(
t , ν, δz,

1

2

)
=

(
ν1(t), δ

z

(
t

d(ν,Σk−1)−δ̂
δ̂

), 1

2

)
.

Notice that when d(ν,Σk−1) = 2δ̂ we get z
(
t
d(ν,Σk−1)−δ̂

δ̂

)
= z(t) and this point never intersects the

support of ν1(t), unless ν1(t) ∈ Σk−1. Therefore, as for case (i), H̃
(
1, ν, δz,

1
2

)
∈ Ỹ 1

2
.

(iii) d(ν,Σk−1) ∈ [2δ̂, 3δ̂]. In this case the evolution of ν interpolates between the projection onto Σk−1

and staying fixed, i.e. we set

ν2(t) = H0

(
t

3δ̂ − d(ν,Σk−1)

δ̂
, ν

)

and let z(t) evolve according to (3.56) with ti(t), xi(t) given by
∑k
i=i ti(t)δxi(t) = ν2(t), so we define H̃ as

H̃

(
t , ν, δz,

1

2

)
=

(
ν2(t), δz(t),

1

2

)
.

(iv) d(ν,Σk−1) ≥ 3δ̂. The deformation H̃ leaves now ν fixed, while we let z(t) evolve by (3.56) with
ti(t) ≡ ti and xi(t) ≡ xi.

H̃

(
t , ν, δz,

1

2

)
=

(
ν, δz(t),

1

2

)
.
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3. The Toda system on compact surfaces of arbitrary genus

Observe that in this case, by the definition of f̃ and by the choice of δ̃, the latter flow of z does not
intersect the support of ν and d(z, z(1)) = O

(
δ̃
)
.

We next slice the set Ỹ 1
2

in the second entry δz: for p ∈ Σ we introduce Ỹ( 1
2 ,p)
⊆ Σk given by

Ỹ( 1
2 ,p)

=

{
ν ∈ Σk :

(
ν, δp,

1

2

)
∈ Ỹ 1

2

}
, (3.57)

so that

Ỹ 1
2

=
⋃

p∈Σ

(
Ỹ( 1

2 ,p)
, δp,

1

2

)
.

In Proposition 3.3.4 we will further deform Ỹ( 1
2 ,p)

to some compact subset of Σk (depending on p).

Let δ2 > 0 be a small number, p ∈ Σ and χδ2 a cut-off function such that

χδ2 =

{
0 in Bδ2(p),
1 in (B2δ2(p))c.

(3.58)

We start by proving the following lemmas (we are extending the notation in (1.15) to any subset of Σ).

Lemma 3.3.2 Let p ∈ Σ and let δ2 > 0 be as before. There exists δ3 > 0 sufficiently small such that the

above defined map H0(t , ·) is a deformation retract of
{
ν ∈ Ỹ( 1

2 ,p)
:
´

Σ
χδ2 dν ≥ δ2,d

(
χδ2ν

‖χδ2ν‖
,Σk−2

)
∈ (0, δ3)

}
∩

{d(ν,Σk−1) < δ3} onto (Σ \ {p})k−1 with the property that ∀t ∈ [0, 1] we have p /∈ supp H0(t , ν).

Proof. Let δ1 be as in (3.54). We can assume that δ1 ≤ δ2/16. We first prove that H0(t , ·) has the
property that as the d-distance of ν from Σk−1 tends to zero then the support of the measure H0(t , ν)
is contained in a shrinking neighborhood of the support of ν (uniformly in ν). We will then show that
H0 restricted to the particular set considered in the statement gives the desired deformation retract.

To prove the first assertion we endow Σk, which the k-tuple X := (xi)i belongs to, with the product
metric, and the simplex T0, containing the k-tuple T := (ti)i, with its standard metric induced from Rk.
Then one can notice that, as the singularities of F1 and F2 behave like the inverse of the distance from
the boundaries of their domains, there exists a constant C such that

1

C
F1(X)2−C ≤ |∇XF1(X)| ≤ CF1(X)2 +C;

1

C
F2(T )2−C ≤ |∇TF2(T )| ≤ CF2(T )2 +C. (3.59)

We now consider the evolution s 7→ ζ(ν, s) with initial datum ν in a small neighborhood of Σk−1, where,
we recall, F attains large values and its gradient does not vanish. If we evolve by the gradient of F then
X evolves by the gradient of F1 and T by the gradient of F2. By the last formula we then have

∣∣∣∣
dX

ds

∣∣∣∣ = |∇XF1| ≤ CF1(X)2 + C.

On the other hand, still by (3.59), we have that

dF

ds
= |∇XF1(X)|2 + |∇TF2(T )|2 ≥ 1

C2
F1(X)4 +

1

C2
F2(T )4 − 2C.

Notice that this quantity is strictly positive if F is large enough, see (3.55), which allows to invert the
function s 7→ F (ζ(ν, s)). Therefore, if sν is the maximal time of existence for ζ(ν, s) we can write that

ˆ sν

0

∣∣∣∣
dX

ds

∣∣∣∣ ds =

ˆ ∞
F (ν)

∣∣∣∣
dX

ds

∣∣∣∣
1
dF
ds

dF.

By the above two inequalities we deduce that

ˆ sν

0

∣∣∣∣
dX

ds

∣∣∣∣ ds ≤
ˆ ∞
F (ν)

CF1(X)2 + C
1
C2F1(X)4 + 1

C2F2(T )4 − 2C
dF.
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3.3. Test functions

By elementary inequalities, recalling that F = F1(X) + F2(T ) we also find

ˆ sν

0

∣∣∣∣
dX

ds

∣∣∣∣ ds ≤ C̃
ˆ ∞
F (ν)

1

F 2 − C̃
dF.

Therefore, as ν approaches Σk−1, namely for F (ν) large, we find that the displacement of X becomes
smaller and smaller. This gives us the claim stated at the beginning of the proof.

Next, we observe that by being ν ∈ Ỹ( 1
2 ,p)

and d
(

χδ2ν

‖χδ2ν‖
,Σk−2

)
> 0 by assumption, it follows the

existence of at most one point of the support of ν in the ball B 3
4 δ2

(p) which does not coincide with p.

Moreover, by the above claim we have that the points outside Bδ2(p) following the flow induced by F
move by a distance of order oδ3(1), since d(ν,Σk−1) < δ3. Therefore, choosing δ3 sufficiently small we
get the existence of at most one point in the ball B 3

4 δ2
(p), different from p, even while the flow is acting.

By the choice of F1, see (3.54), (3.55), and by the choice δ1 ≤ δ2
16 , we deduce that the point inside

B 3
4 δ2

(p) it is not affected by the flow and in particular it does not collapse onto p: the proof is complete.

Lemma 3.3.3 There exists a deformation retract H(t , ·) of
{
ν ∈ Ỹ( 1

2 ,p)
:
´

Σ
χδ2 dν ≥ δ2

}
to the set:

B :=
(
Σ \Bδ2(p)

)
k
∪
{

card
(
(supp (ν)) \Bδ2(p)

)
≤ k − 2

}
.

Proof. Let us first consider a deformation retract which pushes points in Σ \ {p} away from p. Define

H1(t , ·), t ∈ [0, 1] as follows: if ν =
∑k
i=1 tiδxi , xi 6= p, then (using normal coordinates around p)

H1(t , ν) =

k∑

i=1

tiδxi,t , where xi,t =

{
xi
|xi|
(
(1− t)|xi|+ t δ2

)
if d(p, xi) < δ2.

xi if d(p, xi) ≥ δ2.

We next introduce two cut-off functions χδ31 , χ
δ3
2 as in Figure 1 (χδ32 corresponds to the dashed graph).

δ3
2

δ3

1

χδ3
2 χδ3

1

Figure 3.1: The cut-off functions χδ31 , χ
δ3
2 .

For {d(ν,Σk−1) < δ3} we define the deformation retract H2(t , ·) as an interpolation between the
homotopies H0 and H1, precisely

H2(t , ν) = H1

(
tχδ32

(
d

(
χδ2ν

‖χδ2ν‖
,Σk−2

))
, H0

(
tχδ31

(
d

(
χδ2ν

‖χδ2ν‖
,Σk−2

))
, ν

))
.

The introduction of the cut-off functions makes the deformation retract continuous with respect to the
topology induced by the d-distance.

For d(ν,Σk−1) arbitrary we instead define H as

H(t , ν) = H1

(
tχδ32

(
d(ν,Σk−1)

)
, H2

(
χδ31 (d(ν,Σk−1)), ν

))
.

Again, notice that the cut-off functions in the first argument of H1 give continuity in ν.
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3. The Toda system on compact surfaces of arbitrary genus

The main result of this subsection is the following proposition: we retract Ỹ( 1
2 ,p)

to a set of measures

Σk,p,τ̄ (see (3.60)) for which either the support is bounded away from p, or for which there are at most
k−2 points not closest to p. As we will see, these conditions will be helpful to find suitable test functions
with low Euler-Lagrange energy, see the next subsections.

Proposition 3.3.4 There exist τ̄ � 1 and a retraction Rp of Ỹ( 1
2 ,p)

to the following set:

Σk,p,τ̄ =

{
ν =

k∑

i=1

tiδxi ∈ Σk : d(xi, p) ≥
1

τ̄
∀i
}
∪ (3.60)

∪
{
ν =

k∑

i=1

tiδxi ∈ Σk : card{xj : d(xj , p) > min
i
d(xi, p)} ≤ k − 2

}
.

Proof. Recall first the definition (3.58) of χδ2 . We then extend the result in Lemma 3.3.3 to arbitrary
values of m2(ν) =

´
Σ
χδ2 dν, namely also for m2 < δ2, finding a retraction onto B. Consider normal

coordinates around p. Define m(ν) =
∥∥∥ν
(
χδ2(m2(ν)) + (1− χδ2(|x|))(1− χδ2(m2(ν)))

)∥∥∥ and let

T (ν) =





ν
(
χδ2(m2(ν)) + (1− χδ2(|x|))(1− χδ2(m2(ν)))

)

m(ν)
if m2(ν) < 2δ2,

ν if m2(ν) ≥ 2δ2.

We then define the retraction as

R̃(ν) = T
(
H(χδ2(m2(ν)), ν)

)
.

Let νH = H
(
χδ2(m2(ν)), ν

)
. To have R̃ well-defined we need to ensure that whenever T is acting, namely

for m2(νH) < 2δ2, we have m(νH) > 0. Clearly, it is enough to show that

ˆ
Σ

(1− χδ2) dνH > 0. (3.61)

We point out that

m2(νH) +

ˆ
Σ

(1− χδ2) dνH = 1.

Therefore, by m2 < 2δ2 we obtain ˆ
Σ

(1− χδ2) dνH > 1− 2δ2.

Finally, we construct a retraction of B onto Σk,p,τ̄ . For ν ∈ B with ‖(1−χδ2)ν‖ > 0 we define a parameter
τ = τ(ν) ∈ (0,+∞] in the following way:

1

τ
= d

(
(1− χδ2)ν

‖(1− χδ2)ν‖ , δp
)
. (3.62)

Consider normal coordinates around p. Let τ̄ � 1 be such that 1
τ̄ � δ2 � 1 and let f : B×Σ→ R+ and

g : R+ → R+ be two smooth functions such that

f(ν, x) =





0 if τ = +∞,
x
|x|

1
τ if τ < +∞ and |x| ≤ 1

τ̄ ,

1 if τ < +∞ and |x| ≥ 2
τ̄ ,

g(t) =

{
t if t ≤ 1

τ̄ ,

1 if t ≥ 2
τ̄ .

For ν =
∑k
i=1 siδyi ∈ B with ‖(1− χδ2)ν‖ > 0 we consider (1− χδ2)ν =

∑k
i=1 tiδxi and then define

ν̃ =

∑k
i=1 tig(|xi|)δxif(ν,xi)∑k

i=1 tig(|xi|)
. (3.63)
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Observe that for d(xi, p) ≤ 1
τ̄ ∀i, (3.63) reads as

ν̃ =

∑k
i=1 ti|xi|δ xi

|xi|
1
τ∑k

i=1 ti|xi|
,

while for d(xi, p) ≥ 2
τ̄ ∀i, we obtain ν̃ =

∑k
i=1 tiδxi .

For a general ν ∈ B the retraction is given by

Rp(ν) = (1−m2)ν̃ + χδ2ν. (3.64)

Observe that when ‖(1 − χδ2)ν‖ = 0, τ is not defined. However, the map Rp(ν) is well-defined since in
this case we have m2 = 1. Notice furthermore that Rp(ν) ∈ Σk since ‖Rp(ν)‖ = 1 and since we do not
increase the number of points in the support of ν, due to the fact that the map ν 7→ ν̃ does not affect
the points xi with d(xi, p) ≥ 2

τ̄ , which was chosen such that 2
τ̄ � δ2.

Remark 3.3.5 (i) With the above definitions, letting δ2 tend to zero, one shows that the map Rp is
homotopic to the identity on its domain.

(ii) The parameter δ2 is chosen so that δ2 � δ.

Combining Lemma 3.3.1 and Proposition 3.3.4 (applying its proof uniformly in p ∈ Σ) we obtain the fol-
lowing result; notice that by construction, the retraction Rp from Proposition 3.3.4 depends continuously
on p.

Corollary 3.3.6 There exist τ̄ � 1 and a continuous deformation R of Y ∩
{
s = 1

2

}
onto the set

⋃

p∈Σ

{(
ν, δp,

1

2

)
: ν ∈ Σk,p,τ̄

}
,

where Σk,p,τ̄ is as in (3.60).

In the next two subsections we perform the construction of test functions using the above deformations.

3.3.2 Test functions modelled on Ỹ( 1
2
,p) ∗ δp

In this subsection we introduce a class of test functions parametrized on Ỹ( 1
2 ,p)
∗ δp ⊆ Y , see (3.57) and

(3.41). The latter subset of Y is where the interaction between the two components of (1.18) is stronger,
and hence where more refined energy estimates will be needed. The remainder of Y will be taken care of
in the next subsection.

The retraction Rp defined in Proposition 3.3.4 will play a crucial role in the construction of the test

functions. Indeed, starting from a measure in Ỹ( 1
2 ,p)

we will consider, through the mapRp, a configuration

belonging to Σk,p,τ̄ , see (3.60). When considering Ỹ( 1
2 ,p)
∗ δp and the corresponding join parameter s,

our goal is to pass continuously from vector-valued functions (ϕ1, ϕ2) with eϕ1 ' ν̂ ∈ Σk,p,τ̄ (in the
distributional sense) to functions (ϕ1, ϕ2) with eϕ2 ' δp. This needs to be done so that the energy
Jρ(ϕ1, ϕ2) stays arbitrarily low.

As the formulas are rather involved, we first discuss the general ideas beyond them. Our construction
relies on superpositions of regular bubbles and singular bubbles. Regular bubbles are functions as in
(3.51) which (roughly) optimize inequality (1.13) in the scalar case. Singular bubbles instead are profiles
of solutions to (1.9) when a Dirac mass is present in the right-hand side: this singular version of (1.9)
shadows system (1.18) when one component has a higher concentration than the other.

From the computational point of view, regular (respectively singular) bubbles behave like logarithmic
functions of the distance from a point truncated at a proper scale, with coefficient −4 (respectively −6).
By this reason we sometimes substitute an expression as in (3.51) (or in the subsequent formula) with
truncated logarithms.
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x̃i

−6 log d(x, p)

2 log d(x, p)

−4 log d(x, x̃i)

1
ŝτλ

1
ŝµ

1
ŝτ̃

1
siλi

1
ŝλ̌

0

−4 log d(x, p)

2 log d(x, x̃i)

ϕ1

ϕ2

1
ŝτ̃

1
ŝµ

x̃i

p

p

Figure 3.2: The test functions.

Another aspect of the construction is the following: at a scale where the function ϕi dominates, the
gradient of the other component ϕj of (1.18) will behave like − 1

2∇ϕi: the reason of this relies in the fact
that this choice minimizes Q(ϕ1, ϕ2), see (1.8), for ϕi fixed.

We introduce now the test functions (ϕ1, ϕ2) as in Figure 3.2, starting by motivating the definitions

of the parameters involved. Consider p ∈ Σ and ν ∈ Ỹ( 1
2 ,p)

: recalling Proposition 3.3.4 and defining

ν̂ := Rp(ν) =

k∑

i=i

tiδxi ∈ Σk,p,τ̄ , (3.65)

let τ be as given in (3.62). Consider parameters τ̃ � µ � λ � 1 and let s ≥ 1 be a scaling parameter
which will be used to deform one component into the other one: this will be chosen to depend on the
join parameter s. Roughly speaking, ϕ1 is made by a singular bubble at scale 1

ŝτλ
, where ŝ is given by

(3.68) (but one can think ŝ = s for the moment) and

τλ := min{τ, λ}, (3.66)

on top of which we add regular bubbles at scales 1
siλi

centred at points x̃i with d(x̃i, p) ≥ 1
ŝτ for all i.

The parameters si, λi are defined by (3.71) and (3.70) in order to get comparable integrals of eϕ1 near
all points x̃i; we will discuss later why we take sometimes ŝ 6= s. The centres x̃i of the regular bubbles
are defined as follows: letting δ̄ small but fixed, we set in normal coordinates at p:

x̃i =
1

s̃i
xi, s̃i =

{
ŝ if d(xi, p) ≤ δ̄,
1 if d(xi, p) ≥ 2δ̄.

(3.67)

58



3.3. Test functions

We point out that for d(xi, p) ≤ δ̄ we get x̃i = 1
ŝxi, which gives continuity when xi approaches the plateau

{d(·, p) ≤ 1
τλ
}. For d(xi, p) ≥ δ̄ instead the position of the points does not depend on s.

The effect of the increasing parameter s depends on the starting configuration ν ∈ Ỹ( 1
2 ,p)

: in case we

have points xi on the plateau of the singular bubble, i.e. d(xi, p) ≤ 1
τλ

for some i, the support of the
singular and regular bubbles of ϕ1 shrinks; moreover, the points x̃i approach p. On the other hand, ϕ2

is (qualitatively) dilated by a factor 1
ŝ so that eϕ2 loses concentration at the expense of eϕ1 .

In case we do not have points on the plateau, namely when d(x̃i, p) ≥ 1
τλ

for all i, it is not convenient
anymore to develop a singular bubble with center p as s increases. To prevent this situation we give
an upper bound on ŝ depending on τ . For τ1 ≥ 1 large but fixed we let P̂ : (0,+∞) → (0,+∞) be a
non-decreasing continuous function defined by

{
P̂ (t) = 1 for t ≤ τ1,
P̂ (t)→ +∞ for t→ 2τ1.

If τ is as in (3.62), we then define ŝ = ŝ(s, τ) as

ŝ =

{
min{s, P̂ (τ)} if τ < 2τ1,

s if τ ≥ 2τ1.
(3.68)

Notice that by construction of the retraction Rp, see Proposition 3.3.4, when there are no points on the

plateau {d(·, p) ≤ 1
τλ
} it follows that τ ≤ C and therefore, taking 2τ1 > C, we get ŝ ≤ P̂ (C) < +∞.

In this situation, namely for ŝ bounded from above, the second component ϕ2 remains fixed when we
start to concentrate the first component ϕ1. To do this we develop more and more concentrated bubbles
around the points x̃i; we introduce a parameter λ̌ = λ̌(τ) so that λ̌ → +∞ even for τ ≤ 2τ1 when s
increases. Let P̌ : (0,+∞)→ (0,+∞) be a non-increasing continuous functions such that

{
P̌ (t)→ +∞ for t→ 2τ1,
P̌ (t) = 1 for t ≥ 4τ1.

We then let

λ̌ = šλ, š =

{
s if τ ≤ 2τ1,

min{s, P̌ (τ)} if τ > 2τ1.
(3.69)

To have comparable integral of eϕ1 at each peak around x̃i for i = 1, . . . , k, we impose the conditions
{

log λi − log d(xi, p) = log τλ + log λ̌ if d(xi, p) >
1
τλ
,

λi = λ̌ if d(xi, p) ≤ 1
τλ

(3.70)

and
log si + log s̃i = 2 log ŝ, (3.71)

which determine λi and si.

Recall the definitions of ν̂ in (3.65): motivated by the above discussion, we define the functions (ϕ1, ϕ2)
as follows (see Figure 3.2). The positive peaks of ϕ1 are given by

v1(x) = v1,1(x) + v1,2(x) = log

k∑

i=1

ti

max

{
1,min

{(
4

d(x̃i,p)
d(x, x̃i)

)−4

,
(

4
d(x̃i,p)

1
siλi

)−4
}}

(
(ŝτλ)−2 + d(x, p)2

)3 ,

where

v1,1(x) = log

k∑

i=1

ti max

{
1,min

{(
4

d(x̃i, p)
d(x, x̃i)

)−4

,

(
4

d(x̃i, p)

1

siλi

)−4
}}

,

v1,2(x) = log
1

(
(ŝτλ)−2 + d(x, p)2

)3 .

The positive peak of ϕ2 is instead defined by

v2(x) = log

(
max

{
1,min

{
(ŝµd(x, p))

−4
,
(µ
τ̃

)−4
}})

.
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3. The Toda system on compact surfaces of arbitrary genus

We finally set

ϕλ,τ̃ ,s(x) =

(
ϕ1(x)
ϕ2(x)

)
:=

(
v1(x)− 1

2v2(x)
− 1

2v1,1(x) + v2(x)

)
. (3.72)

The main result of this subsection is the following proposition.

Proposition 3.3.7 Suppose that ρ1 ∈ (4kπ, 4(k+ 1)π), ρ2 ∈ (4π, 8π), let Ψ̃ be defined in (3.19), and let

ϕλ,τ̃ ,s be defined in (3.72), with p ∈ Σ and ν ∈ Ỹ( 1
2 ,p)

. Then, for suitable values of τ̃ � µ� λ� 1 and

for s = 1, Ψ̃(ϕλ,τ̃ ,1) is valued into the second component of the join Σk ∗ Σ1. Moreover there is a value

sp,ν > 1 of s, which depends continuously on p, ν such that Ψ̃(ϕλ,τ̃ ,sp,ν ) is valued into the first component
of the join, and such that

Jρ(ϕλ,τ̃ ,s)→ −∞ as λ→ +∞ uniformly in s ∈ [1, sp,ν ] and in p, ν.

