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Chapter 1

Introduction

The present thesis deals with sharp Moser-Trudinger type inequalities and blow-up analysis for
elliptic problems involving critical exponential nonlinearities in dimension two. Let © C R? be
a bounded domain, from the well known Sobolev’s inequality
17

IIUIIL%(Q) < SplVullr)  p€(1,2), ue Wy (Q), (1.1)
one can deduce that the Sobolev space Hi(Q) := WH2(Q) is embedded into LI(Q) V¢ > 1. A
much more precise result was proved in 1967 by Trudinger [84]: on bounded subsets of H{(Q)
one has uniform exponential-type integrability. Specifically, there exists S > 0 such that

sup / P’ dz < +o0. (1.2)
w€HG(Q), [q [Vul?dz<1 /9

This inequality was later improved by Moser in [68], who proved that the sharp exponent in
(1.2) is 8 = 4m, that is

sup / ™ g < 400, (1.3)
w€H(Q), [ |Vul?2dz<1/Q

and

sup / P dz = 400 (1.4)
weH(Q), [ |Vul|?2dz<1/Q

for 3 > 4. The same inequality holds if (2, |dz|?) is replaced by a smooth closed surface and
the boundary condition by a zero mean value condition. More precisely, if (X, g) is a smooth,
closed Riemannian surface and

H = {u cHY(Y) : / Vuldvg <1, / u dvg = 0}, (1.5)
X b

in [42] Fontana proved

sup/ 64”“2dvg < +o0 (1.6)
ueH JX



and

Sup/ eﬁUZdvg = +00 (1.7)
ueH JX

V 5 > 4m. Moser’s interest in finding sharp forms of (1.2) was motivated by the strict connection
between these kind of inequalities and Nirenberg’s problem of prescribing the curvature of S2.
More generally, given a smooth closed surface ¥ and a function K € C°°(X), a classical problem
consists in determining whether K can be realized as the Gaussian curvature of a smooth metric
g on Y. The Gauss-Bonnet condition

/ Kdvg, = 4mx (%),
b
clearly gives the following necessary conditions on the sign of K:
x(2) <0 = mzinK < 0;
x(X)=0 = K =0 or K changes sign; (1.8)
X(2) >0 = mng > 0.
In [47] (see also [48]) Kazdan and Warner proved that if x(X) < 0 the conditions in (1.8) are
indeed necessary and sufficient. However they also proved that this is not true if ¥ = S%2. A
possible way of studying the Gaussian curvature problem consists in looking for solutions among

the class of metrics on ¥ which are pointwise conformally equivalent to a pre-assigned metric g.
Indeed a metric of the form e*g has Gaussian curvature K if and only if u is a solution of

1
- iAgu = Ke" - K, (1.9)

where K,, A, denote the Gaussian curvature and the Laplace-Beltrami operator of (¥, g). It is
not difficult to see that, if x(X) # 0 and K|, is constant, (1.9) is equivalent to

Ke* 1
—Aju = _— 1.1
gu=r <f2 Kevdv, |E]> (1.10)

with p = 47x(¥), which is known as the Liouville equation on ¥. Solutions of (1.10) can be
obtained as critical points of the functional

1 P 1
JE (u ::/ Vul?dv —i—/udv — plog (/Ke“dv ) 1.11
p( ) 9 2’ | g |Z| 5 g ‘E| . g ( )

As a consequence of inequality (1.3), Moser proved that Jgfr is bounded from below and J /f( is
coercive on the space

Hy = {u c H'(Y) : /Eu dvy = 0} (1.12)

for p < 8m. In particular, using direct minimization, he was able to prove existence of solutions
of (1.9) on the projective plane or, equivalently, on S? under the assumption K(z) = K(—x)
vV x € S%2. Without symmetry, minimization techniques are not sufficient to study equation



(1.9). We refer the reader to [24], [25] and [79], where existence of solutions is proved under
nondegeneracy assumptions on the critical points of K, through min-max schemes or a curvature
flow approach. Existence results for (1.10) with p > 87 were obtained in [38], [80], [39], [62].

A more general problem consists in studying curvature functions for compact surfaces with
conical singularities. We recall that, given a finite number of points py,...,pm € X, a metric
with conical singularities of order ag,...,a, > —1in p1,...,pm, is a metric of the form e%g
where ¢ is a smooth metric on X, and v € C*°(X\{p1,...,pm}) satisfies

|u(x) + 2a; log d(x, p;)| < C near p;, i = 1,...,m.

It is possible to prove (see for example Proposition 2.1 in [6]) that a metric of this form has
Gaussian curvature K if and only if u is a distributional solution of the singular Gaussian
curvature equation

— Agu=2Ke" — 2K, — 41 Y iy, (1.13)
=1

If x(X)+>7", a; # 0 and K is constant, (1.13) is equivalent to the singular Liouville equation

Ke" 1 = 1

i=1
for

P = Pgeom = 4T (X(E) + Zaz> . (1.15)
i=1

Although we introduced equations (1.10) and (1.14) starting from the Gaussian curvature prob-
lem, they have also been widely studied in mathematical physics. For example, they appear
in the description of Abelian vortices in Chern-Simmons-Higgs theory, and have applications in
fluid dynamics ([67], [85]), Superconductivity and Electroweak theory ([81], [43]). Denoting by
G the Green’s function of (X, g), i.e. the solution of

—AyG(z,-) =0, on X
1.16
{ fE G(x7y)dvg<y) =0, ( )
the change of variable u «— u+ 47 )" ;G (z, p;) reduces (1.14) to
he" 1
“Au=p( 1.17
w=o (e, ) )
that is (1.10) with K replaced by the singular weight
h,(x) — Ke 4m ity aiGp,; (1.18)

Thus, as in absence of singularities, finding solutions of (1.14) is equivalent to proving existence
of critical points for the singular Moser-Trudinger functional J g. We stress that h satisfies

h e C®(E\{p1,---.Pm}) and  h(z) ~ d(x, p;)** with a; > —1 near p;, (1.19)



i = 1,...,m. In the same spirit of Moser’s work, in [83] Troyanov tried to minimize Jg by
finding a sharp version of the Moser-Trudinger inequality for metrics with conical singularities.
In particular he proved (see also [30]) that if h € CO(S\{p1,...,pm}) satisfies (1.19), then

sup/ h e’ dx < 400 = B <4n(1+a) (1.20)
ueH JX
where
a:min{O, min ai}. (1.21)
1<i<m

As a consequence one has

log 1/ he" "dv, | < 1/ |Vul|?dv, + C (2, g, h) (1.22)

x| Js 7) T 16r(1+@) Jy g e '

where the coefficient m is sharp. In particular

p<8r(l+a) = JF’} is bounded from below on H'(X) and coercive on Ho;
p=8r(l+a@) = J;} is bounded from below on H!(%); (1.23)

p>8r(l+a) == infy(y) gz—oo.

For p < 87n(1 4+ @), the coercivity of J ;} yields existence of minimum points. The case p >
87(1 + @) has been studied mainly with two different approaches: topological methods and
the Leray-Schauder degree theory. In both methods, a fundamental role is played by blow-up
analysis for sequences of solutions of (1.17) and, in particular, by the the following concentration-
compactness alternative:

Theorem 1.1. Let h be a positive function satisfying (1.18) with K € C*(X), K > 0 and let
u, € Hy be a sequence of solutions of (1.17) with p = p, > 0 and p, — p. Then, up to
subsequences, one of the following holds:

(i) |un(x)| < C with C depending only on p, K, and aq,. .., Q.
(i) There exists a finite set S :={q,...,qx} C X such that

e For any j = 1,...,k there exists a sequence {q%}neN such that qu — q; and
un(q,) — +00.

e u, — —oo uniformly on any compact subset of ¥\ S.

un k .
. Pn% — ijl Bjdq; weakly as measures, where B = 8 if ¢ € X\S and

B =8m(1+ o) if ¢j = pi for some 1 <1< m.

This statement is the combination of the work of several authors. Blow-up analysis for Liouville-
type equations was first studied by Brezis and Merle in [18]. Their work was later completed by
Li and Shafrir in [51] and [50] in the regular case m = 0, while the singular case was considered



in [5] and [8] by Bartolucci, Montefusco and Tarantello. Clearly alternative (7i) in Theorem 1.1
is possible only if the limit parameter p belongs to the set

m m
F(al, ... ,Oén) = {Sﬂ'k‘o + 871'2]61‘(1 + Oéi) t ko e NJk; € {0, 1}, Zkﬁl > 0} . (1.24)
i=1 =0
More precisely, combining Theorem 1.1 with standard elliptic estimates, one can prove that
if A is a compact subset of [0,4+00)\I'(a1,...,ay), then the set of all the solutions in Hy of
(1.17) with p € A is a compact subset of H*(¥). This compactness condition can be used
to prove a deformation Lemma (see [60]) for the functional J g: given p & I'(aq,...,q,) and
a,b € R with a < b, if there is no critical point of J,ZL in {a < J;L < b}, then the sublevel
{J g < a} is a deformation retract of {J g < b}. The boundedness of the set of solutions implies
that high sublevels of J ;} are contractible, thus one can prove existence of solutions by showing
that low sublevels of JZ} have nontrivial topology. In the regular case m = 0 this was done
by Djadli and Malchiodi in [62] and [39]. They used an improved version of (1.22) to prove
that, for p € (87k,8m(k + 1)), functions belonging to sufficiently low sublevels of J;L must
be concentrated around at most £ points on 3. This concentration property shows that low
sublevels are homotopy equivalent to the set of formal baricenters

k k
S 1= {Ztiém P €N, te[01], > b= 1},
i=1

i=1

which in noncontractible. Therefore they prove existence of solutions of (1.10) for any positive
function K and p € [0,400)\87N. In the presence of singularities, describing the topology of
sublevels of J;L becomes more complicated. In [6], the authors considered the case of positive
order singularities (i.e. a; > 0V ¢). If ¥ is orientable and g(X) denotes the genus of X, they
proved that is possible to embed a bouquet of g(X) circles into sufficiently low sublevels. Hence,
if g(X) > 1, one has existence of solutions of (1.17) whenever p ¢ I'(aq,. .., ). The condition
g(X) > 1 cannot be removed, indeed we will see that on S? it is possible to have nonexistence of
solutions also for noncritical values of p. However in [7] it is proved that solutions exist provided
pe (O, 8m <1 + 1gi<nm ai)>. The case o; € (—1,0) is treated in [21] and [22], where the authors
prove existence of solutions if there exist k € N and I C {1,...,m} such that k + |I| > 0 and

87r<k:+2ai><p<87r k+ Z o

i€l 1€lU{io}

where igp € {1,...,m} is chosen so that «;, = @. This condition is indeed necessary and sufficient
for the noncontractibility of a generalized set of formal baricenters that can be embedded into
low sublevels of J ;L.

A different approach to equation (1.17) relies on the Leray-Schauder degree theory. For any
p > 0 one can consider the operator T, : Hy — Hj defined by

he* 1
T,(u)=p A7 | ———— — — 1.2
P(u) P g (fz heudUgO ‘E|> ) ( 5)
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and find solutions of (1.17) by proving that the Leray-Schauder degree
d, = degy s(Id + T, 0, Br(0)) (1.26)

is different from 0. Here Br := {r € Ho : |lulg(ny < R}. For p # I'(a1,...,am), the
boundedness of the set of solutions of (1.17) implies that d, is well defined, i.e. it does not
depend on R if R is sufficiently large. Using Theorem 1.1 and the homotopy invariance of the
Leray-Schauder degree, one can prove that d, does not depend on the function h and is constant
in p on the connected components of [0, +00)\I'(a1,...,am). In a series of papers ([26], [27],
(28], [29]) Chen and Lin were able to find and explicit formula for d, by computing its jumps at
each value of p € I'(ay, ..., a;) due to the existence of blowing up families of solutions. They
introduced the generating function

g(x):= (1 +x+a:2+x3...)m*X(E)H(1 — glte) (1.27)
i=1
and observed that -
glz) =1+ bja™ (1.28)
j=1

where n1 < ng < ng < ... are such that
F(at,...,am) ={8mn; : j > 1}

Moreover for p € (8mny, 8mng,1) one has

k
dy=Y_b; (1.29)
§=0
where by = 1 and b; are the coefficients in (1.28). While this formula holds only for p ¢
(a1, ..., qn), the sharp blow-up analysis carried out in Chen and Lin’s work can be exploited,
under nondegeneracy assumptions on h, to prove existence of solutions also for the critical values
of the parameter p.

1.1 Onofri-Type Inequalities for the First Critical Parameter

In Chapter 2 we will study sharp versions of (1.22). We are interested in determining the optimal
value of the constant C'(X, g, h). Clearly one has

1

- h _
C,0:) = g ra) il et

(1.30)
thus this problem is strictly connected with the existence of minimum points of Jgr(117). Note
that p := 8n(1 + @) = minT'(ayq, ..., ay,) is the first critical parameter for equation (1.17). For
the standard Euclidean Sphere (52, go), the special case m = 0 and K = 1 was studied by Onofri
in [69]. He proved that C'(S?, go,1) = 0 and gave a complete classification of the minima of J¢_,
which turn out to be all the solutions of (1.10).
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Theorem A (Onofri’s inequality [69]). ¥V u € H'(S?) we have

1 u—u 1 2
< —
log <4ﬂ/ dvgo> < Tem /52 |Vul“dvg,,

with equality holding if and only if e“gy is a metric on S? with positive constant Gaussian
curvature, or, equivalently, u = log|det dp| + ¢ with ¢ € R and ¢ : S*> — S? a conformal
diffeomorphism of S?.

Beside its geometric interest, this result has important applications in spectral analysis due
to Polyakov’s formula (see [72], [73], [71], [70]). Motivated by Theorem A, in [65] and [66]
we studied Onofri-type inequalities and existence of energy-minimizing solutions on S? for the
singular potential

h(:v) _ e—47r2?;1 a;G(z,p;)
(i.e. (1.18) with K =1). We determined the sharp constant C(S?, go, k) if m < 2 or @ = 0.

More generally we are able to give an estimate of C'(X, g, h) for an arbitrary surface 3. Our key
observation is that if Jf‘ has no minimum point, then one can use blow-up analysis to describe

the behavior of a sultable minimizing sequence and compute explicitly 1r%f L J . The same

technique was used by Ding, Jost, Li and Wang [37] to give an existence result for (1.17) in the
regular case. From their proof it follows that if m = 0 and there is no minimum point for Jélﬂ,
then

Hlftfz) Jh = <1 + log <|Z\) + max {47 A(p) + log h(p)}>

where A(p) is the value in p of the regular part of G(-,p). Here we extend this result to the
general case proving:

Theorem 1.2. Let h be a function satisfying (1.18) with K € C®(X), K > 0, a1,...,apm, €
(—1,400)\{0} and assume that J5 has no minimum point. If @ < 0, then

K (pi) —4ma; Gy (pi)
£ L=—p|1+1 AmA(p;) +1 i
oty o= 1108 (1) +, s amatn) + 1o o Ll
while if @ > 0

inf J;= <1—|—log <\zy> max  {4rA(p) —Hogh(p)}).

HL(T) PEX\{P1,....pm }

If ¥ = S%? and K = 1, we will give a generalized version of the Kazdan-Warner identity and prove
nonexistence of solutions of (1.17) provided m =1 or m = 2, py = —p2, min{a;,as} = a3 <0
and a1 # ao. In particular we obtain the following sharp inequalities:

Theorem 1.3. If h = e 4™Cr1 with a # 0, then ¥ u € H'(S?)

1 T 1
log <4/ he“_“dvgo> < - / \Vul2dvg, + max {a, —log(1 + )} .
™ .Js2 S2

167 min{1,1 + o}

Moreover, the Liouville equation (1.17) has no solution for p = p = 8n(1 + min{0, a}).
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Theorem 1.4. Assume h = e 4m1Gp —4m02Gpy yyivp p2 = —p1, a1 = min{aj,as} < 0 and
a1 # ag; then ¥V u € H(S?)

1 _ 1
log (| — [ he* “d - 2d —log(1 )
©8 (47T /52 ¢ Ugo) < 167T(1 + 041) /52 |VU| Y90 T Og( * 041)

Moreover, the Liouville equation (1.17) has no solution for p =p = 8w(1 + aq).

Note that the constant in Theorem 1.3 coincides with the one in Theorem 1.4 if we set a1 =
min{a, 0} and as = max{a, 0}.

The case a3 = ag < 0 is particularly interesting because the critical parameter p = 87 (1 + @)
coincides with the geometric value pgeom (see (1.15)) for which equation (1.17) is equivalent
to the Gaussian curvature problem. This means that the functional acquires a natural confor-
mal invariance that allows to use a stereographic projection and reduce (1.17) to the Liouville
equation

—Au = |z|**e"

on R?, whose solutions were completely classified in [74]. In particular combining Theorem 1.2
with a direct computation we will show that all solutions are minimum points of J; and we will

find the value of min J5.
H(52)

Theorem 1.5. Assume h = e~ 4™ (Coi+Gr2) yith o <0 and p; = —p2; then ¥V u € H'(S?) we

have . .
1 — he* %d < - 2 —log(1 .
8 <47r /52 © UgO) ~ 167(1 4+ «) /Sz [Vul“dvg, + o —log(1 + a)

Moreover the following conditions are equivalent:

e wu realizes equality.
e u is a solution of (1.17) for p=8n(1+ «).

e hevgg is a metric with constant positive Gaussian curvature and conical singularities of
order oy in p;, t =1,2.
o If w denotes the stereographic projection from pi then
4 (1+ Jy[?)t*e
=21 - 1.31
uom (y) Og<1+e/\|y|2(1+°‘) +c (1.31)
for some A\, c € R.

As in the original Onofri inequality, the family of solutions (1.31) can be interpreted in terms of
of determinants of conformal transformations. Given « < 0, let us consider the quotient space
{(rcost,rsint) eR? : r >0, t€[0,2r(1+a)}

~

where ~ is the identification of the boundary points (r,0) ~ (r cos(2w(1 + «)), rsin(27(1 4+ «))).
C,, can be identified with a cone of total interior angle equal to 27 (1 + «).

Cy =
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%

It is well known that the function fo : R2 — Ch, fa(z) = == is a well defined conformal

1+o
diffeomorphism and f|dz|?> = |z|?>*|dz|>. Let 7 be the stereographic projection from the point
p1, then the surface S, := 7 1(C,) is well defined and can be identified with an American
football of interior angles 27(1 + ). The map ¢§ := 7! o f, o is a conformal diffeomorphism

between S? and S, and it is simple to verify that

(14 [y[*)'+e
1 + |y|2(1+a)

| det digg] =

so that log | det dyf| is a solution of (1.17).

The other solutions are obtained by taking the composition of ¢f with conformal diffeomor-
phisms of S? fixing the poles pq, pa.

In the last part of Chapter 2 we will consider the case of positive order singularities. We will
assume (1.18), a; > 0 for 1 <7 < m and

KeCP(S?)={feC>®(S?) : f(x)>0 VzeS?}.
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Completing the results of Theorems 1.3, 1.4, 1.5, we give a further extension of Onofri’s inequal-
ity.

Theorem 1.6. Assume that h satisfies (1.18) with K € C3°(S?) and ax, ..., o > 0, then

inf J& = —8rlogmaxh.
H1(52) 8m g g2
Moreover J;} has no minimum point, unless oy = ... = ayy, = 0 (or, equivalently, m = 0) and

K s constant.

Clearly, by (1.30), Theorem 1.6 yields the following sharp inequality:

Corollary 1.1. If h satisfies (1.18) with K € C3°(S?) and o, ..., au, > 0, then Vu € H'(S?)
we have ) .
log <4 /52 he“udvgf)) < Ton |Vu\2dvgo + log H}gf;xh

T — 167 Js2

with equality holding if and only if m = 0, K is constant and u realizes equality in Theorem A.

Theorem 1.6 states that Jélﬂ has no minimum point, but does not exclude the existence of
different kinds on critical points. In contrast to Theorem 1.4, if a; > 0 for 1 < ¢ < m, we will
show that in many cases it is possible to find saddle points of Jé@r. A simple example is given by
the case in which h is axially symmetric. In this case an improved Moser-Trudinger inequality
allows to minimize Jé’w in the class of axially symmetric functions and find a solution of (1.17).

Theorem 1.7. Assume that h satisfies (1.18) with m = 2, p; = —pg, min{aj, a0} = a3 > 0
and K € C’f’f(SQ) axially symmetric with respect to the direction identified by p1 and pa. Then
the Liouville equation (1.17) has an azially symmetric solution ¥p € (0,87(1 + aq)).

Further general existence results can be obtained using the sharp estimates proved in [26], [27],
(28], [29], and the formula (1.26) for the Leray-Schauder degree. If m > 2 one has d, # 0 for
any p € (0,87(1 + «1))\87N. While Theorem 1.6 implies blow-up of solutions as p * 8w, we
can find solutions for p = 87 by taking p \, 87, provided the Laplacian of K is not too large at
the critical points of h.

Theorem 1.8. If h satisfies (1.18) with K € C°(S%), m > 2, aq,...,am > 0 and
m
Aglog K(z) <> a (1.32)
i=1

YV x € ¥ such that Vh(z) = 0, then equation (1.17) has a solution for p = 8.

We stress that the same strategy can be used to find solutions of (1.17) for p = 8km, with
k<14 a.
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Theorem 1.9. If h satisfies (1.18) with K € C°(S?), m>2, 0 < a; <... < am, and
Agolog K(z) <> ai+2(1—k) (1.33)
i=1

YV x € S, then equation (1.17) has a solution for p = 8km, k < 1+ a;.

Note that Theorems 1.8 and 1.9 can be applied in the case K = 1. If the sign condition (1.32)
is not satisfied, then it is not possible to exclude blow-up of solutions as p — 8m. However, as
it is pointed out in the introduction of [27], under some non-degeneracy assumptions on h, the
Leray Schauder degree dg, is well defined and can be explicitly computed by taking into account
the contributions of all the blowing-up families of solutions. In particular one can prove that
dsx # 0 under one of the following conditions.

Theorem 1.10. Let h be a Morse function on S*\{p1,...,pm} satisfying (1.18) with K €
C*®(5?), m >0, aq,...,am > 0 and assume Agoh # 0 at all the critical points of h. If h has
r local mazima and s saddle points in which Ag h < 0, then equation (1.17) has a solution for
p = 87 provided r # s+ 1.

Theorem 1.11. Let h be a Morse function on S*\{p1,...,pm} satisfying (1.18) with K €
Cio(Sz), m >0, a1,...,0m >0 and assume Ag h # 0 at all the critical points of h. If h has 1’
local minima in S*\{p1,...,pm} and s’ saddle points in which Ag,h > 0, then equation (1.17)
has a solution for p = 8 provided s’ # r' + d, where

B 2 m>2,
d = dgpye = 0 m=1,
-1 m=0.

In the regular case m = 0, Theorem 1.10 was first proved by Chang and Yang in [24] using
a min-max scheme. A different proof was later given by Struwe [79] through a geometric flow
approach.

1.2 Extremal Functions and Improved Inequalities.

Another interesting problem connected to Moser-Trudinger embeddings consists in studying the
existence of extremal functions for (1.3). Indeed, while there is no function realizing equality
in (1.1), one can show that the supremum in (1.3) is always attained. This was proved in
[20] by Carleson and Chang for the unit disk D C R2, and by Flucher ([41]) for arbitrary
bounded domains (see also [78] and [57]). The proof of these results is based on a concentration-
compactness alternative stated by P. L. Lions ([58]): for a sequence u, € H(2) such that
|Vn || 2y = 1 one has, up to subsequences, either

2 2
/ e dy — / e dy
Q Q
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where u is the weak limit of u,, or u, concentrates in a point = € Q, that is
\Vu|*dz — d, and un — 0. (1.34)

The key step in [20] consists in proving that if a sequence of radially symmetric functions
u, € H}(D) concentrates at 0, then

lim sup/ el dy < m(1+e). (1.35)
n— 00 D

Since for the unit disk the supremum in (1.3) is strictly grater than 7(1 4 e), (1.35) excludes
concentration for maximizing sequences and yields existence of extremal functions for (1.3). In
[41] Flucher observed that concentration at arbitrary points of a general domains 2 can always
be reduced, through properly defined rearrangements, to concentration of radially symmetric
functions on the unit disk. In particular he proved that if u,, € H}(Q) satisfies | Vuy||2 = 1 and
(1.34), then

n—oo

lim sup/ el dy < meltimAale) 4 1. (1.36)
Q

where Aq(z) is the Robin function of Q. He also proved

sup / ey > el TATmaxg A 4 |2, (1.37)
weH(Q), [g [Vu|2de<1/Q

which implies the existence of extremals for (1.3) on Q. With similar techniques Li [53] proved
existence of extermals for (1.6) on compact surfaces (see also [54], [52]).

In Chapter 3 we will study Moser-Trudinger type inequalities in the presence of singular poten-
tials. The simplest case is given by the singular metric |2|?¥|dz|? on a bounded domain Q C R?
containing 0. In [2] Adimurthi and Sandeep proved that ¥V o € (—1, 0],

sup / ]a:|2ae4”(1+a)“2da: < 400 (1.38)
weHJ (Q), [o [Vul2dz<1 /Q

and
sup / |w[2°‘eﬁu2da€ = 400 (1.39)
weH(Q), [g [Vu|2de<1/Q

if 8> 47 (1 + «). Existence of extremals for (1.38) has been proved in [35] and [34]. As for the
case a = (, one can exclude concentration of maximizing sequences using the following estimate,
which can be obtained from (1.35) using a clever change of variables (see [2], [35]).