Proof. As some of the estimates are rather technical, most of the proof is postponed to the Section 3.5.
Concerning the first statement, when s = 1, by construction (see in particular Lemma 3.5.2) one can

see that most of the integral of eϕ2 is concentrated in a ball centred at p with radius of order 1
τ̃ , while that

of eϕ1 near at most k balls of larger scale. From the definitions of scales σ1(u1), σ2(u2) in Subsection 3.2.1
it follows that for s = 1 the quantity s(ϕ1, ϕ2) defined in (3.16) is equal to 1, provided we choose the
parameters τ̃ � µ� λ� 1 properly. By the way Ψ̃ is defined, this implies our first statement.

As s increases, see again Lemma 3.5.2, the scale σ1(ϕ1) (as defined in Subsection 3.2.1) decreases
while, depending on τ , the scale of σ2(ϕ2) reaches some positive value bounded away from zero. In
particular for τ ≥ 2τ1 (recall (3.68)), by the estimates in Lemma 3.5.2, for s ' log τ̃ − 2 logµ the scale
σ2(ϕ2) becomes of order 1. In any case, for s sufficiently large s(ϕ1, ϕ2) = 0, so Ψ̃ maps the test function
into the first component of the joint. As the scales σ1(ϕ1), σ2(ϕ2) vary continuously in ϕ1 and ϕ2, sp,ν
can be chosen to depend continuously in p and ν.

Regarding the energy estimates, the most delicate situation is when τ is large, i.e. when ŝ = s, see
(3.68). In this case sp,ν ' log τ̃ − 2 logµ and the computations are worked-out in the Appendix. When τ
instead is smaller than the fixed number 2τ1 (see again (3.68)) the singular part of the first component
of the test function (with slope −6 log d(·, p)) has negligible contribution and the support of the measure
ν̂ in (3.65) is bounded away from p by a fixed positive amount. In this case the interaction between the
two components is negligible, and similar estimates as those in Proposition 2.1.3 can be applied.

We proceed now with parameterizing the above functions via the number s in the topological join. Ideally,
one would like to have s varying from 1 to sp,ν as s decreases from 1 to 0. However, for this map to be
well defined on the topological join, we will need to eliminate the dependence of the test function on the
first (resp. second) component of the join when s = 1 (resp. s = 0). For this reason, we will need some
extra deformations depending on s. The construction goes as follows, depending on three ranges of the
join parameter s.

The case s ∈
[

1
4 ,

3
4

]

Let ϕλ,τ̃ ,s be defined in (3.72), with p ∈ Σ and ν ∈ Ỹ( 1
2 ,p)

. We set

Φλ(ν, p, s) = ϕλ,τ̃ ,2(1−sp,ν)s+ 3
2 sp,ν−

1
2
, (3.73)

so that Φλ(ν, p, 1
4 ) = ϕλ,τ̃ ,sp,ν and Φλ(ν, p, 3

4 ) = ϕλ,τ̃ ,1.

The case s ∈
[
0, 1

4

]

Starting from test functions of the form ϕλ,τ̃ ,sp,ν , the goal will be to eliminate the dependence on the

second component of the join, namely on the measure δp. To this end, we divide the interval
[
0, 1

4

]
in

several subintervals in which we perform different operations on the test functions. Moreover, we want
Jρ to attend arbitrarily low values while doing these procedures. Notice that in what follows, this range
of the join parameter s will correspond to s = sp,ν which is given in Proposition 3.3.7.
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3.3. Test functions

Step 1. Let s ∈
[

3
16 ,

1
4

]
. We flatten here the function v2 in the second component of (3.72) by considering

the following deformation:

ϕ̌tλ,τ̃ (x) =

(
ϕ̌t1(x)
ϕ̌t2(x)

)
:=

(
v1(x)− 1

2 t v2(x)
− 1

2v1,1(x) + t v2(x)

)
, t ∈ [0, 1].

We will then take

Φλ(ν, p, s) = ϕ̌tλ,τ̃ (x), t = 16

(
s− 3

16

)
. (3.74)

It is easy to see that Jρ attends arbitrarily low values on this deformation by minor modifications in the
proof of Proposition 3.3.7.

Step 2. Let s ∈
[

1
8 ,

3
16

]
. Starting from s = 3

16 we deform the test functions introduced in (3.72) to the
standard test functions of the form given as in (3.53). Roughly speaking, the idea is to modify the profile
of the first component ϕ1 (see Figure 3.2) by performing the following two continuous deformations: we
first flatten the singular bubble v1,2, see above (3.72). On the other hand we eliminate the dependence
of the point p in the regular bubbles v1,1. Therefore, we set

vt1(x) = vt1,1(x) + vt1,2(x),

where

vt1,1(x) = log
k∑

i=1

ti max



1,min





((
4

d(x̃i, p)

)t
d(x, x̃i)

)−4

,

((
4

d(x̃i, p)

)t
1

siλi

)−4






 ,

and vt1,2(x) = t v1,2(x). Finally, recalling that we have flattened v2 in Step 1, we consider

ϕ̃tλ,τ̃ (x) =

(
ϕ̃t1(x)
ϕ̃t2(x)

)
:=

(
vt1(x)

− 1
2v
t
1,1(x)

)
, t ∈ [0, 1]. (3.75)

We will then take

Φλ(ν, p, s) = ϕ̃tλ,τ̃ (x), t = 16

(
s− 1

8

)
. (3.76)

Concerning ϕ̃t1, its peaks around x̃i for i = 1, . . . , k, are truncated at scale 1
siλi

, with si given by (3.71)
and λi to be chosen in the following way in order to have comparable volume at any x̃i:

{
log λi + log si − t log d(x̃i, p) = (t+ 1) log ŝ + log λ̌+ t log τλ if d(xi, p) >

1
τλ
,

λi = λ̌ if d(xi, p) ≤ 1
τλ
.

(3.77)

Observe that for t = 0 we get again (3.70). The following result holds true.

Proposition 3.3.8 Suppose that ρ1 ∈ (4kπ, 4(k + 1)π), ρ2 ∈ (4π, 8π). Let ϕ̃tλ,τ̃ be defined as in (3.75),

with p ∈ Σ and ν ∈ Ỹ( 1
2 ,p)

. Then, one has

Jρ(ϕ̃
t
λ,τ̃ )→ −∞ as λ→ +∞ uniformly in t ∈ [0, 1] and in p, ν.

The most delicate case is when the set of the points on the plateau is not empty, i.e. for I1 6= ∅, see
(3.109). We give the proof of the latter result just in this situation, skipping the case I1 = ∅ where
the singular bubble of the first component of the test function (with slope −6 log d(·, p)) has negligible
contribution and the estimates are rather easy. As observed in Case 1 of the proof of Proposition 3.3.7,
see below (3.122), for I1 6= ∅ we deduce ŝ = s and λ̌ ≤ Cλ. Moreover, for this range of the join parameter
s, we have s = sp,ν � 1. The proof will follow from the estimates below, which are obtained exactly as
Lemmas 3.5.1, 3.5.2, 3.5.3 by using (3.71) and (3.77).

Lemma 3.3.9 For t ∈ [0, 1] we have that

 
Σ

ϕ̃t1 dVg = O(1),

 
Σ

ϕ̃t2 dVg = O(1).
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Lemma 3.3.10 Recalling the notation in (3.102), for t ∈ [0, 1] it holds that

ˆ
Σ

eϕ̃
t
1 dVg 'C ŝ2+2tτ2t

λ λ̌
2,

ˆ
Σ

eϕ̃
t
2 dVg 'C 1.

Lemma 3.3.11 Let I1, I2 ⊆ I be as in (3.109). Then, for t ∈ [0, 1] we have

ˆ
Σ

Q(ϕ̃t1, ϕ̃
t
2) dVg ≤ 8|I1|π

(
log λ̌− t log τλ + (1− t) log ŝ

)
+
∑

i∈I2

8π
(

log si + log λi − t log d(x̃i, p)
)

+

+ 16tπ
∑

i∈I2

log d(x̃i, p) + 24t2π
(

log τλ + log ŝ
)

+ C,

for some C = C(Σ).

Proof of Proposition 3.3.8. Using Lemmas 3.3.9, 3.3.10 and 3.3.11, the energy estimate we obtain
is

Jρ(ϕ̃
t
1, ϕ̃

t
2) ≤ 8|I1|π

(
log λ̌− t log τλ + (1− t) log ŝ

)
+
∑

i∈I2

8π
(

log si + log λi − t log d(x̃i, p)
)

+

+ 16tπ
∑

i∈I2

log d(x̃i, p) + 24t2π
(

log τλ + log ŝ
)
− ρ1

(
(2 + 2t) log ŝ + 2t log τλ + 2 log λ̌

)
+ C,

for some constant C > 0. Inserting the condition (3.77) we obtain

Jρ(ϕ̃
t
1, ϕ̃

t
2) ≤ 8|I1|π

(
log λ̌− t log τλ + (1− t) log ŝ

)
+
∑

i∈I2

8π
(
(t+ 1) log ŝ + log λ̌+ t log τλ

)
+

+ 16tπ
∑

i∈I2

log d(x̃i, p) + 24t2π
(

log τλ + log ŝ
)
− ρ1

(
(2 + 2t) log ŝ + 2t log τλ + 2 log λ̌

)
+ C.

Notice that for t = 1 we get exactly the estimate in (3.122) (recall that we have flattened v2). The latter
estimate can be rewritten as

Jρ(ϕ̃
t
1, ϕ̃

t
2) ≤ log ŝ

(
8(1− t)|I1|π + 8(t+ 1)|I2|π + 24t2π − (2 + 2t)ρ1

)
+ log λ̌

(
8(|I1|+ |I2|)π − 2ρ1

)
+

+ log τλ
(
8t|I2|π − 8t|I1|π + 24t2π − 2tρ1

)
+ 16tπ

∑

i∈I2

log d(x̃i, p) + C.

As observed in Case 1 of the proof of Proposition 3.3.7, by construction of Σk,p,τ̄ , see (3.60), it holds
|I2| ≤ k−2 whenever |I1| 6= ∅. Therefore, we conclude that the latter estimate is uniformly large negative
in t ∈ [0, 1] since ρ1 > 4kπ and by the fact that ŝ = ŝp,ν � λ̌ ≥ τλ. Observe that for t = 0 we get

Jρ(ϕ̃
t
1, ϕ̃

t
2) ≤ log ŝ

(
8(|I1|+ |I2|)π − 2ρ1

)
+ log λ̌

(
8(|I1|+ |I2|)π − 2ρ1

)
+ C,

which is the estimate one expects by considering standard bubbles as in (3.53), see for example part (i)
of Proposition 4.2 in [69].

Recall now the definition of ν̂ given in (3.65): ν̂ = Rp(ν) =
∑k
i=i tiδxi ∈ Σk,p,τ̄ . Notice that in the

construction of the test functions (3.72), the points xi are dilated according to (3.67), so deformed to
the points x̃i. Observe that for t = 0 we obtain in (3.75) standard test functions as in (3.53). Roughly

speaking, the first component resembles the form of ϕλ,ν̃ , see (3.53), where ν̃ =
∑k
i=i tiδx̃i .

In what follows we will skip the energy estimates since they are quite standard for test functions as
in (3.53), see for example part (i) of Proposition 4.2 in [69].

Step 3. Consider s ∈
[

1
16 ,

1
8

]
. We will deform here the points x̃i to the original points xi. Observe that

by construction, see (3.67), we have d(xi, x̃i) ≤ 2δ̄ for all i. Hence there exists a geodesic γ̃i joining x̃i
and xi in unit time and we set xti = γ̃i(t) with t ∈ [0, 1]. Denoting by ϕ̂tλ,τ̃ = (ϕ̂t1, ϕ̂

t
2) the corresponding

test functions, we will then take

Φλ(ν, p, s) = ϕ̂tλ,τ̃ (x), t = 16

(
1

8
− s
)
. (3.78)
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Once we have deformed the points x̃i to the original one xi, i.e. for t = 1, we get test functions for which
the first component has the form of ϕλ,Rp(ν).

Step 4. Consider s ∈
[
0, 1

16

]
. In this step we eliminate the dependence on the map Rp. Observe that

Rp is homotopic to the identity map, see Remark 3.3.5, and let HRp : Ỹ( 1
2 ,p)
× [0, 1] → Ỹ( 1

2 ,p)
be a

continuous map such that HRp(·, 0) = Rp and HRp(·, 1) = IdỸ
( 1
2
,p)

. We consider then the deformation

νt = HRp(ν, t) and letting ϕ̄tλ,τ̃ = (ϕ̄t1, ϕ̄
t
2) be the corresponding test functions, we set

Φλ(ν, p, s) = ϕ̄tλ,τ̃ (x), t = 16

(
1

16
− s
)
. (3.79)

Such a deformation will bring us to test functions which resemble the form of ϕλ,ν .

The case s ∈
[

3
4 , 1
]

The goal here will be to continuously deform the initial test functions in (3.72), with s = 1, to a config-
uration which does not depend on the measure ν, see (3.65). Furthermore, we want in this procedure
Jρ to attend arbitrarily low values. For this purpose we flatten v1, see (3.72), by using the following
deformation:

ϕtλ,τ̃ (x) =

(
ϕt1(x)
ϕt2(x)

)
:=

(
t v1(x)− 1

2v2(x)
− 1

2 t v1,1(x) + v2(x)

)
, t ∈ [0, 1]. (3.80)

We will then take
Φλ(ν, p, s) = ϕtλ,τ̃ (x), t = 4(1− s). (3.81)

The next result holds true.

Proposition 3.3.12 Suppose that ρ1 ∈ (4kπ, 4(k + 1)π), ρ2 ∈ (4π, 8π) and let ϕtλ,τ̃ be defined as in

(3.80), with p ∈ Σ and ν ∈ Ỹ( 1
2 ,p)

. Then, one has

Jρ(ϕ
t
λ,τ̃ )→ −∞ as λ→ +∞ uniformly in t ∈ [0, 1] and in p, ν.

The latter result follows from the next estimates which are obtained similarly as in Lemmas 3.5.1, 3.5.2,
3.5.3, using the fact that s = 1.

Lemma 3.3.13 For t ∈ [0, 1] we have that

 
Σ

ϕt1 dVg = O(1),

 
Σ

ϕt2 dVg = O(1).

Lemma 3.3.14 Recalling the notation in (3.102), there exists a constant C1(τλ, λ) such that for t ∈ [0, 1]

ˆ
Σ

eϕ
t
1 dVg 'C

ˆ
Σ

etv1 dVg = C1(τλ, λ),

ˆ
Σ

eϕ
t
2 dVg 'C

ˆ
Σ

ev2 dVg 'C

τ̃2

µ4
.

Lemma 3.3.15 For t ∈ [0, 1] we have that

ˆ
Σ

Q(ϕt1, ϕ
t
2) dVg ≤ 8π

(
log τ̃ − logµ

)
+ C2(τλ, λ),

for some constant C2(τλ, λ).

Proof of Proposition 3.3.12. Exploiting Lemmas 3.3.13, 3.3.14 and 3.3.15 we deduce

Jρ(ϕ
t
1, ϕ

t
2) ≤ 8π

(
log τ̃ − logµ

)
− ρ2

(
2 log τ̃ − 4 logµ

)
+ C̃1(τλ, λ) + C2(τλ, λ)

≤ log τ̃(8π − 2ρ2) + log µ(4ρ2 − 8π) + C̃1(τλ, λ) + C2(τλ, λ),

for some constant C̃1(τλ, λ). The latter upper bound is large negative since ρ2 > 4π and by the choice of
the parameters τ̃ � µ� λ ≥ τλ.
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3.3.3 The global construction

In this subsection we will perform a global construction of a family of test functions modelled on Y ,
relying on the estimates of the previous subsection. More precisely, as Y is not compact, we will consider
a compact retraction of it.

Letting
(
D, 1

2

)
⊆
(
Σk × Σ1,

1
2

)
be the domain of the map R in Corollary 3.3.6, we extend it to

{(D, s) : s ∈ (0, 1)} fixing the second component and considering the same action of R on the first one.
Secondly, we retract the set Y to a subset where the (extended) map R is well-defined or where

s ∈ {0, 1}. In order to do this, for ν =
∑k
i=1 tiδxi ∈ Σk we let

D(ν) = min
i=1,...k, i 6=j

{
d(xi, xj), ti, 1− ti

}
.

Moreover, recall the choices of δ, δ2 given in (3.42) and (3.58) respectively. Observe that for D(ν) ≤ δ we
are in the domain of R. Moreover, for D(ν) > δ and d(p, supp (ν)) ≥ δ2 the map R is still well-defined.
The idea is then to retract the set Y to a subset where one of the above alternatives holds true or where
s ∈ {0, 1}. We define now the retraction of Y in three steps.

Step 1. Let D(ν) ≥ 2δ. In this situation we can deform a configuration (ν, δp, s) to a configuration
(ν, δp̃, s̃) ∈ Y (recall (3.41)) where either d(p̃, supp (ν)) ≥ δ2 or s̃ ∈ {0, 1}. Let

Θ = (Θ1,Θ2) : [0,+∞)× [0, 1] \
{(

0,
1

2

)}
→ [0,+∞)× [0, 1]\

(
(0, δ2)× (0, 1)

)

be the radial projection as in Figure 3.3.
Observe now that by the fact that δ2 � δ (recall Remark 3.3.5), for D(ν) ≥ 2δ we get the existence of

a unique point xjp ∈ {x1, . . . , xk} such that d(p, xjp) ≤ δ2. To get then the above-described deformation
we define, in normal coordinates around xjp , the following map:

(ν, δp, s) 7→
(
ν, δ

Θ1

(
d(p,supp (ν),s)

)
p
|p|
,Θ2

(
d(p, supp (ν)), s

))
∈ Υ̃Θ,

where

Υ̃Θ =
{

(ν, δp, s) : D(ν) ≥ 2δ, d(p, supp (ν)) ≥ δ2
}
∪ (3.82)

∪
{

(ν, δp, s) : D(ν) ≥ 2δ, d(p, supp (ν)) ≤ δ2, s ∈ {0, 1}
}
.

Step 2. Let D(ν) ∈ [δ, 2δ]. In this range we interpolate between the deformation Θ and the identity

map. Consider the radial projection Θt = (Θt
1,Θ

t
2) given as in Figure 3.4, with t = (D(ν)−δ)

δ :

Θt = (Θt
1,Θ

t
2) : [0,+∞)× [0, 1] \

{(
0,

1

2

)}
→ Υt,

where

Υt = [0,+∞)× [0, 1] \
(

(0, tδ2)×
(

1

2
(1− t), 1

2
(1 + t)

))
.

Observe that for D(ν) = 2δ one gets Θt = Θ1 = Θ, while for D(ν) = δ one deduces Θt = Θ0 = Id. We
then set

(ν, δp, s) 7→
(
ν, δ

Θt1

(
d(p,supp (ν),s)

)
p
|p|
,Θt

2

(
d(p, supp (ν)), s

))
.

Step 3. Let us now introduce the set we obtain after the deformation performed in Step 2:

Υ̃δ =
{

(ν, δp, s) : D(ν) = t ∈ [δ, 2δ], (p, s) ∈ Υt

}
,

which we will deform using the radial projection Θ̃δ : Υ̃δ → Υ̂δ given as in Figure 3.5, where Υ̂δ is defined
by (see Figure 3.6, where ∂Υ̂δ is represented):

Υ̂δ =
{

(ν, δp, s) : D(ν) ∈ [δ, 2δ], d(p, supp (ν)) ≤ δ2, s ∈ {0, 1}
}
∪
{

(ν, δp, s) : D(ν) = δ
}
∪(3.83)

∪
{

(ν, δp, s) : D(ν) ∈ [δ, 2δ], d(p, supp (ν)) ≥ δ2
}
.
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1

1
2

0 δ2

Θ

s

d(p, supp (ν))

Figure 3.3: The radial projection Θ.

1

1
2

0 tδ2

Θt

s

d(p, supp (ν))

1
2(1 + t)

1
2(1− t)

δ2

Υt

Figure 3.4: The radial projection Θt.

d(p, supp(ν))

s

D(ν)

Θ̃δ

δ2δ

1
2

δ2

1

Υ̃δ

0

Figure 3.5: The radial projection Θ̃δ.

d(p, supp(ν))

s

D(ν) δ2δ

1
2

δ2

1

Υ̂δ

0

Figure 3.6: The set ∂Υ̂δ.

Construction of the test functions. Observing that for D(ν) ≤ δ we are already in the domain of R
and recalling the sets (3.82), (3.83), we have found a retraction F : Y → YR, where

YR =
{

(ν, δp, s) : D(ν) ≤ δ
}
∪ Υ̃δ ∪ Υ̃Θ (3.84)

=
{

(ν, δp, s) : D(ν) ≤ δ
}
∪
{

(ν, δp, s) : D(ν) ≥ δ, d(p, supp (ν)) ≥ δ2
}
∪

∪
{

(ν, δp, s) : D(ν) ≥ δ, d(p, supp (ν)) ≤ δ2, s ∈ {0, 1}
}
,

on which the map R is well-defined or where s ∈ {0, 1}.

Remark 3.3.16 By the way the retraction F is constructed, it is clear that we have indeed a deformation
retract of the set Y onto YR, i.e. there exists a continuous map Ft : Y × [0, 1]→ Y such that F0 = IdY ,
F1 = F : Y → YR and F1(ξ) = ξ for all ξ ∈ YR.

We finally call Φλ = Φλ(ν, p, s) the test functions in the Subsections 3.3.2, 3.3.2 and 3.3.2 (see (3.73),
(3.74), (3.76), (3.78), (3.79) and (3.81)) using as parameters (ν, p, s) ∈ YR (where we use the identification
p ' δp). By the estimates obtained in Subsection 3.3.2 the next result holds true.

Proposition 3.3.17 Suppose that ρ1 ∈ (4kπ, 4(k + 1)π), ρ2 ∈ (4π, 8π). Then, we have

Jρ
(
Φλ(ν, p, s)

)
→ −∞ as λ→ +∞ uniformly in (ν, p, s) ∈ YR.

The definition of Φλ reflects naturally the join element (ν, p, s) in the sense that, once composed with the

map Ψ̃ in (3.19) we obtain a map homotopic to the identity on YR, see the next section.
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3. The Toda system on compact surfaces of arbitrary genus

3.4 Proof of Theorem 1.1.8

In this section we introduce the variational scheme that we will use to prove Theorem 1.1.8. As we
already observed, the case of surfaces with positive genus was obtained in [9]. Therefore, for now on we
will consider the case when Σ is homeomorphic to S2. We will first analyze the topological structure of
the set Y in (3.41) and then introduce a suitable min-max scheme.

3.4.1 On the topology of Y when Σ is a sphere

In this subsection we will use the notation ' for a homotopy equivalence and ∼= for an isomorphism.
Consider the topological join X = S2

k ∗ S2 (observe that S2
1 is homeomorphic to S2) and recall the

definition of its subset S given in (3.42), that is

S =

{(
ν, δy,

1

2

)
∈ S2

k ∗ S2 : ν ∈ S2
k \ (S2

k−1)δ, y ∈ supp(ν)

}
,

where we have set

(S2
k−1)δ =

{
ν ∈ S2

k : ν =

k∑

i=1

tiδxi ; d(xi, xj) < δ for some i 6= j

}
∪

∪
{
ν ∈ S2

k : ν =
k∑

i=1

tiδxi ; ti < δ for some i

}
∪
{
ν ∈ S2

k : ν =
k∑

i=1

tiδxi ; ti > 1− δ for some i

}
.

Notice that S is a smooth manifold of dimension 3k − 1, with boundary of dimension 3k − 2.
The key point of this subsection is to prove that the complementary subspace Y = (S2

k ∗ S2) \ S is
not contractible, see Proposition 3.4.6. Before we do so, we establish some properties of Y and S. Below,
Uδ will represent an open neighborhood of S not meeting (S2

k−1)δ ∗ S2 with the property that Uδ is a

manifold with boundary ∂U δ, where both Uδ and Uδ deformation retract onto S and such that U δ \ S
deformation retracts onto ∂U δ (see Figure 3.7).

(S2
k−1)

δ ∗ S2

X = S2
k ∗ S2

U3k+2
δ

S

Figure 3.7: Here X = S2
k ∗S2 is the ambient, (S2

k−1)δ ∗S2 is a neighborhood of S2
k−1 ∗S2 in X, S misses

this neighborhood and Uδ is a neighborhood of S in that complement.

For a metric space X , throughout this subsection we use the notation for the k-tuples in X

F (X , k) := {(x1, . . . , xk) ∈ X k | xi 6= xj , i 6= j}

and B(X , n) to denote its quotient by the permutation action of the symmetric group. These are respec-
tively the ordered and unordered k-th configuration spaces of X .

Lemma 3.4.1 S is up to homotopy equivalence a degree-k covering of B(S2, k). Its homological dimen-
sion is at most k and its mod-2 homology is completely described by

H∗(S) ∼= H∗(S
2)⊗H∗(B(R2, k − 1)).
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3.4. Proof of Theorem 1.1.8

Proof. The barycentric set S2
k is a suitable quotient of

∆k−1 ×Sk (S2)k,

with Sk acting diagonally by permutations and ∆k−1 = {(t0, . . . , tk) ti ∈ [0, 1],
∑
ti = 1}. The iden-

tification occurs when xi = xj for some i 6= j or when ti = 0 for some i. When this happens we are

identifying points in S2
k−1. This means that if ∆̇k−1 is the open simplex, then

S2
k \ S2

k−1 = ∆̇k−1 ×Sk F (S2, k), (3.85)

where F (S2, k) is the configuration space of k distinct points on S2. The action of Sk on F (S2, k) is free,
so we have a bundle

∆̇k−1 ×Sk F (S2, k)→ B(S2, k),

where B(S2, k) := F (S2, k)/Sk is the configuration of k-unordered points on S2. The preimages, being
copies of the simplex, are contractible so that necessarily

S2
k \ S2

k−1 ' B(S2, k).

In fact { 1
k} maps to ∆̇k−1 with image ( 1

k , . . . ,
1
k ) and the induced map

B(S2, k) =

{
1

k

}
×Sk F (S2, k)→ ∆̇k−1 ×Sk F (S2, k)

is an equivalence. To summarize, S can be deformed onto the subspace

Wk = {([x1, . . . , xk], x) ∈ B(S2, k)× S2 | x = xi for some i}.

By projecting Wk onto B(S2, k) we get a covering. This implies that the homological dimension hd of
Wk is that of B(S2, k), which is also the homological dimension of its covering space F (S2, k). We claim
that this dimension is at most k. The projection onto the first coordinate F (S2, k) → S2 is a bundle
map with fiber F (R2, k − 1), so hd(F (S2, k)) ≤ 2 + hd(F (R2, k − 1)). Since we also have a fibration
F (R2, k − 1) → F (R2, k − 2) given by projecting onto the first (k − 2)-entries, with fiber a copy of
R2 \ {x1, . . . , xk−2} which is a bouquet of circles, the claim follows immediately by induction, knowing
that F (R2, 2) ' S1.

Note that we can identify Wk with the quotient F (S2, k)/Sk−1 where the symmetric group acts on
the first (k − 1)-coordinates. In particular in the case k = 2, S 'W2 = F (S2, 2) ' S2.

By projecting Wk onto S2 via the last coordinate, we get a bundle with fiber B(R2, k − 1). Let us
look at the inclusion of the fiber over {∞} ∈ S2 = R2 ∪ {∞} in this bundle

B(R2, k − 1) ↪→Wk = F (S2, k)/Sk−1,

[x1, . . . , xk−1] 7→ ([x1, . . . , xk−1],∞).

Let S∞ be the direct union of the Sn’s under inclusion: this is a contractible space. Now S2 embeds in
S∞ and we have a map of quotients

F (S2, k)/Sk−1 → F (S∞, k)/Sk−1.

The space on the right-hand side projects onto S∞ with fiber B(R∞, k − 1). Since the base space is
contractible, there is a homotopy equivalence F (S∞, k)/Sk−1 ' B(R∞, k − 1). Let us consider the
composition

B(R2, k − 1)
ι−→Wk = F (S2, k)/Sk−1 → B(R∞, k − 1). (3.86)

This composition is homotopic to the map induced on configuration spaces from the inclusion R2 ⊂ R∞.
It is a known useful fact that each embedding B(Rn, k) ↪→ B(Rn+1, k) induces a monomorphism in mod-2
homology1. In the case k = 2 for example, this is B(Rn, 2) ' RPn−1 → B(Rn+1, 2) ' RPn. This then
implies that B(R2, k − 1) ↪→ B(R∞, k − 1) induces in homology mod-2 a monomorphism as well, which
then means that the first portion of the composition in (3.86), which is inclusion of the fiber, injects

1This follows from the work of F. Cohen [26] who first calculated H∗(B(Rn, k);F) for all n, k, and for F = Z2,Zp, p odd.
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3. The Toda system on compact surfaces of arbitrary genus

in homology. Consider the Wang long exact sequence in homology associated to the bundle Wk → S2

(Theorem 2.5 in [74]):

Hq+1(Wk)→ Hq−n+1(B(R2, k − 1))→ Hq(B(R2, k − 1))
ι∗−→ Hq(Wk)→ Hq−n(B(R2, k − 1))

with n = 2 in our case. Since ι∗ is a monomorphism, the long exact sequence splits into short exact
sequences and because we are working over a field, Hq(Wk) ∼= Hq(B(R2, k − 1)) ⊕Hq−2(B(R2, k − 1)).
Since H∗(Wk) ∼= H∗(S), the proof is complete.

Remark 3.4.2 The top mod-2 homology group Hk(S) is trivial if k − 1 is not a binary power and is a
copy of Z2 if k − 1 is a binary power. By Lemma 3.4.1, this is because Hk−2(B(R2, k − 1)) satisfies the
same condition ([41], p. 146).

Lemma 3.4.3 Suppose k ≥ 3. The manifold S defined in (3.42) is non-orientable.

Proof. We first observe that the manifold S2
k \ S2

k−1 is not orientable for any k ≥ 2. From the proof
of Lemma 3.4.1

S2
k \ S2

k−1 = ∆̇k−1 ×Sk F (S2, k)

is a bundle over B(S2, k) with fiber the open simplex. Since B(S2, k) is orientable (because unordered
configuration spaces of smooth manifolds are orientable if and only if the dimension of the manifold
is even), the orientability of the total space is the same as the orientability of the bundle. But the
braids generators of the fundamental group of B(S2, k) act (after restriction to the open simplex) by
transpositions on the vertices of ∆k−1 and this is orientation reversing, so the bundle is not orientable.

Now let Vk be the subset of S2
k \ S2

k−1 of all sums
∑
tiδxi with xi = {∞} for some i. Again {∞}

stands for the north pole of S2 = R2 ∪{∞}. Here Vk ' B(R2, k− 1). Note that π1(B(R2, k− 1)) embeds
in π1(B(S2, k)) with similar braid generators. For the exact same reason as for S2

k \ S2
k−1, Vk is not

orientable.
Consider finally the manifold

S =

{(
ν, δy,

1

2

)
∈ S2

k ∗ S2 : ν ∈ S2
k \ S2

k−1, y ∈ supp(ν)

}
.

Then S is a codimension 0 submanifold of S (with boundary) which is also a deformation retract. Both
S and S have the same orientation. But there is a bundle map S → S2 with fiber Vk. It is easy to see
now that the orientation of S is that of Vk. Indeed the bundle over the open upper hemisphere D of S2

is trivial homeomorphic to Vk ×D. This is an open subset of S which is non-orientable, thus S must be
non-orientable.

Lemma 3.4.4 Let k ≥ 3. Then Y has the Euler characteristic of a contractible space, i.e. χ(Y ) = 1.

Proof. By the previous lemma, S is up to homotopy a degree-k covering of B(S2, k). This gives that

χ(S) = kχ(B(S2, k)) = k
1

k!
χ(F (S2, k)) =

1

(k − 1)!
χ(S2)χ(F (R2, k − 1)) = 0.

Here what vanishes is χ(F (R2, k − 1)) = 0 since, letting C∗ = C \ {0}, there are homeomorphisms

F (R2, k − 1) = R2 × F
(
R2 \ {(0, 0)}, k − 2

)
= R2 × C∗ × F

(
C∗ \ {1}, k − 3

)

and χ(C∗) = χ(S1) = 0.
On the other hand, S is a smooth (3k − 1)-dimensional manifold with boundary. A neighborhood of

S in S2
k ∗ S2 is a (3k + 2)-dimensional open manifold Uδ. This neighborhood is the union of two open

subspaces A and B, where A is a fiberwise cone over the interior of S and B is a bundle over ∂S with
fiber the cone over a hemisphere. The complement Uδ \ S is the union of two subspaces Ã and B̃, where
Ã retracts onto an S2-bundle over the interior of S, while B̃ is up to homotopy ∂S. Clearly Ã∩B̃ retracts
onto an S2-bundle over ∂S. We can then write

χ(Uδ \ S) = χ(Ã ∪ B̃) = χ(Ã) + χ(B̃)− χ(Ã ∩ B̃) = 2χ(S) + χ(∂S)− 2χ(∂S)

= 2χ(S)− χ(∂S).
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We know that for a manifold S of dimension m with boundary it holds

χ(∂S) = χ(S)− (−1)mχ(S).

If m = 3k − 1 is odd, then χ(∂S) = 2χ(S) and so χ(Uδ \ S) = 0. If m is even, ∂S is odd dimensional
closed and its Euler characteristic is null. But χ(S) = 0 and here again χ(Uδ \ S) = 0.

Now cover X = S2
k ∗ S2 by means of Uδ ' S and Y = X \ S. The universal property of the Euler

characteristic gives that

χ(X) = χ(Uδ) + χ(Y )− χ(Uδ \ S) = χ(S) + χ(Y ) = χ(Y ),

so that χ(Y ) = χ(X) = 1 as claimed. The second equality follows from the fact that χ(X) = χ(S2
k ∗S2) =

χ(S2
k) + χ(S2)− χ(S2

k)χ(S2) and that

χ(Zk) = 1− 1

k!
(1− χ)(2− χ) · · · (k − χ)

for any surface Z, see [67], and more generally for any simplicial complex Z, see [54], with χ = χ(Z).

Lemma 3.4.5 The set Y is simply connected.

Proof. Using the same notation as in the proof of the previous lemma, we have the push-out

Ã ∩ B̃

��

// Ã

��
B̃ // Uδ \ S

Recall that Ã is up to homotopy an S2-bundle over S, B̃ ' ∂S and that Ã∩ B̃ is an S2-bundle over ∂S.
This means that π1(Ã ∩ B̃) = π1(∂S) and π1(Ã) ∼= π1(S). We therefore have the following push-out in
the category of groups (by the Van-Kampen theorem):

π1(∂S)

∼=
��

// π1(S)

��
π1(∂S) // π1(Uδ \ S)

which shows that π1(Uδ\S) ∼= π1(S). On the other hand we can use the same open covering of X = S2
k∗S2

by Uδ and Y = X \ S. Since X is a join of connected spaces, it is 1-connected. The push-out of groups

π1(Uδ \ S)

∼=
��

// π1(X \ S)

��
π1(Uδ) // 0

implies that because the left-hand vertical map is an isomorphism, then so is the right-hand vertical map
and π1(X \ S) = π1(Y ) = 0.

Despite the fact that Y is simply connected and has unit Euler characteristic, it is not contractible.

Proposition 3.4.6 Suppose k ≥ 2, k 6= 4. Then the set

Y = (S2
k ∗ S2) \ S

is not contractible.
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3. The Toda system on compact surfaces of arbitrary genus

Proof. We assume that Y is contractible and derive a contradiction. The main step is to prove that
under this condition with mod-2 coefficients we must have

H∗(S) ∼= H3k−1−∗(S
2
k), 0 ≤ ∗ ≤ k. (3.87)

This will then be shown to be impossible.
The closed subset S has a neighborhood Uδ which is (3k + 2)-dimensional with (3k + 1)-dimensional

boundary ∂Uδ. Using Poincaré’s duality with mod-2 coefficients for the closed manifold ∂Uδ gives us

H∗(∂U δ) ∼= H3k+1−∗(∂Uδ).

Since Uδ \ S retracts onto ∂U δ, and homology is dual to cohomology for finite type spaces and field
coefficients, we can conclude that

H∗(U δ \ S) ∼= H3k+1−∗(U δ \ S), ∗ ≥ 0. (3.88)

Next we turn to the open covering of X = S2
k ∗ S2 by Uδ and Y = X \ S. Using that Y ∩Uδ = Uδ \ S

and Uδ ' S, the Mayer-Vietoris sequence for this union takes the form

H∗(Uδ \ S)→ H∗(S)⊕H∗(Y )→ H∗(X)→ H∗−1(Uδ \ S)→ H∗−1(S)⊕H∗−1(Y )→ H∗−1(X)→ · · ·

Since Y has trivial reduced homology by assumption, the sequence becomes

H∗(Uδ \ S)→ H∗(S)→ H∗(X)→ H∗−1(Uδ \ S)→ H∗−1(S)→ H∗−1(X)→ · · · (3.89)

But S has homological dimension k (see Lemma 3.4.1), so for ∗ > k + 1 we have the isomorphism
H∗−1(Uδ \ S) ∼= H∗(X). Since X is the third suspension of S2

k, H∗(X) ∼= H∗−3(S2
k) and thus

H∗(Uδ \ S) ∼= H∗−2(S2
k), ∗ > k. (3.90)

It is known generally (see [54]) that the barycentric set Zk is (2k + r − 2)-connected whenever Z is
r-connected, r ≥ 1. If Z = S2, which is 1-connected, S2

k is (2k − 1)-connected and so X is (2k + 2)-

connected. In the range ∗ ≤ 2k + 2, H̃∗(X) = 0. The Mayer-Vietoris sequence (3.89) leads in this case
to

H∗(Uδ \ S) ∼= H∗(S), ∗ < 2k + 2.

Since S has no homology beyond degree k, we can focus on the range below so that

H∗(Uδ \ S) ∼= H∗(S), 0 ≤ ∗ ≤ k. (3.91)

We can now combine all previous isomorphisms into one for 0 ≤ ∗ ≤ k

H∗(S)
∼=−−−−→

(3.91)
H∗(Uδ \ S)

∼=−−−−→
(3.88)

H3k+1−∗(Uδ \ S)
∼=−−−−→

(3.90)
H3k−1−∗(S

2
k).

This is the claim in (3.87). Note that S2
k is (3k − 1)-dimensional as a CW-complex and is (2k − 1)-

connected, so its homology is non-zero only in the range 2k ≤ ∗ ≤ 3k − 1.
The isomorphism H∗(S) ∼= H3k−1−∗(S

2
k) cannot hold. First let us check the case k = 2. In that case

we pointed out in the proof of Lemma 3.4.1 that S ' F (S2, 2) ' S2. Since S2
2 ' Σ3RP 2 (the 3-fold

suspension of RP 2: see [54], Corollary 1.6), the isomorphism obviously cannot hold: in fact H1(S2) = 0
but H4(Σ3RP 2) = H1(RP 2) = Z2.

Suppose that k ≥ 3. According to Theorem 1.3 in [54], S2
k has the same homology as (one de-

suspension) of the symmetric smash product SP
k
(S3) = (S3)∧k/Sk; i.e. H∗(S

2
k) ∼= H∗+1(SP

k
(S3)).

Combining this with (3.87) we get

H∗(S) ∼= H3k−∗(SP
k
(S3)), 0 ≤ ∗ ≤ k. (3.92)

We will show that this is impossible. To that end we need describe the groups on both sides of (3.92).
We work again mod-2. From Lemma 3.4.1 we have that

H∗(S) ∼= H∗(B(R2, k − 1))⊕H∗−2(B(R2, k − 1)), ∗ ≥ 0.
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3.4. Proof of Theorem 1.1.8

(when ∗−2 < 0 the corresponding group is zero). The mod-2 homology of B(R2, k−1) has been computed
by D.B. Fuks in [41] and it is best described as a subspace of the polynomial algebra (viewed as an infinite
vector space generated by powers of the indicated generators)

Z2[a(1,2), a(3,4), · · · , a(2i−1,2i), · · · ], (3.93)

where the notation ai,j refers to a generator having homological degree i and a certain filtration degree
j, both degrees being additive under multiplication of generators. Now the condition for an element
ak1

(2i1−1,2i1 )
· · · akr(2ir−1,2ir ) ∈ H∗(B(R2, k − 1)) is that its filtration degree is less or equal than k − 1; that

is if and only if
∑
is
kis2

is ≤ k − 1.

For example H̃∗(B(R2, 2)) = Z2{a(1,2)} (one copy of Z2 generated by a(1,2) having homological degree

one and filtration degree two). Similarly H̃∗(B(R2, 4)) = Z2{a(1,2), a
2
(1,2), a(3,4)}, so that

H1(B(R2, 4)) = Z2{a(1,2)}, H2(B(R2, 4)) = Z2{a2
(1,2)}, H3(B(R2, 4)) = Z2{a(3,4)}.

Now H∗(B(R2, 5)) ∼= H∗(B(R2, 4)) and this turns out to be a general fact that is explained in Lemma 3.4.9
in more geometric terms.

On the other hand, the reduced groups H̃∗(SP
k
(S3)) form a subvector space of the polynomial algebra

Z2[ι(3,1), f(5,2), f(9,4), . . . , , f(2i+1+1,2i), . . . , ] (3.94)

consisting of those elements of second filtration degree precisely k (see the Appendix in [54] and references
therein). Here again f(2i+1+1,2i) denotes an element of homological degree 2i+1 + 1 and filtration degree
2i. For example (here ι = ι(3,1))

H̃∗(SP
4
S3) = Z2{ι4, ι2f(5,2), f

2
(5,2), f(9,4)},

which is better listed as follows:

H12(SP
4
S3) = Z2{ι4}, H11(SP

4
S3) = Z2{ι2f(5,2)},

H10(SP
4
S3) = Z2{f2

(5,2)}, H9(SP
4
S3) = Z2{f(9,4)}.

This space SP
4
(S3) is 8-connected, and more generally SP

k
(S3) is 2k-connected, see [54].

Let us now compare the groups in (3.92). When ∗ = 0, H0(S) = Z2 but so is H3k(SP
k
(S3)) generated

by the class ιk(3,1). Also when ∗ = 1, k ≥ 3, H1(S) = H1(B(R2, k − 1)) = Z2 but so is H3k−1(SP
k
(S3))

generated by {ιk−2f5,2}. There is no contradiction yet. When ∗ = 2, we get the generator a2
(1,2) ∈

H2(B(R2, k − 1)) ∼= Z2 as soon as k ≥ 5 (a2
(1,2) is in filtration 4). This gives that H2(S) = Z2 ⊕ Z2.

We claim however that H3k−2(SP
k
(S3)) = Z2, which will give a contradiction in that case. Indeed a

generator in filtration degree k in (3.94) is written as a finite product

ιk0fk1
5,2 · · · fki(2i+1+1,2i) · · · ,

∑

i≥0

ki2
i = k.

The homological degree of this class is
∑
i≥0 ki(2

i+1 + 1) = 2
∑
i≥0 ki2

i +
∑
i≥0 ki. To obtain the rank of

H3k−2 we need to find all the possible sequences of integers (k0, k1, k2, . . .) such that
∑
i≥0 ki2

i = k and

2
∑
i≥0 ki2

i +
∑
i≥0 ki = 3k − 2. We have to solve for

∑

i≥0

ki2
i = k = 2 +

∑

i≥0

ki.

This immediately gives that ki = 0, i ≥ 2. There is one and only one solution: k0 = k − 4 and k1 = 2;

and the group H3k−2(SP
k
(S3)) ∼= Z2 is generated by ιk−4f2

5,2.
The isomorphism (3.92) cannot hold for k ≥ 5. We are left to consider the cases k = 3: here

H3(S) = Z2 but H6(SP
3
(S3)) = 0 giving a contradiction.

In conclusion since the isomorphism (3.92) (equivalently (3.87)) cannot hold, Y must have non trivial
mod-2 homology and thus cannot be contractible as we had asserted.
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The next proposition treats the case k = 4: in preparation we need the following lemma. Recall that S
is a manifold with boundary embedded in U δ ⊂ S2

k ∗S2. We can write U δ as the union of two sets A and
B, where A is a three-dimensional-disk-bundle over S and A∩B its restriction over ∂S. We refer to this
bundle as the normal disk bundle and its boundary as the sphere normal bundle. Note that in the proof
of Lemma 3.4.4, we have used Ã = A \ S and B̃ = B \ S.

Lemma 3.4.7 The sphere normal bundle over ∂S is orientable.

Proof. We will view this bundle as an extension of a normal sphere bundle over the interior Ṡ:=int(S)
which is orientable (in so doing we give more details on the construction of A and A ∩B).