Theorem 1.12. Let un, € H(D) be such that [, |Vun|* < 1 and u, — 0 in H{(D), then
YV a € (—1,0] we have

1
limsup/ ]a:\2°‘e4”(1+a)“%d:c < u. (1.40)
n—o0 D 14+«

We will show that that (1.35) and (1.40) can be obtained from the singular Onofri-type inequal-
ities proved in Chapter 2. More precisely we will deduce Theorem 1.12 from the following sharp
inequality for the unit disk, that is a consequence of Theorem 1.5.



1.2. Extremal Functions and Improved Inequalities. 13

Theorem 1.13. V a € (—1,0], u € H}(D) we have

1+a 9
au 1
log ( /af| da;) 167r1+a /]Vu\ dx +

We stress that our proof of Theorem 1.12 will not require (1.35), but will rather give a simplified
version of its original proof in [20].

Theorem 1.12 can be used to prove existences of extremals for several generalized versions of
(1.3). In (1.41) Adimurthi and Druet proved that

sup /647Tu (1+/\||U||L2(Q))dm < 400 (141)
ueHL(Q), [q |Vul|?dz<1 J/Q

for any A < A(f2), where A(2) is the first eigenvalue of —A with respect to Dirichlet boundary
conditions. This bound on A is sharp, that is

2
w€HF(Q), o [Vul2da<1 /Q

Similar inequalities have been proved for compact surfaces on the space H in [88] and [59],
where the authors also prove existence of an extremal function for sufficiently small A, again by
excluding concentration for maximizing sequences. We refer the reader to [82], [89], [13] and
references therein for further improved inequalities.

Using Theorem 1.12 as a local model in the analysis of concentration phenomena, we will combine
(1.38) with (1.41) and the results, in [88], [59] proving an Adimurthi-Druet type inequality in
the presence of singular weights. Given a smooth, closed Riemannian surface (¥, g), and a finite
number of points p1,...,pn € X we will consider functionals of the form

Eg;\l»fI(u) = / h66“2(1+)‘HUHQLQ<E*9))dvg (1.43)
' b
where \,3 >0, ¢ > 1 and h € CO(X\{p1,...,pm}) is a positive function satisfying (1.19). If
A = 0 we know by (1.20) that

sup Eﬁ % < 100 = B <4rn(l+a) (1.44)
ucH

where @ = min < 0, 1m1<n Oéz}- For m = 0 and K = 1, Eg’i;’q corresponds to the functional
m b

studied in [59]. In particular, one has

sup By < o0 = A< Ag(2,9), (1.45)
ueH
where )
Vul“dv
Ag(5,) o= ing SV
ueH HuHLq (2,9)
We will generalize the techniques used in [1], [59] and [88] to the singular case, proving the

following singular version of (1.45):
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Theorem 1.14. Let (X, g) be a smooth, closed, surface. If h € C°(X\{p1,...,pm}) is a positive
function satisfying (1.19), then V B € [0,4n(1 +@)] and X € [0, 4(X,g)) we have

sup B (u) < +o0,
u€H
and supremum is attained if f < 4n(1 + @) or if f = 4n(1 + @) and X\ is sufficiently small.

Moreover

sup Eg’h’q( ) =400
ueH

for B>4n(l+@), or B=4n(1+@) and A > \(X, g).

In particular, for A = 0 we always obtain existence of extremals for the singular functional Eg (,)lq.
In Theorem 1.14, it is possible to replace H, || - [[12(x 4) and Ag(2, g) with Hy,, || - | a(z,g,) and
Ag(X, gn), where g := hg. Thus we obtain an Adimurthi-Druet type inequality on compact
surfaces with conical singularities.

Theorem 1.15. Let (X, g) be a closed surface with conical singularities of order avy, . .., oy > —1
inpi1,...,pm € 2. Then for any 0 < X < A\y(X,g) we have

)22 2
sup / AT M o 5.0) gy < 400,
ueH J X

and the supremum is attained for B < 4w(1 + @) or for f = 4n(1 4+ @) and sufficiently small .
Moreover

sup / PN G am.0) gy, = Joo,
ueH JX
if B>4n(14+@) or f=4n(1+@) and A > A\y(X, g).

As in [53], [88] and [59], our technique can be adapted to treat the case of compact surfaces with
boundary.

1.3 Systems of Liouville-type Equations.

Let (3, g) be a smooth, closed Riemannian surface. We consider Systems of Liouville-type
equations of the form

Kje" 1 .
— Agu; = Zasz](fKejd’Ug E]) 47TZO¢U<,,J ’2‘> i=1,...,N, (1.46)
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where A is a N x N symmetric positive definite matrix, p; > 0, 0 < K; € C>®(X), a5 > —1,
pj € 3. One of the most important cases is

2 -1 0 0

-1 2 -1 :
A=10 -1 2 . 0 (1.47)

.

0 0 -1 2

when (1.46) is known as the SU(NN + 1) Toda system. This system is widely studied in both
geometry (description of holomorphic curves in CPV, see e.g. [16], [19], [32]) and mathematical
physics (non-abelian Chern-Simons vortices theory, see [40], [81], [87]. Note that for N = 1
(1.46) coincides with (1.14).

As in the scalar case, it is convenient to write the system (1.46) in an equivalent form through
the change of variables

m
u; — u; + 47TZ a;;G(-, pj)- (1.48)
j=1
The new w;’s solve
N ,
h;e%i 1
— Agu; = a~»p«<J_—> i=1,...,N. (1.49)
o JZ; Y [y hjetidug (8]

with .
h; = K; H 6747raiijj = h; =~ Cl(-,pj)Zaij near pj.
j=1

We can associate to (1.49) the functional

N N
1 . _
JB(Q) = 2/2 Z a’Vu; - Vuj dvg — Zpi log </2 hie“i_“idvg>
] i=1

Z7j:]‘

where a” are the coefficients of A~!. In Chapter 4 we will address two main problems. The
first one consists in finding lower bounds for J,. In the regular case c;; = 0 Jost and Wang [45]

proved that, for the special case of the matrix (1.47), one has

inf J,> —o0 = p; <4mw for i=1,...,N.
Hl (Z)N -
General systems were considered in [77] and [76], using a dual approach first introduced in [86]
and [33] for the equivalent problem on bounded domains of R?. Specifically, in [76] a necessary
and sufficient condition for the boundedness of .J; is proved for matrices A satisfying the following
condition: there exists Iy,... I C {1,..., N} such that {1,... ., N} =1 U---U I and

a;; >0 fore,jel;, 1=1,...,k and a;; <0 ifiel, jel, withl#s. (1.50)
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Note that (1.50) is satisfied by the matrix (1.47) and by any positive definite 2 x 2 matrix. For
any I C{1,...,N} we consider the polynomial

Ar(yn,. . oyn) =87 ) wi— > aigviy;. (1.51)
icl ijel
If A is positive definite and satisfies (1.50), then (see [76])

Hli(rg)NJ£>—oo = Ar(p) >0 VIC{l,...,N}.

In the singular case, sharp Moser-Trudinger type inequalities for the SU(3) Toda System were
proved in [12].

Here we consider the class of positive definite matrices satisfying (1.50) with & = N, that is

a;; <0 for i # j. (1.52)
Generalizing the dual approach to the singular case we will give a simple proof of the following
Moser-Trudinger inequality:
Theorem 1.16. Let A be a symmetric positive definite matrix satisfying (1.52), then

Hli&f)N Jp > —00 = pi < 8w (1+min{0,1£r;i<nmaij}> i=1,...N. (1.53)

Moreover J, has a minimum point if

j<m

pi < 8T (1+min{0,1£nin aij}> i=1,...N.

We stress that a different proof of Theorem 1.16 has been recently given by Luca Battaglia
in [9]. In the same paper he also treated arbitrary positive definite matrices introducing the
polynomials
Arz(y1,...,yn) =87 Z(l + ai(z))y; — Z aijYiY; (1.54)
icl ig€l

where z € ¥ and «o;(z) =0 if x € Z\{p1,...,pm} and o;(p;) = 45, j =1,..., m. He proved

inf Ar(p) >0 = inf J,>— 1.55
veS IO, N} 1(p) Hll&)N p = 0 (1.55)

and
1:62,]15%1,...7N} I(B) <0 Hll?z)N JB o0 ( 56)

Observe that if (1.52) holds, then

inf Ar(p) >0 — pi < 8 <1+min{0, min aij}> i=1,...N,
2, IC{1,.,N} =~ 1<j<m
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and

xez,llg?fl,...,N} Ar(p) >0 = pi < 8T <1 + min {0, lggngnm aij}) i=1,...N,

therefore (1.55), (1.56) generalize Theorem 1.16.

The second problem we will address, is the analysis of concentration and blow-up phenomena for
(1.49). In the same spirit of Theorem 1.2, we will prove, still assuming (1.52), a concentration-
compactness alternative for sequences of solutions of (1.49). Our analysis is particularly relevant
in the case N = 2 and

2 -1
A = (aij) = (—1 2 > ; (1.57)
because it can be combined with mass-quantization results. For the regular case, Jost, Lin and

Wang [44] proved:

Theorem B. Assume (1.57) and o;; = 0 for any i,j. Let u, = (u1,n,u2,) € Ho X Hy be a
sequence of solutions of (1.49) with p; = pin — p; and define, for x € ¥, o;(x) as

oi(x) = }gr(l) ngr_ir_loo Pin fz huctin o, i=1,...,N. (1.58)
Then,
(01(2), 02(z)) € {(0,0), (0,4m), (47,0), (47, 87), (87, 4m), (8, 8)}. (1.59)

In the same paper, the authors stated that Theorem B immediately implies the following com-
pactness result.

Theorem 1.17. Suppose a;; = 0 for any i,j and let A1, Ao be compact subsets of RT™\47N.
Then, the space of solutions in Hy of (1.49) with p; € K; is compact in H'(X).

Theorem 1.17 is a necessary step to find solutions of (1.46) by variational methods, as was done
n [11], [63], [64]. Although Theorem 1.17 has been widely used during the last years, it was
not explicitly proved how it follows from Theorem B. Recently, in [55], a proof was given in the
case p1 < 8m. The purpose of the last part of Chapter 4 is to give a complete proof of Theorem
1.17. Actually, the proof follows quite directly from [23].

Our arguments, which were presented in [14], also work in the presence of singularities. In this
case, an analogue of Theorem C was proved in [56].

Theorem C. Assume (1.57) and let uy, = (u1pn,u2,) € Ho x Hy be a sequence of solutions of

(1.49) with p; = pin. If o1(x), 02(z) are defined as in (1.58) we have (01(z),02(z)) € I' where

o
I =Tou| JT,UT} (1.60)

with k=1

Ig= Fé ={(0,0), (47 (1 + a1(x)),0), (0,47 (1 + az(z)), (4n(1+ a1(z)),47(2 + a1 (x) + aa(x))),
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(47 (2 + a1 (x) + a2(x)), 47 (1 + aa(x))), (47(2 + a1(z) + az(2)), 47(2 + a1 (z) + a2(x)))}
I‘,lC ={(y1,y2) € E:y1 = x1 +4nm,ya > x9, (x1,22) € F,lgfl Ufifl, n € N}
F% ={(y1,y2) € E : y2 = xo +4nm,y1 > x1, (21,22) € F,1€_1 UFz_l, n € N}

and
E={(y1,92) : Au2y2(y1,92) =0}

Theorem C gives a finite number of possible values for the local blow-up masses (o1(z), o2(x)).
We will show that this quantization result implies compactness of solutions outside a closed,
zero-measure set of R*2.

Theorem 1.18. There exist two discrete subsets I'1,T's C R, depending only on the aj;’s, such
that for any A; CC RT\Iy, the space of solutions in Hy of (1.49) with p; € A; is compact in
H(X).

As in the regular case, Theorem 1.18 has important applications in the variational analysis of
(1.46), see for instance [11], [10].
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Chapter 2

Onofri Type Inequalities for Singular
Liouville Equations

In this Chapter we study singular Onofri-Type Inequalities on S2. Onofri’s original proof of
Theorem A was based on the conformal invariance of the Moser-Trudinger functional and on an
improved inequality proved by Aubin [4]. Another proof was later given by Beckner [15] using
a duality principle similar to the one presented in section 4.1. Similar arguments might work
also in the presence of singularities when J, is conformal invariant, that is when p = pgeom (see
(1.15)). Here, however we present a different approach based on blow-up analysis for sequences
of solutions of the Liouville equation (1.17) which can be applied also if .J, does not have good
geometric properties.

In the first part of the Chapter we will work on an arbitrary smooth compact, connected,
Riemannian surface (X, g). We will fix pi,...,p, € ¥ and consider a function h satisfying
(1.18) with K € C*(¥), K > 0 and «; € (—1,4+00)\{0}. In order to distinguish the singular
points of A from the regular ones, we introduce a singularity index function

o(p) ::{ o iifff)?;f . (2.1)

We will denote @ := min a(p) = min {0, min ai} the minimum singularity order. We shall
peES 1<i<m

consider the functional

1 1 .
Jp(u) = 5 /2 |V gul*dv, + |—§‘ Eu dvg — plog <|E| /E he dvg> . (2.2)

Our goal is to give a sharp version of (1.22) finding the explicit value of

1

$,9,h)=————— inf
C(E.g.h) 87(L+ @) uei(z)

Jsr(14aw) (0). (2.3)
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To simplify the notation we will set p := 8n(1 + @), p. =p —¢, J. := J,. and J := J5. From
(1.23) it follows that V & > 0 there exists a function u. € H(X) satisfying

Je(ue) = uegllf(il) Je(u) (2.4)
and
o (1) .
7 g hetedoy  [B]) '

Since J; is invariant under addition of constants V € > 0, we may also assume
/ h e*=dvy = 1. (2.6)
b

In the first section of this Chapter we will state some preliminary Lemmas and, assuming
nonexistence of minima of J5, we will describe the blow-up behavior of u.. These results will be
used in Section 2.2 to give in an estimate from below of

hIEIl_:(I)lf Je(ug).

In Section 2.3 we will prove the sharpness of this estimate and complete the proof of Theorem
1.2. In the remaining two sections we will discuss the case of the sphere. In section 2.4 we
will prove a generalized Kazdan-Warner identity and give some nonexistence results for (1.17).
As a consequence we will then prove Theorems 1.3 and 1.4. Theorem 1.5 will also be proved
in section 2.4 using the conformal invariance of the functional J;. The case of positive order
singularities will be treated separately in Section 2.5, where we give the proof of Theorems
1.6-1.11. Due to the lack conformal invariance and the ineffectiveness of the Kazdan-Warner
identity, this case will require different techniques. Theorem 1.6 will be deduced form the
standard Onofri’s inequality (Theorem A). Theorem 1.7 will follow from an improved inequality
for radially symmetric functions (Lemma 2.9). As a consequence we will obtain a multiplicity
result for equation (1.17) with p € (87 — €¢,87). This is particularly interesting since in this
range the Leray-Schauder degree is equal to 1. Theorems 1.8, 1.9, 1.10, 1.11 will be proved using
the estimates in [26], [28] and the formula (1.29).

2.1 Preliminaries and Blow-up Analysis

In this section we consider a family u. € H(X) satisfying (2.4), (2.5), (2.6).

Lemma 2.1. u. € C%(X) NWL5(X) for some v € (0,1) and s > 2.

Proof. 1t is easy to see that h € LI(X) for some ¢ > 1 (g = +o0 if @ = 0 and ¢ < —1 for a < 0).
Applying locally Remarks 2 and 5 in [18] one can show that u. € L*°(X) so —Au. € L%(X) and
by standard elliptic estimates u. € W?24(X). Since ¢ > 1 the conclusion follows by Sobolev’s
embedding theorems. O
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The behaviour of u. is described by Theorem 1.2. More precisely we will use the following more
general concentration-compactness alternative:

Proposition 2.1. Let u, be a sequence satisfying
—Agup = Vpe'" — iy,

and
/ Vpe'ndug < C,
by

where ||ty sz < C for some s > 1, and

Vn:Kn H 6_47TaiGpi

1<i<m

with K, € C*(X),0<a< K, <banda; > —1,i=1,...,m. Then there exists a subsequence
Up,, Of upn such that one of the following holds:

i. Up, is uniformly bounded in L>°(X);
i, Up, — —00 uniformly on ¥;

iii. there exist a finite blow-up set B = {q1,...,q} C ¥ and a corresponding family of se-
quences {qi}keN, j = 1,...1 such that qi e q; and unk(qi) i S ji=1,...,L

Moreover uy,, s S uniformly on compact subsets of ¥\B and Vy, e" " — Zé‘:l 0504
weakly in the sense of measures where o; = 8m(1+ «a(q;)) forj=1,...,1.

A proof of Proposition 2.1 in the regular case can be found in [50] while the general case is a
consequence of the results in [5] and [8]. A unified proof can be given following the arguments
presented in Sections 4.2, 4.3. In our analysis we will also need the following local version of
Proposition 2.1 proved by Li and Shafrir ([51]):

Proposition 2.2. Let Q2 be an open domain in R? and v, be a sequence satisfying | e’ i) <C
and

—Av, = Ve’

where 0 < V,, € Co(Q) and Vy, — V uniformly in Q. If v, is not uniformly bounded from above
l

on compact subsets of 2, then V,e"» — 87szj5qj as measures, with ¢; € Q and m; € N*,
i=1
j=1,...,1

Applying Proposition 2.1 to u. under the additional condition (2.6) we obtain that either u. is
uniformly bounded in L*°(X) or its blows-up set contains a single point p such that «(p) = @.
In the first case, one can use elliptic estimates to find uniform bounds on wu. in W?24(X), for
some g > 1; consequently, a subsequence of u. converges in H'(X) to a function u € H(X) that



2.1. Preliminaries and Blow-up Analysis 22

is a minimum point of J and a solution of (1.17) for p = p. We now focus on the second case,
that is
Ae 1= max u. = Ue(pe) — +00  and p. —p with a(p) =a. (2.7)

In the following G(x,y) will denote the Green’s function defined in (1.16). It will also be
convenient to set G, (y) := G(z,y). By Proposition 2.1 we also get:

Lemma 2.2. If u. satisfies (2.5), (2.6) and (2.7), then, up to subsequences,

1. pchets —pdy;

2. ue Cina SN uniformly in Q, ¥V Q CcC X\{p};
3. U €—_>0> —00;

e—0 _

4. There exist v € (0,1), s > 2 such that u. — Uz — p G, in COV(Q)NWLH(Q) V Q cC
2\{p};

5. Vue is bounded in L1(X) V q € (1,2).

Proof. 1., 2. and 3. are direct consequences of Proposition 2.1. To prove 4. we consider Green’s
representation formula

we(e) — e = ps /E G () h(y)e= W dvg (y).

We stress that Green’s function has the following properties:

o |G(z,y)| < Ci(1+|logd(z,y)|) Va,y € X, x #y.

Co
z <
b |ng(l‘,y)‘ = d(ﬂ?,y)

o G(z,y) =Gy, z)Va,ye X,z #y.

Va,y€ed, x#uy.

Take g > 1 such that h € LI(X). The first property also yields

sup HGZHLq’(g) < Cs. (2.8)
TEX

Let us fix § > 0 such that Bss(p) C X\ and take a cut-off function ¢ such that ¢ =1 in B;s(p)
and ¢ = 0 in X\ Bas(p).

Ue () — Ue = pe /E ©(y)Ga(y)h(y)e"=Wdvg(y) + pe /Z (1 = ¢(y))Ga(y)h(y)e" W dvg(y).

By (2.8) and 2. we have

/ <1so(y))Gx<y>h<y>e“€<y>dvg<y>\ < / G (0)| h()e® Wy (y) <
b)) X\ Bs(p)
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Ue 0
< Csl|hl agsylle™ | oo (5 By () — O-

By 1. and the smoothness of G, for z € Q and y € ¥ we get

/E (1) G (0)h()e W dvg(y) =2 o(p)Gal(p) = Gp()

uniformly for x € Q. Similarly we have

Vgue(x) = pe /

[ WG Py (y) + e / (1 - (1) V2 () h(y)e"= @ duy(y)

>
with
/E () VG () h(y)e D duy (y) =F VG, (x)

uniformly in Q and, assuming ¢ € (1,2), by the Hardy-Littlewood-Sobolev inequality

{é<AG-@@»W%MMM@&MU%@OSMA@S

h(y)ev=®)

22<mm@ d(z,y) “w> 9(2) < Cllhl o) le™ 200 w850
where
1_1 1
s_q 2°

Note that ¢ > 1 implies s > 2. Finally, to prove 5., we shall observe that for any 1 < ¢ < 2
there exists a positive constant C; such that

[ed=0 i [[lian <1 — ez,
Hence V ¢ € W19'(%)
/ngue Vg dvg = — /Z Aucp dvg < Cyl|Aue|[ 1 sy < C,
so that
IVue||La < sup {/E Vgue - Vgp dug @ ¢ € Wl’q/(E), Vol Lo < 1} <C,.
O

We now focus on the behaviour of u. near the blow-up point. First we consider the case @ < 0.
Let us fix a system of normal coordinates in a small ball Bs(p), with p corresponding to 0 and
pe corresponding to xz.. We define

e
ve() :=ue(tex) — Ae,  te:= e 204a), (2.9)
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| is bounded.

Lemma 2.3. Ifa <0,

€

Proof. We define
1115(1‘) = u5(|x5|x) + 2(1 + a) log |$5| + 3€(|$6|$)

where s.(z) is the solution of

—Ase = fy in B;(0)
se =0 if |z =0

The function v, satisfies
_Awa = ‘xa‘72&/75}1(’335‘w)efsa(lxdx)ews = Vaeﬂ’a

in B s (0). We stress that, by standard elliptic estimates, s. is uniformly bounded in C'(Bjs)

lze |
and that G, has the expansion
1
Gp(z) = —5 - logla| + Alp) + O(J2]) (2.10)

in Bs(0). Thus -
2| 2R (|ze|w)e 5 (2eln) =
_ ‘xa‘—2ae2alog(|xs\|z|)747raA(p)+O(|zele)esz(lxslx)K(’xe’x) H o 4m@iGp, (|ee|z) _
1<i<m,pi#p
— ‘x’25€—4ﬂaA(p)eO(|IeHIDe_Sa(IIa'Ct)K(’m.E’m) H 6—47TaiGpi(|xE‘x) _ ‘x’QaB(’I'g’I')
1<i<m,p;#p

where h € C'(Bs). In particular V; is uniformly bounded in CL (R®\{0}). If there existed a

||

subsequence such that — +o00 then

€

e < e ) =2(1+a)log (I%I) + se(22) — 400,

|| le

Le

S0 yo := lim would be a blow-up point for .. Since yy # 0, applying Proposition 2.2 to ).

e—0 ‘1‘5‘
in a small ball B, (yg) we would get

e—0

lim inf/ V.e¥=dz > 8.
Br(yo)

But this would be in contradiction to (2.6) since
/ Vgewedx = /
By(yo) B

pe || 720 (|| x)e e (Pelm) e gy < pa/ he'sdv, < 8m(1+a) < 8.

(yo) Bs(p)

O]
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Lemma 2.4. Assume & < 0. Then, possibly passing to a subsequence, p. converges uniformly

on compact subsets of R? and in H} (R?) to

o mc(p) 2(14-@)
pol) = ~21og (14 752 o

where c(p) = K(p)eizlﬂ-aA(p) H e~ 4maiGp, (p)
1<i<m,p;#p

Proof. The function . is defined in B, = B (0) and satisfies
te

1 - t?
A=t <h<t5w>e“°56* - |2|> = 23 peh(tea)e —

and
o2 / h(tox)e?s < 1.
B
te

As in the previous proof we have

t;Qah(tE.’B) _ tg—2662610g(t5\x|)—47rEA(p)+O(t€|J:\)K(t€x) H 6_4770‘1'GP1‘ (tew) _

1<i<m,p;#p

= ‘$|256*4TFEA(p)eo(tikf‘)K(tsx) H 674ﬂaicpi(t6x) H_? c(p)’x‘Qa
1<i<m,p;#p

; q
in Lloc

(R?) for some ¢ > 1. Fix R > 0 and let 1. be the solution of

—Atp. = t-%p h(tx)e?s — t‘?gle in Br(0)
’(ﬁg =0 su 8BR(0)

Since A is bounded in L?(Br(0)) with ¢ > 1, elliptic regularity shows that 1. is bounded
in W24(Bg(0)) and by Sobolev’s embeddings we may extract a subsequence such that 1. con-
verges in H'(Br(0)) N C%*(Bg(0)). The function & = . — 1) is harmonic in Br and bounded

from above. Furthermore & (=) = —¢ ($*
€ €

equality & is uniformly bounded in C?(B£(0)). Thus ¢, is bounded in W24(Br) and we can
2 2

is bounded from below, hence by Harnack in-

extract a subsequence converging in H'(Br) N C%\(Br). Using a diagonal argument we find a
2 2

subsequence for which ¢, converges in H. (R?) N CZ(Z;C’\(R2) to a function ¢g solving

—Apg = 87(1 + @)c(p)|z]|* e

on R? with

|z|?@e0 @) dy < o
R2
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The classification result in [74] yields

A

for some A € R. To conclude the proof it remains to note that, since 0 is the unique maximum
point of g, the uniform convergence of . implies f—g — 0 and A =0. O

As in [37], to give a lower bound on J.(u.) we need the following estimate from below for w.:

Lemma 2.5. Fix R > 0 and define r. =t.R. If @ < 0 and u. satisfies (2.5), (2.6), (2.7), then

R2(1+a)
ey
ue > p Gp — A —p A(p) +2log L7 20 i) +0:(1)

in S\B,. (p).

Proof. ¥ C > 0 we have

1
—-A -pG,—C) = he's — — = p-he' + — >
g(ue —p G, — C) ,05( e |E|> Bl = pche™ + \E| 0.

Let us consider normal coordinates near p. We know that
Gyl) = — 5 logla] + A(p) + O(lal),
so by Lemma 2.4 if z = t.y with |y| = R we have
ue(r) =p Gp = ¢e(y) + A + 4(1 + @) log(te R) — pA(p) + 0:(1) =
= —2log (1 + m}#ma)) — Ae + log R*+9) 5 A(p) + 0:(1).

Thus, taking

B RQ(I—{-H)
Ce = —A- —p A(p) +2log L3 20 e +0:(1)

we have u.—pG,—C: > 0 on 0B,_(p) and the conclusion follows from the maximum principle. [

As a consequence we also have

Lemma 2.6. t2u. — 0.
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Proof. By Lemma 2.4

/ e v, = £ / o= (y)dy + M| By, | = o-(1).
Bt (p) B1(0)

and by the previous Lemma
Mgz [ wezp [ Gy~ AJS\BLG) +OQ),
E\Bts (p) Z\Bts (p)

u,
[ is bounded and, since \.t2 = 0.(1), we get the conclusion. O
&

Thus

The case @ = 0 can be studied in a similar way. The main difference is that, since we do not
know whether |x:| is bounded, we have to center the scaling in p. and not in p. Note that
a(p) = 0 means that p € ¥\ S is a regular point of h.

Lemma 2.7. Assume that @ = 0 and that u. satisfies (2.5), (2.6) and (2.7). In normal coordi-
nates near p define

Ae

Ve(x) = ue(we +tex) — A\e  where t.=e 2.

Then

1. 9. converges in C}_(R?) to
Yo(w) = —2log(1 + wh(p)|a[*)

2. VR >0 one has
2

> — — R
ue > 8nGp, — A\ — 8mA(p) + 2log (1 n Wh(p)R2> + 0:(1)

in X\ Bpge. (pe);

3. t2u. — 0.

2.2 A Lower Bound

In this section and in the next one we present the proof of Theorem 1.2. We begin by giving

an estimate from below of HllI%g) J. As before we consider u. satisfying (2.4), (2.5), (2.6), and

(2.7). Again we will focus on the case @ < 0 since the computation for @ = 0 is equivalent to
the one in [37]. We consider normal coordinates in a small ball Bs(p) and assume that G, has
the expansion (2.10) in Bs(p). Let t. be defined as in (2.9), then ¥ R > 0 we shall consider the
decomposition
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/|Vgu€|2dvg:/ \Vgu5|2dvg—|—/ |Vgug|2dvg+/ |V gue|*du,.
z S\Bs(p) Bs\Br. (p) Bre (p)

On X\ Bs(p) we can use Lemma 2.2 and an integration by parts to obtain:

/ Vgue|*dvy = PQ/ Vo Gyl?dvg +0-(1) =
¥\ Bs E\Bs

—2
_ P =2 8Gp _
DSV Gp v =P /835 Cogn 10 o:l1) =
-2 Gy
= —p . Gpﬁdag—i—os(l)—l—o(g(l). (211)
5

On B,_(p) the convergence result for the scaling (2.9) stated in Lemma 2.4 yields

1+«
+ 0:(1) + ogr(1). (2.12)

/ Vgue*dv, = /B o \Vo|?de + o0.(1) = 25 <log (1 + WR“H@) - 1) +
r r(0

£

For the remaining term we can use (2.5) and Lemma 2.2 to obtain

/ \Vgug\zdvg = pg/ he“su.dvg — Pe Usdvg +
Bs\Br. Bs\Br, ‘E’ Bs\Br-.

+/ ausd / 8u5d
Ue—=—00g — u Og =
OB;s c on g 3B, ¢ on g

0
= pg/ he'su.dvg — Pe Uusdvg + us/ &dag
Bs\B:. %l JB\B,. oB; On

Oue 2/ 0G),
— Ue——dog + P Gp,——do, + o.(1). 2.13
/aBTE an g 0B; p an g ( ) ( )
By Lemma 2.5 and (2.6) we get

Pe / he'su.dvy > pep / he'sGpdvg — peAs / he"=dv,
BE\BTE Bts\BTE B5\BT€

—i—OR(l)pa/ he'sdvy =
Bé\Brs

= pap/ he'sGpdvg — pe/\g/ he“sdvg + 0c(1). (2.14)
BE\BTE B(;\BTE
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Again by (2.5) and Lemma 2.2

pg/ he'=Gpdug :/ Gp <—Au5 >dvg
B3\Br B\B,. 2]

1 0G), ou
= —— Uedv / - G,—do, + 2.15
S| JepBe ° Jops On Ton ot (2.15)
O, oGy,
+ 8BTGp an UgaTdUg +06(1) =

1 0G
= d —L2q
|E\ B(S\Bu6 Vg + Uge /83,; o og +

0u€ oGy,
/BBTE Gp—— 3n / ugmdog + o0:(1) +05(1), (2.16)

pele he'sdv, = —A. / O o+ P22 (Vol(By) — Vol(B)) = (217)
oB;\B,. On |Z|
A
A Oue dag+/\/ e 1 o+ ZE22V0l(By) + 0(1).
aB; On aB,, On 12|

Using (2.13), (2.14), (2.15) and (2.17) we get

by
Ue dvg — p|€2|€V ol(Bs) +

1
/ Voueldv, > —(167(1+@) — )
Bs\Br. 12| JBs\B,.

L oG, / Oug B / Oug
+pu —dog + A —do, +7u —dog, +
p 6/8B5 on g c dB;s on g c 8B;s on g

oG, oG
72 Gp—"Ldo, —p / P4 2.18
+p 0B p a P 8BTE Ue an Ug + ( )

_ Oue
_ /aBT6 <u5 -pGp+ )\5> B + 0:(1) + 0s(1).

By Lemmas 2.2 and 2.6 we can say that

/ usdvg = / (ue — Ue)dvg +u-(Vol(Bs) — Vol(By,)) = u.Vol(Bs) + 05(1) + 0-(1).
Bé\BTs B5\BT€

Using Green’s formula

_ 0G), _ _ < Vol(Bg))
Ue ——dogy = T, AG,dv, =~ [ 1 — .
/335 on Y\ Bs I X
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Similarly
Oue / ( 1 > ( Vol(Bg))
—do, = — Aug dv, = pe | he's — — | dvyg > —pe | 1 —
/835 on 7 Y\ Bs Y S\ Bs : 2] I : 2|
and
B Ou, . - - _ Vol(Bs)
U —do, = u,oe“e/ h e " dv, — Ugp <1— =
: OB; on 7 o ¥\ Bs(p) I e 12|
Vol(B
= e (1- 50 o),
P
Lemma 2.4 yields
0G), oG oG
—Ldo, = A —2d t —L(tx)(1 + 0-(1))do =
/aBTE“E Brdos = e [ rdoy s s/aBR(O)% b (1.2)(1 + 0.(1))do

Vol(B, )> / ( 1 >
= (1= =) 4y — +0(1) ) do =
E( 3] * JoBr(0) P\ 2rtR @

= )\ +2log <1 + 7{1@}32(1%)) + 0.(1)

a
and the estimate in Lemma 2.5 gives

Oug
— — D - >
/83T6 (ug p Gp+ )\5) o dog >

R2(1+E) 87r20(p)R2(1+a)
> |21 —pA — 1) =
= ( 0og (1 n 7e(p) R20+a) PA(p) (1 n ﬂc(p)Rz(Ha)) + 08( )

(+a@) T+a

= —p?A(p) — 27 log (Wifp)> + 0:(1) + or(1).

1+«
Hence
2 — _ _92 8Gp
|Vgue|“dvy > —(16m(1+a@) —e)u: +eX-+p Gp——dog +
Bs\By, OBs on
_ Tc(p) po(i4a) ) =2 — me(p)
— 2p1 1+ —= —p°A —2pl
pog(+1+aR p~A(p) — 2plog ) T

+ 0u(1) + 05(1) + o(1). (2.19)
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By (2.11), (2.12) and (2.19) we can therefore conclude

/ IVguel’dvy, > —(167(1+@) — &)ue + e — pA(p) — 2plog <m> —2p+
)

+ 0-(1) + 05(1) + or(1),

so that

2
T > S0 —u) - L ap) - plog(l ())—p+palog|z\+og<1>+oa<1>+0R<1>

Q \

’B

o) \

> —p <4w(1+a) +1+log( )—log\EO +0-(1) 4 05(1) 4 or(1).

Ase,0 — 0 and R — oo we obtain

: _ _ me(p) _
Hlln(fz) J > —p (477(1 +@)A(p) + 1+ log (M> — log ]E|> = (2.20)

K
— 514108 E +arA@) +log [ KB [T e e
= I+a qE€S,q#p

Using Lemma 2.7 it is possible to prove that (2.20) holds even for @ = 0. About the blow-up
point p we only know that a(p) = @, so we have proved

Proposition 2.3. If J has no minimum point, then
K
inf J>-p|14log-— max 4mA(p) + log 1—|—(m H e—4ma(q)Gq(p)

HL(D) \2| pez,a(p)=a fa JCS.atp

Notice that, if @ < 0, the set

{pe¥ : alp)=at={p; : ie{l,...,m}, @, =a}

is finite, while if & =0
{peX : a(p)=a} =%\S.

Although this set is not finite, the maximum in the above expression is still well defined since
the function
p+— 47 A(p) + log H e~ DGaP) | = 47 A(p) + log h(p)

q€eS

is continuous on ¥\ S and approaches —oo near S.
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2.3 An Estimate From Above

In order to complete the proof of Theorem 1.2 we need to exhibit a sequence . € H!(X) such
that

K
J(pe) — —p | 1+ log T 4 max 4 A(p) + log @ H e 4m(@)Ga(p)
%] peSalp)=a l+a
qE€S,q#p
1
Let us define r; := ~.€20+2) where . is chosen so that
Ye = 400, rlloge — 0, r2log(l+~20+%)) — 0. (2.21)

Let p € ¥ be such that «a(p) =@ and

arA(p) +log | {0 [ et
q€S,q#p

= max 4mA(€) + log @ H e~ Ama(q)Gq(§)
eT a(é)=a 1 oC S are

and consider a cut-off function 7. such that n. =1 in B,_(p), 7. = 0 in X\ By, (p) and |Vyn.| =
O(rz1). Define
[ —2log(e + r21H@)) ;- loge r <.
pelw) = { p(Gp —n:0)+ C: +loge 7>

where r = d(z,p), o(x) = O(r) is defined by

Gp(z) = —% logr 4+ A(p) + o(x), (2.22)

and | 4 2048
Ce = —2log <2(1Jm)> —p A(p).
3

In the case @; = 0 V 4, a similar family of functions was used in [37] to give an existence result
for (1.17) by proving, under some strict assumptions on h, that

. 7T
n Jp < 87 <1 + log <\zy> +max {47 A(p) + log h(p)}> :

Here we only prove a weak inequality but we have no extra assumptions on h. Taking normal
coordinates in a neighborhood of p it is simple to verify that

_ 1
\Vyp-?dv, = 167(1+a)|log (1+~20+9) 4 — — 1| +0.(1) =
/r gre g ( £ ) 1_‘_72(1_’_&) £

€ 3

= 16m(1 +a) (log (1+2207™) ~1) + 0.(1),
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By our definition of ¢,

fon

and by the properties of 7.

(5] (5] Te

|vg<ﬂs’2dvg = 52 (/E\B |ngp|2dvg +/ ’Vg(nsa)|2dvg - 2/

S\B,.

VyGyp - Vy(neo) dvg>

/ Wg(neU)Fd”g = / |Vg775]202 + 2n:0 Vgne - Vgo + ng‘ngP dvg = o(r?).
7 27 s

e € B's

Hence, integrating by parts and using (2.22), one has

/ |Vg<p5]2dvg = p? (/ ]VGPIdeg — 2/
Y\ B, S\ Br, E\Br

€

VGp - Vg(neo) dvg+> +o:(1) =

1 oG
= -p / (Gp — 2n:0) dvy +/ (Gp — 2n:0) pd% +o0:(1) =
12| S\Br. OB, on

_ 0G
= —p2/ (Gp — 20)8—npdag +o0:(1) =

log 7 1

=2 B )
= P /SBTE <47r27‘5 27rr5A<p) + O(logrE) + 0(1)> do + 05<1)

—2 1
= —Llog(1:e™1T) + P A(p) + 0:(1) =

= -2p <log A204) 4 loge — 4r(1 + 6)A(p)) + 0:(1).

Thus

2(1+@)

1

/ Vypel?dv, = 2p <log (%) —1+4n(1+@)A(p) — log 5) +0:(1) =
= v

£

= —2p(1—4r(1+@)A(p) +loge) + o-(1).

Similarly one has

Te 2(1-{-&)
= |B, 10g5—27r'r’210g5—47r rlog 1+T
€ €
0

/ e dvg = |By.|loge — 47r/ ) rlog (5 + r2(1+a)) (14 o0-(1))dr =
" 0

(2.23)

) (1+o0:(1))dr =

1
= O(r?loge) — 47T/ r2slog (1 + 7€2(1+a)82(1+a)) (1+o0:(1))dr =
0



2.3. An Estimate From Above 34

= O(r?loge) + O(r2log(1 ++2H9)) = 0.(1)

and
[ oo, = 5[ (G noldu, + (€t loge) B\B )] =
E\Brg E\BTs

X|loge — p[E[A(p) + o(1)

so that .
] /2 edvg =loge —p A(p) + o0-(1). (2.24)

To compute the integral of the exponential term we fix a small 6 > 0 and observe that

/he‘pfdvg = iL(p)/ 64“0‘Gpegoadvg+/ (ﬁ—ﬁ(p)) e AT G ge gy 4
by B B

Te Te

—i—/ he“"fdvg—i—/ he?=dv,
B(S\B”‘E E\Bé

where h = h *™CGr — K H e 4ma(@Ga  For the first term we have
q€S,q#p

/ 6747r5Gp64p5dvg — 8/ eZalogr747r5A(p)f47rao€7210g(5+7«2(1+ﬁ))dvg _
Br. Br.

7’2&

_amma) [T i
- /; (6 + r2(1+5))2 (1 + 05(1))dvg =

Te

o—4maA(p) 62(1+a)

w
- T l+a 1+’y§<1+a)(1+05(1)) -
—4raA(p)
e
= — 1). 2.25
l+a =+ Os( ) ( )
Since h is smooth in a neighbourhood of p we obtain
/ <l~z - ?z(p>) e~ G o2y, = 0.(1) / e~ G o2y, = 0.(1) (2.26)
By, Br,
and
/ he?=dvy| = / he=4™@Cr ¥ dy, | < sup |h| e TG ge gy, =
Bs\Br., Bs\Br, Bs Bs\Bre
= ee% sup | 64”(2+5)Gpe_ﬁ"50dvg =

Bj Bs\B,.
1

= O / A2+ DG g0 — O(e / —  dr=
(e) . (e) 5o\ 5,. [P

1 1 1
= 0() (ﬂ(”") - 52(1-1-04)) =0 <'y2(1+“)> +0(e) = o:(1). (227)

3 3
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Finally
/ he?=dv, = e / hePCrdy, = O(e) (2.28)
¥\ Bs S\ Bs
so by (2.25), (2.26), (2.27) and (2.28) we have
] Fil(p)e_47ra‘4(p)
/X\Jhesp dUg = H_—a + 05(1). (229)

Using (2.23), (2.24) and (2.29) we get

21_1}(1)(](@5) =—p (1 + 4w A(p) + log < ! ﬂB(p))) =

Z[1+a

s

— p(1ttos T4 max  and@©) +log [ L [ oo

1Z|  ¢esa(e)=a 1+« Je5 ke

This, together with Proposition 2.3, completes the proof of Theorem 1.2.

2.4 Onofri’s Inequalities on S?

In this section we will consider the special case of the standard sphere (S?, go) with m < 2 and
K =1. We fix a1,as € R with —1 < a3 < as and as before we consider the singular weight

= e—4ma1Gy, —4masGy, (2.30)

In order to apply Theorem 1.2 and obtain sharp versions of (1.22), we need to study the existence
of minimum points for the functional Jg. Let us fix a system of coordinates (1, s, z3) on R?
such that p; = (0,0,1). When h € C*(5?) the Kazdan-Warner identity (see [47]) states that
any solution of (1.17) has to satisfy

Vh - Va; e dug, = (2 p)/ hea; dvg, i =1,2,3.
SQ

. e

We claim that if po = —p; the same identity holds, at least in the zs-direction, even when h is
singular.

Lemma 2.8. Let u be a solution of (1.17) on S2, then there exist C, 6y > 0 such that
o |Vu(z)| < Cd(z, p;)?it! if o < —3;

o |Vu(z)| < C(—logd(z,pi))  if oy =—3;
o [Vu(z)<C if @i > —%;

)

for 0 <d(xz,p;) < dop, i =1,2.



2.4. Onofri’s Inequalities on S? 36

Proof. Let us fix 0 < 79 < %min{g,d(pl,pg)} and i € {1,2}. If o > —% then, by standard
elliptic regularity, u € C'(B o (pi)) and the conclusion holds for 6y = ro and C' = ||Vul| L= (5, (p,))-

Let us now assume a; < —3. We know that h(y) < Cid(y,p;)?¥ for y € Bay,(pi) so, if dg < 7o,
by Green’s representation formula we have
h(y) peltle<||h) 11 (s2) d(y, pi)>*
Vul(z) < ,06”“”‘>C> / dvg, (y) < + peH“H‘X’Cl — = dvg, (y).
| |( ) g2 d(x,y) QO( ) o Bro(zt) d(x,y) go( )

Let 7 be the stereographic projection from the point —p;. It is easy to check that there exist
Cs,C3 > 0 such that
Cyd(g,q') < |m(q) — 7(q)| < C3 d(g,q)

Vaq,q € Bz (p;). Thus we have

d(y, pi)? / d(y, i) | 2|2

— " dvg, (y) < — vy, (y SC'/ —dz =
/Bm<x> day) P S o iy MW =G @ =7
= Cy|m(x |2a1+1/{ P

Notice that

’2(11 ‘ |2a1

——dz < Cyd(z, p;) it / dz.
’ {|z\<

/{| |<ptar ) | ’Z‘ - ) =

\ﬁ(m

1
dz—|-2/ ]zQaldz—i-Q/ |22 1dz <
WEQC;‘ - z‘ {l21<2} {2<|z\< }

< Cg + 2/ |z 1dz.
-

7T
|7 x)| -z

- 22% /{‘ 7r(ac) 1

|7 2

If o; < —%
) 2otaz < ¢,
{2<le1< iy}
while if o; = —%
/ 12|~ 1dz = 2 log ( ! > < Cg (—logd(z,p;))
- — )y 17 .
{2§|z\§m} 2| ()|

Thus we get the conclusion for §y sufficiently small. O

In any case there exists s € [0,1) such that
[Vu(z)| < Cd(z,p;)~° (= log d(x, pi)) (2.31)

for 0 < d(x,p;) < do, i =1,2.
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Proposition 2.4. If po = —p; then any solution of (1.17) satisfies

Vh-Vz3z e" dvug, = (2 — ﬁ) / he“x3 dvg,.
S2

S2 47

Proof. Without loss of generality we may assume

/52 he“dvg, = 1. (2.32)

Let us denote S5 = S?\Bs(p1) U Bs(p2). Since u is smooth in S5, multiplying (1.17) by Vu- V3
and integrating on S5 we have

1
Au Vu - Vg dug, = p/ <h e’ — 4> Vu - Vg dug, (2.33)
Ss

Ss ™

Integrating by parts we obtain

0
Au Vu - Vg dvg, = / Vu - V(Vu - Vasz)dvg, + Z/ Vu - Vx;;ﬁ

Ss 0Bs(p:) on

and by (2.31)

ou
Vu- V3 — do
/535(171') ’ on %

Using the identities

< / IVul?|Vas|doy, = O(6* 1) 1log? 6) = 05(1).
(i)

1
Vu-V(Vu-Vazs) = §V|Vu]2 - Vas — 23| Vul|?

and
*Aﬂfg = 2333,

and applying again (2.31) to estimate the boundary term, we get

1
Au Vu - Vg dvg, = / §V\Vu]2 - Va3 dug, — / 23| Vul|?dvg, + 05(1) =

Ss Ss Ss

ox
:_/ Ay [Vl du,, — Z/ Va2 3dago—/ 23| Vul2du,, = 0s(1).

dBs(p;) Ss

Thus (2.33) becomes

/ he*Vu - Va3 dvg, — — [ Vu- Va3 dvg, = 0s5(1). (2.34)
Ss

4 Ss
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Moreover
Vu-Vz3 dvg, = Au x3 dvg, — Z/ dago =
Ss 0Bs(p:)
1
_ p/ <he“ - ) 23 dug, + O(8'*(—log §))
Ss 47'('
= p/ he'xs dvgo + 05(1)
Ss
and
/ he" Vu - Vg dvg, = Ve - hVz3 dvg, =
55 S6

.0
= - / e div( hVas)dug, — § /8 ( ﬁd%:
Bs(p:)

= — [ Vh-Vzze" dvy, + 2/ he'xzzdvg, + 0§20+,
55 Sé

Thus by (2.34) we have

Vh-Vazz e dug, = (2 - ﬁ) / he“xs dvg, + o5(1).
S5 am/ Jss
Since u is continuous on S% and h, Vh - Vzs € L(S?) as § — 0 we get the conclusion. O

Remark 2.1. In the above proof there is no need to assume K = 1.
Assuming p; = (0,0,1) and ps = (0,0, —1), one may easily verify that

1 1 e
G () = =1 log(1 — 73) — —log (7))

47 2
and . )
e
= ——log(1 o (7)
Gipalr) =~ loa(1 +25) — - log; (5
so that

Vh-Vz3 = —471’h(0¢1VG1 + O[QVGQ) Vg = (052 — Oél)h — (051 + Oég)h:ﬁg.

Thus we can rewrite the identity in Proposition 2.4 as

g — o = <2 - ﬁ + oy + oz2> /2 he'xz dvg,. (2.35)
S
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Proof of Theorem 1.3. Assume m = 1 (i.e. as = 0). We claim that equation (1.17) has no
solutions for p = p = 87(1 + min{0, @1 }), unless oy = 0. Indeed if u were a solution of (1.17)
satisfying (2.32), then applying (2.35) with p = p we would get

—a; = (a; — 2min{0, al})/

. he“xs dvg,
S

so that, if ay # 0,
=1.

/2 he"x3 dvg,
S

This contradicts (2.32). In particular we proved non-existence of minimum points for J5 so we
can exploit Theorem 1.2 and (2.3) to prove that (1.22) holds with

C= 1 e
peSIQT,lo?(};)za 8 14+«

H e—4ma(q)Gq(p)

qES,q#p
If aq < 0 one has
C = —log(l+ o).

If aq > 0,

C= max {—4na1Gy (p)} = —4ma1Gp,(p2) = 1.
peS\{p1}

O]

Remark 2.2. More generally (2.35) implies that, for m = 1, K = 1 and a1 # 0, equation
(1.17) has no solutions for p € [8m(1 + min{0, a1 }), 87 (1 + max{0, a1 })].

Proof of Theorem 1.4. As in the previous proof, applying (2.35) with p = p = 87 (1 + ay), we
obtain that any critical point of J; for which (2.32) holds has to satisfy

ag —aj; = (e —aq) he“z3dvg, .
5‘2
Since a1 # a9 one has

/52 he“zgdvg, =1

which is impossible. Thus J; has no critical points and by Theorem 1.2 one has

C =log <

1 + al e47’l’0¢2GP2(p1)> — a2 —_ log(l + al).

O]

Remark 2.3. More generally (2.35) implies that, for m = 2, K =1 and a1 < ag, equation
(1.17) has no solutions for p € [87(1 + a1), 87 (1 + ag)].
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Now we assume a; = az < 0. In this case identity (2.35) gives no useful condition. Let us
denote by 7 the stereographic projection from the point p;. It is easy to verify that u satisfies
(1.17) and (2.32) if and only if

+ 2alog (E)

v::u07r1+(1+a)log< 5

)
(1+[y[*)?
solves

— Agev = 87(1 4 )|y|*“e" (2.36)

/ ly|**eVdy = 1.
RQ

As we pointed out in the proof of Lemma 2.4, equation (2.36) has a one-parameter family of
solutions:

in R? and

m o
ua(y) = —2log <1 + m€l|y|2(1+ )>

l € R. Thus we have a corresponding family {uy .} of critical points of J5 given by the expression

Uy eOT L(y) = 2log (%) +c, (2.37)

c € R,A > 0. A priori we do not know whether these critical points are minima for J5 (as it
happens for a = 0), so a direct application of 1.2 is not possible. However, we can still get the
conclusion by comparing J5(uy ) with the blow-up value provided by Theorem 1.2.