We recall that the join is given by the equivalence relation X ∗ Y = X × Y × I/∼ , where ∼ are
identifications at the endpoints of I = [0, 1], see (1.17). The join contains the open dense subset X×Y ×
(0, 1) (let us call it the big cell). This subset is a manifold of dimension n+m+ 1 if X,Y are manifolds
of dimensions n and m, respectively. In our case S is a subset of the big cell

(S2
k \ (S2

k−1)δ)× S2 × (0, 1) ⊂ (S2
k \ (S2

k−1)δ) ∗ S2

and int(S) is regularly embedded as a differentiable submanifold. It has therefore a unit normal disk
bundle (of dimension 3) in there. This is homeomorphic to a tubular neighborhood V δ of int(S). Let
us use the same name for the neighborhood and the normal bundle. The normal bundle of Ṡ in (S2

k \
(S2
k−1)δ)× S2 × (0, 1) is the normal bundle of Ṡ in (S2

k \ (S2
k−1)δ)× S2 × { 1

2} to which we add a trivial

line bundle. We can then consider directly Ṡ as a subset of (S2
k \ (S2

k−1)δ)× S2 and show that it has an

orientable rank 2 normal bundle there. Write Dk := S2
k \ (S2

k−1)δ and

S =

{(
k∑

i=1

tiδxi , x

)
∈ Dk × S2, x = xi for some i

}
.

Define V δ the neighborhood of S in Dk × S2 as follows:

V δ =

{(
k∑

i=1

tiδxi , x

)
∈ Dk × S2, |x− xi| <

δ

2
for some and hence unique xi

}
.

The choice of xi is unique as x cannot be strictly within δ/2 from two distinct xi, xj since d(xi, xj) ≥ δ
according to the definition of S. The neighborhood retracts back to S via the map

(
k∑

i=1

tiδxi , x

)
7→
(

k∑

i=1

tiδxi , xi

)
,

where d(x, xi) < δ/2. Consider the projection map π : Ṡ → S2 sending
(∑k

i=1 tiδxi , x
)
7→ x. We claim

that the normal bundle of Ṡ in Dk × S2 is isomorphic to the pullback via π of the tangent bundle TS2

over S2. We assume δ to be less than the injectivity radius of S2. Define a homeomorphism between
the tubular neighborhood V δ of Ṡ and a normal disk bundle of the pullback of TS2 over Ṡ by sending(∑k

i=1 tiδxi , x
)

with |x− xi| < δ for some i to the element in the pullback

((
k∑

i=1

tiδxi , x

)
, vi

)
,

where vi = exp−1
xi (x) and expxi is the exponential map at xi ∈ S2. This map is a homeomorphism onto

its image and the normal bundle to Ṡ in Dk×S2 is isomorphic to TS2. Since TS2 is orientable (although
non trivial), the normal bundle over Ṡ is orientable. This bundle can be extended to S by taking the
closure of V δ in Dk × S2 := (S2 \ (S2

k−1)δ) × S2 × { 1
2}. This extension is orientable over all of S since

it is orientable over the interior. By adding a line bundle we get the disk bundle over S in the big cell
(which we have labeled A). This bundle is orientable over all of S and in particular over ∂S. This is our
claim.

Proposition 3.4.8 The set Y = (S2
4 ∗ S2) \ S is not contractible.
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Proof. As before we assume Y is contractible and derive a contradiction. We first show that for any
field coefficients F and ∗ > k

H∗+3(Uδ \ S) ∼= H∗(∂S). (3.95)

Write as before U δ \ S as the union Ã ∪ B̃, with Ã ∩ B̃ retracting onto the S2-bundle over ∂S discussed
earlier. The Mayer-Vietoris sequence for the union Ã ∪ B̃ is given by

Hn+1(Ã ∩ B̃)→ Hn+1(Ã)⊕Hn+1(B̃)→ Hn+1(Uδ \ S)→ Hn(Ã ∩ B̃)→ Hn(Ã)⊕Hn(B̃)→ Hn(Uδ \ S).

As S has homological dimension at most k and Ã is an S2-bundle over it, Hn(Ã) vanishes for n > k+ 2.
On the other hand, the S2-bundle over ∂S is orientable (Lemma 3.4.7) and has a global section given by
the variation in the s-parameter (defining the join). By the Gysin sequence ([43],§4.D) one has a splitting

Hn(Ã ∩ B̃) ' Hn(∂S)⊕Hn−2(∂S).

Replacing in the Mayer-Vietoris sequence gives for n > k + 2

· · · −→
Hn+1(∂S)
⊕

Hn−1(∂S)

φn+1−−−→ Hn+1(∂S) −→ Hn+1(Uδ \ S) −→
Hn(∂S)
⊕

Hn−2(∂S)

φn−−−→Hn(∂S) −→ · · ·

Now, in every inclusion of Ã ∩ B̃ into B̃, the fibers (i.e. S2) contract to a point. Therefore φn is trivial
on the bottom group, while restricted to the top group it is a bijection. This map is an epimorphism and
the long exact sequence for n > k + 2 splits into short exact sequences

0→ Hn+1(Uδ \ S)→ Hn(∂S)⊕Hn−2(∂S)→ Hn(∂S)→ 0.

As vector spaces we get Hn+1(Uδ \ S) ∼= Hn−2(∂S) which is our claim. Combined with (3.90) this yields

H∗(∂S) ∼= H∗+1(S2
k), ∗ > k. (3.96)

Next we look at the Mayer-Vietoris sequence for the union S2
k = (S2

k \ S2
k−1) ∪ (S2

k−1)δ. It is shown in

[67] that (S2
k−1)δ \ S2

k−1 retracts onto ∂(S2
k−1)δ so that the long exact sequence becomes

· · · → Hn+1(∂(S2
k−1)δ)→ Hn+1(S2

k−1)⊕Hn+1(S2
k \ S2

k−1)→ Hn+1(S2
k)→ Hn(∂(S2

k−1)δ)→ · · ·
Since the inclusion of S2

k−1 in S2
k is contractible, and since S2

k\S2
k−1 ' B(S2, k) has homological dimension

k (see Lemma 3.4.1), for n > k the following short sequence is exact

0→ Hn+1(S2
k)→ Hn(∂(S2

k−1)δ)→ Hn(S2
k−1)→ 0

and we have the splitting

H∗(∂(S2
k−1)δ) ∼= H∗(S

2
k−1)⊕H∗+1(S2

k), ∗ > k. (3.97)

Both isomorphisms (3.96) and (3.97) cannot hold simultaneously as we now explain.
A key point is to observe that ∂S is a degree-k regular covering of ∂(S2

k−1)δ. A property of a covering
π : X → Y is the existence of a transfer morphism tr : H∗(Y )→ H∗(X) so that π∗ ◦ tr is multiplication
in H∗(Y ) by the degree of the covering i.e. by k, see [43], Section 3.G. If the characteristic of the field of
coefficients is prime to k, then this composite is not trivial and H∗(Y ) injects into H∗(X).

When k = 4, we have a degree-4 covering ∂S → ∂(S2
3)δ so that with F = F3-coefficients (the finite

field with 3 elements) we must have a monomorphism H∗(∂(S2
3)δ;F3) ↪→ H∗(∂S;F3). When ∗ > 4, upon

combining (3.96) and (3.97) we get a monomorphism

H∗(S
2
3 ;F3)⊕H∗+1(S2

4 ;F3)→ H∗+1(S2
4 ;F3).

This leads immediately to a contradiction if H∗(S
2
3 ;F3) 6= 0 in that range of dimensions.

We know that H∗(S
2
3) ∼= H∗+1(SP

3
(S3)). We therefore wish to show that H∗((SP

3
(S3);F3) 6= 0 for

some ∗ ≥ 6. It turns out that old calculations of Nakaoka give us precisely the answer [76]. Nakaoka’s
Theorem 15.5 states that

Hr(SP3(Sn);F3) ∼= F3

for r = 0, n, n + 4k with 1 ≤ k ≤ [n/2] and k 6= [n/4], r = n + 4k + 1 with 1 ≤ k ≤ [(2n − 1)/4] and
k 6= [(n− 1)/4], and r = 2n with n ≡ −2 or 1 (mod 4). In our case n = 3, so Hr(SP3(S3);F3) ∼= F3 for
r = 0, 3, 7, 8. Dually we obtain the same groups for Hr(SP3(S3);F3) (since working over a field). But

Hr(SP3(S3);F3) ∼= Hr(SP
3
(S3);F3) for r > 3 for the following three reasons:
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3. The Toda system on compact surfaces of arbitrary genus

• By construction Hr(SP
3
(S3);F3) = Hr

(
SP 3(S3),SP2(S3);F3

)
, r ≥ 1.

• There is a splitting due originally to Steenrod (any coefficients, see [54]):

Hr(SP3(S3)) ∼= Hr

(
SP3(S3),SP2(S3)

)
⊕Hr(SP2(S3)).

• Hr(SP2(S3);F3) = 0 if r > 3. In fact, from the covering (S3)2 → SP2(S3), by a consequence of
the transfer construction, H∗(SP2(S3);F3) is the subvector space of invariant cohomology classes
in H∗(S

3 × S3) under the induced permutation action interchanging the two spheres. Since S3 is
an odd sphere, the involution acts via τ∗([S

3]⊗ [S3]) = −[S3]⊗ [S3] and the class [S3]⊗ [S3] is not
invariant so maps to zero in H∗(SP2(S3);F3).

As a consequence Hr(SP
3
(S3);F3) ∼= F3 for r = 7, 8 which gives a contradiction as we had asserted. The

proof is complete.

Using the above transfer property but with F2 coefficients, one can find an alternative proof of Proposi-
tion 3.4.6 for k odd. To conclude this topological discussion, it is worthwhile noting that Lemma 3.4.1 can
be used to give a novel proof of the following result on the mod-2 homology of unordered configurations
of points in Rn.

Proposition 3.4.9 For k odd and n ≥ 2 one has

H∗(B(Rn, k);Z2) ∼= H∗(B(Rn, k − 1);Z2).

Proof. All homology is with mod-2 coefficients. A starting point is the homology splitting

Hq(B(Sn, k)) ∼= Hq(B(Rn, k))⊕Hq−n(B(Rn, k − 1)). (3.98)

One reference to this result is Theorem 18 (1) of [84]. It is also a special case of a similar result of
the second author where one can replace the sphere by any closed manifold M and Rn by M \ {p} its
punctured version. Let Wn,k := F (Sn, k)/Sk−1 where Sk−1 acts by permutations on the first (k − 1)-
coordinates. By projecting onto the last coordinate we obtain a bundle over Sn with fiber B(Rn, k − 1).
Precisely as in the proof of Lemma 3.4.1, we see that

H∗(Wn,k) ∼= H∗(B(Rn, k − 1))⊕H∗−n(B(Rn, k − 1)). (3.99)

Consider next the degree-k regular covering π : Wn,k → B(Sn, k) := F (Sn, k)/Sk. There is a transfer
morphism tr : H∗(B(Sn, k))→ H∗(Wn,k) so that the composite π∗ ◦ tr is multiplication by k. Since k is
odd and thus prime to the characteristic of the field Z2, multiplication by k is injective and necessarily
H∗(B(Sn, k)) embeds in H∗(Wn,k); that is (3.98) embeds into (3.99). But H∗(B(Rn, k − 1)) always
embeds into H∗(B(Rn, k)) (in fact for any coefficients as it is relatively easy to see). This means that
H∗(B(Rn, k);Z2) ∼= H∗(B(Rn, k − 1);Z2) if k is odd as claimed. It also means that H∗(B(Sn, k)) ∼=
H∗(Wn,k).

3.4.2 Min-max scheme

To prove Theorem 1.1.8 we will run a min-max scheme based on (a retraction of) the set Y in (3.41). More
precisely, we will consider the set YR introduced in (3.84) on which the test functions Φλ are modelled.
Some parts are quite standard and follow the ideas of [35] (see [67] for a Morse theoretical point of view):
for the specific problem (1.18) the crucial step is Proposition 3.4.10, giving information on the topology
of the low sub-levels of Jρ: see also the comments after the proof.

Given any L > 0, Proposition 3.3.17 guarantees us the existence of λ > 1 sufficiently large such that
Jρ
(
Φλ(ν, p, s)

)
< −L for any (ν, p, s) ∈ YR. Recalling Ψ̃ in (3.19), we take L so large that Corollary 3.2.8

applies, i.e. such that Ψ̃(J−Lρ ) ⊆ Y . The crucial step in describing the topology of the low sub-levels of
Jρ is the following result.

Proposition 3.4.10 Let L, λ be as above and let F be the retraction given before (3.84). Then the
composition

YR
Φλ−−→ J−Lρ

F◦Ψ̃−−−→ YR

is homotopically equivalent to the identity map on YR.
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Proof. We divide the proof in three cases, depending on the values of the join parameter s.

Case 1. Let s ∈
[

3
4 , 1
]
. In this case the test functions we are considering have the form (ϕt1, ϕ

t
2), t = t(s),

as defined in Subsection 3.3.2. Notice that, as discussed at the beginning of the proof of Proposition 3.3.7,
most of the integral of eϕ

t
2 is localized near p and σ2(ϕt2) � σ1(ϕt1) for these values of s, which again

implies s(ϕt1, ϕ
t
2) = 1, see (3.16). It turns out that, by the construction in Subsection 3.2.1, one has

Ψ̃
(
Φλ(ν, p, s)

)
= Ψ̃(ϕt1, ϕ

t
2) = (∗, p̃, 1),

where ∗ is an irrelevant element of Σk (recall that they are all identified when the join parameter equals
1, see (1.17)) and where p̃ ∈ Σ is a point close to p. If p(t) : [0, 1] → Σ is a geodesic joining p to p̃, one
can realize the desired homotopy as

(
(ν, p, s); t

)
7→
(
ν, p(t), (1− t)s+ t

)
, t ∈ [0, 1].

Case 2. Let s ∈
[

1
4 ,

3
4

]
. The test functions we are considering here are given in Subsection 3.3.2. For

this range of s the exponential of the first component ϕ1 (see (3.72)) is well concentrated around the
points x̃i, see (3.67). The exponential of the second component ϕ2, depending on the value of s, will be
instead either concentrated near p or will be spread over Σ in the sense that σ2(ϕ2) might not be small.

Recall the maps ψ̃l given in Proposition 2.4.1 and the definition of ν̂ involved in the construction of the
test functions given in (3.65): ν̂ = Rp(ν) =

∑k
i=i tiδxi . We then have

Ψ̃
(
Φλ(ν, p, s)

)
= Ψ̃(ϕ1, ϕ2) =





(
ψ̃k(ϕ1), ψ̃1(ϕ2), s(ϕ1, ϕ2)

)
if σ2(ϕ2) small,

(
ψ̃k(ϕ1), ∗, 0

)
otherwise,

with ψ̃1(ϕ2) close to p (whenever defined, i.e. for σ2(ϕ2) small) and ψ̃k(ϕ1) close to
∑k
i=1 tiδx̃i in the

distributional sense. Furthermore, writing ϕ1 = ϕ1,λ to emphasize the dependence on λ, it turns out that

ψ̃k(ϕ1,λ)→
k∑

i=1

tiδx̃i as λ→ +∞,

which gives us the following homotopy:

(ν ; t) 7→ ψ̃k

(
ϕ1,λt

)
, t ∈ [0, 1].

Reasoning as in Step 3 of Subsection 3.3.2 we get a homotopy which deforms the points x̃i to the original
one xi. Letting γ̃i be the geodesic joining x̃i and xi in unit time we consider

(ν ; t) 7→
k∑

i=1

tiδγ̃i(1−t), t ∈ [0, 1].

Notice that for t = 0 we get in the above homotopy (ν ; 0) = Rp(ν). Observe now that Rp is homotopic
to the identity map, see Remark 3.3.5, and let HRp be the map introduced in Step 4 of Subsection 3.3.2
which realizes this homotopy. We then consider

(ν ; t) 7→ HRp(ν, 1− t), t ∈ [0, 1].

Finally, letting H be the concatenation of the above homotopies (rescaling the respective domains of

definition) and letting p(t) : [0, 1]→ Σ be again a geodesic joining p to ψ̃1(ϕ2) (whenever defined) we get
the desired homotopy:

(
(ν, p, s); t

)
7→
{(
H(ν ; t), p(t), (1− t)s+ ts(ϕ1, ϕ2)

)
, t ∈ [0, 1] if σ2(ϕ2) small,(

H(ν ; t), p, (1− t)s
)
, t ∈ [0, 1] otherwise.

(3.100)

Case 3. Let s ∈
[
0, 1

4

]
. In this case the test functions we are considering are as in Subsection 3.3.2. Notice

that for this range of s we always get σ2(ϕ̂t2)� σ1(ϕ̂t1), see the beginning of the proof of Proposition 3.3.7,
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and therefore s(ϕ̂t1, ϕ̂
t
2) = 0. We have further to subdivide this case depending on the values of s due to

the construction of the test functions in the Steps 1-4 of Subsection 3.3.2.

Emphasizing in the test functions the dependence on λ and recalling that t = t(s), for s ∈
[

3
16 ,

1
4

]

we get the following property: ψ̃k(ϕ̌t1,λ)
λ→∞−−−−→ ∑k

i=1 tiδx̃i (see Step 1). When s ∈
[

1
8 ,

3
16

]
one has by

construction that ψ̃k(ϕ̃t1,λ)
λ→∞−−−−→∑k

i=1 tiδx̃i (see Step 2). For s ∈
[

1
8 ,

3
16

]
we get instead ψ̂k(ϕ̃t1,λ)

λ→∞−−−−→
∑k
i=1 tiδγ̃i (see Step 3). Finally, when s ∈

[
1
8 ,

3
16

]
we obtain ψ̄k(ϕ̃t1,λ)

λ→∞−−−−→ HRp(ν, t) (see Step 4).

In any case we then proceed analogously as in Step 2 and the desired homotopy is given as in the
second part of (3.100).

Recall now that Y is not contractible, see Proposition 3.4.6; being YR a deformation retract of Y , see
Remark 3.3.16, we get that YR is not contractible too. Therefore, by the latter result we deduce that

Φλ(YR) is not contractible in J−Lρ .

Moreover, one can take λ large enough so that Φλ(YR) ⊂ J−2L
ρ . Similarly as in Section 2.3 we next define

the topological cone over YR by the equivalence relation

C =
YR × [0, 1]

YR × {0}
,

where YR × {0} is identified to a single point and consider the min-max value:

m = inf
h∈Γ

max
ξ∈C

Jρ(h(ξ)),

where

Γ =
{
h : C → H1(Σ)×H1(Σ) : h(ν, p, s) = Φλ(ν, p, s) ∀(ν, p, s) ∈ ∂C ' YR

}
. (3.101)

First, we observe that the map from C to H1(Σ)×H1(Σ) defined by (·, t) 7→ tΦλ(·) belongs to Γ, hence
this is a non-empty set. Moreover, by the choice of Φλ we have

sup
(ν,p,s)∈∂C

Jρ
(
h(ν, p, s)

)
= sup

(ν,p,s)∈YR
Jρ
(
Φλ(ν, p, s)

)
≤ −2L.

The crucial point is to show that m ≥ −L. This is done exactly as in Section 2.3. We repeat here the
argument for the reader’s convenience. It holds that ∂C is contractible in C, and hence in h(C) for any
h ∈ Γ. On the other hand by the fact that YR is not contractible and by Proposition 3.4.10 ∂C is not
contractible in J−Lρ , so we deduce that h(C) is not contained in J−Lρ . Being this valid for any h ∈ Γ, we
conclude that necessarily m ≥ −L.

It follows from standard variational arguments (see [90]) that the functional Jρ admits a Palais-
Smale sequence at level m. However, this does not guarantee the existence of a critical point, since
it is not known whether the Palais-Smale condition holds or not. To bypass this problem one needs a
monotonicity trick introduced by Struwe in [88], see Lemma 2.3.1, jointly with the compactness result
given in Theorem 1.1.4, see Section 2.3 for full details.

3.5 Appendix: proof of Proposition 3.3.7

The energy estimates of Proposition 3.3.7 will follow from the next three Lemmas.

Lemma 3.5.1 If ϕ1, ϕ2 are defined as in (3.72), we have that

 
Σ

ϕ1 dVg = O(1),

 
Σ

ϕ2 dVg = O(1).
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Proof. From elementary inequalities (see also Figure 2) it is easy to show that there exists a constant
C so that

|ϕ1|+ |ϕ2| ≤ C
(

1 + log
1

d(·, p) +
∑

i

1

d(·, x̃i)

)
.

As the logarithm of the distance from a fixed point is integrable, the conclusion easily follows.

In the following, for positive numbers a, b we will use the notation

a 'C b ⇔ ∃C > 1 such that
b

C
≤ a ≤ Cb. (3.102)

Lemma 3.5.2 Under the above assumptions one has

ˆ
Σ

eϕ1 dVg 'C ŝ4τ2
λλ̌

2,

ˆ
Σ

eϕ2 dVg 'C max

{
τ̃2

ŝ2µ4
, 1

}
.

Proof. Let τ ∈ (0,+∞] be fixed and let ν̂ ∈ Σk,p,τ̄ be as in (3.65). For simplicity we may assume
that there is only one point in the support of ν̂, i.e. ν̂ = δxj . The case of a general ν̂ is then treated in
analogous way. It is not difficult to show that the terms − 1

2v2,− 1
2v1,1 do not affect the integrals of eϕ1

and eϕ2 , respectively, and that

ˆ
Σ

eϕ1 dVg 'C

ˆ
Σ

ev1 dVg,

ˆ
Σ

eϕ2 dVg 'C

ˆ
Σ

ev2 dVg.

Therefore, it is enough to prove the following:

ˆ
Σ

ev1 dVg 'C ŝ4τ2
λλ̌

2,

ˆ
Σ

ev2 dVg 'C max

{
τ̃2

ŝ2µ4
, 1

}
. (3.103)

We start by observing that, by definition, for d(xj , p) ≤ 4
λj

one has

v1(x) = log
1

(
(ŝτλ)−2 + d(x, p)2

)3 .

By an elementary change of variables we find

ˆ
Σ

ev1 dVg =

ˆ
Σ

1
(
(ŝτλ)−2 + d(x, p)2

)3 dVg 'C ŝ4τ4
λ . (3.104)

By the definition of τ and ν̂ ∈ Σk,p,τ̄ (see in particular (3.62) and (3.63)), recalling that d(xj , p) ≤ 4
λj

and that λj ≥ λ by construction, we get

1

τ
≤ d(xj , p) ≤

4

λj
≤ C

λ
. (3.105)

By taking λ sufficiently large we deduce τ � 1. It follows that š = 1 and λ̌ = λ, see (3.69). Moreover,
by (3.105) we have

C

λ
≤ τλ ≤ λ.

Therefore, we can rewrite (3.104) as

ˆ
Σ

ev1 dVg =

ˆ
Σ

1
(
(ŝτ)−2 + d(x, p)2

)3 dVg 'C ŝ4τ2
λ λ̌

2

and the proof of the first part of (3.103) is concluded. Suppose now d(xj , p) >
4
λj

and divide Σ into three

subsets:

A = Ax̃j

(
1

sjλj
,
d(x̃j , p)

4

)
, B = B 1

sjλj

(x̃j), C = Σ \ (A ∪ B).
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We start by estimating

ˆ
B
ev1 dVg =

ˆ
B 1
sjλj

(x̃j)

s4
jλ

4
jd(x̃j , p)

4

(
(ŝτλ)−2 + d(x, p)2

)3 dVg.

Observe that if in the latter formula we substitute d(x, p) with d(x̃j , p) we get negligible errors which will
be omitted. Therefore, we can rewrite it as

ˆ
B
ev1 dVg =

ˆ
B 1
sjλj

(x̃j)

s4
jλ

4
j

d(x̃j , p)2

1
(
(ŝτλd(x̃j , p))−2 + 1

)3 dVg

=
s2
jλ

2
j

d(x̃j , p)2

C
(
(ŝτλd(x̃j , p))−2 + 1

)3 = s2
j s̃

2
j

λ2
j

d(xj , p)2

C
(
(ŝτλd(x̃j , p))−2 + 1

)3 ,

where in the last equality we have used (3.67). Exploiting now the conditions (3.70) and (3.71), the
assumption d(xj , p) >

4
λj

and recalling that d(xj , p) ≥ 1
τ by definition (3.63), we conclude that

ˆ
B
ev1 dVg = ŝ4τ2

λλ̌
2 C
(
(ŝτλd(x̃j , p))−2 + 1

)3 'C ŝ4τ2
λλ̌

2.

It is then not difficult to show thatˆ
A
ev1 dVg ≤ ŝ4τ2

λ λ̌
2C,

ˆ
C
ev1 dVg ≤ ŝ4τ2

λλ̌
2C,

for some C > 0. This concludes the proof of the first part of (3.103).

For the second part of (3.103), similarly as before, we divide Σ into

Ã = Ap

(
1

ŝτ̃
,

1

ŝµ

)
, B̃ = B 1

ŝτ̃
(p), C̃ = Σ \ (Ã ∪ B̃).

For x ∈ B̃ we have v2(x) = log
(
µ
τ̃

)−4
, hence

ˆ
B̃
ev2 dVg =

ˆ
B 1

ŝτ̃
(p)

(µ
τ̃

)−4

dVg =
τ̃2

ŝ2µ4
C. (3.106)

Moreover, working in normal coordinates around p one gets
ˆ
Ã
ev2 dVg ≤

τ̃2

ŝ2µ4
C, (3.107)

for some C > 0. On the other hand, we haveˆ
C̃
ev2 dVg 'C 1. (3.108)

From (3.106), (3.107) and (3.108) it follows that

ˆ
Σ

ev2 dVg 'C max

{
τ̃2

ŝ2µ4
, 1

}
,

which concludes the proof of the second part of (3.103).

Recalling the definition of ν̂ ∈ Σk,p,τ̄ in (3.65) we introduce now the following sets of indices: let I ⊆
{1, . . . , k} be given by

I =

{
i : d(xi, p) >

4

λi

}
.

We then subdivide I into two subsets I1, I2 ⊆ I:

I1 =

{
i : d(xi, p) ≤

1

τλ

}
, I2 =

{
i : d(xi, p) >

1

τλ

}
. (3.109)
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Lemma 3.5.3 Under the above assumptions one has

ˆ
Σ

Q(ϕ1, ϕ2) dVg ≤ 8π
(

log τ̃ − logµ
)

+ 8|I1|π
(

log λ̌− log τλ
)

+
∑

i∈I2

8π
(

log si + log λi − log d(x̃i, p)
)

+

+ 16π
∑

i∈I2

log d(x̃i, p)+
(
24π log τλ + 24π log ŝ

)
+ C,

for some C = C(Σ).

Proof. We start by observing that, by definition, ∇v1,1 = 0 in Σ \ ⋃i∈I Ax̃i
(

1
siλi

, d(x̃i,p)
4

)
, while

∇v2 = 0 in Σ \Ap
(

1
ŝτ̃ ,

1
ŝµ

)
. We next prove the following estimates on the gradients of v1,1, v1,2 and v2:

|∇v1,1(x)| ≤ 4

dmin(x)
in
⋃

i∈I
Ax̃i

(
1

siλi
,
d(x̃i, p)

4

)
, (3.110)

|∇v2(x)| ≤ 4

d(x, p)
in Ap

(
1

ŝτ̃
,

1

ŝµ

)
, (3.111)

|∇v1,2(x)| ≤ 6

d(x, p)
for every x ∈ Σ, (3.112)

where dmin(x) = min
i∈I

d(x, x̃i) and

|∇v1,2(x)| ≤ C ŝτλ for every x ∈ Σ, (3.113)

where C is a constant independent of τλ and ŝ.
Concerning (3.110) and (3.111) we show the inequalities just for v1,1, as for v2 the proof is similar.

We have that

∇v1,1(x) = −4

∑k
i=1 ti

(
d(x,x̃i)
d(x̃i,p)

)−5

∇x
(
d(x,x̃i)
d(x̃i,p)

)

∑k
j=1 tj

(
d(x,x̃j)
d(x̃j ,p)

)−4 = −4

∑k
i=1 ti

(
d(x,x̃i)
d(x̃i,p)

)−4 ∇xd(x,x̃i)
d(x,x̃i)

∑k
j=1 tj

(
d(x,x̃j)
d(x̃j ,p)

)−4

= −4

∑k
i=1 ti

(
d(x,x̃i)
d(x̃i,p)

)−4 ∇xd(x,x̃i)
dmin(x)

∑k
j=1 tj

(
d(x,x̃j)
d(x̃j ,p)

)−4 .

Exploiting the fact that |∇xd(x, x̃i)| ≤ 1 we obtain (3.110). Moreover, by direct computations one gets
(3.111). We consider now

∇v1,2(x) = −3
ŝ2τ2

λ∇x(d2(x, p))

1 + ŝ2τ2
λd

2(x, p)
.

Using the estimate |∇x(d2(x, p))| ≤ 2d(x, p) the properties (3.112) and (3.113) easily follow by the
inequalities

ŝ2τ2
λd

2(x, p)

1 + ŝ2τ2
λd

2(x, p)
≤ 1,

ŝτλd(x, p)

1 + ŝ2τ2
λd

2(x, p)
≤ 1; for every x ∈ Σ,

respectively. Recalling the definitions of ϕ1, ϕ2 in (3.72) and that v1 = v1,1 + v1,2, we obtain

ˆ
Σ

Q(ϕ1, ϕ2) dVg =
1

3

ˆ
Σ

(
|∇ϕ1|2 + |∇ϕ2|2 +∇ϕ1 · ∇ϕ2

)
dVg (3.114)

=
1

3

ˆ
Σ

(
|∇v1|2 +

1

4
|∇v2|2 −∇v1 · ∇v2

)
dVg +

1

3

ˆ
Σ

(
|∇v2|2 +

1

4
|∇v1,1|2 −∇v2 · ∇v1,1

)
dVg +

+
1

3

ˆ
Σ

(
∇v1 −

1

2
∇v2

)
·
(
∇v2 −

1

2
∇v1,1

)
dVg

=
1

4

ˆ
Σ

|∇v1,1|2 dVg +
1

4

ˆ
Σ

|∇v2|2 dVg +
1

3

ˆ
Σ

|∇v1,2|2 dVg +

ˆ
Σ

(
1

6
∇v1,1 · ∇v1,2 −

7

12
∇v1,1 · ∇v2

)
dVg.
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We start by observing that the integral of the mixed terms is uniformly bounded. Indeed, we claim that

∇v1,1 · ∇v2 = 0. (3.115)

By the remark before (3.110), (3.115) will follow by proving that Ax̃i

(
1

siλi
, d(x̃i,p)

4

)
∩ Ap

(
1
ŝτ̃ ,

1
ŝµ

)
= ∅

for all i ∈ I. Recall the constant δ̄ in (3.67). Clearly, when all the points of the support of ν̂ are bounded
away from p, i.e. d(xi, p) > δ̄ for all i, we get the conclusion. Consider now the case d(xi, p) ≤ δ̄ for some
i and observe that in this case s̃i = ŝ, see (3.67). Moreover, by taking δ̄ sufficiently small, one has also
š ≤ C by the definition (3.69) (see also (3.105) and the motivation above it). To prove that the above
two subsets are disjoint, one has just to ensure that d(x̃i, p) � 1

ŝµ . We distinguish between two cases.

Suppose first that d(xi, p) >
1
τλ

. By the assumptions we have made and by (3.70), one gets

d(x̃i, p) =
1

s̃i
d(xi, p) =

1

ŝ
d(xi, p) ≥

1

ŝλi
=

1

ŝ d(xi, p)τλλ̌
≥ 1

C ŝ τλλ̌
=

1

C ŝ τλšλ
≥ 1

C ŝ τλλ
� 1

ŝµ

by the choice of the parameters µ and λ. The case d(xi, p) ≤ 1
τλ

is treated in the same way with minor

modifications. This conclude the proof of (3.115).
We claim now that ˆ

Σ

∇v1,1 · ∇v1,2 dVg ≤ C. (3.116)

We introduce the sets

Ai =

{
x ∈ Σ : d(x, x̃i) = min

j∈I
d(x, xj)

}
. (3.117)

By (3.110) and (3.113) we get

ˆ
Σ

∇v1,1 · ∇v1,2 dVg ≤
ˆ

Σ

C

dmin(x) d(x, p)
dVg ≤

∑

i∈I

ˆ
Ai

C

d(x, x̃i) d(x, p)
dVg

≤
∑

i∈I

ˆ
Ax̃i

(
1

siλi
,
d(x̃i,p)

4

) C

d(x, x̃i) d(x̃i, p)
dVg ≤ C,

which proves the claim (3.116).
Using the estimate (3.110) one has

1

4

ˆ
Σ

|∇v1,1|2 dVg ≤ 4

ˆ
Σ

1

d2
min(x)

dVg ≤ 4
∑

i∈I

ˆ
Ai

1

d2(x, x̃i)
dVg

≤ 4
∑

i∈I

ˆ
Ax̃i

(
1

siλi
,
d(x̃i,p)

4

) 1

d2(x, x̃i)
dVg

≤
∑

i∈I
8π
(

log si + log λi + log d(x̃i, p)
)

+ C. (3.118)

Recalling the definition of I1, I2 ⊆ I given in (3.109) we observe the following: for i ∈ I1 we get λi = λ̌
and s̃i = ŝ, see (3.70) and (3.67), respectively. Moreover, taking into account (3.71) we deduce

1

4

ˆ
Σ

|∇v1,1|2 dVg ≤ 8|I1|π
(

log λ̌− log τλ
)

+
∑

i∈I2

8π
(

log si + log λi + log d(x̃i, p)
)

+ C

= 8|I1|π
(

log λ̌− log τλ
)

+
∑

i∈I2

8π
(

log si + log λi − log d(x̃i, p)
)

+ (3.119)

+ 16π
∑

i∈I2

log d(x̃i, p) + C.

Similarly as for (3.118), by (3.111) we get

1

4

ˆ
Σ

|∇v2|2 dVg = 4

ˆ
Ap( 1

ŝτ̃ ,
1
ŝµ )

1

d2(x, p)
dVg ≤ 8π

(
log τ̃ − logµ

)
+ C. (3.120)
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To estimate the term |∇v1,2|2 we consider Σ = B 1
ŝτλ

(p)∪
(
Σ \B 1

ŝτλ

(p)
)
. From (3.112) we deduce that

ˆ
B 1

ŝτλ

(p)

|∇v1,2|2 dVg ≤ C.

Using then (3.112) one finds

1

3

ˆ
Σ\B 1

ŝτλ

(p)

|∇v1,2|2 dVg ≤ 12

ˆ
Σ\B 1

ŝτλ

(p)

1

d2(x, p)
dVg ≤ 24π

(
log τλ + log ŝ

)
+ C. (3.121)

Finally, by (3.115), (3.116) and inserting (3.119), (3.120) and (3.121) into (3.114) we get the conclusion.

Proof of Proposition 3.3.7. Using Lemmas 3.5.1, 3.5.2 and 3.5.3, the energy estimate we get is

Jρ(ϕ1, ϕ2) ≤ 8π
(

log τ̃−logµ
)
+8|I1|π

(
log λ̌−log τλ

)
+
∑

i∈I2

8π
(

log si+log λi−log d(x̃i, p)
)
+16π

∑

i∈I2

log d(x̃i, p)+

+
(
24π log τλ + 24π log ŝ

)
− ρ1

(
4 log ŝ + 2 log τλ + 2 log λ̌

)
− ρ2 log max

{
τ̃2

ŝ2µ4
, 1

}
+ C

≤ 8π
(

log τ̃ − logµ
)

+ 8|I1|π
(

log λ̌− log τλ
)

+
∑

i∈I2

8π
(

log si + log s̃i + log λi − log d(xi, p)
)

+

+ 16π
∑

i∈I2

log d(x̃i, p)+
(
24π log τλ + 24π log ŝ

)
− ρ1

(
4 log ŝ + 2 log τλ + 2 log λ̌

)
+

− ρ2 log max

{
τ̃2

ŝ2µ4
, 1

}
+ C,

for some constant C > 0. Exploiting the conditions (3.70) and (3.71) we obtain

Jρ(ϕ1, ϕ2) ≤ 8π
(

log τ̃ − logµ
)

+ 8|I1|π
(

log λ̌− log τλ
)

+
∑

i∈I2

8π
(
2 log ŝ + log λ̌+ log τλ

)
+(3.122)

+ 16π
∑

i∈I2

log d(x̃i, p)+
(
24π log τλ + 24π log ŝ

)
− ρ1

(
4 log ŝ + 2 log τλ + 2 log λ̌

)
+

− ρ2 log max

{
τ̃2

ŝ2µ4
, 1

}
+ C.

Recalling the definition of I1, I2 in (3.109), we distinguish between two cases.

Case 1. Suppose first that I1 6= ∅. By construction it follows that τ � 1, see (3.62) and (3.63).
Therefore, by (3.68) we get ŝ = s. On the other hand, using (3.69) and the definition of λ̌ under it, we
deduce λ̌ ≤ Cλ.

For ŝ� τ̃
µ2 we get in (3.122) the following:

max

{
τ̃2

ŝ2µ4
, 1

}
=

τ̃2

ŝ2µ4
. (3.123)

In this case (3.122) can be rewritten as

Jρ(ϕ1, ϕ2) ≤ log τ̃
(
8π − 2ρ2

)
+ log λ

(
8(|I1|+ |I2|)π − 2ρ1

)
+ log ŝ

(
24π + 16|I2|π − 4ρ1 + 2ρ2

)
+

+ log τλ
(
8|I2|π − 8|I1|π + 24π − 2ρ1

)
+ log µ

(
4ρ2 − 8π

)
+ C. (3.124)

Recalling that ŝ � τ̃
µ2 , the latter estimate is negative by the choice of the parameters τ̃ � µ � λ and

ρ2 > 4π.
When instead ŝ = τ̃

µ2 +O(1) we have

max

{
τ̃2

ŝ2µ4
, 1

}
= 1. (3.125)
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Considering now (3.122) and observing that log ŝ = log τ̃ − 2 logµ+ C, we end up with

Jρ(ϕ1, ϕ2) ≤ log τ̃
(
32π + 16|I2|π − 4ρ1

)
+ log λ

(
8(|I1|+ |I2|)π − 2ρ1

)

+ log τλ
(
8|I2|π − 8|I1|π + 24π − 2ρ1

)
+ log µ

(
8ρ1 − 56π − 32|I2|π

)
+ C.

The crucial fact is that by construction of Σk,p,τ̄ , see (3.60), it holds |I2| ≤ k − 2 whenever |I1| 6= ∅.
Hence, we conclude that

Jρ(ϕ1, ϕ2) ≤ log τ̃
(
16kπ − 4ρ1

)
+ log λ

(
8(|I1|+ |I2|)π − 2ρ1

)
+ log τλ

(
8|I2|π − 8|I1|π + 24π − 2ρ1

)
+

+ log µ
(
8ρ1 − 56π − 32|I2|π

)
+ C.

which is large negative since ρ1 > 4kπ and by the choice of the parameters.

Case 2. Suppose now I1 = ∅. By construction we deduce that τ ≤ C, see (3.62) and (3.63). Therefore,
using (3.68) we obtain ŝ ≤ C. In this case the equality in (3.123) always holds true. Moreover, by (3.69)
we have λ̌ = sλ. Hence, (3.122) can be rewritten as

Jρ(ϕ1, ϕ2) ≤ log s
(
8|I2|π − 2ρ1

)
+ log τ̃

(
8π − 2ρ2

)
+ log λ

(
8|I2|π − 2ρ1

)
+

+ log τλ
(
8|I2|π + 24π − 2ρ1

)
+ log µ

(
4ρ2 − 8π

)
+ C.

Observing that |I2| ≤ k we conclude that the latter estimate is large negative since ρ1 > 4kπ, ρ2 > 4π
and by the choice of the parameters.
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Chapter 4

A mean field equation: a first
existence result in a doubly
supercritical case

We start here to discuss the second topic of the thesis, namely a class of a mean field equations with two
parameters defined on a compact surface Σ of the following type:

−∆u = ρ1

(
h1 e

u´
Σ
h1 eu dVg

− 1

)
− ρ2

(
h2 e

−u´
Σ
h2 e−u dVg

− 1

)
, (4.1)

where ρ1, ρ2 are real parameters and h1, h2 are two smooth positive functions. For an introduction to
the above equation see Section 1.2.

In this chapter we will give the first existence result in a doubly supercritical case, namely when
ρi > 8π i = 1, 2, see Subsection 1.2.1. The argument presented here is stated in the paper [45] and the
main result is the following:

Theorem 4.0.1 Let h1, h2 be two smooth positive functions. Assume that ρ1, ρ2 ∈ (8π, 16π). Then there
exists a solution to the equation (4.1).

The plan of the chapter is the following: in Section 4.1 we state some preliminary results such as
variants of the Moser-Trudinger inequality and a compactness property, in Section 4.2 we introduce the
rate of concentration and the center of mass of a function and we provide a new improved Moser-Trudinger
inequality and finally in Section 4.3 we prove the main result using min-max theory.

4.1 Preliminaries

In this section we collect some useful preliminary facts. We begin with a compactness result which is
deduced from the blow-up theorem in [82].

Theorem 4.1.1 Suppose that un satisfies

−∆un = ρ1,n

(
h1 e

un´
Σ
h1 eun dVg

− 1

)
− ρ2,n

(
h2 e

−un´
Σ
h2 e−un dVg

− 1

)
.

Assume that ρ1,n, ρ2,n ∈ (8π, 16π) for any n ∈ N and that ρ1,n → ρ1 ∈ (8π, 16π) and ρ2,n → ρ2 ∈
(8π, 16π). Then the solution sequence (un)n (up to adding suitable constants) is uniformly bounded in
L∞(Σ) and there exist u and a subsequence (unk)k such that

unk → u,

where this u is a solution to (4.1) for these ρ1 and ρ2.

83



4. A mean field equation: a first existence result in a doubly supercritical case

Proof. Since Iρ is invariant under translation by constants in the argument, we can restrict ourselves
to considering the subspace of H1(Σ) of functions with zero average.

Consider the blow-up sets of the sequence (un)n given by

S1 =
{
x ∈ Σ : ∃xn → x such that un(xn)→ +∞

}
,

S2 =
{
x ∈ Σ : ∃xn → x such that un(xn)→ −∞

}
.

From the blow-up theorem in [82], it is sufficient to show that S1 ∩ S2 = ∅. We argue by contradiction.
Assume that x0 ∈ S1 ∩ S2. Define the blow-up values at x0 by

m1(x0) = lim
r→0

lim
n→+∞

ρ1,n

´
Br(x0)

h1(x) eun dVg´
Σ
h1(x) eun dVg

,

m2(x0) = lim
r→0

lim
n→+∞

ρ2,n

´
Br(x0)

h2(x) e−un dVg´
Σ
h2(x) e−un dVg

.

Since ρ1,n, ρ2,n ∈ (8π, 16π), from the blow-up theorem in [82], we have

4π ≤ m1(x0) < 16π, 4π ≤ m2(x0) < 16π, (4.2)

and (
m1(x0)−m2(x0)

)2
= 8π

(
m1(x0) +m2(x0)

)
. (4.3)

By the last equality we derive

m1(x0) = m2(x0) + 4π ± 4
√
πm2(x0) + π2.

First, let us consider the case m1(x0) = m2(x0)+4π+4
√
πm2(x0) + π2. Using the fact that 4π ≤ m2(x0),

we derive that m1(x0) ≥ 16π, which is a contradiction to the first estimate in (4.2).
If instead we consider the case m1(x0) = m2(x0)+4π−4

√
πm2(x0) + π2, the estimate 4π ≤ m2(x0) <

16π implies that m1(x0) < 12π. By interchanging the roles of m1(x0) and m2(x0), we obtain the same
inequality for m2(x0). Therefore we have

4π ≤ m1(x0) < 12π, 4π ≤ m2(x0) < 12π. (4.4)

On the other hand, using (4.3) jointly with the fact that mi(x0) ≥ 4π, i = 1, 2, we deduce that

|m1(x0)−m2(x0)| ≥ 8π,

which is a contradiction to (4.4).

We collect now some versions of Moser-Trudinger inequalities. It is well known that an improved inequal-
ity will hold if eu has integral bounded from below on different regions of Σ of positive mutual distance.
Notice that for the Toda system (1.18) an analogous property was proved in [69], while a more general
result in this direction was given in [9] (see Lemma 2.2.3 in Chapter 2).

Proposition 4.1.2 ([100]) For a fixed integer l, let Ω1, . . . ,Ωl be subsets of Σ satisfying d(Ωi,Ωj) ≥ δ0
for i 6= j, where δ0 is a positive real number, and let γ0 ∈

(
0, 1

l

)
. Then, for any ε > 0 there exists a

constant C = C(Σ, l, ε, δ0, γ0) such that

l log

ˆ
Σ

eu−ū dVg + log

ˆ
Σ

e−u+ū dVg ≤
1

16π − ε

ˆ
Σ

|∇u|2 dVg + C

for all the functions u ∈ H1(Σ) satisfying

´
Ωi
eu dVg´

Σ
eu dVg

≥ γ0, ∀ i ∈ {1, . . . , l}.
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We next state a result which is a local version of the inequality (1.21), that will be of use later on.