Proof of Theorem 1.5. Let us first compute J(uy.). Let ¢ : S? — S? be the conformal
transformation defined by 7(¢¢ (7~ (y))) = ty. It is not difficult to prove that V¢ > 0

Jo(u) = J5(uogr + (14 a)log| det dpy|);
in particular, since

Ux,e = ULOOP

—|—(1+a)10g\det<p/\ 1|+ c—logA,

1
A2(1+a) 2(1+a)

we have that J(uy ) does not depend on A and c¢. Thus we may assume A =1 and ¢ = 0. A
simple computation shows that

2a 4 20
/ h 6“1’0d11g0 — 462a/ |y‘ 2dy _ 16 71" (238)
52 R2 (1 + |y‘2(1+oc)) + o

Since u1,0(p1) = 0 and u; o solves
—Aujg=whe —2(1+a) with w:=2(1+a)?e >

one has
/ ur,o dvg, = 4m | Aupo Gpdvg, = —47Tw/ he" G, dvg,
S2 S2 S2
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and

1
— Vv
2 /52 ‘ 41,0

1
2dvgo +2(1+ a)/ u1,0 dvg, = w/ he"*uy g dvg, + (1 + a)/ u1,0 dvg, =
52 2 Jg2 52

= / he"° (u1,0 — pGp, )dvg, - (2.39)
S2

Since

we get

2041 1+ 2(14+a)
/ he'0 (u1,0 — PGy, ) =2(1+a)/ he'“10dug, —862“/ [y[* log (1 + |y| : )
S2 52 R2 (1 + ’y‘2(1+a))

% 8me2@ /+°° log(1 + s) s 8rae®
1+a )y (1+s)2 l1+a

= 8re (2.40)

Using (2.38), (2.39) and (2.40) we obtain
J(ure) = J(u1p) =8m(1 + o) (log(1 + a) — ) VA>0,ceR.

To conclude the proof it is sufficient to observe that uy . have to be minimum points for J; that
is
Hilr(lgg) Jp=8m(1+ ) (log(l+a) —a).
Indeed if this were false then .J; would have no minimum points but, by Theorem 1.2, we would
get
inf J;=38nr(1+a)(log(l+a)—a)=J(uc).

H1(S2)
This is clearly a contradiction. O
Remark 2.4. There is no need to assume p; = —pa.

Indeed given two arbitrary points pi,p2 € S? with p1 # po it is always possible to find a
conformal diffeomorphism ¢ : S? — S? such that o ~!(p;) = —p~!(p2). Moreover one has

J5(u) = jﬁ(u o+ (1+ «a)log|detdy|) + cap ps

YV u € H'(S?), where J is the Moser-Trudinger functional associated to

b= ¢ 4G o1y —AmaG 1,

and cqp, p, is an explicitly known constant depending only on «, p; and po. In particular one

can still compute I{I(ISI12 : Jz and describe the minimum points of J; in terms of ¢ and the family
H

(2.37).

To complete the discussion of Onofri-Type inequalities with m < 2, it remains to consider the
case aq,ag > 0. This will be done in the next section.
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2.5 Spheres with Positive Order Singularities

In this section we will assume (1.18) with K € C*°(X), K > 0 and a4, ..., > 0. The proof of
Theorem 1.6 is a rather simple consequence of Theorem A.

Proof of Theorem 1.6. By the results of section 2.3 we have

Hilr(l£2) Jgr < —8mlog max h. (2.41)

Remember that on S? A(p) = %ﬁrg@). Let us consider

1 1
Ji (u) = / |Vul2dvg, + 2/ u dvg, — 8mlog </ e“dvg0> .
2 S2 S2 4 S2

By Theorem A we have Ji _(u) > 0V u € H'(S?). The condition ay,...,q, > 0 guarantees
h € C°(S?). Thus we have

1 1
J (u) > 3 Jo \Vul*dvg, + 2 /52 u dvg, — 8mlog (477 mzabxh/g2 e“dvgo> = (2.42)

— 7l _ _
= Jg.(u) 87rlogn}q%xh2 87r10grrga;xh.

Since e* > 0 on S?, equality can hold only if

h = maxh
S2
which, by (1.18), is possible only if a1 = ... = a,;, = 0 and K is constant. From (2.41), the
lower bound in (2.42) is sharp and the proof is concluded. O

We will now discuss existence of solutions of (1.17) for p = 8r. Theorem 1.6 proves nonexistence
of energy-minimizing solutions. However, in contrast to Theorems 1.3 and 1.4 we will prove that
(1.17) (and thus (1.10)) has always a solution for K = 1, and in many other cases.

Let us first focus on the case of two antipodal singular points p; = —po. Given any point
p € 52 C R3 we consider the space

Hpqap = {ue H'(S?) : 3¢:[-1,1] — R measurable s.t. u(z) =v(z-p) for a.e. z € S*}.

Lemma 2.9. Suppose m = 2, min{aj, a2} = a1 > 0 and py = —p1. If h is a positive function
satisfying (1.19), then the Moser-Trudinger functional J[} is bounded from below on H,qqp, for
any p € (0,87(1 + a1)).

Proof. Let us consider
h(z) = e~ 4ma1(Gl@p)+Glp2)
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Since h = Ke~4m1G@p)—drazGlaps) < ﬁma)zc K (z)e'm(@1702)G(@p2) it is sufficient to prove that
z€S
the functional

~ 1 1
h 2 P u
= = \Y% + —pl
Jp(u) Jp (u) 2 Je |Vul“dvg, 1 /52 u dvg, — plog <4 /52 he dvgo>

is bounded from below for any p < 87 (1+«q). Let us consider Euclidean coordinates (1, z2, x3)
on 5% such that p; = (0,0, —1), po = (0,0,1), and let 7 be the stereographic projection from

the point po. Given a function u € H'(S?) we define v(|y|) := (u(m~1(y))), va, (¥) = v(|y|ﬁ)
and uq, () := vo, (|7(2z)]). Then we have

00 +o0
/ \Vu|*dvg, = 277/ tlv' (1) 2dt = (1 + a1)/ slvl, (s)]Pds = (1 + 041)/ |V, |2 dvg,,
52 0 0 52

(2.43)
, 1+ ¢2(0+en)
and, using that igg m < 400,
- +o0o t2a1+1ev(t) “+o00 t2a1+1ev"‘l (tl"'o‘l)
u _ 2061 =
o hedvg, = 87r/0 e i+ t2)2(1+a1)dt < Coy /0 i t2(1+0‘1))2 dt
s, [T e s var g 2.44
= = 1 . .
calA (1+82)2 Cay /926 vgo ( )
Finally, Ve >0, t € RT
1 1 1
t1+a1 t1+a1 al
[v(t) — vay (B)] < / [v'(s)|ds| < / s|v'(s)[?ds logt| <
t t 14+ o
< | Vull} + ez |logt
— 47T 2 X1
from which
T Ju(t) = vay ()]
/52 u dvg, — /E Uq, dVgy| < 87T/0 W < e||Vull3 + Cen,y - (2.45)

(2.43), (2.44), (2.45) and the Moser-Trudinger inequality (1.22) imply

~ 1 1
Jo(u) > (1+aq) (2 —p 5) /52 Vua1|2dvgo+p/52 Uq, dvg, — plog <477 /52 eua1d0g0> —Ceonp=

1 1 = ~
- (1+a1) <<2 - p 5) /S2 |Vua1 ’2dvgo - rpal log (47‘( /52@“041 tet dvgo))_ce,ahp Z _05701717

if p < 8m(1+ 1) and ¢ is sufficiently small. O
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Remark 2.5. Arguing as in sections 2.2, 2.8, 2.4, it is possible to describe the behavior of

sequences of minimum points of J;L in H! - (8?) as p / 8m(1+a1) to prove that also ng(Hal)

is bounded from below. Moreover if K =1 and a1 = ag = « then we have

1 . 1
log <47r . he dvgo) < 6r(1 1 a) /52 \Vul2dvg, +a —log(1+a) Y u € Heaap, (S?),

with equality holding for

(Ll N
1+ e} y|2(+e) ’

won (y) =2log <

where \,c € R and 7 is the stereographic projection from pi.
Proof of Theorem 1.7. By Lemma 2.9,V p < 87(1+ o) 3 9,,C, > 0 such that
Totw) =5 [ Vadu, ~C,

Vu € Hygqp,- Thus J g is coercive on the space

{u € Hmd,pl,/ u dvg, = 0} ,
b

and by direct methods we can find a minimum point of J Z} in H }a d4p- Since h € H, ﬁa d.py» DY Palais’

criticality principle (see Remark 11.4 in [3]), this minimum point is a solution of (1.17). O

As a consequence of Theorems 1.6 and 1.7 we obtain a multiplicity result for equation (1.17).
Indeed we can observe that if p < 87 is sufficiently close to 8, one has

min J;}< min J[}.
’LLEHI(SQ) ueHrad,pl

Corollary 2.1. Suppose h satisfies the hypotheses of Theorem 1.7. There exists eg > 0 such
that ¥ p € (87 — €9, 87), equation (1.17) has at least two solutions u, v such that u € Hyqq p,
and v € H' (S*)\H,ad,p, -

Proof. For any p < 87 let us take two functions u, € H*(5?),v, € Hyaap,, such that
JM(up) = min J,  Jt(v,) = in _Jh d / d :/ dvg, = 0.
o (up) Hl{l(gg) p p () HMTJR $2) p(u) an Eup Ygo EUP Ygo

We claim that, for e sufficiently small and p € (87—¢,87), u, ¢ Hyqdp, and in particular u, # v,,.
Assume by contradiction that there exists a sequence p, /87 for which u,, =€ H,4qyp,. Then,
applying Lemma 2.9 as in the proof Theorem 1.7, we would have

J/ilm (Up) > 5/52 ]Vupn]2dvgo -C

for some 6,C' > 0. Therefore ||Vu,,|2 would be uniformly bounded and, up to subsequences,
up, — u in HY(S?) with J& (u) = inf g1 (g2 JU . This is not possible because we know by
Theorem 1.6 that J2 has no minimum point. O
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Now we will discuss some sufficient conditions for the existence of solutions of (1.17), without
symmetry assumptions on h. Let Hy, I'(av, ..., ), T, and d, be defined as in (1.12), (1.24),
(1.25) and (1.26). By Theorem 1.2, if u,, € Hy is a sequence of solutions of (1.17) with p = p,
uniformly bounded we have, up to subsequences, either

(i) |up| < C with C depending only on a, ..., amn, maxy K, miny K and p.
or

(ii) wu, blows-up in a finite number of points, that is

prhetn i

o =81 ) (14 a(gi))dy,
fE hevnduvg ; e

with q1,...,qx € 2.

Case (4i) is possible only if p € I'(ay, ..., o). As we pointed out in the Introduction, a direct
consequence is that the Leray Schauder degree d, is well defined and is constant on every
connected component of (0, +00)\I'(cv, ..., am). From Chen and Lin’s formula (1.29) for d, we
deduce existence of solutions for any p € (0,87(1 + «a1))\87N.

Lemma 2.10. Suppose that h satisfies (1.18) with K € C°(S?), m > 2 and 0 < aq < ... < ayy,.
Then equation (1.17) has a solution ¥ p € (0,87(1 4 «1))\87N.

Proof. Let g(x) be the generating function in (1.27). If m > 2, then the first negative coefficient
appearing in the expansion

m

o0
glx)=(14z4+2%4+2%..)"2 H(l — !ty =14 ijx"j
i=1 j=1

is the coefficient of x!t1  i.e.
o0
g(x) =) bja"
=0

with by = 1 and b; > 0 for any j > 1 such that n; <1+ a1. From (1.29) it follows that d, > 1
for p € (0,87(1 + a1))\87N. O

Remark 2.6. Lemma 2.10 only holds for m > 2. Indeed for m =1 and K = 1, Remark 2.2
states that (1.17) has no solutions for p € [8m,87(1+aq)]. Also, for m = 2 the bound 8m(1+aq)
is sharp by Remark 2.5.

Remark 2.7. A different proof of Lemma 2.10 was given in [7] by Bartolucci and Malchiodi
using topological methods.

By Theorem 1.2, if p, — 8k7 with £ < 1 + a3, then any blowing-up sequence of solutions of
(1.17) must concentrate around exactly k£ points q1,...,qx € X\{p1,...,Pm}. A more precise
description of the blow-up set is given in [26] (see also [28], [29]):
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Proposition 2.5 ([26], [28]). Let u,, be a sequence of solutions of (1.17) with p = p, — 87k
and k < 1+ aq. If alternative (ii) of Theorem 1.2 holds, then u, has exactly k blow-up points
Gy -5 qx € 2\{p1,--..om} and (q1,...,qx) is a critical point of the function

(g, ..o xk) == Z log h(z;) + ZG(ml,xj)

j=1 I#]

on the set
{(x1,...,2x) € (SHF + @y #a; fori#j}.

Moreover we have

erim

k
)\'n s
pn = 8km =Y h(gjn) " (Ao log h(gjn) + 2(k — 1)) 520 + O(e )
7=1

where qj,, are the local mazima of w, near q; and X\, = un(qjn)-

Proof of Theorems 1.8 and 1.9. Take a sequence p,, \, 8km and a solution u,, € Hp of (1.17) for
p = pn- By Theorem 1.2, Proposition 2.5 and standard elliptic estimates, either u,, is uniformly
bounded in W24(S?) for any ¢ > 1 or u, blows-up at (q1,...,qx) € S\{P1,.-.,Pm}. In the
former case we have u,, — u in H'(S?) and u satisfies (1.17) with p = 87k. The latter case
can be excluded using (1.32), (1.33). Indeed we have

Agologh(gy) +2(k — 1) = Agylog K = Y "o +2(k — 1) < 0
=1

for any j. Denoting gy, ; the maximum point of u, near ¢; and \;, = u,(gjn), by Proposition
2.5 we get

k
_ )\n )\
=Sk = 3" hlagg) ™ (B 108 hlaz) + 20k — 1)) S+ O(eNin) =
i=1

erd

= h(g;) " (Agylogh(gj) + 2(k — 1)) Ajme " + 0o(Ajme 7) < 0

J=1
which contradicts p, \, 8km. O

In order to prove Theorems 1.10, 1.11 we need to compute the Leray-Schauder degree for p = 8.

Lemma 2.11. Let h be a function satisfying (1.18) with K € C°(X) and oy, ...,y > 0. If
Agoh(q) #0 for any q € E\{p1,...,pm} critical point of h, then dg, is well defined.
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Proof. 1t is sufficient to prove that the set of solutions of (1.17) in Hy with p = 87 is a bounded
subset of Hp. Assume by contradiction that there exists u, € Hy solution of (1.17) for p = 87
such that ||up| g, — +00. By Theorem 1.2 and Proposition 2.5, there exists ¢ € X\{p1, ..., pm}
such that u, — 87dy, Vh(¢q) =0 and

0 = h(gn) F Ay log h(gn) Ane ™" + 0(e™) = h(q) 2 A gy h(@) Ane ™" + o(Ane™ ")

where A, := maxy u, and u,(gn) = A\p. Since Ag h(q) # 0 this is not possible. O

Under nondegeneracy assumptions, Chen and Lin proved that for any critical g point of h there
exists a blowing-up sequence of solutions which concentrates at g. Moreover they were able to
compute the total contribution to the Leray-Schauder degree of all the solutions concentrating
at q.

Proposition 2.6 (see [27], [29]). Assume that h is a Morse function on ¥\{p1,...,pm}. Given
a critical point ¢ € X\{p1,...,pm} of h, the total contribution to ds. of all the solutions of
(1.17) concentrating at q is equal to sgn(p — 8)(—1)"dr, where ind,, is the Morse index of p as
critical point of h.

Proof of Theorems 1.10, 1.11. Let us denote
A ={qgeX\{p1,....om} : Vh(q) =0, Ay h(q) <0},
Ay ={qgeX\{p1,....om} : Vh(q) =0, Agh(q) > 0}.

By Proposition 2.6 we have

dgr =1 — Z (—1)nde = 4 + Z (—1)inda,

qEA, q€A+

where d is the Leray-Schauder degree for p € (87,87 + ¢). Clearly A_ contains only the local
maxima of h and the saddle points of h in which Ay h < 0, thus

der =1—1r+s.
Therefore we get existence of solutions if r # s + 1. Similarly we have
dgr =d — 8 +1'

and we get solutions if s’ # 7/ +d. d can be computed using 1.29. If m > 2,

gx)y=1+z+-.. = d=2.
If m =1 we have
glz) i=1—z —alte 422040 — G-,

If m =0, then B
glx)=1-2242> — d=-1.

This concludes the proof. ]
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Chapter 3

Extremal Functions for Singular
Moser Trudinger Embeddings

Most of the results in literature concerning existence of extremal functions for the Moser-
Trudinger inequalities (1.3), (1.6), (1.41) rely deeply on the original estimates proved by Carleson
and Chang in [20] for the unit disk. The main ingredient in the proof of these estimates (and of
(1.35)) is the following inequality (cfr. Lemma 1 in [20]):

Proposition 3.1. V 6,7 >0 c € R and a € (—1,0] we have
2
/ eCUdr < meltier 52
Ds
Y u € H}(Ds) radially symmetric and such that fD5 |Vul?de < 7.

Here, and in the rest of the Chapter, Ds := {:p eER? : |z| < (5} and D := D;. Moreover
V xg € R%, Ds(xg) := {x € R? : x — x0 € Ds} will denote the disk of radius § centered at z.

Proposition 3.1 is a different way of writing the Onofri inequality for the unit disk:

1 1
log (= [ e¥dz ) < — dx + 1. 1
og <7T/D€ x) < 167T/E|Vu] x + (3.1)

Using ODE techniques, Carleson and Chang gave a direct proof of (3.1), but it can also be
deduced from Theorem A.

Onofri-type inequalities can thus be used to control blow-up phenomena for the nonlinearity
e I this Chapter we will use this technique in the presence of singularities. Starting form
Theorem 1.5, in Section 3.1 we will prove Theorem 1.13 which is a singular version of (3.1).
Then, in section 3.2, we will be able to reproduce, in a simplified version, the argument in [20]
and prove Theorem 1.12. As a consequence we obtain existence of extremal functions for (1.38).

The rest of the Chapter is devoted to the proof of Theorem 1.14. We will take a smooth
compact surface (X, ¢g) and study uniform bounds and existence of extremals for the functional
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(1.43) on the space (1.5). Differently from the previous section, where the change of variable
(1.48) suggested to consider singular weight satisfying (1.18), here we will just assume (1.19).
More precisely we will assume that any point p € ¥ has a neighborhood (2, C ¥ such that

h
T ECL@) = {f ey s f> 0} ori=1m. (3.2)

In section 3.3 we will introduce some notations and prove the subcritical case of Theorem 1.14.
The critical functional will be studied in sections 3.4, 3.5. Similarly to what we have seen for
Liouville equations a sequence of subcritical extremals for (1.43) on the space H can either
be compact or concentrate at a point p € 3. We stress that this concentration-compactness
alternative is strictly related to the condition | Vulls < 1. Indeed if we only assume ||Vulls < C, a
general concentration-compactness theory for critical points of (1.43) has not yet been developed.
In section 3.4 we will prove an upper bound for concentrating maximizing sequences similar to
(1.36). Lower bounds on supy Eg’ﬁ’q will be studied in section 3.5, where we complete the proof
of Theorem 1.14.

3.1 Onofri-type Inequalities for Disks.

Let us fix Euclidean coordinates (z1,x2,23) on S? C R3 and denote N := (0,0,1) and S =
(0,0,—1) the north and the south pole. Let us consider the stereographic projection 7 :

S2\ [N} — R2
m(@) = (1 fl:cg’ 1 f2x3> ’

and the Green’s functions

1 1 e
= —— log(1l — 2a) — — log =
G () =~ log(1 — z5) — - log &
1 1 e
Gs(x) = ~in log(1+ x3) — o log 5
It is well known that 7 is a conformal diffeomorphism and
(7") g0 = €™ |da|” (3.3)
where
1 ( 1 ) (3.4)
up =log | ——— .
(14 |2[2)?
satisfies
— Aug = 2e"° on R2. (3.5)

Proof of Theorem 1.13. We want to apply Theorem 1.5 with p; = N, po = 5. Given r > 0, we

consider the set S? = 71(D,) and the map 7T} : H}(D,) — H'(S?) defined by
u(n(2) — (1+ )uo(n(x)  on S2

Tru(x) = 1+T‘2 2 2

2(1 + a) log(=5~) on S°\S;.
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Using (3.3) and h(7~(y)) = (%)m ly|?*ev 0 we find

/heTT“dngZ/ heTT“dng = / h(wfl(y))eTT“(”_l(y))euody:
52 S2 "

e\ 2«
= (5)7 ] weeeay, (3.6)

Moreover, by (3.5),

/ |VTru|2dvgoz/ |Vu|2d:£—2(1+a)/ Vuo-Vudy+(1+a)2/ Vo 2dy =
2 D,

T Dy

:/ ]Vu|2dy—4(1+oz)/ ue“ody+(1+a)2/ |Vug|*dy =
D, - Dy

= / |Vu|*dy — 4(1 + a)/ Tru dvg, + (14 a)? </ |Vuo|?dy — 4/ uoeuody) .
D, S2 r D

A direct computation shows

2
25 _ 2 r
/ |Vug|“dy = 167 <log(1+r ) — 1+r2>

Dy

and
/ uge™dy = 8mlog2 — 81 + o,.(1),

T

where 0,(1) — 0 as r — +00. Moreover

/ Tru dvgy = o(1),
52\,

thus we get
/ |V Tul*dvg, + 4(1 + a)/ Tru dvg, =
52 52

= / IVul?dy + 167(1 + a)? (log(1 4+ r?) + 1 — 2log 2 + o,(1)) . (3.7)

T

Using (3.6), (3.7) and Theorem 1.5 we can so conclude

1 1
log ( / |y!2"e“dy> < log ( / heTr“dvg()) +2alog2 — 2a <
T D, ™ .Js2

1

. — Trul? 2(1 T, 2(1 log?2 — o — log(1 <

S 16 1 o) </S2W ul“dvg, + 2( —1—04)/52 udvg0> +2(1+ «)log a—log(l+a) <
1 2 2

< — d 1 log(1 1 —log(1 r(1). .

_167r(1+a)/Dr|Vu] y+ (1+a)log(l+7r°) + og(1+ a) +o,(1) (3.8)
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Now, if u € Hj(D), we can apply (3.8) to u,(y) = u(¥). Since

1
200 u _ 2a ur(y) 2 _ 2
/D|x] e'dx RoTEEwS) /DT ly|““e" Y dy and /DVU| dx /Dr |Vu,|“dy,

we find

1 1
log [ = Ly ) I — 2dz +1 —log(1 (1).
og(W/D]aj e x) _167r(1+a)/D|vu‘ x + og(l+ )+ o-(1)

As r — 0o we get the conclusion. O

Since

/‘wl%‘dx: a_—
D 1+a

Theorem 1.13 can be written in a simpler form in terms of the singular metric g, = |2|?¥|dz|?.

Corollary 3.1. For any u € H}(D) and a < 0, we have

1 1
1 _— “ < ——mm— 2q 1
og Da/edvga < l6r(ita /D|Vu| Vg, +
D

where |D|o = 72— 1is the measure of D with respect to g,
(

1+a)

We stress that the constant 1 appearing in Theorem 1.13 is sharp.

Proposition 3.2. V « € (—1,0]

1 1
inf ——M— 2dx —1 —_— 200U = —1.
welo) 167r<1+a>/D’V“' v °g<\D|a/[)'m' ¢ >

Proof. Let us denote J,(u) := m [p |Vu|?dz — log (|D|a [p |z[**evdv ) It is sufficient to

exhibit a family of functions u. € H}(D) such that J,(ue) — =9

EYe =9 0, and define

— —1. Take ~. =Y + o0 such that

2| 2(14+a)
—2log [ 1+ ( ) + L. for |z| <~ee
—4(1 + «a) log |z for vee <|z| <1

us(z) =

1 + ,)/1+C¥

where L. := 2log < T
Ve

show that

> —4(14«) log e is chosen so that u. € Hi (D). Simple computations

1+ €(1+a) 1
—— [ |[Vu|"dz=log | —77—— | 1+ ——7—= —2(1 +a)loge
167( 1+a / |V [*da g ¥ 2(1+a) 1+72(1+o¢) (1+a)log

€
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=—-1-2(1+a)loge + 0-(1)

and

2(14a) . 2(1+a) L, 1 —2(14a)
/ 2t 4y — < Ve 2? aw LT 1 =T (14 0.(1)).
D (1+a)(1+120F9) T4 a \(ree)?(He) l+ta

as € — 0. Thus
Jo(us) — —1.

O
In order prove to Theorem 1.12, in the next section we will need to apply Theorem 1.13 on

arbitrarily small disks to functions with a precise Dirichlet energy. Thus it will be convenient
to use the following formulation of Theorem 1.13 (cfr Proposition 3.1).

Corollary 3.2. V 6,7 >0 c € R and a € (—1,0] we have

2,
/ |z[**e"dx < 1 T imrrm 520 +e)
Ds +o
V u € H}(Ds) such that fDa |Vul?dv, < 7.

We conclude this section with a Remark concerning the case o > 0. If h = e~ 47GN+GCs) | with
a > 0 then by Theorem 1.6 one has

u—u 1 €
log (/52 he dvgo> < 167 Jso \Vu|?dvg, + 2alog (5) (3.9)

where the constants 16% and 2alog (%) are sharp. This inequality is not conformally invariant,
thus it does not give a sharp inequality for the unit disk. However, by Lemma 2.9 and Remark 2.5,
if we only consider functions that are axially symmetric with respect to the direction identified
by p1,p2, (3.9) can be improved to

u—u 1
log </52 he dvgo) < T6r(1+a) /52 |Vu|?dvg, + o — log(1 + a).

Therefore, arguing as before, we recover Theorem 1.12 in the class of radially symmetric functions
on D:

Proposition 3.3. If a > 0, then we have

1+Oé 2 1 2
| aet < 1
0g< - /D|:E| e dm) S r(it o) /D|Vu dvg +

for any radially symmetric function u € H}(D).




3.2. A Carleson-Chang Type Estimate. 53

3.2 A Carleson-Chang Type Estimate.

In this section we will use Corollary 3.2 to prove Theorem 1.12. We will consider the space
H := {u € HY(D) : /D |Vul|?dz < 1}
and, V o € (—1,0], the functional
Eq(u) = / |:B|2°‘e4”(1+0‘)“%d33.
D

By (1.38) we have supy F, < +00. As in the previous section, for any 6 > 0, Ds will denote
the disk with radius §. With a trivial change of variables, one immediately gets:

Lemma 3.1. If § > 0 and u € H}(Ds) are such that fD(; |Vun|?dz < 1, then

/ |x|2ae47r(1+a)u2d$ < 52(1+a) sup Ey.
Ds H

As in the original proof in [20], we will start by proving Theorem 1.12 for radially symmetric
functions. For this reason we introduce the space

H,oq:={u € H : u is radially symmetric and decreasing}.

Functions in H,.q satisfy the following useful decay estimate.

Lemma 3.2. If u € Hynq, then
1
u(z)? < —— (1 —/ |Vu|?dy | log |z| vV z € D\{0}.
2 Dll\

Proof.

1 ’ ! Ny ’ —lo x% L
u@I< | Iu(t)ldté</|x|tu(t) dt) (= log |z) Sm(/mp

L - 'LL2 — 108 |
S\/%(l /Dlxlwwy) (~logla)?

N

D=
IN

\VUIQdy) (—log|z|)

|

[N
Bl

O]

On a sufficiently small scale, it is possible to control F, using only Corollary 3.2 and Lemmas
3.1, 3.2.
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Lemma 3.3. Assume a € (—1,0]. If u, € Hypqq and 6, — 0 satisfy
/ |V, |2de — 0, (3.10)
Ds,

then
e

lim sup/ \x|2°‘e4”(1+a)“idx < .
n—oo JDjs, 1+«

Proof. Take vy, := u, — un(d,) € H}(Ds,) and set 7, := st |V, |2dz.
If 7, = 0, then u,, = u,(d,,) in Dy, and, using Lemma 3.2, we find

/ ‘x’2ae4ﬂ'(1+a)u%dx _ m 6%(1+a)€47r(1+06)Un(6n)2 < T < e .
Ds, 1+a l+a ™ 14+«

Thus we can assume 7, > 0. By Holder’s inequality and Lemma 3.1 we have

/ ’x‘2o¢e4ﬂ'(1+a)u%d$ _ €47r(1—|—o¢)un(5n)2 / ‘:L,’2ae47r(1+a)v721+87r(1+a)un(5n)vndx <
Dén Dén

2 Tn 1—71p
2 47(1 Yn 8r(1+a)un(dn)vn
< e47T(1+a)Un(5n) / |£L"|2a€ m(14a) ™ dx / |$’2a€ T—mn dx <
Dén D5n

1—7p
Tn 87(14+a)un (Sn)vn
< edn(i+a)un(on)? (5721(1+a) sup Ea) (/ :U|2ael—fndx> : (3.11)
H Ds,
Applying Corollary 3.2 with 7 = 7,,§ =, and ¢ = &T(Hl‘fi);:t(é") we find

ar(1+a)un (5n)2

4‘rr(1+a)un(§n)2'un e (1-7n)2
/ a2 e < 520+)
D(Sn ]. —l— (0%

Tn

thus from (3.11)

T 1—m 2
n Te n 2 4 (l4+a)un(dn)“ ™
/ |x|2a647r(1+a)u%d$ < 5T2L(1+a) sup E e47r(1+a)un(5n)+—(177n) _
Ds, H I+ o

Tn 1—7p 2
Te 4 (14+a)un(d)
= 6721(1"'&) (sup Ea) <1 ) e I-m .
H —+ «

Lemma 3.2 yields
2
s AT S

Tn 1—7n
/ |x‘2ae47r(1+oc)u%dx < (sup E, e )
Ds,, H l+a

Since 7, — 0, we obtain the conclusion by taking the limsup as n — oo on both sides. O

therefore
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In order to prove Theorem 1.12 for H,,q it is sufficient to show that, if u,, — 0, there exists a
sequence ¢, satisfying the hypotheses of Lemma 3.3 and such that

/D || 2 <e47r(1+0‘)“% — 1) dx — 0. (3.12)
on

Note that, by the dominated convergence Theorem, (3.12) holds if there exists f € L'(D) such
that
|z|2eedn(teun < ¢ (3.13)

in D\Ds,. In the next Lemma we will chose a function f € L!(D) with critical growth near 0
(ie. f(z)= ng;QIII) and define §,, so that (3.13) is satisfied.

Lemma 3.4. Assume a € (—1,0]. Take uy, € Hyqq such that

sup u, — 0 Vre(0,1). (3.14)
D\D,

Then there exists a sequence oy, € (0,1) such that

1. 4, — 0.

2. Ty = fD(s |V, |>dz — 0.
3. fD\Dan ]:1:\20‘64”(1+a)“%da: — T

Proof. Let 19 be the smallest value in (0,1) such that = ¢2. Observe that rg

1
2(1
7.0( +a) 10g2 ro

o : 1 2 2 2 - '
exists since tg(lég) AT og21 =e’(1+a)” <e” and %g% 0T 10g7{ = +00. We consider the
function .
——— <
fx) = d PP [ <o 5.15)
ez |z| € (ro, 1].
Note that f € L'(D) and
inf |2| 729 f(z) = €2 (3.16)

xzeD

Let us fix 7, € (0, ) such that fD7 |Vu,|?dz < L. We define

Op := inf {'r €(0,1) : ]m\QO‘eM(HO‘)“%@) < f(x) forr <|z| < 1} €1[0,1),

and

5 on  if 6y >0
") 4, if 6, =0.

By definition we have ,
‘x|2ae47r(l+a)un < f(.CC) in D\D6na
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thus 3 follows by the dominated convergence Theorem. To conclude the proof it suffices to show
that if ny, * +o0 is chosen so that d,, = d,, V k, then

lim 0,, = lim 7, =0. (3.17)

k—o0 k—o0

For such n; one has ,
G T O = (6, (3.18)

in particular using (3.16) we obtain

etmreyun On)® = 620 f(5,, ) > €2 > 1

which, by (3.14), yields 0y, 2. Finally, Lemma 3.2 and (3.18) imply

572(1+a)‘rnk
| ) e it _ S
log* 0,
so that 7, s (otherwise the limit of the RHS would be +00). O

Combining Lemma 3.3 with Lemma 3.4 we immediately get Theorem 1.12 for radially symmetric
functions:

Proposition 3.4. Ifu € H,,q and

sup u, — 0 Vre(0,1),
D\D,

then (1 )
. m(l+e
limsup E, (uy) < Tra

n—o0

Proof. Let 6, € (0,1) be as in Lemma 3.4. Then,

/ |x|2a647r(1+a)u%dx N m
D\Ds,, 14+«
and by Lemma 3.3
lim sup / |l,|2ae47r(l+a)u% dx < e .
n—oo JDs, 1+a

O

To pass from Proposition 3.4 to Theorem 1.12 we will use rearrangements. We recall that given
a measurable function u : R? — [0, +-00), the symmetric decreasing rearrangement of u is the
unique right-continuous radially symmetric and decreasing function u* : R? — [0, +00) such
that

{u >t} = {u* >t} Vit>0.

Among the properties of u* we recall that
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1. If u € LP(R?), then u* € LP(R?) and |u*|, = [|ullp-

2. If u € Hy(D), then u* € Hj(D) and [, |[Vu*[*dz < [, |Vu|*dz. In particular if u € H,
then u* € H,qq.

3. If u,v : R? — [0, +00), then

/R2 u* (z)v*(z)dx 2/ w(@)v(z)da.

R2

In particular if u € H and a <0,

Ey(u*) > Eq(u). (3.19)

Note that the last property does not hold if & > 0. We refer the reader to [49] for a more
detailed introduction to symmetric rearrangements.

Proof of Theorem 1.12. Take u, € H such that u, — 0 and let u, be the symmetric decreasing
rearrangement of u,. Then u;, € H,qq and, since [Juy,|[2 = |[unll2 — 0, we have suppy p, u;, — 0
V7 > 0. Thus from (3.19) and Proposition 3.4 we get

. m(1+e)
1 Eq(uy) <l B, < —".
imsup Eq(uy) < limsup Eq(u,,) < T a

n—oo n—o0

In the next section we will need the following local version of Theorem 1.12.

Corollary 3.3. Fiz § > 0, and take u, € H}(Ds) such that fD(; |Vun|?de < 1 and u, — 0 in
H{(Ds). For any choice of sequences 8, — 0, x,, € Q such that Ds, (z,) C Ds we have

limsup/ |x|2a 47r(1+a)undv < 52(1-{-04)
D5n (xn) 1 + «

n—oo

Proof. Let us consider u,(z) := un(dz). Note that w, € H and satisfies the hypotheses of
Theorem 1.12, hence

limsup/ |x\20‘(e4m% —1)da = §20+9) hmsup/ || 2 (e Ay, _ 1)dx < §2(14a) _T€
Ds

n—oo n—oo

1+a
Thus we get

lim sup/ ‘$|2a 47r(1+a)undx — lim sup/ |x’2a <€47r(1+a)u31 _ 1) dx <
Dy, (wn) Dy, (zn)

n—oo n—0o0

)_Te

S/ |$|2a(€4ﬂu’21 _ 1)d37 < 52(1+a '
Ds 1+«
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We conclude this section with a proof of the existence of extremals for E,, o € (—1,0].
Proposition 3.5.
m(l+e)

E, > .
W7 1ta

Proof. Let us consider the family of functions

log (1+(%)2(1+Q)> +Le

<
In(1+ a)ee 2] < 7ee

Ce —

log |z Yee < |z| < 1.
2mce

1
where 7. = |loge|THe and ¢, L. will be chosen later. In order to have u. € H}(D) we require

1 +72(1+a)
4r(1 4 a)c? — L. = log W —2(1+a)loge (3.20)
Ve

By direct computations

2 1 2(140) ’Yg(Ha)
\Y% dr = —— [ log(1 + 0 [ LR
/D ’ us‘ €z 47r(1 +a)cg Og( Ve ) 1 +7€21+a

Ye€

and )
/ \Vu|?dx = — - log(e7e),
D\D’YE€ 27TC

£

so that

1 1+ 72(14—01) ,72(1+Oc)
27 _ _ _
/D |Vue|“de = 0+ o) (log ( TRy Ty 2(1+a)loge | .

In particular u. € H if we choose c. so that

2(1+«) 2(14a)
1
4m(1 4 a)c? = log +2’Yf - - sy — 2(1+a)loge. (3.21)
(I+a) (I+a)
Ve I+
From (3.20) and (3.21) we have
2(1+«
L. — /YE( ) _ —1+O( 72(1+a)) (3 22)
¢ T T A T Ve :
+92

and
21¢? = |loge|(1 + 0:(1)). (3.23)



3.2. A Carleson-Chang Type Estimate.

To estimate E,(u.) we observe first that in D, .

2

log (1 + ('9;')2(1+a)> + L.

. 2(1+a)
log <1 + (l?‘) ) + L.
2_ 201

>3 |1-
4 (1 4 a)c?

— e

21 (1 4 a)c?

2(1+a)
— 02 _ # log 1 + ‘ﬂ _ L
° 2r(1+«) € 27(1 + )

Thus, using also (3.20) and (3.22),

2(14a) L20+) —Le
/ |x’2a€47r(1+o¢)ugdx > e Ve e47r(1+a)cg—2L5 — e

1+« 1+7§(1+a) 1+a

Ye€

e me _2(1+a)
o O(v; )-

Finally, since (1442 > 1 4 47(1 4+ a)u? and

(1+ a)/ |z|** log? |2z|dx > & > 0,
D

Ye€

using (3.23) we get

1
/ |x|2a€47r(1—|—o¢)u§d‘r > / |$’2adm—{— ( +2a) / |x|2a 10g2‘l‘|d£ﬂ >
D\D.- D\D,< e D\D,c
Q 2(14a) 0 —
> =
> 1+a+0((%€) )+mg
T 20
_ T % 1 1 1) 2(1+a) )
Ta + |10g€’( +0:(1)) + O((ree) )
Therefore
(1 +e) 25

E(ug) >

1 1 2(1+a) —2(14aw) )
g 2 0 0u(1)) + O((reeP) 4+ 0 04

Since 7. = |log a|1+% one has
[log e|(7.e)21F®) = |loge’21F%) = o.(1)

and
|log e[y = [loge| ™" = oc(1)
so that, for sufficiently small &,

(1+e) 20 m(1+e)
1 1 _.
1+« |log£|< +o:(1)) > 1+a

Blus) >~
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Corollary 3.4. V a € (—1,0] there exists a function us € H such that

E, (ua) = sup E,.
H

Proof. Let u, € H be a maximizing sequence for F,. Up to subsequences, we may assume
Uy — u. If u =0, then by Theorem 1.12 we would have

. m(l+e
s e = J () < 0

which contradicts Proposition 3.5. Thus u # 0. Since
limsup ||V (u, — u)||3 = limsup (HVunH% + | Vul)3 — 2/ Vuy, - Vu dac) =1—|Vulla <vy<1,
n—00 n—00 D

by (1.38) we find

4rs(l4+a) N2
/ |z 7 =gy < C
D

for some s > 1. If we take 1 < p < %, then

(up — u)2 + C%qu

==

Pui = p(uy, — U)2 + pu® + 2pu(uy, —u) <

so that

2 Ar(Ate) () )2 2
/ |‘,E|2cy€47rp(1—s—oz)und:C < / |x|2ae 5 (un—u) Gt o <
D D

1 1
Ans(14+a) N2 B ’ 2 s’
< (/ ’x|2a677 (un—u) d(E) </ |:L”2a68 Cyeu dﬂ?) <C.
D D

Here we used ¢’ € LI(D) ¥ q > 1 which was proved by Moser in [68] (sce also Lemma 3.5).
Applying Vitali’s convergence Theorem to the measure |z|*“dz we find

Eo(up) — Eo(u),

which concludes the proof. O

3.3 Subcritical Problems, Notations and Prelimiaries

Let (X,g) be a smooth, closed Riemannian surface. In this section, and in the rest of the
Chapter, we will fix p1,...,pn € ¥ and consider a positive function h € C*(E\{p1,...,Pm})
satisfying (3.2). Clearly condition (3.2) implies that the limit

1 h(g)
K(p) = élg}) (g, p)2o® (3.24)
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exists and is strictly positive for any p € ¥. Here a(p) is the singularity index (2.1) and d is
the Riemannian distance on X. We will study the functionals (1.43) on the space (1.5). Let us
consider the critical exponent

B :=4r(1+a)

where

@ := min {O, min ai} .
1<i<m
Given s > 1, the symbols || - ||s, L*(X) will denote the standard L®*—norm and L®—space on ¥
with respect to the metric g. Since in many computations we will deal with the singular metric

gn = hg, we will also consider
[ulls,p == / |ul*dvg, = / h |ul|*dvg
) p)

L*(%, gn) = {u: X — R Borel-measurable, |jul|s; < 400}

and

In this section we will prove the existence of an extremal function for Eg’;‘b’q for the subcritical

case 3 < 8. We begin by stating some well known but useful Lemmas:
Lemma 3.5. Ifu € H'(Z) then ¢*’ € L*(3) N L* (S, gp), Vs > 1.

Proof. Clearly since h € L"(X) for some r > 1, it is sufficient to prove that ev’ € L*(X),Vs>1.
Moreover, since
su? s(u—w)2+2s(u—u)u+u> < er(u—ﬂ)262552

e’ =e ,

without loss of generality we can assume w = 0. Take € > 0 such that 2se < 47 and a function
v € CH(X) satisfying [|[V4(v — u)||3 < e and v = 0. By (1.6), we have

u2
€254 ||y 4 [|**°TVT2 || < 4o0. (3.25)

Note that
esu2 < es(u—v)QGQSuv‘ (326)

By (3.25), we have e*(*")* ¢ L2(X) and, since v € L™(X),
2

se—t—s 2
e?suv <e Vul2 eC(a,s,HVqu)v € LQ(Z)

9

Hence using Holder’s inequality we get = LY(%). O
Lemma 3.6. If u, € H and u, — u # 0 weakly in H(X), then

n

sup / hepB“%dvg < 400
b

< 1
V1<p< i
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Proof. Observe that
ePBuin < opB(un—u)? 2pBunu (3.27)
Since

1 . 1
= >1—||[Vul3 > [Vun|3 = [[Vull3 = [V(un —w)[3 +0(1) = limsup ||[V(u, —u)3 < =,
P n—o00 D

by (1.20) we get ||ep5(“"_“)2Hs,h < C for some s > 1. Taking 1 + 1 =1, since by Lemma 3.5
= L1(X,g) ¥V g > 1, we have

B < Bk O e [NT,00) = [Py < C.
Thus from (3.27) we get [|e?Pun|;;, < C. N

Existence of extremals for 8 < 3 is a simple consequence of Lemma 3.6 and Vitali’s convergence
Theorem.

Lemma 3.7. V 3 € (0,58), A € [0,7,(2,9)), ¢ > 1 we have
sup Eg’z’q < 400
H b

and the supremum is attained.

Proof. Let u, € H be a maximizing sequence for Eg’z’q, and assume u,, — u weakly in H'(X).

We claim that ePun(HXunld) jg uniformly bounded in LP(X, gy) for some p > 1. In particular
by Vitali’s convergence Theorem we get Eg;‘bq(un) — Eg?‘lq(u) and Eg?‘lq(u) = supy Egzq
Since by Lemma 3.5 Egzq(u) < 400, we obtain the conclusion.
If w =0, then B

B+ Mlunl3) — B < B,

and the claim is proved taking 1 < p < % and using (1.6). If u # 0, since

(1= [IVall2) (1 + Mual3) < 1= [[Vull + Mullf +o(1) < 1= (A(E) = Nlullf +o(1) <1

1
we can find p > 1 such that limsupp(1 + )\||un||2) < ————5, and the claim follows from
i TVl

Lemma 3.6. ]

Lemma 3.8. As 3 7 8 we have

sup Eg’;;’q — sup Eg’z’q.
H ’ H ’
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Proof. Clearly, since 8 < /3, we have

lim sup sup Eﬁ”\ 1< sup EB A
BB M

On the other hand, by monotone convergence Theorem we have

lim inf sup E’B M > lim inf E2M ESM(p) Vo eH,
minfsup EE 2 lmint BE(0) = BE7(0)
which gives
lim inf sup EB’)‘q > sup EB M
BB H =
O

We conclude this section with some Remarks concerning isothermal coordinates and Green’s
functions. We recall that, given any point p € X, we can always find a small neighborhood €2 of
p and a local chart

Y : Q — Dj, C R? (3.28)
such that
Y(p) =0 (3.29)
and
(W) g = e?|daf? (3.30)
with

¢ € C(Ds and  ¢(0) = 0. (3.31)

)
For any § < & we will denote Q5 := ¥~(Ds). More generally if D,(x) C Ds, we define
Q. (1 (x)) := ¥~ (D,(x)). We stress that (3.30) also implies

(™" gn = 22V (2)ef|da . (3.32)

with
0<VeC®Ds) and  V(0)=K(p) (3.33)

(see (3.24)).

For any p € ¥ we denote as G])D‘ the solution of

1
—AgGy =6, + N|Gpll279Gp 172Gy — 5] <1+A||GM|2 Q/ |Gg|q—2G;dvg>

/ G;,‘dvg =0.
¥

In local coordinates satisfying (3.28)-(3.33) we have

(3.34)

AW (x)) = —% log 2] + A} + £(z) (3.35)

with ¢ € C(Dj,) and &(z) = O(|z]). Observe that G} is the standard Green’s function for —A,.
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Lemma 3.9. As A — 0 we have G;} — Gg in L*(¥) Vs >1 and A;‘ — Ag.

_ A

Proof. Let us denote ¢y := ]

||G1);‘||3_q/ |G |97 2Gydvy. Observe that
2

—Ag(Gy — GY) = N|Gp[I279G 972Gy — ca.

Since
ey zae2ay| , =1a,
a—1
and -
el S AIGlgBl 7,
by elliptic estimates we find
16 = GBlliisy < IGS = Gl oty ) < CAIG (3:36)

In particular
Gy llg < Gl + 1G5 = Ghllg < 1Gpllq + ClIGy = Ghllse < NIGllq + CAIGH g,
thus for sufficiently small A we have
IGollq < ClGlg-
Thus by (3.36), as A — 0 we find
IG) = Gl oo (ssy — 0.

In particular G — GY in L* for any s > 1. Since Ay — AY = (G} — GD)(p) we also get the
convergence of A%. O

Lemma 3.10. Let (2,v) be a local chart satisfying (3.28)-(3.33). As 6 — 0 we have
1
/ VG Pdvg = ——log§ + A + A| G ||2 + O(5]1og )
Y\ Qs 2
where Q5 = 1~ (Ds).

Proof. Integrating by parts we have

oG
VG |*dv, = —/ A, G Ghdv —/ G —"Ldo,. 3.37
/E\Qs| p| ! Qs e Qs P ov ! ( )
For the first term, using the definition of G;‘ we get
1
— | A,G) Grdv, = AHGWQ/ |G |dv, — <—i—c>\> G dv, =
0 o 0o E AN D mo; L

= A|Gyll2 4+ O(5°|log 5]9). (3.38)
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For the second term we use (3.35) to find
/ GA@d = / L 1ogs AX +0(5) i+0(1) do =
o0, | OV % = aps \ 2T ©8 P 270 7=
1 A
= —glog5+Ap+O(6|log6|). (3.39)
O
3.4 Blow-up Analysis for the Critical Exponent.
In this section we will study the critical case 8 = B and prove
sup Eg’z’q < 400 (3.40)
H 7

Let us fix ¢ > 1, X € [0,A,(%, g)) and take a sequence 3, B3, B, < B. To simplify the notation
we will set E, := Egn}[\’q. By Lemma 3.7, for any n we can take a function u,, € H such that

E,(uy) = sup Ey,.
H

Up to subsequences, we can always assume that
Up — U in (%)

and

U, — ug in L¥(¥) Vs>1.

Lemma 3.11. If ug # 0, then B
Ep(un) — EX (uo).

In particular we get (3.40) and ug is an extremal function.

(3.41)

(3.42)

(3.43)

(3.44)

Proof. If ug # 0 we can argue as in Lemma 3.7 to find p > 1 such that ePrun (LM unllg) g
uniformly bounded in LP(X, gp,). Vitali’s convergence Theorem yields (3.44). Since by Lemma

3.5 we have Eé’;\;q(uo) < 400, (3.44) and Lemma 3.8 imply

sg{p Eg;\Lq = Egiz’q(uo) < +o0.
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Thus it is sufficient to study the case ug = 0. In the same spirit of Theorem 1.12 and (1.36) we
will prove that if ug = 0, then

e Z A
limsup Ep(u,) < ma; K(p)e?% + |3, , 3.45
msup B (u) € [ max K@) + 2y, (3.45)

where A is defined as in (3.35) and [y, := [5, h duy.

Lemma 3.12. There exists s > 1 such that u, € HNW?5(X) ¥ n. Moreover |[Vuy,|s =1 and,
if up, — 0, we have

— Agup = th(:n)uneb”“% + sp(2) (3.46)
where B
b = Bu(1+ Alunl7) — B, (3-47)
limsupvy, < +oo and *yn/ h u%eb”uidvg — 1, (3.48)
n b
and
Sn 1= )\n‘|un||g_q|un|q_2un —Cn (3.49)
with
An — A, (3.50)
and
Cp = 1 Une® vy, + A w27 [ un]? 2undvo, | — 0 (3.51)
n = ‘ | Tn 5 n 9n n||Unl|lq 5 n nUUqg . .
In particular we have
Isnll_e; — 0. (3.52)

Proof. The maximality of u,, clearly implies ||Vuy,||2 = 1. Using Lagrange’s multipliers Theorem,
it is simple to verify that u,, satisfies

2 _ —
— Aty = 2upbph(z)upelntn 4 2)\1/nﬁn,u,nHunH(21 Uy |72y — . (3.53)

where by, is defined as in (3.47), p, = [ h u,%eb"”%dvg,
1 2 _ _
Cp = E <2ann’yn/ huneb"“"dvg +2)\Vnﬁnun”un||g q/ [t |7 2undvg) , (3.54)
P b

and v, € R. We define 7, := 2u,b,,, A := 2 v, Bp i and sy () := )\n||un||gfq|un\q_2un —cn
so that (3.46), (3.49) and (3.51) are satisfied. Observe also that

HHuan_q!un!q_QunH# = |lunllq — 0. (3.55)

and

1
|27 < Junlg|E]s — 0 (3.56)

/ |un|q_2undvg
by
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If so > 1 is such that h € L°(X), using Lemma 3.5 and standard Elliptic regularity, we find
up € W2S(2) V1 < s < sg. Multiplying (3.53) by u,, and integrating on ¥ we get

2 /\ﬁnllun\lg
1= 2v,bppn + 2>\Vn/8nﬂn|’un||q = 2Upbppin | 1+ bi = "Yn,ufn(l + 0(1))
n

from which we get the second part of (3.48). As a consequence we also have

p
A = 2\ B, = )\vn,unb—n — A (3.57)
n
Now we prove lim sup 7y, < +oo or, equivalently, lim inf p,, > 0. For any ¢ > 0, we have
n—oo n—oo
1 2 bnui bnu% 1 2 bnu,Q1
E,(uy) < 2 h u e ndvg + he’“ndv, < 2 huy e “ndvg + |Xlg, + o(1)
{lun|>t} {lun|<t} )

from which

n—oo n—oo

liminf y,, = lim inf/Z h uiebnu%dvg > 12 (S%p Eg;\Lq - |Zgh> > 0.