Proposition 4.1.3 Fix δ > 0, and let Ω1 ⊂ Ω2 ⊂ Σ be such that d(Ω1, ∂Ω2) ≥ δ. Then, for any ε > 0
there exists a constant C = C(ε, δ) such that for all u ∈ H1(Σ)

log

ˆ
Ω1

eu dVg + log

ˆ
Ω1

e−u dVg ≤
1

16π − ε

ˆ
Ω2

|∇u|2 dVg + C.

Proof. The proof is developed exactly as in Proposition 2.3 of [71], with obvious modifications. Here
we just sketch the proof for the reader’s convenience. First, we consider a spectral decomposition of the
Laplacian on Ω2 (with Neumann boundary conditions), in order to write u as u = v+w with v ∈ L∞(Ω2)
and w ∈ H1(Ω2). We next consider a smooth cutoff function χ with values into [0, 1] satisfying

{
χ(x) = 1 for x ∈ Ω1,
χ(x) = 0 if d(x,Ω) > δ/2,

and then define w̃(x) = χ(x)w(x). We now apply the Moser-Trudinger inequality (1.21) to w̃ to deduce
the desired inequality.

We give now a criterion which is a first step in studying the properties of the low sub-levels of Iρ. We
first state a lemma concerning a covering argument, which is a particular case of a more general setting
in [71], Lemma 2.5.

Lemma 4.1.4 ([71]) Let δ0 > 0, γ0 > 0 be fixed, and let Ωi,j ⊆ Σ, i, j = 1, 2, satisfy d(Ωi,j ,Ωi,k) ≥ δ0
for j 6= k. Suppose that u ∈ H1(Σ) is a function verifying

´
Ω1,j

eu dVg´
Σ
eu dVg

≥ γ0,

´
Ω2,j

e−u dVg´
Σ
e−u dVg

≥ γ0, j = 1, 2.

Then there exist positive constants γ̃0, δ̃0, depending only on γ0, δ0, and two sets Ω̃1, Ω̃2 ⊆ Σ, depending
also on u such that

d(Ω̃1, Ω̃2) ≥ δ̃0;

´
Ω̃i
eu dVg´

Σ
eu dVg

≥ γ̃0,

´
Ω̃i
e−u dVg´

Σ
e−u dVg

≥ γ̃0; i = 1, 2.

Using this result it is indeed possible to obtain an improvement of the constant in the Moser-Trudinger
inequality (1.21).

Proposition 4.1.5 Let u ∈ H1(Σ) be a function satisfying the assumptions of Lemma 4.1.4 for some
positive constants δ0, γ0. Then for any ε > 0 there exists C = C(ε) > 0, depending on ε, δ0, and γ0 such
that

log

ˆ
Σ

eu−ū dVg + log

ˆ
Σ

e−u+ū dVg ≤
1

32π − ε

ˆ
Σ

|∇u|2 dVg + C.

Proof. To obtain the thesis we can argue exactly as in Proposition 2.6 of [71]. First we set δ̃0, γ̃0 and
Ω̃1, Ω̃2 as in Lemma 4.1.4. Then we apply Proposition 4.1.3 with Ω̃i and Ui =

{
x ∈ Ω : d(x, Ω̃i) < δ̃0/2

}

for i = 1, 2. Observing that

log

ˆ
Ω̃i

eudVg ≥ log

(ˆ
Σ

eudVg

)
+ log γ̃0,

log

ˆ
Ω̃i

e−udVg ≥ log

(ˆ
Σ

e−udVg

)
+ log γ̃0

for i = 1, 2, and that U1 ∩ U2 = ∅, we deduce the thesis.

Proposition 4.1.5 implies that on low sub-levels of the functional Iρ, at least one of the components of
the couple (eu, e−u) must be very concentrated around a certain point. We will present in the sequel a
more detailed description of the topology of low sub-levels.
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4. A mean field equation: a first existence result in a doubly supercritical case

4.2 Improved inequality

Following the ideas presented by Malchiodi and Ruiz in [71], in this section we exhibit an improved
Moser-Trudinger inequality under suitable conditions of concentration of the involved function.

First, we give continuous definitions of center of mass and scale of concentration of positive functions
normalized in L1. Let us consider the set

A =

{
f ∈ L1(Σ) : f > 0 a. e. and

ˆ
Σ

fdVg = 1

}
,

endowed with the topology inherited from L1(Σ). Then we have the following result.

Proposition 4.2.1 ([71]) Let us fix a constant R > 1. Then there exist δ = δ(R)>0 and a continuous
map:

ψ : A→ Σδ, ψ(f) = (β, σ),

satisfying the following property: for any f ∈ A there exists p ∈ Σ such that

a) d(p, β) ≤ C ′σ for C ′ = max
{

3R+ 1, δ−1diam(Σ)
}
.

b) There holds: ˆ
Bσ(p)

f dVg > τ,

ˆ
BRσ(p)c

f dVg > τ,

where τ > 0 depends only on R and Σ.

This result is obtained in several steps, which we summarize in the sequel. The explicit definition of the
map ψ(f) = (β, σ) is given below.

First, take R0 = 3R, and define σ : A× Σ→ (0,+∞) such that:

ˆ
Bσ(x,f)(x)

f dVg =

ˆ
BR0σ(x,f)(x)c

f dVg. (4.5)

The map σ(x, f) is clearly uniquely determined and continuous. Moreover we have the following lemma.

Lemma 4.2.2 ([71]) The map σ satisfies:

d(x, y) ≤ R0 max
{
σ(x, f), σ(y, f)}+ min{σ(x, f), σ(y, f)

}
. (4.6)

We now define

T : A× Σ→ R, T (x, f) =

ˆ
Bσ(x,f)(x)

f dVg.

Lemma 4.2.3 ([71]) If x0 ∈ Σ is such that T (x0, f) = maxy∈Σ T (y, f), then we have σ(x0, f) < 3σ(x, f)
for any other x ∈ Σ.

As a consequence of the previous lemma, one can obtain the following:

Lemma 4.2.4 ([71]) There exists a fixed τ > 0 such that

max
x∈Σ

T (x, f) > τ > 0 for all f ∈ A.

Let us define
σ : A→ R, σ(f) = 3 min

{
σ(x, f) : x ∈ Σ

}
,

which is obviously a continuous function. Given τ as in Lemma 4.2.4, consider the set

S(f) =
{
x ∈ Σ : T (x, f) > τ, σ(x, f) < σ(f)

}
, (4.7)

which is a nonempty open set for any f ∈ A, by Lemmas 4.2.3 and 4.2.4. Moreover, from (4.6), we have
that

diam
(
S(f)

)
≤ (R0 + 1)σ(f). (4.8)
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4.2. Improved inequality

As in Subsection 3.1.2 we can assume that Σ ⊂ RN isometrically, N ∈ N and take an open tubular
neighborhood Σ ⊂ U ⊂ RN of Σ, and δ > 0 small enough so that

co
[
B(R0+1)δ(x) ∩ Σ

]
⊂ U ∀x ∈ Σ, (4.9)

where co denotes the convex hull in RN .
We define now

η(f) =

ˆ
Σ

(
T (x, f)− τ

)+(
σ(f)− σ(x, f)

)+
x dVgˆ

Σ

(
T (x, f)− τ

)+(
σ(f)− σ(x, f)

)+
dVg

∈ RN ,

which can be interpreted as a center of mass in RN . As observed in Subsection 3.1.2, the integrands
become nonzero only on the set S(f). Moreover, whenever σ(f) ≤ δ, (4.8) and (4.9) imply that η(f) ∈ U ,
and so we can define

β :
{
f ∈ A : σ(f) ≤ δ

}
→ Σ, β(f) = P ◦ η(f),

where P : U → Σ is the orthogonal projection.
Then the map ψ(f) =

(
β(f), σ(f)

)
satisfies the conditions given by Proposition 4.2.1. If σ(f) ≥ δ, β

is not defined. Observe that a) is then satisfied for any β ∈ Σ.

Remark 4.2.5 The above map ψ(f) = (β, σ) gives us a center of mass of f and its scale of concentration
around that point. The identification in Σδ is somehow natural, indeed, if σ exceeds a certain positive
constant, we do not have concentration at a point and so β could not be defined.

We next state an improved Moser-Trudinger inequality for functions u ∈ H1(Σ) such that both eu and
e−u are concentrated at the same point with the same rate of concentration. In terms of Proposition 4.2.1,
we have the following result. Notice that for the Toda system (1.18) an analogous improved inequality
was given in [71], Proposition 3.2.

Proposition 4.2.6 Given any ε > 0, there exist R = R(ε) > 1 and ψ as given in Proposition 4.2.1,
such that for any u ∈ H1(Σ) with:

ψ

(
eu´

Σ
eudVg

)
= ψ

(
e−u´

Σ
e−udVg

)
,

the following inequality holds:

log

ˆ
Σ

eu−ū dVg + log

ˆ
Σ

e−u+ū dVg ≤
1

32π − ε

ˆ
Σ

|∇u|2 dVg + C,

for some C = C(ε).

Before proving the proposition, we need some preliminary lemmas concerning Moser-Trudinger type
inequality for small balls, and also for annuli with small internal radius. The first one is obtained just by
using a dilation argument.

Lemma 4.2.7 For any ε > 0 there exists C = C(ε) > 0 such that

log

ˆ
Bs/2(p)

eu dVg + log

ˆ
Bs/2(p)

e−u dVg ≤
1

16π − ε

ˆ
Bs(p)

|∇u|2 dVg + 4 log s+ C

for any u ∈ H1(Σ), p ∈ Σ, s > 0 small.

Proof. Notice that, as s → 0 we consider quantities defined on smaller and smaller geodesic balls
centered at p. By considering normal geodesic coordinates at p, gradients, averages and the volume
element will almost correspond to the Euclidean ones. If we assume that near p the metric of Σ is flat,
we will get negligible error terms which will be omitted.

We just perform a convenient dilation of u given by

v(x) = u(sx+ p).
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4. A mean field equation: a first existence result in a doubly supercritical case

We have the following equalities:

ˆ
Bs(p)

|∇gu|2 dVg =

ˆ
B1(0)

|∇v|2 dVg,

ˆ
Bs/2(p)

eu dVg = s2

ˆ
B1/2(0)

ev dVg.

We apply then Proposition 4.1.3 to the function v to deduce the desired inequality.

Remark 4.2.8 Observe that in Lemma 4.2.7 and in the results that will be present in the sequel there is
no explicit dependence of the average of u, due to the fact that the average of u is cancelled by the average
of −u.

We next deduce a Moser-Trudinger type inequality on thick annuli (recall the notation in Section 1.3).
In order to do this, we use the Kelvin transform to exploit the geometric properties of the problem.

Lemma 4.2.9 Given ε > 0, there exists a fixed r0 > 0 (depending only on Σ and ε) satisfying the
following property: for any r∈(0, r0) fixed, there exists C= C(r, ε) >0 such that, for any u ∈ H1(Σ) with
u = c ∈ R in ∂B2r(p),

log

ˆ
Ap(s,r)

eu dVg + log

ˆ
Ap(s,r)

e−u dVg ≤
1

16π − ε

ˆ
Ap(s/2,2r)

|∇u|2 dVg − 4 log s+ C,

with p ∈ Σ, s ∈ (0, r).

Proof. As in the proof of Lemma 4.2.7, by taking r0 small enough, also here the metric becomes close
to the Euclidean one. We can then assume that the metric is flat around the point p.

We consider the Kelvin transform K : Ap(s/2, 2r)→ Ap(s/2, 2r) given by

K(x) = p+ rs
x− p
|x− p|2 .

Observe that K maps the interior boundary of Ap(s/2, 2r) onto the exterior one and viceversa. We next
define the function ũ ∈ H1(B2r(p)) as:

ũ(x) =

{
u
(
K(x)

)
if |x− p| ≥ s/2,

c if |x− p| ≤ s/2.

Our goal is to apply the local Moser-Trudinger inequality given by Proposition 4.1.3 to ũ. First of all,
observe that ˆ

Ap(s,r)

eũ dVg =

ˆ
Ap(s,r)

eu(K(x)) dVg =

ˆ
Ap(s,r)

eu(x) s2r2

|x− p|4 dVg, (4.10)

since the Jacobian of K is J
(
K(x)

)
= −r2s2|x− p|−4. Moreover, for |x− p| ≥ s/2, we have

|∇ũ(x)|2 = |∇u(K(x))|2 s2r2

|x− p|4 (4.11)

Therefore,

log

ˆ
Ap(s,r)

eu dVg + log

ˆ
Ap(s,r)

e−u dVg + 4 log s = log

ˆ
Ap(s,r)

eus2 dVg + log

ˆ
Ap(s,r)

e−us2 dVg

≤ log

ˆ
Ap(s,r)

eu
s2

r2
dVg + log

ˆ
Ap(s,r)

e−u
s2

r2
dVg + C

≤ log

ˆ
Ap(s,r)

eu
s2r2

|x− p|4 dVg + log

ˆ
Ap(s,r)

e−u
s2r2

|x− p|4 dVg + C,

88



4.2. Improved inequality

where we have used the trivial inequality r ≥ |x − p| for x ∈ Ap(s, r). By using (4.10), applying
Proposition 4.1.3 to ũ and then using (4.11), we have

log

ˆ
Ap(s,r)

eu
s2r2

|x− p|4 dVg + log

ˆ
Ap(s,r)

e−u
s2r2

|x− p|4 dVg + C =

= log

ˆ
Ap(s,r)

eu(K(x)) dVg + log

ˆ
Ap(s,r)

e−u(K(x)) dVg + C

≤ 1

16π − ε

ˆ
B2r(p)

|∇ũ|2 dVg + C =
1

16π − ε

ˆ
Ap(s/2,2r)

|∇ũ|2 dVg + C

=
1

16π − ε

ˆ
Ap(s/2,2r)

|∇u(K(x))|2 r2s2

|x− p|4 dVg + C

=
1

16π − ε

ˆ
Ap(s/2,2r)

|∇u|2 dVg + C.

This concludes the proof of the lemma.

Remark 4.2.10 We are now able to prove the improved inequality given in Proposition 4.2.6. The spirit
of the proof is to use jointly Lemmas 4.2.7 and 4.2.9. Indeed, assume that eu and e−u concentrate around
the same point at the same rate (in the sense of Proposition 4.2.1). If we sum the inequalities given
by Lemmas 4.2.7 and 4.2.9, the extra term 4 log s cancels and we can deduce the improved inequality of
Proposition 4.2.6.

We have to manage the case that when ψ
(

eu´
Σ
eudVg

)
= ψ

(
e−u´

Σ
e−udVg

)
we do not really have concentra-

tion around the same point. Moreover, the property in Lemma 4.2.9 of u being constant on the boundary
of a ball need not be satisfied.

Proof of Proposition 4.2.6. Fixed ε > 0, take R > 1 (depending only on ε) and let ψ be the
continuous map given by Proposition 4.2.1. Fix also δ > 0 small.

Let u ∈ H1(Σ) be a function with
´

Σ
u dVg = 0, such that

ψ

(
eu´

Σ
eu dVg

)
= ψ

(
e−u´

Σ
e−u dVg

)
= (β, σ) ∈ Σδ.

If σ ≥ δ
R2 , then applying Proposition 4.1.5 we get the result. Therefore, assume σ < δ

R2 . Proposition 4.2.1
implies the existence of τ > 0, p1, p2 ∈ Σ satisfying:

ˆ
Bσ(p1)

eu dVg ≥ τ
ˆ

Σ

eu dVg,

ˆ
Bσ(p2)

e−u dVg ≥ τ
ˆ

Σ

e−u dVg (4.12)

and ˆ
BRσ(p1)c

eu dVg ≥ τ
ˆ

Σ

eu dVg

ˆ
BRσ(p2)c

e−u dVg ≥ τ
ˆ

Σ

e−u dVg, (4.13)

with d(p1, p2) ≤ (6R+ 2)σ. We divide the proof into two cases:

CASE 1: Assume that
ˆ
Ap1 (Rσ,δ)

eu dVg ≥ τ/2
ˆ

Σ

eu dVg,

ˆ
Ap2 (Rσ,δ)

e−u dVg ≥ τ/2
ˆ

Σ

e−u dVg. (4.14)

In order to satisfy the hypothesis of Lemma 4.2.9, we need to modify our function outside a certain ball.
Via a dyadic decomposition, choose k ∈ N, k ≤ 2ε−1, such that

ˆ
Ap1

(2k−1δ,2k+1δ)

|∇u|2 dVg ≤ ε
ˆ

Σ

|∇u|2 dVg.
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We define ũ ∈ H1(Σ) by: 



ũ(x) = u(x) x ∈ B2kδ(p1),
∆ũ(x) = 0 x ∈ Ap1

(2kδ, 2k+1δ),
ũ(x) = c x /∈ B2k+1δ(p1),

where c ∈ R. Moreover, since we want to apply Lemma 4.2.9 to ũ, we have to choose δ small enough so
that 23ε−1

δ < r0, where r0 is given by that lemma.
We have thatˆ

Ap1
(2k−1δ,2k+1δ)

|∇ũ|2 dVg ≤ C
ˆ
Ap1

(2k−1δ,2k+1δ)

|∇u|2 dVg ≤ Cε
ˆ

Σ

|∇u|2 dVg, (4.15)

for some universal constant C > 0.

Case 1.1: Suppose that d(p1, p2) ≤ R 1
2σ.

We first apply Lemma 4.2.7 to u for p = p1 and s = 2(R1/2 + 1)σ, and take into account (4.12), to
obtain:

1

16π − ε

ˆ
Bs(p)

|∇u|2 dVg ≥ log

ˆ
Bs/2(p)

eu dVg + log

ˆ
Bs/2(p)

e−u dVg − 4 log σ − C

≥ log

ˆ
Σ

eu dVg + log

ˆ
Σ

e−u dVg − 4 log σ − C. (4.16)

We next apply Lemma 4.2.9 to ũ for p = p1, s′ = 4(R1/2 + 1)σ and r = 2k+1δ:

1

16π − ε

ˆ
Ap(s′/2,2r)

|∇ũ|2 dVg ≥ log

ˆ
Ap(s′,r)

eũ dVg + log

ˆ
Ap(s′,r)

e−ũ dVg + 4 log σ − C. (4.17)

Using the estimate (4.13), we get

1

16π − ε

ˆ
Ap(s′/2,2r)

|∇ũ|2 dVg ≥ log

ˆ
Σ

eu dVg + log

ˆ
Σ

e−u dVg + 4 log σ − C. (4.18)

Finally, combining (4.16), (4.18) and (4.15) we obtain our thesis (after renaming ε conveniently).

Case 1.2: Suppose d(p1, p2) ≥ R 1
2σ and

ˆ
B
R1/3σ

(p1)

e−u dVg ≥ τ/4
ˆ

Σ

e−u dVg.

Here we argue as in Case 1.1. First, we apply Lemma 4.2.7 to u for p = p1 and s = 2(R1/3 + 1)σ.
Then we use Lemma 4.2.9 with ũ for p = p1, s′ = 4(R1/3 + 1)σ and r = 2k+1δ.

Case 1.3: Suppose d(p1, p2) ≥ R 1
2σ and

ˆ
B
R1/3σ

(p2)

eu dVg ≥ τ/4
ˆ

Σ

eu dVg.

This case can be treated as in Case 1.2, just by interchanging the indices.

Case 1.4: Suppose d(p1, p2) ≥ R 1
2σ and

ˆ
B
R1/3σ

(p2)

eu dVg ≤ τ/4
ˆ

Σ

eu dVg,

ˆ
B
R1/3σ

(p1)

e−u dVg ≤ τ/4
ˆ

Σ

e−u dVg.

Take n ∈ N, n ≤ 2ε−1 so that

2∑

i=1

ˆ
Api (2

n−1σ,2n+1σ)

|∇u|2 dVg ≤ ε
ˆ

Σ

|∇u|2 dVg,
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where we have chosen R such that 23ε−1

< R1/3. We define now the function v ∈ H1(Σ) by:





v(x) = u(x) x ∈ B2nσ(p1) ∪B2nσ(p2),
∆v(x) = 0 x ∈ Ap1

(2nσ, 2n+1σ) ∪Ap2
(2nσ, 2n+1σ),

v(x) = 0 x /∈ B2n+1σ(p1) ∪B2n+1σ(p2).

As before we have that

2∑

i=1

ˆ
Api (2

nσ,2n+1σ)

|∇v|2 dVg ≤ C
2∑

i=1

ˆ
Api (2

n−1σ,2n+1σ)

|∇u|2 dVg ≤ Cε
ˆ

Σ

|∇u|2 dVg,

where C > 0 is a universal constant.
Taking into account (4.12), we now apply Lemma 4.2.7 to v with p = p1 and s = 4(6R+ 2)σ:

1

16π − ε

ˆ
Bp1 (2nσ)∪Bp2 (2nσ)

|∇u|2 dVg + Cε

ˆ
Σ

|∇u|2 dVg ≥
1

16π − ε

ˆ
Bp(s)

|∇v|2 dVg

≥ log

ˆ
Bp(s/2)

ev dVg + log

ˆ
Bp(s/2)

e−v dVg − 4 log σ − C

≥ log

ˆ
Σ

eu dVg + log

ˆ
Σ

e−u dVg − 4 log σ − C. (4.19)

Next, we define w ∈ H1(Σ) by:





w(x) = 0 x ∈ Bp1(2nσ) ∪Bp2(2nσ),
∆w(x) = 0 x ∈ Ap1(2nσ, 2n+1σ) ∪Ap2(2nσ, 2n+1σ),
w(x) = ũ(x) x /∈ Bp1

(2n+1σ) ∪Bp2
(2n+1σ).

Again we have

2∑

i=1

ˆ
Api (2

nσ,2n+1σ)

|∇w|2 dVg ≤ C
2∑

i=1

ˆ
Api (2

n−1σ,2n+1σ)

|∇u|2 dVg ≤ Cε
ˆ

Σ

|∇u|2 dVg,

where also here C is a universal constant.
We apply Lemma 4.2.9 to w for any point p′ such that d(p′, p1) = 1

2R
1/3σ, s′ = σ and r = 2k+1δ, to

obtain:

1

16π − ε

ˆ
(B2n+1σ(p1)∪B2n+1σ(p2))c

|∇u|2 dVg + Cε

ˆ
Σ

|∇u|2 dVg ≥
1

16π − ε

ˆ
Ap′ (s

′/2,2r)

|∇w|2 dVg

≥ log

ˆ
Ap′ (s

′,r)

ew dVg + log

ˆ
Ap′ (s

′,r)

e−w dVg + 4 log σ − C.