It remains to prove that ¢, — 0 which, by (3.50) and (3.55), completes the proof of (3.52).
For any ¢t > 0

1+ o(1
Yo / Blun et i du, < 2 hu e dvg + / Bl |e % dv, — 100
> t Junl>t) {lunl<t} t

+o(1).
Since t can be taken arbitrarily large we find

'yn/zh]un]eb"“%dvg — 0.
Combined with (3.51) and (3.56), this yields ¢, — 0. O

By Lemma 3.12 we know that u,, € C°(X), thus we can take a sequence p, such that
My 1= MAX Uy, = Un (Pp)- (3.58)

Clearly if sup,, mp < 400, then we would have E,(u,) — ||y, which contradicts Lemma 3.8.
Thus, up to subsequences, we will assume

my, — +00 and DPn — P. (3.59)

For our maximizing sequence u,, it is natural to expect concentration in the regions in which
h is larger. In the next Lemma we will indeed show that p must be a minimum point of the
singularity index « defined in (2.1). This clarifies the difference between the cases @ < 0 and
@ = 0: in the former, the blow-up point p is one of the singular points p1, ..., pm, while in the
latter p € X\{p1,...,pm}



3.4. Blow-up Analysis for the Critical Exponent. 68

Lemma 3.13. If u,, — 0, then we have (3.59) with a(p) = &. Moreover |Vuy,|?> — &, weakly as
measures.

Proof. Assume by contradiction that a(p) > a. Let (£2,7) be a local chart in p satisfying
(3.28)-(3.33). If v € H{(R) is such that [, |Vv|*dvg < 1, then by (1.38) we have

/ Bt 140N gy < sup Ve / 200 A+ ®)e @) gy < ¢ (3.60)
Q D‘SO D50
Take a cut-off function & € C§°(2) such that 0 < ¢ <1 and £ =1 in Qs,. Since

2

/Q|V(un£)|2dvg:/Z|Vun|2§2dvg—|—2/ﬂun§Vun-V§ dvg+/2|vg|2u,%dvgg

<( +s)/ |Vun|2§2dvg—|—05/ VeEPudduy < (14 2) + o1)
b b
and € can be taken arbitrarily small, we find
lim sup IV (wné)[|72(0y < 1.
Thus, applying (3.60) to v, := u,§ and using ||uy, |l — 0, we find
/ heP & Alunl2) < ¢
Q

for any 8 < 47(1 + a(p)). In particular, since we are assuming 3 < 47 (1 + a(p)),

Heﬁuiawunnz)

Lo (Q%O,gh> <C (3.61)

for some so > 1. From (3.52), (3.61) and Lemma 3.5, —Agu, is uniformly bounded in L*(2)
V s < min{sy, ﬁ}. If we take another cut-off function £ € (O <Q<Lo> such that £ = 1 in Qs,,
2

_ T
applying elliptic estimates to {u, we find supu,, < C. This contradicts (3.58)-(3.59).
Sg
4
Therefore we proved a(p) = @. To prove |Vu,|*> — §, we can argue in a similar way. If there
existed r9 > 0 such that | Bro () \Vun\deg < 1, then we could find a uniform bound for —Aju,
70

in L*(By,(p)) for some s > 1. Then elliptic estimates would yield supu, < C which, again,
Qs
20
2

contradicts (3.58)-(3.59). O

The next step consists in studying the behavior of u, near p. Arguing as in [53] and Lemma
2.4, we will prove that a suitable scaling of u,, converges to a solution of the singular Liouville
equation

—Au = |z|*%e"
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on R2. Again we consider a local chart (£2,v) satisfying (3.28)-(3.33). From now on we will
denote z,, := ¥(py) and v,, = up 0 ¢. Let us take r, > 0 such that

204 2 ebnmit — (3.62)

and consider the scaling
M () 1= My (vp(Tp + rrx) — my).

2 2(1+a)

Lemma 3.14. m; ePmn 50V B < B. In particular r,ms — 0V s > 0.

Proof. By (3.47), (3.48) and (3.62)

ﬂ_bn 3,,
eﬁm%ri(HE)m% = u = e(ﬁ_b")m%/ hUieb”“%dvg(l +o(1)) =
Tn by

< (1+0(1))/hufleﬁuidv9.
by

=/
Take s = % (i.e. 1y % = ) and sg > 1 such that h € L*0(X). Then

@

1
/Ehuzeﬁundv < llupllsnlle® 7, < Cllblls ey, — 0.
O

As in Lemma 2.3, in order to prove the convergence of 7, it is important to verify that, if @ < 0,
M is bounded. Indeed if |x"| — +o0 the disk D, (z5) would not contain the origin and we
would not see any smgularlty in the limit equation for 7, even if p is a singular point of h. This
is excluded by the following Lemma.

Lemma 3.15. If @ = a(p) <0, then

lim sup < 40

n—oo I'm

Iwnl

Proof. Assume by contradiction that — o0 for a subsequence. Then we take t,, > 0 such

that

|l’n‘2at ,ynm26bnmn =1.

Observe that

t
) —0 = = — o0

\xn\%‘ 2 _bpm?2 ‘xn‘mrz(ua) 2 bmm?2 _ <|~’Un|
Tn

e ——r Ve
ria Tn
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and a 2(1+a)
|, |2 B 1 (T @ ||

20 204, 0 bam2 \ b, —0 = 5, Tt

n in VM, €2mMn n n
Furthermore, arguing as in Lemma 3.14 we have

tn]wnlzam%eﬁmi —0 VB<§B
and in particular
tym; — 0 vV s> 0. (3.63)

Let us define 0, (x) = my, (vp(xy + thz) — my,). Then

—An, = mntie“’(znﬁ"z) (%|mn + tnz\QaV(azn + tnx)eb””%vn(mn + rpx) + sp(zy + tnm)) =

— e@(xn +tnx) (

Using (3.63) and (3.49), ¥V L > 0 we have

-
Tp b |

—x
|Zn| |z n

2
m, bn (217n+"—">
V(xpn + tha) <1 + ;Z;) e ma) 4 mntisn(xn + rnx)) .

a2
/ (mnt%sn(:cn—i—tnx))q%l = mi it \sn(a:)\ﬁdvg (3.64)
Dy, Drryp (xn)
a2
< Cmi™! ;’fl||5n||i1 — 0.
e

Since 7, < 0 and [1,| < my, for any L > 0, using (3.64), we find || — A%y [[ o (p,) < C. Moreover
7,(0) = 0 thus we can exploit Harnack’s inequality to find a uniform bound for 7 in W2* (D)
Vv s > 1. Using Sobolev’s embedding Theorems and a diagonal argument, we find a subsequence

such that 7, — no in CL _(R?), where 7o is a solution of

—Ano = V(0)e?7m
with
10(0) = 0 = supno,
RQ
and

/ eQB"Odng < +o0.
R2

A classification result contained in [31] yields

. _
no = 3 log <1 + B‘;@mz) .
From (3.46) and (3.49) we get
1=-— /2 Agupupdvg = vy /Z h u%ebnu%dvg + )\nHunH(? > ’yn/ h uieb"“%dvg +o(1) =

Ltn
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7 V(0)L*m
= V(O)/ Pz + o(1) = L +o(1). (3.65)

Note that

_ V(0) L7 1

im = —>1

L_>001+IBV()L2 1+«

hence, for sufficiently large L, we get a contradiction in (3.65). O
Lemma 3.16. 7, — g = —%log(l + 4(ﬁ1‘jr(gggm|2(l+a)) in CP (R?) N H. _(R?). Moreover,
"3"‘ — 0.

Proof. The function 7, is defined in Ds, and satisfies

™n

—Any, = myrlef@ntry) (% |20 + @ ** V(@ + raa)e bnvn g, (T + rnx) + sp(zn + rn:r:)> =

— e@(xn ‘H"ny) (

By Lemma 3.15 if @ < 0 we can assume, up to subsequences, that f—: — T € R?, so that

T 2a
n
=t
n

V(zp + rnx) (1 +—

2bn77n+bn 2
m2

+ 12 mpspy(z, + rnx2)> .

2a
el —F+a® (3.66)

Tn

in L{ (R?) for some s > 1. Clearly (3.66) holds also for @ = 0. Arguing as in the previous
Lemma we can find a subsequence such that 7, — 19 in C (R?) N H} (R?), where 79 is a

loc loc
solution of

— Ang = V(0)[z + x|*@e2Pm0 (3.67)
with
10(0) = 0 = max o (3.68)
and -
/R? T + 2> dy, < 4o0. (3.69)

In [74] is is proved that solutions of (3.67), (3.69) have the form
1 BV (0)e! —20+@ !
no=—log< 7!w+ PO )+ =
p 401+ 2
for some [ € R. Note that all these functions are radially symmetric and decreasing with respect
to —z. Thus (3.68) is satisfied only if 7 =0 and [ = 0. O

The next Lemmas follow the standard arguments in [53], [2].
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Lemma 3.17. For any A > 1 we define ufy := min{u,, ™ }. Then we have

1
hmsup/ \Vui|Pdv, = —.
> A

n—o0

Proof. Fix L > 0. By Lemma 3.16, for sufficiently large n, Qr,, € {u, > "}, hence using
(3.46) and (3.49) we find

—/ Ay uitdv, = fyn/ huneb"“iuﬁdvg +o(1) > InTTin / h uneb"“%dvg +o(1) =
= s A Jay,,

MpYn

= / ]:):\mV(x)vneb"”%e‘P(x)dx +o(1) =
A Iy, (@)

_ %m(lm) 2 bnm%/
A Dy

— V(O)/ | |2a QBnodx_i_O(l)
A Jp,

Passing to limit as n, L — oo we obtain

x 2a
n
7+x

n

2
an n bnnn
g dr+o(1) =

V(zp + rpz)ef@ntrne) <1 + )

1 0>L2 (1+a@)
Al+ 7rV(())L2 (1+a)

+o(1).

1
hmlnf/ \Vui|2dv, —hmmf/ Vuis - Vuydvo, = /Agunu > 1 (3.70)

Similarly, since

+
—/ Agun, (un — %> dvg > %/ h uneb"“i (un — mn) dvg +o(1) =
> A Q A

Lrp

=20 [ e o)
A Dy,

we get

my, A—-1
im i — > —
lim mf/E |V (un ) 2dv, . (3.71)

n—o0

Clearly u, = uf + (up, — 22)" and [i, Vud - V(u, — %) *dv, = 0 thus

+
1:/ |Vun|2dvg:/ |Vuf|2dvg+/ |V (un—%> 2dv,
by by )
and from (3.70) and (3.71) we find

1 A—-1
. \V4 A2 o v 2 —
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Lemma 3.18. )
lim sup By (up) < limsup —— + [X]g, .
m

n—00 n—oo YnMMy

Proof. For any A > 1 we have

E,(uy) :/ heb"“%dvg +/ heb"(uﬁ)deg.
fun>2p) funzp)

2
my Jx YnTNy,

A? A?
/ heb”“%dvg < — huieb”“%dvg = ——(1+40(1)).
{un>"}

For the last integral we apply Lemma 3.17. Since limsup,,_,, [|Vui[3 < % < 1, (1.44) implies
that ebn(ui)? is uniformly bounded in L*(%, g5) for some s > 1. Thus by Vitali’s Theorem

/{ N }hebn<“ﬁ>2dvgg /Z hel () dyy — |8,
Uun <

Therefore we proved
2

lim sup Ey, (uy,) < lim sup 5
n—00 n—oo YnTly,

+ X,

As A — 1 we get the conclusion. O

Using a similar strategy we prove:

2
Lemma 3.19. fynmnhuneb"“n — 0, weakly as measures.

Proof. Take ¢ € C°(X). For L > 0, A > 1 we have

'ynmn/ h unebnuifdvg =

b))

= P)/nmn/
Q

By Lemma 3.16 we find

ﬂ:/
Dy, (0)

o V(0 L2(1+&)
— V) [ e o) = ) T e

huneb"“% §dvg+ynmy /

U, hebnin Edvg+ynmy, / huneb"“% Edvg =
{un>"2 N\Q0rs,

Lrp {ung %}

= I+ I+ 1.

2a b

n772
In 7" p(xn+rn)
— 4 mi &(xy + Tpx)ef I T dy =

77n 2bn Nn+
e
'n

n

+o(1).
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Similarly, using also (3.48),

I} = mn/ AnhugeP i gdv, < A Fnhue ™ ngdv, =
{un>" 3\,

{un>"2 N\,
= Amzaxg </ Ynhtu2 b"“”dvg —/ Ynhu? b”“ndvg> =
Q

Lrp
=A(1- V(O)/ |22%e2P 0 da + o(1) ) = A .
Dy, 1+ WV(O)L2(1+5)
Therefore
lim lim I} = &(p) and lim lim I = 0.
L—o00 n—00 L—00n—00

1
For the last integral we apply Lemma 3.17. Since limsup ||VuZ |3 < 1< 1, (1.44) implies the

n—oo

existence of s > 1,C > 0 such that
/ hesg(“g){zdvg <C
b

thus

A)2

‘I’?I,‘ < ’Ynmn”g“m/ hUA b (71)? dvg < ’YnmanHOOHUan’h”e g.h = YnMyo(1).

Since by Lemma 3.18 ~,m,, — 0, we find |I3| — 0 which gives the conclusion. O

Let now G;‘ be the Green’s function defined in (3.34). Using Lemma 3.19 we obtain:

Lemma 3.20. m,u, — G)‘ in CY_(S\{p}) N H} (S\{pH) N L"(T) Vr > 1.

Proof. First we observe that |m,uy|, is uniformly bounded. If not we could consider the

sequence wy, := which satisfies

l[unllq

||mn“n”q ||Uan

Being [|nhmnunetntn ||} < C and |s,| < C||un|q, we have a uniform bound for —Agw,, in L}(X)
and, arguing as the proof of Lemma (2.2), u,, is uniformly bounded in W#() for any 1 < s < 2.
The weak limit w of w,, will satisfy

/ Vw -V dv, = )\/ lw|? 2 wedv,.
b b

for any ¢ € C'(X) such that [ odvy = 0. But, since A < A\y(%, g), this implies w = 0 which
contradicts ||wy||q = 1.

Hence |[myuyllq < C. This implies that —Ay(mpuy) is uniformly bounded in L'(¥) and, as
before, mpuy, is uniformly bounded in W1#(X) for any s € (1,2). By Lemma 3.19 we have
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My Uy — GZ),‘ weakly in W1$(X), s € (1,2) and strongly in L" for any r > 1. Since |Vu,|> —

dp, arguing as in Lemma 3.13 one can show that u, is uniformly bounded in LS (X\{p}).
This implies the boundedness of —Ay(myu,) in Lj (E\{p}) for some s > 1 which gives a
uniform bound for my,u, in VVZ%)CS(Z\{p}) Then, by elliptic estimates, we get mpu, — G;} in
Hio(S\{p}) N Cle(S\{P}). O

Using Lemma 3.20 and Corollary 3.3 we can now start the proof of (3.45).

Proposition 3.6. For any L > 0, we have

ﬂ.K(p)elJrBA?,

. 2
lim sup / heb"u"dvg < —7
n—oo JQr,. 1+«

Proof. Fix 6 > 0 and set 7, = [o,_ |V |2 dv, = Jps |V, |2dy. Observe that, by Lemma 3.20,

m2(1 — 7)) = / VG duy + o(1), (3.72)
2\ Qs
and
millunllz = [GHI17 + o(1). (3.73)
Since by Lemma 3.10 we have

1
/ VG2 2duy = — 2 log 6 + O(1) ™23 4o (3.74)
Y\ Qs 2

if § is sufficiently small, we have

1 1 A 1
oL+ Alun2) = (1 - mQ/m VG Pdvg +0 <m2>> (1 oz IGlly + o (m2>> -
s n n "

1 1
=1- / VG 2dv, — NG 2)+0<><1. (3.75)
([ 19, ~GE) s +o (1
We denote d,, := supv, and wy, := (v, — d,)* € H}(Ds). Observe that ‘:—: — 0 uniformly on

0Ds
Ds\Dg: for any 0 < ¢’ < 4. Thus applying Corollary 3.3 with d,, = Lr,, we find

Ql

—w? B
limsup/ || e’ da < T€_5204@), (3.76)
n—o0 DLrn (il?n) 1 +

Applying Holder’s inequality we have

— 2 2 — 2
/ ‘$|2a6b"v”d$ — ebndn / |x|2a6bnwn+2bndnwn dx S
DLrn (xn) DLrn (xn)
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2
. w2 Tn(1+A lunllg) 3 2bpwndp
< ebndn / ’m‘meﬂnfndx / ’x‘hel—m(lﬂllunu%)
Drry (zn) Drrp (an)

>I—Tn(1+>\UnII3)

(3.77)
Using Corollary 3.2 we find
2,2
2bpwndn 2bpwndn T Tt a)(4b—nrnn( ¥ lunll)?
[ et < [ i < T T s
DLrn (fﬂn) D5 1 + «
bndp T (L4 Al|un [13)
1+— 4
_ e (=7 (1A [[un [13)2 5204
- l1+a
Combining this with (3.76) and (3.77), we find
B 2(1+@) bnd3,
lim sup/ |x\2°‘eb"”721d$ < L lim sup e !~ (A unlg) (3.78)
n—00 JDr, (¥n) 1+a@ n—00
Using (3.75) and Lemma 3.20,
lim bndl — Blsupag, )’ —. H(6) (3.79)
n—oo 1 — 7 (1 + Nun||2) VG 2d AllGA 12 B ' '
g fQ5| p| Vg — || p”q
By Lemma 3.10 and (3.35) we find
H(5) = —2(1+a)logd + BA) + 0s(1),
and from (3.78), (3.79) we obtain
2(1+a 1+B8A)+o0s(1)
lim sup/ ]:U|2aeb"“*2ldx < MeH(é) = u. (3.80)
n—oo JDp, (zn) 1+« 1+«
O
Proposition 3.7. B
‘ 7.[.Kv(p)€1+,3A;‘
hrILILSolip En(u,) < —ta + 2],
Proof. ¥ L > 0, by Lemma 3.16, we have
_ 2(14@)
2 bou2 9w 2Bno 4. TV(0)L _
Y, - he’™“ndvg = V(0) /DL |z|“*e*’ 0 dr = T+ 7V(0)L20Tay — 1+ o0r(1)
where or,(1) — 0 as L — oo. Thus, using Proposition 3.6,
. 1 . 5 WK(p)el—i—BA;;
1 = (1 1)1 el ndv, < (1 1)——.
mowp g = (s mswp [ ke, < (14 0x(1) 1

The conclusion follows by Lemma 3.18. O
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We can summarize the results of this section in the following Proposition.

Proposition 3.8. VA € [0,\;(%,9)), ¢ > 1 we have
sup Eg’z’q < +o0.
H I

Moreover if the supremum is not attained we have

Bg e A2
sup FE < —— max K(p)er +1|X|,, .
Hp he = 14@ peL, ap)=a (») | ‘gh

3.5 Test Functions and Existence of Extremals.

By Proposition 3.8, in order to prove existence of extremals for Eg’;\l’q it suffices to show that

the value
e

ma; K eBA?’—l— g -
1—|—§p€2a(;}7():6 (p) ‘ |gh

is exceeded.

Proposition 3.9. There exists A\g > 0 such that ¥V 0 < X\ < Ay one has

B\q e BA)
sup F > ——  max K(p)er + X, .
uepH 2R 1+ @ pex, alp)=a (p) ‘ |gh

Proof. In local coordinates (£2,) satisfying (3.28)-(3.33) we define

= 2(14@)
log(l+<7‘w(E )l) )+L€

Ce — e € Qe
We(x) = Gr—ne
e(z) pTM z € Qo \ Qe
Cp
Z T € 2\92755
and
We
A A S
JI+ 22
where c., L. will be chosen later, v. = |log 5\1%5, € is defined as in (3.35) and 7. is a cut-off

function such that 7. = 1 in Q,.c, n. € C°(Q2. ) and ||Vne|| = O(
ue € H'(X) we have to require

1
€

- ). In order to have

B 1 +W2(1+a) B
Bece — L. = log W + BA) —2(1+@)loge. (3.81)

£

Observe that
2(1+a)

1 & Ve
|V’w ‘Qd'l) = = log(l + ’)/2(1+a)) —_ =
\/’YEE € g Bcg € 1 + 762(1-1—04)
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- ﬁl (1og(1 +2H9) — 14 0( log€’_2)> '

52
Since ¢ € CH(Q) and &(z) = O(|z|) we have

/ Vo [ e
92756\0"{56 92756\9%6 Q

and similarly

|V§\2n§+2/ M€V VE = O((v:2)?),

27ee \Syee Q2vee\yee

/ VG;,‘ - V(n:€)dvg = O(7:€),
92755\9755

by Lemma 3.10 we have
cg/ |Vw€|2dvg = / |VG;,‘|2 + O(vee) =
S\ Qe E\Qe

1
= 5 logee + AS + A|Go12 + O(7ee|log(ve¢)]).-

Observe that y.elog(v.c) = o(|loge|~2), therefore we get

/E ]ng\deg = ﬁlcg <—1 —2(1+a)loge +BA2 —l—Bx\HG;‘HZ +O(] loga]‘2)> )
If we chose ¢, so that
Bt =—1-2(1+a) logs—i—BA;—l—O(Hogd*Q), (3.82)
then u. — u. € H. Observe also that (3.81), (3.82) yield
L. = =14+ 0(|loge|™?), (3.83)

and
2mc? = |loge| + O(1). (3.84)

Since 0 < w, < ¢, in Q. . we get

A wedvy = O(ca(1:6)2) = o loge|2).

Ye€

Moreover
G)\
/ wedvy = / pdvg+/ negdvg:
S\ Qe E\Qee Ce Q2o \Qryee Ce
€|l . e)3
~ 0 (Mog@e)l> Lo ((v e) ) _ o[log e[ )
Ce Ce
therefore

w: = o(] loga]*Q) = 0(0;4).
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From this, (3.82), (3.83) it follows that

2(1+a)
B(wa - wa)2 > Bcg —2L; — 2log (1 + (|¢($)|> ) + O(ng)

in €2,_.. Since

QN

. .2 > ( L.

_ Al -
1 <1 AlJwe w5||2> - 1 +2gHGpH$ +o(c:?) B NGyl

=1-—7"1 4 o(c?.
A A A A 2 4 €

|Gy |9dvg + 0(062)> > |Gy ll2 + o(cz?)

Ye€

we find

Therefore

- _ _ B(we — we) AlJwe —@H?I
B(Us_us)2(1+)“|us_uz-:“2) = 1+ >
DT EIAE T T 2GR

214+7)\ B2 A4
> B —2L. —2log (1 - <W}(x)|) ) _ BXNG Nl + o(c2?).

2 3
£ c?

It follows that

J

Bc2—2L.— o(cz?)

212 A4
GRS
C2

£

dr =

heBue =) (M lue e I3) gy, 2/ 1225 (V(0) + O(7.¢)) —
Dy,e (1 N (|x)2(1+a)>
3

TV (0)e2(1+a) 2043 5 §—2LE—EA2”G?”3+ =2
G JE))(l + Z?l—i—oc))e C # ) (140e)) =
« Ye

Ye€

_ AK(p) feoar. PG o2 L
O i (L+0(cz).

Using (3.82) and (3.83) we find
Be2 — 2L = —2(1 +@)loge + 1+ BA) + o(cz?)

so that

Bl —1.)2 e— |12 nK(p el+BA, BAQHG/\H4 _
/Q heﬁ( € 6) (1"’_)‘” € SHq)dvg = ((1)4_0() 1— ?pq + O(CE 2) . (385)

Ye€
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Finally we observe that

/ he?(usfﬁe)2(1+)\||usfEHg)dvg > / hdUg—FB h(us_ﬁa)Q(l_i_)\Hus_u—gH(ZI)dvg >
Z\QQ,YEE 2\92755 E\QQWEE
> |2y, + O((1e)*M ™) + B h(ws —w:)*(1 + o(cz 1)) =
Z\QQ’YSG

Sl +5 / huldvg + O(cz*) =
\QQ’YEE

BlIGH I 2, _
= |5, + pc—2(9h) +0(ch). (3.86)
€

From (3.85) and (3.86) we find

B, _ TK(p) 1454> B
Eg(us — ) > S B s S G ema -
E

TK(p)e 422|614
+of
1+«

T a o(c?).
By Lemma 3.9, we know that

BAN
TK (p)e' TP N2 G4
1+«

HG])J\HLZ(E,gh) - — HG](;HLQ(E,gh) >0

as A — 0. Thus for sufficiently small A we get the conclusion. O

We have so proved the existence of extremals for E'B M for A € [0, Ao]. To finish the proof of
Theorem 1.14 we have to treat the case A > A\y(%, g) We will use a family of test functions
similar to the one used in [59].