We now use (4.14) and the hypothesis of Case 1.4 to conclude that

1

16π − ε

ˆ
(B2nσ(p1)∪B2nσ(p2))c

|∇u|2 dVg + Cε

ˆ
Σ

|∇u|2 dVg ≥

≥ log

ˆ
Σ

eu dVg + log

ˆ
Σ

e−u dVg + 4 log σ − C. (4.20)

The inequality (4.20) jointly with (4.19) implies our result (after properly renaming ε).

CASE 2: Assume that
ˆ
Bδ(p1)c

eu dVg ≥ τ/2
ˆ

Σ

eu dVg or

ˆ
Bδ(p2)c

e−u dVg ≥ τ/2
ˆ

Σ

e−u dVg.
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Without loss of generality, suppose that the first alternative holds true. Let now δ′ = δ
23/ε . If moreover:

ˆ
Bδ′ (p2)c

e−u dVg ≥ τ/2
ˆ

Σ

e−u dVg,

then we can apply Proposition 4.1.5 to deduce the thesis. Therefore we can assume that

ˆ
Ap2

(Rσ,δ′)

e−u dVg ≥ τ/2
ˆ

Σ

e−u dVg. (4.21)

We can apply the whole procedure of Case 1 to u, just by replacing δ with δ′. In fact, as in Case 1.1, we
would get the inequalities (4.16) and (4.17). However, in this case we have to manage the fact that we
do not know whether holds ˆ

Ap(s′,r)

eu dVg ≥ α
ˆ

Σ

eu dVg,

for some fixed α > 0. This property is needed in (4.17) to get the estimate

log

ˆ
Ap(s′,r)

eũ dVg ≥ log

ˆ
Σ

eu dVg − C,

which allows us to deduce (4.18). To do this, we first apply Jensen and Poincaré-Wirtinger inequalities,
to get

log

ˆ
Ap(s′,r)

eũ dVg ≥ log

ˆ
Ap(r/8,r/4)

eu dVg ≥

log

 
Ap1 (r/8,r/4)

eu dVg − C ≥
 
Ap1 (r/8,r/4)

u dVg − C ≥ −ε
ˆ

Σ

|∇u|2 dVg − C.

Therefore, taking into account (4.21) and the last inequality, from (4.17) we obtain (after properly
renaming ε):

1

16π − ε

ˆ
Ap(s′/2,2r)

|∇ũ|2 dVg ≥ log

ˆ
Σ

eu dVg + 4 log σ − C. (4.22)

Next, we apply Proposition 4.1.3, to get

1

16π − ε

ˆ
Bδ/2(p1)c

|∇u|2 dVg ≥ log

ˆ
Bδ(p1)c

eu dVg + log

ˆ
Bδ(p1)c

e−u dVg.

Reasoning as above and using the hypothesis of Case 2, we can deduce:

1

16π − ε

ˆ
Bδ(p1)c

|∇u|2 dVg ≥ log

ˆ
Σ

eu dVg + 4 log σ − C. (4.23)

Finally we obtain our result by combining (4.23), (4.22) and (4.16).

If we are under the conditions of Cases 1.2, 1.3 and 1.4, the thesis follows arguing in the same way.

Remark 4.2.11 Our goal is to use Proposition 4.2.6 to obtain a lower bound of the functional Iρ under
suitable conditions. The presence of the two functions h1 and h2 in Iρ is not so relevant because of the
following estimates:

log

ˆ
Σ

h1(x) eu dVg ≤ log

ˆ
Σ

eu dVg + log ‖h1‖∞,

log

ˆ
Σ

h2(x) e−u dVg ≤ log

ˆ
Σ

e−u dVg + log ‖h2‖∞.
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4.3 Min-max scheme

Let Σδ be the topological cone over Σ defined in (1.26), and let us set

Dδ = diag
(
Σδ × Σδ

)
=
{

(ϑ1, ϑ2) ∈ Σδ × Σδ : ϑ1 = ϑ2

}
,

X =
(
Σδ × Σδ

)
\Dδ.

Let ε > 0 be sufficiently small and let R, δ, ψ be as in Proposition 4.2.1. Consider then the map Ψ defined
by

Ψ(u) =

(
ψ

(
eu´

Σ
eu dVg

)
, ψ

(
e−u´

Σ
e−u dVg

))
. (4.24)

By Proposition 4.2.6 and Remark 4.2.11, we have a lower bound of the functional Iρ on functions u such
that u ∈ Dδ. Therefore, there exists a large L > 0 such that if Iρ(u) ≤ −L then it follows that Ψ(u) ∈ X.

In [71] the authors proved that even though the set X is non compact, it retracts to some compact
subset Xν . Indeed, we have the following lemma.

Lemma 4.3.1 ([71]) For ν � δ, define

Xν,1 =
{(

(x1, t1), (x2, t2)
)
∈ X : |t1 − t2|2 + d(x1, x2)2 ≥ δ4,

max{t1, t2} < δ,min{t1, t2} ∈
[
ν2, ν

]}
;

Xν,2 =
{(

(x1, t1), (x2, t2)
)
∈ X : max{t1, t2} = δ,min{t1, t2} ∈

[
ν2, ν

]}
,

and set
Xν =

(
Xν,1 ∪ Xν,2

)
⊆ X.

Then there is a retraction Rν of X onto Xν .

Our next goal is to introduce a family of test functions labelled on the set Xν on which the functional
Iρ attains large negative values. For (ϑ1, ϑ2) =

(
(x1, t1), (x2, t2)

)
∈ Xν define

ϕ(y) = ϕ(ϑ1,ϑ2)(y) = log

(
1 + t̃22d(x2, y)2

)2
(
1 + t̃21d(x1, y)2

)2 , (4.25)

where

t̃i = t̃i(ti) =

{
1
ti

for ti ≤ δ
2 ,

− 4
δ2 (ti − δ) for ti ≥ δ

2 ,

for i = 1, 2.

We start by proving the following estimate.

Lemma 4.3.2 For ν sufficiently small, and for (ϑ1, ϑ2) ∈ Xν , there exists a constant C = C(δ,Σ) > 0,
depending only on Σ and δ, such that

1

C

t21
t42
≤
ˆ

Σ

eϕ dVg ≤ C
t21
t42
. (4.26)

Proof. First, observe that the following equality holds true for some fixed positive constant C0:
ˆ
R2

1

(1 + λ2|x|2)
2 dx =

C0

λ2
; λ > 0. (4.27)

To prove the lemma, we distinguish the two cases

|t1 − t2| ≥ δ3 and |t1 − t2| < δ3,

in order to exploit the properties of Xν . Starting with the first alternative, by the definition of Xν and
by the fact that ν � δ, it turns out that one of the ti’s belongs to [ν2, ν], while the other is greater or

equal to δ3

2 .
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If t1 ∈ [ν2, ν] and if t2 ≥ δ3

2 then the function 1 + t̃22d(x2, y)2 is bounded above and below by two
positive constants depending only on Σ and δ. Therefore, using (4.27) we get

t21
C

=
1

Ct̃21
≤
ˆ

Σ

eϕ(y) dVg(y) ≤ C

t̃21
= Ct21.

On the other hand, if t2 ∈ [ν2, ν] and if t1 ≥ δ3

2 then the function 1 + t̃21d(x1, y)2 is bounded above and
below by two positive constants depending only on Σ and δ, hence

ˆ
Σ

eϕ(y) dVg(y) ≥ 1

C

ˆ
Σ

(
1 + t̃22d(x2, y)2

)2
dVg(y) ≥ t̃42

C
=

1

Ct42
,

and similarly ˆ
Σ

eϕ(y) dVg(y) ≤ C
ˆ

Σ

(
1 + t̃22d(x2, y)2

)2
dVg(y) ≤ Ct̃42 =

C

t42
.

In both the last two cases we then obtain the conclusion.

Suppose now that we are in the second alternative, i.e. |t1 − t2| < δ3. Then by the definition of Xν
we have that d(x1, x2) ≥ δ2

2 and that t1, t2 ≤ ν + δ3. Using (4.27) we obtain

ˆ
Σ

eϕ(y) dVg(y) ≥
ˆ
Bδ3 (x1)

eϕ(y) dVg(y) ≥ 1

C

(
1 + t̃22d(x1, x2)2

)2

t̃21
≥ 1

C

t21
t42
.

In an analogous way we derive

ˆ
Bδ3 (x1)

eϕ(y) dVg(y) ≤ C
(
1 + t̃22d(x1, x2)2

)2

t̃21
≤ C t

2
1

t42
.

Finally, by the estimate

ˆ
Bδ3 (x1)c

eϕ(y) dVg(y) ≤ C

t̃41

ˆ
Bδ3 (x1)c

(
1 + t̃22d(x2, y)2

)2
dVg(y) ≤ C t

4
1

t42
,

we are done.

Remark 4.3.3 Notice that for e−ϕ the same result holds true just by exchanging the indices of t1 and
t2.

Proposition 4.3.4 For (ϑ1, ϑ2) ∈ Xν , let ϕ(ϑ1,ϑ2) be defined as in (4.25). Then

Iρ(ϕ(ϑ1,ϑ2))→ −∞ as ν → 0,

uniformly for (ϑ1, ϑ2) ∈ Xν .

Proof. We start by showing the following estimates:
ˆ

Σ

ϕdVg = 4
(
1 + oδ(1)

)
log t1 − 4

(
1 + oδ(1)

)
log t2; (4.28)

1

2

ˆ
Σ

|∇ϕ|2 dVg ≤ 16π
(
1 + oδ(1)

)
log

1

t1
+ 16π

(
1 + oδ(1)

)
log

1

t2
. (4.29)

We begin by proving (4.28). It is convenient to divide Σ into the two subsets

A1 = Bδ(x1) ∪Bδ(x2); A2 = Σ \ A1.

Moreover, we write
ϕ(y) = 2 log

(
1 + t̃22d(x2, y)2

)
− 2 log

(
1 + t̃21d(x1, y)2

)
.

For y ∈ A2 we clearly have that

1

Cδ,Σt21
≤ 1 + t̃21d(x1, y)2 ≤ Cδ,Σ

t21
;

1

Cδ,Σt22
≤ 1 + t̃22d(x2, y)2 ≤ Cδ,Σ

t22
,
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therefore we derive ˆ
A2

ϕdVg = 4
(
1 + oδ(1)

)
log t1 − 4

(
1 + oδ(1)

)
log t2.

Moreover, working in normal geodesic coordinates at xi one also finds

ˆ
Bδ(xi)

log
(
1 + t̃2i d(xi, y)2

)
dVg = oδ(1) log ti.

Using jointly the last two inequalities we obtain (4.28).

We prove now (4.29). We have that

∇ϕ(y) = 2∇ log
(
1 + t̃22d(x2, y)2

)
− 2∇ log

(
1 + t̃21d(x1, y)2

)

=
4 t̃22d(x2, y)∇d(x2, y)

1 + t̃22d(x2, y)2
− 4 t̃21d(x1, y)∇d(x1, y)

1 + t̃21d(x1, y)2
.

From now on we will assume, without loss of generality, that t1 ≤ t2. We distinguish between the case
t2 ≥ δ3 and t2 ≤ δ3.

In the first case the function 1 + t̃22d(x2, y)2 is uniformly Lipschitz with bounds depending only on δ,
and therefore we have

∇ϕ(y) = −4t̃21d(x1, y)∇d(x1, y)

1 + t̃21d(x1, y)2
+Oδ(1).

Let us fix a large constant C1 > 0 and consider the subdivision of the surface Σ into the three domains

B1 = BC1t1(x1); B2 = BC1t2(x2); B3 = Σ \ (B1 ∪B2).

In B1 we have that |∇ϕ| ≤ Ct̃1, while

t̃21d(x1, y)∇d(x1, y)

1 + t̃21d(x1, y)2
=
(
1 + oC1

(1)
)∇d(x1, y)

d(x1, y)
in Σ \B1. (4.30)

These estimates imply that

1

2

ˆ
Σ

|∇ϕ|2 dVg =

ˆ
Σ\B1

|∇ϕ|2 dVg + oδ(1) log
1

t1
+Oδ(1)

= 16π

ˆ 1

C1t1

dt

t
+ oδ(1) log

1

t1
+Oδ(1)

= 16π
(
1 + oδ(1)

)
log

1

t1
+ 16π

(
1 + oδ(1)

)
log

1

t2
+Oδ(1),

recalling that t2 ≥ δ3.

If instead t2 ≤ δ3, by the definition of Xν we have that d(x1, x2) ≥ δ2

2 , and therefore B1 ∩ B2 = ∅.
Similarly to (4.30) we get





t̃21d(x1, y)∇d(x1, y)

1 + t̃21d(x1, y)2
=
(
1 + oC1(1)

)∇d(x1, y)

d(x1, y)

t̃22d(x2, y)∇d(x2, y)

1 + t̃22d(x2, y)2
=
(
1 + oC1

(1)
)∇d(x2, y)

d(x2, y)

in B3.

Moreover we have
|∇ϕ| ≤ Ct̃i in Bi, i = 1, 2.

Therefore we find

1

2

ˆ
Σ

|∇ϕ|2 dVg =

ˆ
B3

|∇ϕ|2 dVg + oδ(1) log
1

t1
+ oδ(1) log

1

t2
+Oδ(1)

= 16π
(
1 + oδ(1)

)
log

1

t1
+ 16π

(
1 + oδ(1)

)
log

1

t2
+Oδ(1),
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for t2 ≤ δ3. This concludes the proof of (4.29).
Finally, the estimates (4.28) and (4.28), jointly with (4.26) and Remark 4.2.11 yield the inequality

Iρ(ϕ) ≤
(
2ρ1 − 16π + oδ(1)

)
log t1+

(
2ρ2 − 16π + oδ(1)

)
log t2 → −∞

as ν → 0, uniformly for (ϑ1, ϑ2) ∈ Xν , since ρ1, ρ2 > 8π.

We next state a technical lemma, that will be of use later on.

Lemma 4.3.5 Let ϕ(ϑ1,ϑ2) be as in (4.25): then, for some C = C(δ,Σ) > 0, the following estimates hold
uniformly in (ϑ1, ϑ2) ∈ Xν :

sup
x∈Σ

ˆ
Brt1 (x)

eϕ dVg ≤ Cr2 t
2
1

t42
∀r > 0. (4.31)

Moreover, given any ε > 0 there exists C = C(ε, δ,Σ), depending only on ε, δ and Σ (but not on ν), such
that ˆ

BCt1 (x1)

eϕ dVg ≥ (1− ε)
ˆ

Σ

eϕ dVg, (4.32)

uniformly in (ϑ1, ϑ2) ∈ Xν .

Proof. By the elementary inequalities
(
1 + t̃22d(x2, y)2

)2 ≤ C
t42

and 1 + t̃21d(x1, y)2 ≥ 1 we have

ˆ
Brt1 (x)

eϕ(y) dVg(y) ≤ C

t42

ˆ
Brt1 (x)

1
(
1 + t̃21d(x1, y)2

)2 dVg(y) ≤ Cr2 t
2
1

t42
for all x ∈ Σ,

which gives the inequality (4.31).

We now prove (4.32). Using again that
(
1 + t̃22d(x2, y)2

)2 ≤ C
t42

we have that

ˆ
Σ\BRt1 (x1)

eϕ(y) dVg(y) ≤ C

t42

ˆ
Σ\BRt1 (x1)

1
(
1 + t̃21d(x1, y)2

)2 dVg(y). (4.33)

Finally, using normal geodesic coordinates centered at x1 and (4.27) with a change of variable, we find

lim
t1→0+

t−2
1

ˆ
Σ\BRt1 (x1)

1
(
1 + t̃21d(x1, y)2

)2 dVg = oR(1) as R→ +∞.

This fact and (4.33), with the estimate (4.26), conclude the proof of the (4.32), by choosing R sufficiently
large, depending on ε, δ and Σ.

Remark 4.3.6 The same result holds if we consider e−ϕ, interchanging the indices of t1 and t2.

We next present a crucial step in describing the topology of low sub-levels, which will allow us to find
a min-max scheme later on.

Proposition 4.3.7 Let L > 0 be so large that Ψ
(
{Iρ ≤ −L}

)
∈ X, and let ν be so small that

Iρ(ϕ(ϑ1,ϑ2)) < −L for (ϑ1, ϑ2) ∈ Xν . Let Rν be the retraction given in Lemma 4.3.1. Then the map
Tν : Xν → Xν defined as

Tν
(
(ϑ1, ϑ2)

)
= Rν

(
Ψ(ϕ(ϑ1,ϑ2))

)

is homotopic to the identity on Xν .

Proof. Let us denote ϑi = (xi, ti) and

f1 =
eϕ(ϑ1,ϑ2)´

Σ
eϕ(ϑ1,ϑ2) dVg

, ψ(f1) = (β1, σ1),

f2 =
e−ϕ(ϑ1,ϑ2)´

Σ
e−ϕ(ϑ1,ϑ2) dVg

, ψ(f2) = (β2, σ2),

96



4.3. Min-max scheme

where ψ is given in Proposition 4.2.1. First, observe that we have the following relations

1

C
≤ σi
ti
≤ C, d (βi, xi) ≤ Cti, (4.34)

for some constant C = C(δ,Σ) > 0, depending only on Σ and δ. Indeed, by (4.32), we have that

σ (xi, fi) ≤ Cti,

where σ(x, f) is the continuous map defined in (4.5). From that, we get that σi ≤ Cti. Moreover, by
(4.31), we get the relation ti ≤ Cσi.

Next, by (4.6) and using again the fact that σ(xi, f) ≤ Cti, we obtain that

d
(
xi, S (fi)

)
≤ Cti,

where S(f) is the set defined in (3.5). But since we have the inequality

d
(
βi, S (fi)

)
≤ Cσi,

we can conclude the proof of (4.34).
We are now able to prove the proposition. The proof will follow by taking into account a composition

of three homotopies. The first deformation H1 is defined in the following way:

((
(β1, σ1)
(β2, σ2)

)
, s

)
H17−→



(
β1, (1− s)σ1 + sκ1

)

(
β2, (1− s)σ2 + sκ2

)


 ,

where κi = min
{
δ, σi√

ν

}
.

We introduce now a second deformation H2, given by

((
(β1, κ1)
(β2, κ2)

)
, s

)
H27−→



(
(1− s)β1 + sx1, κ1

)

(
(1− s)β2 + sx2, κ2

)


 ,

where (1− s)βi + sxi stands for the geodesic joining βi and xi in unit time. Observe that, if κi < δ, then
we have that σi <

√
νδ. Therefore by choosing ν small enough, we have that βi and xi are close to each

other, by (4.34). Instead, if κi = δ, the equivalence relation in Σδ makes the above deformation a trivial
identification.

We perform a third deformation H3 defined by

((
(x1, κ1)
(x2, κ2)

)
, s

)
H37−→



(
x1, (1− s)κ1 + st1

)

(
x2, (1− s)κ2 + st2

)


 .

Finally, we define H as the composition of these three homotopies. Then,

(
(ϑ1, ϑ2), s

)
7→ Rν ◦H

(
Ψ(ϕ(ϑ1,ϑ2)), s

)

gives us the desired homotopy to the identity. Indeed, we observe that, since ν � δ, H(Ψ(ϕ(ϑ1,ϑ2)), s)
always belongs to X, so that Rν can be applied.

Remark 4.3.8 In [71] the authors proved that the set X = Σδ × Σδ \Dδ is not contractible. Indeed, if
Σ = S2, then Σδ can be identified with B1(0) ⊂ R3 and it turns out that X ' S2, where ' stands for
homotopical equivalence. The case of positive genus is not so easy. However, the authors proved that X
is not contractible by showing that its cohomology group H4(X) is not trivial.

We now introduce the min-max scheme which provides existence of solutions for equation (4.1). The
argument is developed exactly as in Section 2.3, so we will be sketchy.
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4. A mean field equation: a first existence result in a doubly supercritical case

Let X ν be the topological cone over Xν , which can be represented as

X ν =
Xν × [0, 1]

Xν × {1}
,

where the equivalence relation identifies all the points in Xν × {1}. We choose L > 0 so large that
Iρ(u) ≤ −L implies that Ψ(u) ∈ X and then ν so small that

Iρ(ϕ(ϑ1,ϑ2)) ≤ −4L (4.35)

uniformly for (ϑ1, ϑ2) ∈ Xν . The existence of such ν is guaranteed by Proposition 4.3.4. Fixing this value
of ν, we define the following class:

H =
{
h : X ν → H1(Σ) : h is continuous and h

(
· × {0}

)
= ϕ(ϑ1,ϑ2) on Xν

}
. (4.36)

To prove that H 6= ∅, we just notice that the map

h̄(ϑ, s) = sϕ(ϑ1,ϑ2), (ϑ, s) ∈ X ν , (4.37)

belongs to H . Consider then the min-max value

m = inf
h∈H

sup
ξ∈Xν

Iρ
(
h(ξ)

)
.

Letting Φν : Xν → H1(Σ) be the map defined by

Φν((ϑ1, ϑ2)) = ϕ(ϑ1,ϑ2), (ϑ1, ϑ2) ∈ Xν ,

from Proposition 4.3.7 and Remark 4.3.8 we deduce that

Φν(Xν) is not contractible in J−Lρ .

Reasoning as in Section 2.3 we then obtain that m > −2L.

By classical arguments, the latter estimate and (4.35) yield a Palais-Smale sequence at level m.
However, we cannot directly conclude the existence of a critical point, since it is not known whether the
Palais-Smale condition holds or not. To avoid this problem and get the conclusion, we need a different
argument, namely the monotonicity trick introduced by Struwe in [88], see Lemma 2.3.1, jointly with the
compactness result in Theorem 4.1.1, see Section 2.3 for the description of the general strategy.
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Chapter 5

A mean field equation: existence and
multiplicity results

In this chapter we continue the analysis of the following mean field equation with two parameters on a
compact surface Σ in a general non-coercive regime:

−∆u = ρ1

(
h eu´

Σ
h eu dVg

− 1

)
− ρ2

(
h e−u´

Σ
h e−u dVg

− 1

)
, (5.1)

where ρ1, ρ2 are real parameters and h is a smooth positive function, see Section 1.2 for an introduction
to the topic. As noticed in Subsection 1.2.2, we consider here just one potential h, differently from
equation (4.1) in Chapter 4, in order to apply the general compactness result in Theorem 1.2.1.