Lemma 3.21. If 3> B or B= 5 and A\ > \,(%,g), we have

sup Eg’h’q +-00.

Proof. Take p € ¥ such that a(p) = @ and a local chart (£2,1)) satisfying (3.28)-(3.33). Let us
define v, : D5, — [0, 400),

0
lo%?o lz| <e
ve(x) 1= —— log 50
(@) 27 Bl e < x| < do
and

_J v(¥(@)) zeQ
ue (@) = { 0 r e T\Q.
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It is simple to verify that

/ |V, |*dv, = / |V |?dz = 1,
5 Ds

0
_1
thus u. — u: € H. Moreover one has u. = O ((log %) 2), hence in ). we have

1 )
(Ue_ﬂsyfzﬁl <EO>+O()
Thus if 8 > /3 we have
EGy(ue — ) > B (ue — ) > / heP =) gy, > / |2 [* da =
' ’ Qe g2r JD.

c )-8 B-8
— T 20403 — & — oo
1+«
For the case = 3 we take a function ug € H'(X) such that

IVuollz = Aq(E, 9)luoll3

Js uo dvg =0 (3.87)
luoll =
The function ug will also satisfy
— Agug = A ||uo|]2 Uug|T2ug — ¢ (3.88)

where

e = ol [ fuolt~2ug v,

Let us take t.,r. — 0 such that

Iog2 Te

t2|loge| — 400, T—, — 400 and — 0. (3.89)
€

2[log e

We define
We 1= UeMe + teug

where 7. € C*®(Qq,.) is a cut-off function such that n. = 1in Q,_, 0 < n. < 1 and |Vn.| =
O(rz1). Observe that

Vel = / IV (uene) vy + 2] Vo + 2t / Vg - V(uen.)dv,.
> >
Using the definition of u., n. and (3.89) we find

/ \V%]Zugdvg = O(rE_Z)/ uzdvg =0 (\ log 5|_1 log2 7’6) = o(tg)
z QQTE\QTE
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and

/ UeNe Ve - vnadvg
b

< 0(7"81)/Q © |Vue|uedvg = O(|log re|| loge\*l) = o(t?).
2re Te

Thus
mu%mwzzljv%ﬁﬁm@+dﬁ>31+m£»

Moreover (3.87) gives ||Vugl|3 = A\, and

= Aqlluol7™

/ Vg - V(uene)dvg
b

/ o | 2ugnsucdv, | = O(l)/ usdvg = O(| logs]_%) = o(te).
b b

Hence we have
[Vwe |5 < 1+ Agt2 + o(t2).

Furthermore,

H%—%ﬁ2€</
Z\QQT

thus

QN

2
q

lug — We|? dvg) =2 (/ \uqudvg> +o(t?) = 2 + o(t?)
S\ Q2

€

% 1+/\M > 14 (A= A\)t2 +o(t2).
Ve |3 Ve |3

Finally, since w, = O(|log 5|7%), on ). we find

i a wa_EEQ wg_wgg .
S (1 “”umug”) = (214 @)l logel + OW) (14 0= M)E +0(t2)) =

= —2(1+@)loge + (A — A\)tZ|loge| + o(t?|logg|) + O(1),
so that

_ _ 4r (147 (we —we)> ( nws—mug)

We — W 14+

Egiq( £ E) 2/ he IVwel3 Iveels )/ du, >
"N Veell2 Q

> 05—2(1+a)e(k—kq)t§|10g€+0(t§|10g€|)/ |y|25dy — ze(A2g)t2|loge|+o(t2|loge]) +00
&
as € — 0. O

Remark 3.1. If there exists a point p € ¥ such that a(p) = @ and up(p) > 0, then one can
argue as in [59] to prove that,

sup Eg’;\l’q = 400
,H b

also for X = A\g(X, go). This is always true if @ = 0.
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Chapter 4

Sharp Inequalities and
Mass-Quantization for Singular
Liouville Systems

Let (X, g) be a smooth, closed, connected Riemannian surface. We consider singular Liouville
Systems of the form

A i <hjew ! > i =1,....N (4.1)
— Agu; = ai;pj , - = i=1,..., .
- N S

where p; > 0, A = (a;) is symmetric positive definite matrix and h; € C*°(X\{p1,...,pm}) are
positive singular weights satisfying (1.19). More precisely, motivated by the equivalence between
(4.1) and (1.46) and by the change of variables (1.48) we will assume

hi = Kie '™ 2= 25; (4.2)

with K; € C>(X), K; > 0 and some coefficients a;; > —1. Throughout this Chapter, «; will
denote the singularity index associated to h;, that is

oy — ) G T = pj
wle) {0 z € E\{p1,....Pm}

System (1.46) is the Euler-Langrange equation for the functional

N N
1 . _
Jﬁ(g) =3 E a’Vu; - Vuj dvg — E pilog (/E hie“i_“"dvg> .
i=1

1,j=1

Here, and in the rest of the chapter u = (u1,...,ux) and p = (p1,...,pn). The simplest way
of finding solutions of (4.1) is trying to minimize J, on H'(X)V. In the first section will give
the proof of Theorem 1.16. which gives necessary and sufficient conditions for the boundedness
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of J, from below. The dual approach that we will present is a special case of a general duality
principle.

Let X be a Banach space and let F' : X — (—00,400] be a convex, lower semicountinuous
map. We recall that the domain of F' and the Legendre transform F* : X* — R of F are
defined as

D(F):={zeX : F(z) < o0}
and
F*(y)=sup <y, x> —F(x)= sup <y, z>—F(z) Vye X"
zeX z€D(F)
Here X™* denotes the dual space of X and < -,- > the duality product. The Legendre transform

is involutive, that is

F(z) = F"(x) := seu}() <y,x>—F*(y).
y *

see [17]. Given two convex, lower semicontinuous functions F, G : X — (—00, +00] one can
consider the map W : D(G) x D(F*) — R defined by

Wi(x,y) =F*(y) + G(x)— <y,x >.

Observe that

nt | W(e.y) = Gla) ~ F*(x) = G(x) ~ F(x)

and

inf W(x,y) = F*(y) — G*(v).
onte) (z,y) (v) (v)

This proves that for the functionals

| G(x)-F(z) zeD(G) sy F*(y) —G*(y) € D(F™)
@)= { +o0 x ¢ D(G) and Ty) = { y—i—oo ’ 3; ¢ D(F™)
one has
it (@) = inf 7). (4.9

If X = HY, then we can write Jp in the form J, = G(u) — F(u) where

N
G(u) == Zaij/ Vu; - Vujdug
i=1 2>
and

N
F(u) := sz- log (/2 hie“i“idvg) .
i=1

Therefore (4.3) shows that the minimization problem for Jp can be reduced to a minimization
problem on Hj (more precisely on D(F*)). The explicit expression of the dual functional and a
more rigorous proof of the duality principle will be given in section 4.1.

The last two sections of the thesis are devoted to blow-up analysis for Liouville systems. In sec-
tion 4.2 we will prove the following concentration compactness Theorem, which is a generalized
version of a result by Lucia and Nolasco [61].
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Theorem 4.1. Assume that A is a symmetric positive definite matriz satisfying (1.52) and h;
has the form (4.2) with K; € C*°(X) and K; > 0. Let u,, = (u1p ..., unn) € HY be a sequence
of solutions of (4.1) with p; = pin — P;p fori=1,...,N. Up to subsequences, one of the
following alternatives holds:

e (Compactness) u;p, is bounded in W4(X) fori=1,...,N, ¢ > 1.

e (Blow-up) There exist N finite sets Si,...,Sn such that u;.fN s uniformly bounded in
LS (X\S;),i=1,...,N. If S=51U---Sy then, Vie {1,...,N}, either u;, is bounded
in LYC (X\S) or u;y — —oo locally uniformly in £\S.

loc

Moreover, denoting by p; the weak limit of the sequence of measures Vie" s, one has

Wi =1+ Z 0i(x)0y

TES;

with r; € LY) N LY (S\S;) N L. (E\(S; U {p1,...,pm})) for some ¢ > 1, and oi(z) >
= min{L, 1+ ai(e)} Vo € S;, i =1,...,N.

Theorem 4.1 is weaker that its scalar version Theorem 1.2 for two main reasons. The first is
that it does not give a complete description of the local concentration values oy(x),...,on(z).
The second is the presence of the residual terms r;, ¢ = 1,..., N. For the special case of the
SU(3) Toda System, that is for N = 2 and

2 -1
=(55)
the first issue was addressed in [44] and [56]. Theorem B gives a complete description of the
values o1(z),02(x) in the regular case, while, for the singular case, Theorem C gives a partial

characterization showing that o1, o can only assume a finite number of values. In order to prove
Theorems 1.17 and 1.18 one has to deal with the presence of the residual terms. Observe that

=0 = p=> oix) (4.4)
z€S;

and, in particular, in this case the limit parameter p; must be a sum of the finitely many possible
values of 0;. In general, one can not prove that both r; and ro vanish. Some examples were
given in [36]. A local example is also given by the family of functions

1 2(|z]* + 2|x|? o (14 2|z|? + o?|x|*
uf(x) = log (8 + o (|of” + 2]a] )2> u§ (x) = log (8 ( i 21 2
(1 +2[z[? + a?|z[*) (1 + a2(|z|* + 2]x]?))

on the unit disk of D. These functions solve the Toda System

« «
{ —Auf = 2e"1 —e"2

—Au§ = 2e¥s — et (4.5)
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on R? (actually a complete classification of the solutions of (4.5) on R? was given in [46]). As
a — 400 both the components blow-up since u$(1/a) — 400 and u§(0) — +o00. Moreover

one has u{ — —oo in uniformly on compact subsets on D\{0} and u§ — log <m) in
L (D\{0}). Thus rp # 0.

In section 4.3 we will prove that in Theorem 4.1 at least one of the 7;’s must always vanish.
Using this and (4.4), we will obtain Theorems 1.17, 1.18 for SU(3) Toda Systems.

4.1 Lower Bounds: A Dual Approach.

Let us consider the convex function ®(t) = (1 + |t|) log(1 + |¢|) — |¢| and the space

X = {U:E—HR : /E<I>(v)dvg<+oo}

Iollx :—inf{/\>0 : /f’(i) 51}.

(X, ] - [lx) is known as the Orlicz’s space associated to ®. In particular, for our choice of ®,
(X, |l - llx) is a reflexive Banach space. We refer the reader to [75] for a general introduction on
the theory of Orlicz spaces.

endowed with the norm

Consider now the set

F(p)—{v—(vl,...,vn)eXN : viZO,/vidvg—pi,i—l,...,]\f} (4.6)
b

and the functional

Z/Uz log v; — log h;) dvg — Z aw//G z,y)vi(x)v;(y)dvg(z)dvg(y). (4.7)

z]l

The main goal of this section is to prove that .J, is bounded from below on H )N if and only

if U is bounded from below on I'(p). We shall begin by proving that ¥ is well defined on X N,
A crucial role will be played by the following elementary inequality:

Lemma 4.1. Va € R, b € R™ one has

ab < e +blogb—b. (4.8)

Proof. Tt follows from the duality relation between the functions fi(z) = e* and fo(x) = zlogx—
x. Specifically, V b > 0 one has

sup (ab — e®) = blogb — b,
acR

which implies the conclusion. ]
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Lemma 4.2. Let £ : ¥ — R be such that e®€l € LY(X) for some § > 0. For any v € X we
have v, vlog |v|, {v € LY(X). Moreover the functional l¢(v) := [, v€dvg is continuous on X.

Proof. Since lim;_, tqfég)t 1, there exists tp > 1 such that tlogt < 2®(t) for t > to. It follows
that

/ |vlog |v||dvy < C +/ |v] log |v|dvy < C' + 2/ ¢ (v)dvg < 4o00.
) {lv|>to[} =

By definition of || - ||x, if v # 0, we have

v
Q| —— | dvy, <1,
/2 (llv\lx) !
therefore, using (4.8) we find

ve 1 [ ol ( o] ) / 5 ~
dvg| < = log dv, + ¢ < Cse+ = / dvg < Cse.
/EHUHX ‘ o Js Tollx = \eoflollx /) "0 s £ uvnx 9= 708

Hence
‘/ v & dug
by

Lemma 4.3. For any v € X. we have

< Cogllvllx

/Z / G, )] [o(@)[o(y)|dvg(2)dug (y) < +oo.
Proof. Without loss of generality we may assume |[v||x > 0. Let us denote
- /Z G, )| [v(w)]dvg (9).

By the properties of the Green function it is possible to find § > 0 such that

sup / o1 |C@a)l gy (1) < 4o,
yeX J ¥

For such §, applying Jensen’s inequality we find

/ 5£dv < // 5”UHLI(E)|G(I?J ”U )‘ EERACYANP g(y)dvg(x) S C/ Mdvg(y) S C
HUHLl(E) by HUHLl(E)

Therefore €% € L'(X) and the conclusion follows from Lemma 4.2. O

Lemmas 4.2 and 4.3 show that ¥ is well defined on I'(p).
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Lemma 4.4. o Ifv, € X then

lon|lx — +o0 = / vy, log v, dvg — +o0.
p)

o Ifv, — v weakly in X, v, > 0 then

/ vlogvdv, < lim inf/ vy, log vy duy.
b b

n—o0

Proof. Assume that ||v,||x — +00. Since V A > 1 we have

|vn| 1/
o (1o < < [ ®(jvn|)dv,,
Lo(5 ) as <5 [ etoba,

we get [5 ®(|v,|)dvy — +00. Let us now take to such that ®(t) < 2tlogt for t > tg. Clearly

/ B(|vn|)dv, < |S|D(tg) —> B(|vn)dvy —> +oc.
{Jonl<to} {Jon 210}

Since
[ a(ubds <2 [ julioglunlde, <2 [ ol log]unlde, +C
{lvn|>to} {lvn|>to} by

we obtain
/ |vp|log |vp |dvg — +-00.
b

Assume now that v, — v. Let us select a subsequence such that

liminf [ v,logv,dvy = lim Un,, log vy, dvy.
n—oo [y k—oco Jx

By Lemma 4.2 we know that fz U, dvg — fz vdvg, therefore extracting a further subsequence
we may assume v,, — v a.e. on Y. Thus, using Fatou’s Lemma we get

n—o0

/ vlogvdvy, < lim inf/ Up,, log vy, dvg = lim inf/ vy, log vpduy.
) k—oo s b

Let us consider the functional W : HYY x X~ — H{} (%) defined by

N N N
1 y
W(u,v) = g /Evi log vidvg + 3 g a¥ /E Vu; - Vuj dvg — E /E(UZ + log h;)vidu,.
i=1 i=1

ij=1
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Lemma 4.5. For any u € H(])V we have

min W (u,v) u) + i 1o
S W Zp g(@l)

Moreover the minimum is attained by the functions

hoet
pilic® i=1

Vo, = ..., N.
fz e“%dvg R

Proof. By Lemmas 4.2, 4.4, I'(p) is a weakly closed subset of X and the functional v —
W (u,v) is convex and weakly lower semicontinuous on I'(p). Take p > 1 such that h; € LP(Q),
i=1,...,N and v,¢ > 0 such that 'y—i—% < 1—e. By (4.8) we have

U 1
/(u, +log h)v; dvy < / e dvg + ’y/ v; log(vyv;)dvg +/ hPdvg + / v; log (U ) dvg <
by by by by pPJs p

1
< Cphp + (7 + p> /EUZ‘ log vidvg.

Therefore we get

N
Wiu,v) > ¢ Z/ vilog vidvg — Cp hy p,e,u- (4.9)
S > -
By Lemma 4.4, this implies the coercivity condition
N
loallxy ==Y lvinllx — 400 = W(u,) — +oo.
i=1

Therefore, using standard minimization techniques we find v, € I'(p) such that

W(u,vy) = min W(u,v).
vel'(p)

Moreover v, must satisfy
logvoﬁ- - (ul+loghl) =\ t=1,..., N, (410)

or, equivalently
Vo,; = e)‘ihie“" 1= 1,...,N, (4.11)

for some \; € R. Integrating (4.11) over X we find

Ai = log p; — log </ hie“idvg> log — log < / h-e“idvg> . (4.12)
> |E\ 2]

Replacing (4.10), (4.12) into the definition of W (u,vy) we find

W (w,vg) Z ZJ/VuZ Vu, dvg—i—Z)\ /vldvg—J +Z’0110g<]2\>

z]l

which concludes the proof. ]
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Lemma 4.6. For any v € I'(p) we have

min W(u,v) = ¥(v).
ueHY

Moreover the minimum is attained by the functions ug; € Hy satisfying
N o
~Agyuoi = Y ai (Uo,j - |EJ|) :
j=1
Proof. By (4.8) and (1.22) we find that

U; T
———v;dy| < [ elVullzdy +/v-logv-dv
/z||VUiH2 B /2 SR

<C+ / v;log vidvgy < Cy.
by

It follows that
1 N N
z 3 Z IVuill3 = Co > [ Vulla = Cypy,a
i=1 i=1

so that u — W (u,v) is a coercive and lower semicontinuous functional on Hy. Therefore it has
a minimum point u, € H} which satisfies

ZajkAgu07k+vj:)\j j=1,...,N.
k=1

Integrating over X one finds \; = %, j = 1,...N. Multiplying the j*" equation for ai; and
taking the sum over j we get

—Agug; = Zaw <'UJ |E>

Integrating by parts and applying Green’s representation formula we have

Z ”/vuo, Vo, dv, = Z ”//Ga: ) A gtio 5(2) Ao (y) o, (), (y) —

i,j=1 i,j=1

Z a,]/ / G(z,y)vi(z)vj(y)dug(x)dvg(y).

i,j=1
Similarly

/% o dvy = Z/ / G, y)v; (y)dvg(y)

so that
W(ug, v) = ¥ (9).
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We have so proved the following duality property:
Proposition 4.1.

inf ¥(v) = inf J,(u)+ pilog < )
vl (p) (©) weHY Z ' 12
Moreover existence of minimizers for the two pmblems 18 equivalent.

Proof. 1t follows from

inf inf W(u,v) = inf inf W(u,v).
vel(p) uEHN u€Ho vel (p)

By L 4.5, 4.6 the LHS i 1t f W and the RHS t f Jp(u) + i 1
y Lemmas e is equal to EIIFl(p) and the 0 ulenHo Z pi log <|E|>

O
We can now give a very simple proof of Theorem 1.16.
Proof of Theorem 1.16. Let I'(p), ¥, be defined as in (4.6), (4.7). For any i = 1,..., N let us

denote
I .= {UEX : /Udvg:pl}
%

and consider the functionals ¥* : ¥ — R, J* : Hy — R, defined by

T(v) ::/Evlogvdvg //G z,y)v(2)v(y)dog(z)dvy(y),

. 1
J'(u) = S /2 |Vul*dv, — pilog (m/zhe“dvg>

Applying Proposition 4.1 to J* and ¥? and using (1.23) we find

U’ is bounded from below on I' <= J'is bounded from below on H,
— < 8 (1 + min {0, Hlinlgjgm Oél'j}) '
Qi
Clearly
U is bounded from below on I'(p) — ¥ is bounded from below on T i=1,...,N
. i < 8 (l—l—min{O,minlSjSmaij}) i — 1,...7N.
Qi

On the other hand, since G(z,y) > —C, Vv € I'(p) we have

Uv) = Z\I/’ (v;) Zaw//Gx y)vi(x)v;(y)dvg(z)dvg(y) > (4.13)

i#]

. C
Z W (vi) = 5 > aiipip;: (4.14)
=1

i#]

Y
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Therefore
¥ is bounded from below on T'(p) < U is bounded from below on I i=1,...,N
— p< 8 (1+min{0,min1§j§mazj}) —~1.....N.
Qi
The conclusion follows from Proposition 4.1. O

We conclude this section with some remarks on the case of arbitrary positive definite matrices
A. Let us consider the polynomials A, defined in (1.54).

Lemma 4.7. If there exists [ C {1,...,N}, x¢ € ¥ such that

Ar, <0 then inf ¥ =—0co0 and inf J,(u) = —o0.
I, 0(8) %(B) HY g(f)

)7‘72 if z € B%(azo)
0 if z € ¥\Bi(x).

X

Proof. Take ¢y (x) := { Then we have

A4
[ [ @ na@amin@dnw = % [ o /| G5 =
1

= —logA+O(1).
5 logA+0(1)
Moreover
/ xlog )y dvg = 2log A+ O(1),
)
/ ox dvg =1+ 0(\7?),
)
and
)\2
/@Aloghidvg = — log h; dvg =
by} 71- B%(:Eo)

= —4ai(1:))\2/ G(xo0,y)dvy + O(1) =
By (o)

= —2q4(x)log A+ O(1).
Let us consider v € I'(p) defined by
PP pjer
v; fz 90)\'dvgo
P ifidl.

2
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Then we have

N
v; (logv; —log h;) dv, = / v (logpy —logh;) dv, + O(1) =
Z/E ( Jdv = S | el )dvy +0(1)

el

= 2> (1+ai(z))pilog A+ O(1)
el

and

> a [ [cwmuanmin@dne = 3 L0 [ G pe@emdn@d)

2,7=1 z]EI fE @Advg

= —% ”Zelaijpipj log A + O(l)
17‘7

Therefore
U(v) = AIIO()log)\—}—O()—)—oo as A — —oo.

Finally, Proposition 4.1 ylelds also mf Jp = —o0. 0
uGH -

Under the assumption (1.50) one can argue as in the proof of Theorem 1.16 to show that
¥ is bounded from below = Wy, is bounded from below j=1,...k,

where

Z/vzlogvdvg Z a”//G:c y)vi(x)v;(y)dvg(z)dv, VI CA{1,...,N}.

el i,j€l

This reduces the problem to the case of matrices with nonnegative coefficients. In the regular
case Shafrir and Wolansky [76] proved that, for such matrices, the condition

infA;, >0
Ix

is indeed necessary and sufficient for the boundedness of J, and W. It is conjectured that this
should be true also for general matrices and in the presence of singularities.

4.2 A Concentration-Compactness Alternative for Liouville Sys-
tems.

In this section and in the next one, we study blow-up phenomena for sequences of solutions
of (4.1), and give the proof of Theorem 4.1. We will actually work in a slightly more general
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setting. Given a matrix A satisfying (1.52), we will consider a sequence w,, = (U1 n,...,uny) of
solutions of a Liouville-type system of the form
N
— Aguin =Y a;Vine" —cin  i=1,...,N. (4.15)
j=1
where .
Vin = Kipe 172021 40, (4.16)
with
Ki,n € COO(E), 0<a< Ki,n < b, Qo > -1, (4.17)
and
1 N
i = 155 Do [ Vinerdy, (4.18)
DIPSANS
We will also assume the condition
/ Vine'ndvy < C i=1,...,N. (4.19)
b
which implies the boundedness of ¢; .
Remark 4.1. More generally we could consider
N
- Agui)n = Z aij‘/j’neuj - 17/}.7(” (420)
j=1
with v, bounded in L°(X) for some s > 1 and
N
/ Yindvg =) ai; / Vjne" dug
b = b
Adding to u;y a solution of
{ —AgVjn = Yjn = Yjn (4.21)
J5 vjmdvg =0,

one reduces (4.20) to the case in which 1, is constant, that is to (4.15).

Fori=1,..., N, let us denote

Si = {.1‘ €X : Hanlnen C X, tip(an) njoo —I—OO} '

the blow-up set of u; y, and

oi(x) := lim lim sup/B ( )V;,ne“i’"dvg.

r—0 nooo

the local concentration value at . We will prove the following concentration-compactness result:
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Proposition 4.2. Let A be a symmetric positive definite matriz satisfying (1.52) and assume
Ui, Vin satisfy (4.15)-(4.18). Up to subsequences, one of the following alternatives holds:

(i) (Compactness/Vanishing) For i = 1,...,N, ufn is uniformly bounded from above and
either w; , is bounded in L*°(X) or u;, — —oo uniformly on ¥, i=1,...,N.

(ii) (Blow-up) The blow-up set S := S1U---USy is non-empty and finite and u;}, is uniformly
bounded in Ly (¥\S;) Vi€ {1,...,N}. Moreover, for any i we have ezther uipn bounded
in LS (X\S) or u;, — —o0 locally uniformly in £\S.

loc

Furthermore, denoting by w; the weak limit of the sequence of measures V;e“n  one has

Wi =1 + Z 0i(x)0y (4.22)
TES;

with r; € LY(X) N LE (S\S;) N L2 (E\(S; U {p1,....,pm})) for some ¢ > 1 and oi(z) >
%min{l, 1+ai(z)yVz e S, i=1,...,N.

The proof will be split into several simple steps. We begin with two general Lemmas. The first
one was proved by Brezis and Merle in [18].