The chapter is divided into three parts. The first one (Section 5.1) concerns the existence problem
to equation (5.1). Adapting the strategy presented for the Toda system in Chapter 2 (see also Subsec-
tion 1.1.1), we will give the following general existence result (still part of the paper [9]), see Section 5.1
for the proof.

Theorem 5.0.1 Let h be a smooth positive function. Suppose Σ is not homeomorphic to S2 nor RP2,
and that ρi /∈ 8πN for i = 1, 2. Then (5.1) has a solution.

In the second part of the chapter (Section 5.2) we address instead the multiplicity aspect of the problem,
see Subsection 1.2.2. Indeed, exploiting the analysis developed for the existence problem, we are able to
get the following result, which is stated in the paper [47], see Section 5.2 for the proof.

Theorem 5.0.2 Let ρ1 ∈ (8kπ, 8(k + 1)π) and ρ2 ∈ (8lπ, 8(l + 1)π), k, l ∈ N and let Σ be a compact
surface with genus g(Σ) > 0. Then, for a generic choice of the metric g and of the function h it holds

#
{

solutions of (5.1)
}
≥
(
k + g(Σ)− 1

g(Σ)− 1

)(
l + g(Σ)− 1

g(Σ)− 1

)
.

Here, by generic choice of (g, h) we mean that it can be taken in an open dense subset ofM2×C 2(Σ)+,
where M2 stands for the space of Riemannian metrics on Σ equipped with the C 2 norm, see Proposi-
tion 5.2.4.

In the last part of the chapter (Section 5.3) we attack the problem with a different point of view (differently
from Chapter 4 and the first two parts of the present chapter) and for the first time we analyze the
associated Leray-Schauder degree, see Subsection 1.2.2. The argument presented here is stated in the
note [46]. More precisely, by considering the parity of the Leray-Schauder degree we prove the following
existence result, see Section 5.3 for the proof.

Theorem 5.0.3 Let h > 0 be a smooth function and suppose ρi ∈ (8kπ, 8(k + 1)π), k ∈ N for i = 1, 2.
Then problem (5.1) has a solution.
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5. A mean field equation: existence and multiplicity results

As observed in Subsection 1.2.2, the above theorem provides a new existence result in the case when the
underlying manifold Σ is a sphere and gives a new proof for other known results.

The chapter is organized as follows: in Section 5.1 we adapt the strategy developed in Chapter 2
to prove the existence result of Theorem 5.0.1, in Section 5.2 we collect some results concerning Morse
theory and we provide a proof for the multiplicity result of Theorem 5.0.2, in Section 5.3 we prove the
new existence result of Theorem 5.0.3 by using the degree theory.

5.1 A general existence result

In this section we prove the main result concerning the existence problem, see Theorem 5.0.1. The proof
is an adaptation of the argument introduced for the Toda system in Chapter 2 (see also Subsection 1.1.1).
Therefore, we will present here just the main steps. Roughly speaking the role of the function u2 is played
by −u.

We start by taking two curves γ1, γ2 ∈ Σ with the same properties as in Lemma 2.1.1 (see also
Figure 2.1). We consider then the topological join (γ1)k ∗ (γ2)l, see (1.17) and (1.15), on which we will
base the min-max scheme. Let ζ ∈ (γ1)k ∗ (γ2)l, ζ = (1− s)σ1 + sσ2, with

σ1 :=

k∑

i=1

tiδxi ∈ (γ1)k and σ2 :=

l∑

j=1

sjδyj ∈ (γ2)l.

We define now a test function labelled by ζ ∈ (γ1)k ∗ (γ2)l, namely for large L we will find a non-trivial
map

Φ̃λ : (γ1)k ∗ (γ2)l → I−Lρ .

We set Φ̃λ(ζ) = ϕλ,ζ given by

ϕλ,ζ(x) = log

k∑

i=1

ti

(
1

1 + λ2
1,sd(x, xi)2

)2

− log

l∑

j=1

sj

(
1

1 + λ2
2,sd(x, yj)2

)2

,

where λ1,s = (1− s)λ, λ2,s = sλ.

The following result holds true.

Proposition 5.1.1 Suppose ρ1 ∈ (8kπ, 8(k + 1)π) and ρ2 ∈ (8lπ, 8(l + 1)π). Then one has

Iρ(ϕλ,ζ)→ −∞ as λ→ +∞ uniformly in ζ ∈ (γ1)k ∗ (γ2)l.

Proof. The proof is developed exactly as in Proposition 2.1.3. Here we just sketch the main features.
We define ṽ1, ṽ2 : Σ→ R by

ṽ1(x) = log

k∑

i=1

ti

(
1

1 + λ2
1,sd(x, xi)2

)2

,

ṽ2(x) = log

l∑

j=1

sj

(
1

1 + λ2
2,sd(x, yj)2

)2

,

so that ϕ = ṽ1 − ṽ2.
The Dirichlet part of the functional Iρ is given by

1

2

ˆ
Σ

|∇ϕ|2 dVg =
1

2

ˆ
Σ

(
|∇ṽ1|2 + |∇ṽ2|2 − 2∇ṽ1 · ∇ṽ2

)
dVg ≤

1

2

ˆ
Σ

|∇ṽ1|2 dVg +
1

2

ˆ
Σ

|∇ṽ2|2 dVg + C,

where we have used ∣∣∣∣
ˆ

Σ

∇ṽ1 · ∇ṽ2 dVg

∣∣∣∣ ≤ C.
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5.1. A general existence result

We first study the cases s = 0 and s = 1, starting from s = 0. The case s = 1 can be treated in the same
way and will be omitted. Observing that ∇ṽ2 = 0 and taking into account the estimates (3.110), (3.111)
on the gradient of ṽ1 we get

1

2

ˆ
Σ

|∇ϕ|2 dVg ≤ 16kπ
(
1 + oλ(1)

)
log λ+ C,

where oλ(1)→ 0 as λ→ +∞.
Reasoning as in Proposition 2.1.3 we obtainˆ

Σ

ϕdVg = −4
(
1+oλ(1)

)
log λ; log

ˆ
Σ

eϕ dVg = −2
(
1+oλ(1)

)
log λ; log

ˆ
Σ

e−ϕ dVg = 4
(
1+oλ(1)

)
log λ.

Therefore we get
Iρ(ϕλ,ζ) ≤

(
16kπ − 2ρ1 + oλ(1)

)
log λ+ C,

where C is independent of λ and σ1, σ2.
We consider now the case s ∈ (0, 1). We can reason as before to estimate the Dirichlet part by

1

2

ˆ
Σ

|∇ϕ|2 dVg ≤ 16kπ
(
1 + oλ(1)

)
log
(
λ1,s + δ1,s

)
+ 16lπ

(
1 + oλ(1)

)
log
(
λ2,s + δ2,s

)
+ C,

where δ1,s > δ > 0 as s→ 1 and δ2,s > δ > 0 as s→ 0. Following the argument in Proposition 2.1.3 we
obtain ˆ

Σ

ϕdVg = −4
(
1 + oλ(1)

)
log
(
λ1,s + δ1,s

)
+ 4
(
1 + oλ(1)

)
log
(
λ2,s + δ2,s)

)
+O(1),

log

ˆ
Σ

eϕ dVg = 4 log
(
λ2,s + δ2,s

)
− 2 log

(
λ1,s + δ1,s

)
+O(1),

log

ˆ
Σ

e−ϕ dVg = 4 log
(
λ1,s + δ1,s

)
− 2 log

(
λ2,s + δ2,s

)
+O(1).

Using these estimates we get

Iρ(ϕλ,ζ) ≤
(
16kπ − 2ρ1 + oλ(1)

)
log
(
λ1,s + δ1,s

)
+
(
16lπ − 2ρ2 + oλ(1)

)
log
(
λ2,s + δ2,s

)
+O(1).

By assumption we have ρ1 > 8kπ, ρ2 > 8lπ and exploiting the fact that max
s∈[0,1]

{λ1,s, λ2,s} → +∞ as

λ→∞, we deduce the thesis.

Once we have this result we can proceed exactly as in Section 2.2. One gets indeed an analogous improved
Moser-Trudinger inequality as in Lemma 2.2.3. We have just to observe that a local Moser-Trudinger
inequality still holds in this case, as pointed out in Chapter 4, see Proposition 4.1.3

Therefore, considering ρ1 ∈ (8kπ, 8(k+1)π) and ρ2 ∈ (8lπ, 8(l+1)π), we deduce that on low sub-levels

of the functional Iρ at least one of the component of

(
heu´

Σ
heudVg

,
he−u´

Σ
he−udVg

)
has to be very close to

the sets of k- or l- barycenters over Σ, respectively, see Proposition 2.2.6 for details. It is then possible
to construct a continuous map

Ψ̃ : I−Lρ → (γ1)k ∗ (γ2)l

with L sufficiently large, such that the composition

(γ1)k ∗ (γ2)l
Φ̃λ−→ I−Lρ

Ψ̃−→ (γ1)k ∗ (γ2)l

is homotopically equivalent to the identity map on (γ1)k ∗ (γ2)l provided that λ is large enough. Ψ̃ is
defined as in (3.2), where basically eu2 is replaced by e−u:

Ψ̃(u) = (1− s̃)(Π1)∗ψk

(
heu´

Σ
heudVg

)
+ s̃(Π2)∗ψl

(
he−u´

Σ
he−udVg

)
.

With this at hand we argue as in Section 2.3 introducing a min-max scheme based on the set (γ1)k ∗(γ2)l.
Allowing (ρ1, ρ2) to vary in a compact set of (8kπ, 8(k + 1)π)× (8lπ, 8(l + 1)π) we obtain a sequence of
solutions (un)n corresponding to (ρ1,n, ρ2,n) → (ρ1, ρ2), see Lemma 2.3.1. We finally get a solution for
(ρ1, ρ2) by applying the compactness result in Theorem 1.2.1.
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5. A mean field equation: existence and multiplicity results

5.2 A multiplicity result

In this section we present the proof concerning the multiplicity issue to problem (5.1), see Theorem 5.0.2
(see Subsection 1.2.2 for the strategy). We start by presenting a deformation lemma for equation (5.1)
and by stating some useful results in Morse theory, see the next two subsections.

5.2.1 Compactness property and a Deformation Lemma

We recall here the compactness result concerning equation (5.1), see Theorem 1.2.1. It hold that if
ρi 6= 8πN, i = 1, 2, then the set of solutions to equation (5.1) is compact. We will need the latter
compactness property to bypass the Palais-Smale condition, since it is not know whether it holds or
not for this class of equations. More precisely, one can adapt the strategy in [65], where a deformation
lemma for the Liouville equation (1.9) was presented, for our framework, see also [67], [89]. One has the
next alternative: either there exists a critical point of the functional Iρ inside some interval or there is
a deformation retract between the relative sub-levels. Recall the notation for the sub-levels Iaρ given in
Section 1.3.

Lemma 5.2.1 If ρi 6= 8πN, i = 1, 2 and if a < b ∈ R are such that Iρ has no critical levels inside the
interval [a, b], then Iaρ is a deformation retract of Ibρ.

Here, by deformation retract of a space X onto some subspace A ⊆ X we mean a continuous map
R : [0, 1] ×X → X such that R(t, a) = a for all (t, a) ∈ [0, 1] × A and such that the final target of R is
contained in A, i.e. R(1, ·) ∈ A.

Notice now that by the compactness result of Theorem 1.2.1 it follows that Iρ has no critical points
above some high level b� 0. Therefore, one can obtain a deformation retract of the whole Hilbert space
H1(Σ) onto the sub-level Ibρ by following a suitable gradient flow, see for example Corollary 2.8 in [67]
(with minor adaptations). Somehow, the absence of critical points of Iρ above the level b prevents us
from having obstructions while following the flow, see Figure 5.1.

H1(Σ){Iρ ≤ b}

Figure 5.1: The deformation retract onto the sub-level Ibρ.

Proposition 5.2.2 Suppose ρi 6= 8πN, i = 1, 2. Then, there exists b > 0 sufficiently large such that the
sub-level Ibρ is a deformation retract of H1(Σ). In particular, it is contractible.

The aim will be then to show how rich is the topological structure of the very low sub-levels of Iρ and
apply the Morse inequalities of Theorem 5.2.3 to deduce the main result of Theorem 5.0.2.

5.2.2 Morse Theory

We recall here some classical results from Morse theory, which will be the main tool in proving Theo-
rem 5.0.2.
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5.2. A multiplicity result

Letting N be a Hilbert manifold, we recall first that a function f ∈ C2(N,R) is called a Morse function
if all its critical points are non-degenerate. Moreover, the number of negative eigenvalues of the Hessian
matrix at a critical point is called the index of the critical point. If a < b are regular values of f we then
define the following sets:

Cq(a, b) = #
{

critical points of f in {a ≤ f ≤ b} with index q
}
,

βq(a, b) = rank
(
Hq

(
{f ≤ b}, {f ≤ a}

))
.

(5.2)

For the proof of the following result we refer for example to Theorem 4.3 in [25].

Theorem 5.2.3 ([25]) Let N be a Hilbert manifold and f ∈ C2(N,R) be a Morse function satisfying the
Palais-Smale condition. Let a < b be regular values of f and Cq(a, b), βq(a, b) be as in (5.2). Then the
(respectively) strong and weak Morse inequalities hold true:

n∑

q=0

(−1)n−qCq(a, b) ≥
n∑

q=0

(−1)n−qβq(a, b), n = 0, 1, 2, . . .

Cq(a, b) ≥ βq(a, b), n = 0, 1, 2, . . .

The strategy will be to apply this result in our framework, namely with N = H1(Σ) and f = Iρ. We
point out that the Palais-Smale condition is not necessarily needed for the Theorem 5.2.3 to hold, in fact
it can be replaced by appropriate deformation lemmas for f , see Lemma 3.2 and Theorem 3.2 in [25].
The validity of such deformation lemmas can be obtained by following the ideas in [67], where a gradient
flow for the scalar case (1.9) is defined.

For what concerns the assumption of f to be a Morse function, one can repeat (with minor adaptations)
the argument in [30], which relies on a transversality result from [85], to obtain the following result:

Proposition 5.2.4 ([30]) Suppose ρi 6= 8πN, i = 1, 2. Then, for (g, h) in an open dense subset of
M2 × C 2(Σ)+, Iρ is a Morse function.

By the above discussion it follows that we are in position to apply Theorem 5.2.3 in our setting.

5.2.3 Proof of Theorem 5.0.2

We have now all the tools in order to prove the main result of Theorem 5.0.2. Since the high sub-levels of
Iρ are contractible, see Proposition 5.2.2, the goal will be to describe the topology of the low sub-levels.

Σ
Bg(Σ)

Figure 5.2: The bouquet Bg(Σ) of g(Σ) circles.

This will be done by means of a bouquet of circles and its homology will give then a bound of the
number of solutions to (5.1) by Theorem 5.2.3.

We recall that a bouquet BN of N circles (see Figure 5.2) is defined as BN = ∪Ni=1Si, where Si is
homeomorphic to S1 and Si ∩Sj = {c}, and c is called the center of the bouquet. The first simple result
we need is the following, see the proof of Proposition 3.1 in [3]:
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5. A mean field equation: existence and multiplicity results

Lemma 5.2.5 Let Σ be a surface with g(Σ) > 0. Then, there exist two curves γ1, γ2 ⊆ Σ satisfying (see
Figure 5.3)

(1) γ1 and γ2 do not intersect each other;

(2) each of γ1 and γ2 are homeomorphic to respectively two disjoint bouquets of g(Σ) circles, see Fig-
ure 5.2;

(3) there exist global retractions Πi : Σ→ γi, i = 1, 2.

Σ

γ1

γ2

Figure 5.3: The curves γ1 and γ2.

We will now exploit the analysis developed in Section 5.1 to describe the topology of the low sub-levels
of the functional Iρ. As mentioned before, by means of improved Moser-Trudinger inequalities one can
deduce that if ρ1 < 8(k + 1)π and ρ2 < 8(l + 1)π, then either eu is close to Σk or e−u is close to Σl, see
(1.15). This alternative is then expressed using the notion the topological join of Σk and Σl, see (1.17).
Finally, applying the retractions Π1,Π2 introduced in the above lemma, low energy sub-levels may be
described in terms of (γ1)k ∗ (γ2)l only.

In fact, one can project the low sub-levels of Iρ onto the latter set, see the proof of Proposition 2.2.7
and Section 5.1: for ρ1 ∈ (8kπ, 8(k + 1)π), ρ2 ∈ (8lπ, 8(l+ 1)π) and for L sufficiently large there exists a
continuous map

Ψ̃ : I−Lρ → (γ1)k ∗ (γ2)l.

One the other hand, it is possible to do the converse, mapping (γ1)k ∗ (γ2)l into the low sub-levels using
suitable test functions, see Proposition 5.1.1 and the notation before it:

Φ̃ : (γ1)k ∗ (γ2)l → I−Lρ .

The above maps are somehow natural in the description of the low sub-levels as we have the following
important result, see Proposition 2.2.7 and Section 5.1: the composition of the above maps Φ̃ and Ψ̃ is
homotopically equivalent to the identity map on (γ1)k ∗ (γ2)l, i.e.

Φ̃ ◦ Ψ̃ ' Id(γ1)k∗(γ2)l .

By the latter homotopy equivalence we directly deduce that the homology groups of (γ1)k ∗ (γ2)l are

mapped injectively into the homology groups of I−Lρ through the map induced by Φ̃.

Corollary 5.2.6 Suppose ρ1 ∈ (8kπ, 8(k+ 1)π), ρ2 ∈ (8lπ, 8(l+ 1)π) and L sufficiently large. Then, for
any q ∈ N we have

Hq

(
(γ1)k ∗ (γ2)l

)
↪→ Hq

(
I−Lρ

)
.

As a consequence of the above result we obtain a bound of the number of solutions to (5.1) by Theo-
rem 5.2.3. One has just to observe that by Proposition 5.2.2, taking L ≥ b, the sub-level ILρ is contractible
and therefore, by the long exact sequence of the relative homology, it follows that

Hq+1

(
ILρ , I

−L
ρ

) ∼= H̃q

(
I−Lρ

)
, q ≥ 0,

H0

(
ILρ , I

−L
ρ

)
= 0,

where H̃q(X) of a topological set X is defined in the Section 1.3 and ∼= stands for homeomorphisms be-
tween topological spaces or isomorphisms between groups. Recalling the definition of βq(a, b) introduced

in (5.2) and the notation of β̃q given in the Section 1.3, the next result holds true by the above discussion
and by taking a = −L in Theorem 5.2.3.
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5.3. New existence results via degree theory

Proposition 5.2.7 Suppose ρ1 ∈ (8kπ, 8(k + 1)π), ρ2 ∈ (8lπ, 8(l + 1)π) and L sufficiently large. Then,
for any q ∈ N it holds that

βq+1(L,−L) ≥ β̃q
(
(γ1)k ∗ (γ2)l

)
.

The next step is then to compute the homology groups of the topological join (γ1)k ∗ (γ2)l. We recall
that the two curves γ1 and γ2 were chosen such that there are homeomorphic to respectively two disjoint
bouquets, see Lemma 5.2.5. The homology group of the barycenters over this object was computed in
Proposition 3.2 of [3].

Proposition 5.2.8 ([3]) Let BN be a bouquet of N circles. Then, we have that

H̃q

(
(BN )j

) ∼=
{

Z(j+N−1
N−1 ) if q = 2N − 1,

0 if q 6= 2N − 1.

Finally, it is well known that the homology groups of the topological join of two sets A and B are expressed
in terms of the sum of the homology groups of each set, see [43].

Proposition 5.2.9 ([43]) Given two topological sets A and B we have

H̃q(A ∗B) ∼=
q⊕

i=0

H̃i(A)⊗ H̃q−i−1(B).

In particular it holds that

β̃q(A ∗B) =

q∑

i=0

β̃i(A) β̃q−i−1(B).

We are now in position to deduce the main Theorem 5.0.2. The proof will follow by applying the weak
Morse inequality stated in Theorem 5.2.3 jointly with Proposition 5.2.7 and Propositions 5.2.8, 5.2.9.
More precisely we get

#
{

solutions of (5.1)
}
≥ Cq+1(L,−L)

Thm 5.2.3
≥ βq+1(L,−L)

Prop 5.2.7

≥ β̃q
(
(γ1)k ∗ (γ2)l

)

Prop 5.2.8 +Prop 5.2.9

≥
(
k + g(Σ)− 1

g(Σ)− 1

)(
l + g(Σ)− 1

g(Σ)− 1

)

and the proof is concluded.

5.3 New existence results via degree theory

We give here the proof of the new existence result, see Theorem 5.0.3, which is based on the Leray-
Schauder degree associated to the equation (5.1).

For some α ∈ (0, 1) let C2,α
0 (Σ) be the class of C2,α functions with zero average. Consider now the

mapping T : C2,α
0 (Σ)→ C2,α

0 (Σ) defined by

T (u) = (−∆)−1

(
ρ1

(
h eu´

Σ
h eu dVg

− 1

)
− ρ2

(
h e−u´

Σ
h e−u dVg

− 1

))
, (5.3)

where (−∆)−1f, f ∈ Cα(Σ), is intended as the solution v, with zero average, of the problem −∆v = f ,
which is unique. We are concerned with the map Ψ = Id − T and the solutions of equation (5.1) will
correspond to zeros of Ψ.

Clearly, by elliptic regularity theory the operator T is compact. Moreover, the set of the solutions is
compact for parameters (ρ1, ρ2) /∈ (8πN×R)∪ (R× 8πN), see Theorem 1.2.1. Therefore, we can consider
the associated degree deg

(
Ψ(ρ1,ρ2), Br(0), 0

)
which is well-defined for r sufficiently large.

Consider now ρi ∈ (8kπ, 8(k + 1)π), k ∈ N for i = 1, 2. Letting ρ = 1
2 (ρ1 + ρ2), we perform the

following homotopy which takes place in a connected component of R2 \ ((8πN× R) ∪ (R× 8πN)):

h(t) = (1− t)(ρ1, ρ2) + t(ρ, ρ).
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5. A mean field equation: existence and multiplicity results

From the fact that the degree is constant along homotopies we obtain that

deg
(
Ψ(ρ1,ρ2), Br(0), 0

)
= deg

(
Ψ(ρ,ρ), Br(0), 0

)
.

Observe now that by the structure of T we deduce

Ψ(ρ,ρ)(−u) = −Ψ(ρ,ρ)(u).

Therefore, we conclude that Ψ(ρ,ρ) is an odd operator. By the Borsuk theorem, see [57], it follows
that the associated degree is odd an hence non zero. This guarantees us the existence of a solution to
equation (5.1).
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