Lemma 4.8. Let 2 C R? be a bounded open domain and let u € Li () be a distributional
solution of

—Au=f in
u=20 on 0N)

with f € LY(Q). Then ¥V 6 € (0,47) we have

(47 —8)|u(=)|
/ e Wi dz < 4i(d1am 0)2.
Q J

Proof. Let f(z) := { ’£| ;;g be the 0 extension of |f|. We take R = % diam(Q2) and

() = % /BR log <|x2f%y|> f(y)dy.

Since @ solves —A@ = f in R? and @ > 0 in Bp, by the maximum principle we have lu| < @ in
Q). Moreover by Jensen’s inequality

consider the function

§ ~

(47 —8)|u(z)| (4m—8)a(x) “am f(y)
/ e Iflh dx g/ e Wi dx </ dx/ dy <
Q Br Br Br |33—Z/| £l

)

f() < 2R >
</BRdyuful/BRd‘””’ w—u)
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)

2— 2
Since the function ®(y) := [ Br (\x2—Ry|) T d s radially symmetric and decreasing we may

deduce

(4r—8)|u(=)| 472 472
/ e W dx <®(0) = %22—%1%2 < % (diamQ)Q.
Q

O]

The following Lemma is a consequence of Harnack’s inequality. It describes the behavior of w;
on X\S.

Lemma 4.9. Let Q C ¥ be a connected open domain and let f, be a bounded sequence in
LY Q) NLL.(Q), ¢ > 1. If uy, is sequence of solutions of —Agu, = fn and b is uniformly

bounded in L7s.(2) then, up to subsequences, one of the following holds:

(i) wuy, is uniformly bounded in L7°.(§2);

loc

(1i) u, — —oo uniformly on any compact subset of 2.

Proof. Assume that the second alternative does not hold. Then we can find a point xy € €2 such
that, up to subsequences, u,(zg) > —C. Let K CC  be a compact subset of €. Since ) is

connected we can find z1,...,x; € Q and rg,...,ry > 0 such that
L L

K C UBQ(CL’Z) C UBM(J:,;) cc and Bri (z;)NBriga (zi41) #0 for i = 0,..., L—1.
- i=0 : :

Without loss of generality, one can assume that it is possible to take isothermal coordinates in
each of the balls B, (x¢). Let vy, be the solution of

—Agvy = fn in By, (x0)
v, =0 su 0By, (o).

By elliptic estimates we find that v, is uniformly bounded in W24(B,, (o)) and, since ¢ > 1, in
L*>®(By,(z0)). Being u, bounded from above we can find C’ > 0 such that z,, := C" —up+v, >0

in By, (o). Note that z, is harmonic and 5 in(f < zn(zp) is bounded from above, thus applying
ro (0
2

Harnack’s inequality in local coordinates, we get that z, and wu, are uniformly bounded in

LOO(B%)). Since B%(acl) N Bro 4y # (), we have sup wu, > —C. We can so repeat the
By (z1)
2

argument and find a uniform bound for u, in L‘X’(B% (z0)). Iterating the procedure we find
uniform bounds for u, of each of the balls B n (x;) and thus on K. O

Now we prove the lower bound for the concentration values at blow-up points.

Lemma 4.10. Fori=1,...,N, if 0;(z9) < 3—2(1 + min{0, a;(z)}) then 319 > 0 such that u;rn
is uniformly bounded in L (By(x¢)).
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Proof. Without loss of generality we will consider the case ¢ = 1. Let ry > 0 be such that
u 47 .
Vine“tmdvg < — (1 + min{0, a1(zo)})
B'rO (xO) ai1

for sufficiently large n. Let us denote
fn = a11Vie'tn

and write u1, = 2, + w, — &, where z, and &, are the solutions of

—Agzy = fn in Byy(xo) and —Agén =c1n  in Byy(xo)
zp =0 on 0By, (zo) & =0 on 0By, (o).

Since ¢; ,, is bounded and f, by elliptice estimates and the maximum principle we have

zn > —C and 1€n] < C. (4.23)

Applying Lemma 4.8 in local coordinates, we find ¢ > Wlal(wo)}
C. We claim that V; ,, € LS(B (z)) for some s > ¢'. Indeed, Vi, € L®(By,(x0)) if aq(z0) >0
and and Vi, € L* for s < if aq () < 0. Since ¢ =1+ = L —% the claim is proved.

ai (m ai(zo) q—1 ai(zo
In particular, by Holder’s inequality we have V; ,e** € L'*%(B,,(x)) for some § > 0. Observe
now that

such that [[e%" || 1B, (z)) <

N

—-Agwy, = E a;jVjne'im < 0.
i=2

Applying the mean value Theorem for subharmonic functions we find

wp(z) < C wpdvg < / wdvg < / ufndvg +C
Brg (z) Brg (zo0) Bro (2)

Ve BTO( - 1f we now take 6 € (0, 1] such that Vl_ne is uniformly bounded in L (B, (o)), then

2]
/ ufndvg < 1+9 e 1 dvg <
B?"O (1,0) ' 9 B?"o (330)
o 0,
< C V 9+1‘/'1‘9;“16m“1’"dv9 <
Bro(xO) '
9
< HVHGn”}JJerBT ||V1 ne' nH v (0)) <C.

Thus wy,, is uniformly bounded from above in B o (xg). It follows that

fo = anVipemelreon

is uniformly bounded in L'*9(B 0 (x0)). To conclude we consider the solution vy, of

—AgUy = fn in B%o (o)
5n =0 on 83%0 (l‘[))
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By elliptic estimates vy, is uniformly bounded in B%o (zo) and, arguing as before, one can prove
that (u1,, — vp) is bounded from above in B o (x0). It follows that wp , is uniformly bounded

from above in B%o(xo). O

Remark 4.2. If V; ,e“" — pu; as measures, then V x € ¥ we have
. — . —1; LN  SUin
oi(z) = pi({x}) = ;l_I)% hnnit%f g Vine'v dvg.

In particular one can have o;(z) > 3—2 (1 +min{0, aj(z)}) only for a finite number of points.

Proof. By the properties of the weak convergence of measures we have

wi(Br(x)) < lim inf/ Voe' dvg < lim sup/ Vne'"dvg < pi(By(x)).
By (x) Q

n—00 n—00

Since lir% wi(Br(x)) = lir% wi(Br(x)) = pi({z}), the conclusion follows by taking the limit as
r— r—
r — 0. O

We can thus characterize the blow-up set .S; as the set of points in which o; is positive.
Lemma 4.11. Assume that V; pe“*» — n; as measures. The following conditions are equivalent:

o 10 € S;;
o 0;i(zg) > 3—2(1 + min{0, o;(z0)});

o gi(z9) > 0.
Moreover S; is finite and ujn is uniformly bounded in Lp5.(3\S;) fori=1,...,N.

Proof. By Lemma 4.10 the first condition implies the second and clearly the second implies
the third one. Moreover, by Remark 4.2, o;(z9) > 0 implies sup u, — 400 V r > 0.
Br(mo)
Let us choose ry > 0 such that B,,(z9)\{zo} does not contain any point such that o;(z) >
;1—2(1 + min{0, @;(z)}). Then using Lemma 4.10 we find  sup  u;, < C. Therefore, taking
Bro\BT(xO)
Ty, € By, (z0) such that u,(z,) = sup wuy,, we have uy,(z,) — +o00 and z,, — x¢. This shows
B’V‘O (330)
that x¢g € S; and proves the equivalence of the three conditions. The finiteness of S; and the
bound on u:rn follow from Remark 4.2 and Lemma 4.10. O

The following Lemma describes the limit measures puq, ..., uy.
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Lemma 4.12. Let ¢ > 1 be such that Vi, € LX) i = 1,...,N. Then 3 7, € L}(Z) N
L (3\S;) N L2 (B\(S; U{p1,...,pm})) such that

pi= Y oi(x)8, +ri. (4.24)

TES;

Proof. First we observe that u|g\5i is absolutely continuous with respect to the Riemannian
measure. Let Q; CC X\S; be an increasing sequence of open subsets of ¥ such that X\S; =
U Q. Let E C ¥\S; be such that |E| = 0 and take Ex = E N Q. If {AL} is a sequence of
opens sets such that Ej, C Ai C Q. and |A§€\ — 0 as ! — 0. Then V[, k, using the boundednes
of u , on {1, we get

1 1
pi(Br) < pi(A}) < hmmf/Al Vipeinde < [|en || oo (o) | Vinll Loy | Ak 7 < C(R)| ALY

n—oo
k

As | — 0 we find p;(Eg) = 0V k and thus p;(E) = 0. By the Radon-Nikodym Theorem we
can find r; € L'(X) such that 4.24 holds. Moreover, since V; ,e%- is bounded in LY (£\S;) N

loc(z\(s U{p177pm})) e L?OC(E\S)QLTSC(E\(SZU{ph7pm})) D
We stress that Lemma 4.12 holds also if S; = 0.

P'roof of Proposition 4.2. By Lemmas 4.11, u;, in is uniformly bounded in L, L(2\S). If 51 =

= Sy = 0 then, by lemma 4.9, we have (z) If instead S = S;U... U SN 75 () then, for any
ie{l,...,N}, —Agu;y is uniformly bounded in L7S (¥\S) and, again by Lemma 4.9, we have
either u;, — —oo locally uniformly or u;, uniformly bounded in L% (¥\S). Finally (4.24)
follows from Lemma 4.12. O

The following was also observed in [61].

Remark 4.3. If there exists xg € S;\ Ujx; S; then r; = 0.

Proof. In local isothermal coordinates around g we have

_Auim, = |x|2ai(xo)‘7;',n€2m’n + 1/%,71
in Dy, with 0 < ¢; < 17“1 < ¢g and v, € L9(Dy,) for some ¢ > 1. Thus one can exploit
the results in [8] and [5] to prove that w;, — —oo uniformly in D,,. This proves that u;

cannot be uniformly bounded in L7 (¥\S) and thus u;, — —oo locally uniformly in ¥\S. In
particular r; = 0. ]

Proof of Theorem 4.1. We apply Proposition 4.2 to the functions

Wi 1= Uiy — log/ hie" " dvy + log p; » (4.25)
by
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which solve
N
—Agw;p = Z a;j (hje“im — p;)
j=1
and
/ hie“’i’”dvg = Pin i1=1,...,N.
by

If w; is bounded in L>®(X) Vi € {1,..., N},then —Agu; 5, is bounded in LI(X) for some ¢ > 1
and by elliptic estimates we get a uniform bound for u,, in W24(X). Otherwise, since by Jensen’s
inequality we get

) & [ logh;d
/ hje“indvog > |S]el™ Jnloghsdvg 0,
by

we get (4) with S1,..., Sy equal to the blow-up sets of w; . O

4.3 Mass quantization for the SU(3) Toda System

In order to prove Theorems 1.17 and 1.18 we need to prove the vanishing of at least one of the
residual terms 7; in Theorem 4.1 and Proposition 4.2. As in the previous section, we will assume
that u; , and V;,, satisfy (4.15)-(4.18). In addition to (4.17) we will assume

Kin — Kip in CY%), i=1,...,N. (4.26)

We shall also denote
Vi = I e T 2= Gng

As a first thing, we can show that the profile of u;, — u;, near blow-up points resembles a
combination of Green’s functions:

Lemma 4.13. u;, —Ujn — Zjvzl ersj a;joj(x)Gy + s in L7S (X\S) and weakly in wWha(x)
for any q € (1,2) with e € LP(X) Vp > 1.

Proof. 1f q € (1,2)
[ Vi - Vot < Al e < Cllplhynosy
YV o € Wl’q/(E) with fzga = 0, hence one has |[Vu;y[/rex) < C. In particular w;, — Ui,
L,

converges to a function w; € WH4(X) weakly in W14(X) vq € (1,2).
The limit functions w; are distributional solutions of
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where
N
g 0> duy + 3" 03(a)
¢ = lim ¢;,, = — Qi ridv oilx
1 n—00 1,n ‘E’ . 1) = 779 J
J=1 xESj

In particular s; 1= w; — Zjvzl ersj a;jo;(x)G, solves

N N
1 _
—Agsi:Zaij Tj—i_ﬁ ZO’j(l’) —CZ':ZCLZ']' (rj—rj).
Jj=1 J=1

€S

Since —Ays; € LY(X) we can exploit Remark 2 in [18] to prove that €% € LP(X) V p > 1.

The convergence in LS (X\S) follows by elliptic estimates and the boundedness of —Agu; , in

L. (3\S), ¢ > 1. 0

loc

The following Lemma shows the main difference between the case of vanishing and non-vanishing
residual.

Lemma 4.14.

o1, =0= U, — —o0.
o r; Z0 = Uy 1s bounded.

Proof. First of all, w;,, is bounded from above due to Jensen’s inequality.
Now, take any non-empty open set 2 CC X\S.

/ Vine"mdvg = elin / Vi,ne“ivnfﬂiv"dvg
Q Q
and by Lemma 4.13 and (4.26)

N
= . 7704 Gz k3
/‘/;meuw,t u”‘dvg N /%7062]1 Zzesjajﬂ'](x) +s d’Ug c (0,+OO)
Q n Q

—+o00
On the other hand,
/Vi’ne“iv"dvg — ui(Q):/m(a})dvg(m).
Q Q

n—-+o0o

If r; = 0 one has uw;,, — —oo. If instead r; # 0, choosing €2 such that fQ ridvg > 0 we must
have %; , necessarily bounded. ]

Remark 4.4. From the previous two lemmas, we can write r; = V;e%, where
A~ . — N .. .
V; — V;’()ehmnﬂJroo Ui,n62j=1 Zzesj aij0j(x)Ge

N
D=1 %5 (%)

satisfies 17, ~d(-, JJ)Q‘”("’:)_ 2 around each x € S;, provided r; Z 0.
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Now we state a technical Lemma that will be needed in the proof of Lemma 4.16.

Lemma 4.15. Let A be a symmetric positive definite L x L matriz, then there exists v =
(71, ---,72) € R such that

e >0, i=1,...,L;

L
.Z’Yiaijzo ]Zl,L
=1

L
L] Z"}/Z =1.
1=1

Proof. Let us consider the set £ := {x € RY : £A >0, > 0} and the linear map F : R — R,
F(z) =21+ ...+ zr. Clearly one has either sup,cp I' = +00 or F(0) = sup,cp F' = 0. In the

former holds, then there exists T € E, T # 0 and we can conclude by taking v = ﬁ In the
=17

latter case, by the Strong Duality Theorem in Linear Programming, there exists y € R*\{0}
such that y > 0 and Ele a;;y; < —1for j =1,..., L. But then we would have

L
y- Ay = Z Yiaijy; <0
ij=1
which contradicts the assumptions on A. O

The key Lemma is an extension of Chae-Ohtsuka-Suzuki [23] to the singular case. Basically, it
gives necessary conditions on the ¢;’s to have non-vanishing residual.

Lemma 4.16. Fori=1,..., N we have s; € W*P(X), p > 1. Moreover, if Z;VZI a;joj(xo) >
47(1 + a;(x)) for some zg € S;, then r; = 0.

Proof. If all the r;’s are identically zero, then also all the s;’s are identically zero and there is
nothing to prove.

Assume that r; # 0 for some i € {1,...,N}. Up to reordering the indices, we can assume
Tl,...,"Ly 20 and rp 41,...,7n =0, for some Lo € {1,...,N}. Observe that

~Agsi =310 aij (r =T5)  1<i< Lo
We have to prove that for i = 1,..., Ly one has

N
xo € 5; = Zaijaj(xo) <A4n(1+ ai(z0)) and s; € W24(B,(20)), ¢ > 1,7 > 0.
j=1
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Take zg € S1U---U Sr,. Up to relabeling the indices, we can assume zg € S; N ---NSr and
xo ¢ Sp+1U---USL,, for some 1 < L < Ly. Observe that this implies r; € LY(By,(zo)) and
s; € W29(B,,(x0)) for L +1 < i < Lg. Let us consider the L x L matrix Ay := (@i j)1<ij<r-
Since Aj, is symmetric and positive definite, by Lemma 4.15 we can find ~1,...,vr > 0 such
that Z]L:1 via;; > 0 and ZJL:1 7vj = 1. Then, being G(z,y) > —C, we have for z € B%o(xo)

L L Lo
S = DY way [ Gl ety -
i=1 i=1 j=1 z
L L L Lo
- Zzwaij/G(xay)rj(y)dvg(y)—FZ Z %aij/G(x,y)T‘j(y)dvg(y) >
=1 =1 = i=1 j=L+1 >
L L Lo
- _Czwa”/”dvﬁz > i G(z,y)rj(y)dvg(y) — C =
ij=1 z i=1 j=L+1 Bry (z0)
L Lo
> —C = agli Y sup GG, ) o sy 175l La(Br o)) = —C"-
i=1 j=L+1 ZEX

Therefore, using the convexity of ¢t — e! we get

eC//min{ﬁ,...,VL}dvgg/min{‘Afl,...,XA/L}eZiLﬂ%’SidvgS
b b

L L
<D v /E Vie*dvg = Z%/Zmdvg < +oo. (4.27)
i=1 i=1

By Remark 4.4 we must have Z;Vﬂ a;jo;(zo) < 4m(14+a;(zo)) and r; € La(B%o (x0)) for some i €
{1,...,L}. Suppose, without loss of generality, that this is true for i = L. Reducing eventually
g, we have r; € Lq(B%O (z0)) and s; € Wz’q(B%o (x0)) for i = L,..., Lg. The procedure can be
iterated to prove that Zjvzl a;joj(zo) < 4m(1 + ai(xg)) for ¢ = 1,...,L and r; € LP(B,(x)),
w € W?P(B,(xg)) for any i and for small 7. Hence, being x¢ an arbitrary point in S, the proof
is complete. O

Remark 4.5. By Remark 4.4 and Lemma 4.16 one finds that if s; # 0, then —Ags; =~
d(-, 0)2P(®0) where B(x0) = (o) -1 ij\il a;joj(xo) > —1 near each point xy € S. Then,
one can arque as in the proof of Lemma 2.8 to prove that near xg

o [Vsi(z)| = O(d(z, 29)*"")) if  B(zo) < —
o |Vsi(z)| = O(=logd(x,x0)) if S(o)
o [Vsi(z)| <C if  Blzo) > —35.

.

= Nl NI
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In any case one has

lim r|Vs;|2dv, = 0 Vie{l,...,N}, ¢y € S.
r—0 9B, (x0)

From Lemmas 4.13 and 4.16 we can deduce, through a Pohozaev identity, the following infor-
mation about the local blow-up values.

Lemma 4.17. If xg € S then

N N
> aijoi(zo)oj(we) = 8 Y (14 ai(xo))oi(o). (4.28)
i,j=1 i=1

Proof. Let us take local isothermal coordinates on Ds, in which xg corresponds to 0. In these
coordinates u; , satisfies

with ;,, € C1(Ds,) and 17”1 = ]m\mi(wo)f(m where I~(m — I?@O in C1(Ds,), I?@o > 0.
Moreover by Lemmas 4.13, 4.16 and Remark 4.5 we have

N
Uin =T — Y a1j0;(20)Gay + 5 0 Clho(Ds,\{0}) (4.29)
j=1
with 5; € W24(Ds,) and
lim 7 / |V3;)%do = 0. (4.30)
r—0 oD,

Integrating by parts on D, for r € (0,0¢) we get

N

N
Z at <_ 5 Aui Vg - x dr + T/BDT 8;;” 8;;” da> = Z a¥ . VuinV (Vg - x)de =

i,j=1 i,j=1

N
y 1
= Z a” / (2V (Vi - Vujp) -+ Vg, - Vuj7n> de =

ij=1

N
1 y
=35 E ar Vs - Vujndo

ij=1 /0P
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On the other hand we have
N

— Z gl AuiynVuj,n cxdr = Z/ Vk e"* Vg, - xdo + Z ”/ YinVjp - o d
3,j=1 k= 1,7=1
N N
= Z / Vkﬂe”’“’"da — Z/ (17;” + V‘ka,n . a:) e"irdy
k=1 Dy
+ Z i / (5 nvu] n-Tdx
t,j=1

thus we obtain the Pohozaev-type identity

Z w/ aumau]’ EVU‘ Vu, da—}—iv:r/ Vi ethndo =
D, ov Ov 9 o —1 D, o B

i,7=1

N N
= Z/ <‘7kn + V‘ka,n : x) elindy — Z a Vin Vg, - o do. (4.31)

k=17 Dr ij=1 Dy

Using (4.29) we find

N
lim r Vui’n : VUj,ndU = T Z aikaﬂak(wo)al(wo)/ |VGIO’2dU +r V:sz . ngda +
n—o0 8Dr k =1 8DT 6D'r
+ T‘ZO’k xo <a2k/ VGxO VSJ —i—a]k/ VGxo VSZ> do.
k=1
therefore, by (4.30),
}1_r>r(1)nh_>rrolo7“ Z azj/ Vg - Vujpdo = Z a;joi(xo)oj(zo). (4.32)
7] 1 ,] 1
Similarly
Ou; p Ou;
. . zy i,m ]TL
,1}_%7113207" /é?D B Z a;joi(xo)0;(zo). (4.33)
a] 1 ,] 1
We also claim that
lim lim 'r/ Vipesndz =0  i=1,...,N. (4.34)
r—0n—oo oD,

If r; = 0 this follows by Lemmas 4.14, 4.13 (actually the limit in n is 0 for any r sufficiently
small). If instead r; # 0 then by Lemma 4.16 we have Zjvzl a;jo; < 4m(1l+ a;(zo)) so that

~ ) ) ; s N 0o 5
lim r Vine'indr = 7’/ |$’2al(m°)Ki,oehm"*°° Uiin o2 j=1 0405 Gag t5i g —
n—oo

oD, oD,

— 0 (T2<1+a<xo>>fzf:1au0j) 0.
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Since fom -r = 20((:150)‘7}7,1 + \x|2a(m0)VI?i,n - x, if r is sufficiently small we get

lim (2‘7'“1 + V‘Z,n . x) e'irdvy, = 2(1+ ay(zo))oi(xo) +

n—oo D
r

+ / <2(1 + Oli(xo))ki,() + VI?Z’,O . x) ‘x’2ai(x0)§idx

T

so that

r—0n—oo

lim lim (Q‘Zm + Vf/m : 33) e'rdog = 2(1 4 ay(xg))oi(zg) i=1,...,N. (4.35)
Dy

Finally we have

n—oo

N
lim ViV p-x de = / Yin Z a0k (20)VGyy - x dw+/ YinVs;-x dr = O(r) (4.36)
Dr r k=1 D'r
which implies

lim lim / YinViiy - de = 0. (4.37)

r—=0n—o0 Jp

Using (4.31) - (4.37) we find

N N
Z a;joi(xo)oj(zo) 22 1+ ak(xo))o(xo).
,j=1 k=1
O
Lemma 4.18. If xg € S, then there exists i such that Zjvzl a;joj(zo) > 4m(1 + a;(z0)).
Proof. Suppose the statement is not true. Then
Zaljaj x0) < 4m(1 + ai(wo)) i=1,...N. (4.38)

Jj=1

Multiplying the i** equation by o;(xg) and taking the sum over i one finds

N N
Z aijO'i(:L'o)O'j(:L‘()) < A4r Z(l + Oéj(l’o))O’j(l’o)
ij=1 j=1

which contradicts Lemma 4.17.
For N = 2, the scenario is described by the picture.
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Ba(iliaz)f
Sm{l-az)

4m{l:ag)

2wl sg;} -

. . i .
271 M_ai) 6ril=ay) Br(l-ai}

Figure 4.1: The algebraic conditions (4.38), (4.28) satisfied by o1(z0), o2(x0)

Corollary 4.1. Suppose u,, satisfies (4.15)-(4.18) and that (4.26) holds. If S # 0 then (4.22)
holds with r; =0 for some i € {1,...,N}. In particular there exists i such that

lim Vine"mdvg = Z oi(x).

n—00
TES;

Similarly we get:

Corollary 4.2. Let u, be a sequence of solutions of (4.1) with p; = pim — p;; 1 =1,...,N.
If alternative (ii) holds in Theorem 4.1, then r; = 0 for some i. In particular there exists
i€{l,...,N} such that p; =) s 0i(z).

Proof. As in the proof of Theorem 4.1, it is sufficient to apply Corollary 4.1 to the functions w;
defined in (4.25). O

We can so prove the compactness condition for the SU(3) Toda System.

Proof of Theorems 1.17 and 1.18.

Assume N = 2 and A = 21 _21> . Let u,, be a sequence of solutions of (4.1) with p; =

Pin n_>—+>oo p,; and fz Ul pdvg = fz ugndvy = 0. If ui,, u, are both uniformly bounded in
W2P(Y), then u,, is compact in H(X).
Otherwise, from Corollary 4.2 we must have p; = > g 0i(z) for some i € {1,2}. In the regular

case, from Theorem B follows that p; must be an integer multiple of 47, hence the proof of
Theorem 1.17 is complete.
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In the singular case, local blow-up values at regular points are still multiples of 47, whereas for
any j = 1,...,[ there exists a finite I'; such that (o1(p;),02(pj)) € I';. Therefore, it must hold

l
piGAi = 47Tk—|—2nj0'j, keN, an{O,l}, O'jEHZ'(Fj) ,
j=1

where II; is the projection on the i** component; being A; discrete we can also conclude the
proof of Theorem 1.18. O
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