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Chapter 1

Introduction

It is known that a completely integrable Hamiltonian system on a symplectic manifold (M,ω),
seen as a Lagrangian fibration, defines an integer affine structure Aω on its base space [20].
We want to answer the following question:

In which cases does the affine structure Aω determine ω uniquely modulo momentum-
preserving real-analytic automorphisms of M?

We are interested in integrable systems with singularities. In some cases, where some
non-degeneracy condition is assumed, this is known to hold (see [18, 16, 19, 55]). Notice that
the converse statement is obviously true: if a symplectic form is mapped to another one by a
momentum-preserving map then the action variables of the two forms coincide, and so do the
affine structures on the base space.

In Part I of the thesis we discuss the case of one degree of freedom, and we describe sufficient
conditions for a positive answer in presence of degenerate singularities. The applicability of
these criteria depends on the type of singularities. In Part II we study a typical degenerate
case occurring in two degrees of freedom: parabolic orbits and cuspidal tori.

1 Completely integrable systems with singularities

All real objects throughout the thesis will be assumed to be real-analytic. The space of
real-analytic k-forms will be denoted by Ak, while Ak(Rn, 0) will denote the space of germs
of real-analytic k-forms at 0 ∈ Rn. For holomorphic k-forms we use the notation Ωk and
Ωk(Cn, 0).

Let (M,ω) be a symplectic manifold. For any function f : M → R, denote by Xf = ω−1df
the vector field satisfying iXfω = df , and let {f, g} = ω(Xf , Xg) be the Poisson bracket defined
by ω. If two functions Poisson-commute, then the corresponding vector fields commute.

Definition 1.1. A completely integrable Hamiltonian system1 on a compact symplec-
tic manifold (M,ω) of dimension 2n is given by n real-analytic Poisson-commuting functions
f1, . . . , fn : M → R which are independent almost everywhere, and by a Hamiltonian func-

1For short we will often write “integrable systems”, “integrable Hamiltonian systems”, etc.
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2 CHAPTER 1. INTRODUCTION

tion H such that {H, fi} = 0 for all i = 1, . . . , n.

The map F = (f1, . . . , fn) : M → Rn is called the momentum map. A point x ∈ M is
critical for F if rank dF (x) < n. We denote by K = CritF ⊂ M the set of critical points
of the momentum map. The set of critical values Σ := F (K) ⊂ Rn is called the bifurcation
diagram of F .

Since the vector fields Xf1 , . . . , Xfn commute, their joint flows define an action Φ : Rn ×
M →M , called the Hamiltonian action of the group Rn (defined by f1, . . . , fn). From the
fact that this action preserves the momentum map it follows that the orbit through a point x
of rank k < n, i.e., the singular orbit through x, is k-dimensional.

Let us recall the statement of Liouville-Arnol’d Theorem (see [20]). AssumeM is compact.
Let Mr := {x ∈ M : rank dF (x) = n} be the set of regular points for F , then F |Mr is a
submersion. For x ∈ F−1(c) denote by F (x) the connected component of F−1(c) containing x.

Theorem 1.1 (Liouville-Arnol’d). Mr is an open subset of M . For each x ∈ M such that
F (x) ⊂Mr (i.e., is a regular fiber), there is an open neighborhood U of F (x) in Mr, invariant
with respect to the flow of each Xfi , and a diffeomorphism (I, ϕ) : U → V × Tn with V open
in Rn such that I = χ ◦ F for some diffeomorphism χ : F (U)→ V , and ω = dIi ∧ dϕi on U .

U

I

""
F
��

F (U) χ
// V

The coordinates (I1, . . . , In, ϕ1, . . . , ϕn) are called action-angle variables. Action vari-
ables, seen as a local coordinate system on the base space, are not unique: any two set of
actions are related by an integer affine transformation, i.e., belonging to GL(n,Z) n Rn. A
completely integrable system can be understood as a Lagrangian fibration with singularities,
i.e., a fibration π : M → B whose regular fibers are Lagrangian submanifolds of (M,ω). Here
B denotes the quotient space obtained from M by identifying points on a same connected
fiber. Then the collection of action variables defines an atlas of the regular part of B, whose
transition functions are integer affine. In other words, the regular part of the base space is an
integer affine manifold.

Liouville-Arnol’d theorem gives a complete description (i.e., a symplectic canonical form)
of the fibration in a neighborhood of a regular fiber. It also shows that, if we are given two
regular Lagrangian fibrations, then any integer affine local diffeomorphism between the bases
can be lifted to a momentum-preserving symplectomorphism between the two systems (this
amounts to choosing a Lagrangian section for the two fibrations). From the point of view
of classification, this means that locally, regular Lagrangian fibrations have no topological,
smooth nor symplectic invariants.

1.1 Singularities

The picture becomes more complicated when we consider the fibration in the neighborhood of a
critical value. Consider a curve lying in the regular part of B, its pre-image consists of a family
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of Liouville-Arnol’d tori (not necessarily connected). If we let the curve cross the bifurcation
diagram, these tori will typically undergo a nontrivial bifurcation, and the fibration near the
singular fiber, i.e., at the point where this transition happens, can be quite complicated (see [7]
for examples). In this sense, singular fibers contain the nontrivial topological information of
the integrable system. For this reason, and because singularities are ubiquitous in integrable
systems, the problem of their description and classification is very important in the theory of
completely integrable Hamiltonian systems.

The typical classification problem can be formulated as follows: let (M,ω, f1, . . . , fn) and
(M̃, ω̃, f̃1, . . . , f̃n) be two integrable systems. These two systems are Liouville equivalent
if there exists a fiber-preserving homeomorphism Ψ : M → M̃ . We can consider more rigid
types of equivalence, requiring the map Ψ to be smooth or real-analytic. If there exists a
fiber-preserving map Ψ as above which moreover is a symplectomorphism (Ψ∗ω̃ = ω), we say
that the two systems are symplectically equivalent.

In describing the singularities of the fibration we can distinguish three kinds of problems,
which are defined by restricting the system to some open domain U ⊂M :

• the local problem, if U is a neighborhood of a singular point;
• the semi-local problem, if U is a neighborhood of a singular fiber;
• the global problem, if U is the whole manifold.

It is also common to consider U to be a neighborhood of a singular orbit (the local case
correspond to zero-dimensional orbits).

A common type of singularity is that of non-degenerate singularities which are, essentially,
the direct product of simpler singularities of the three kinds: elliptic, hyperbolic, or focus-focus
(see [7] for a definition). Non-degenerate singularities admit a smooth symplectic normal form,
as was shown by L. H. Eliasson [24] (see also [47]). This result was later generalized to the case
of compact non-degenerate orbits of any dimension by E. Miranda and N. T. Zung [48]. The
topological investigation of integrable systems with one and two degrees of freedom is due to
A. T. Fomenko and H. Zieschang, and later developed by A. V. Bolsinov, V. S. Matveev, A. A.
Oshemkov, N. T. Zung among others. For a detailed treatment and references see [7]. Other
approaches to the study of topological phenomena of integrable systems have been developed
by N. N. Nekhoroshev, D. A. Sadovskií and B. I. Zhilinskií [49], R. H. Cushman and L. M.
Bates [17], K. Efstathiou [22], M. Audin [5], M. Symington [54].

From the point of view of global classification, other non-trivial invariants arise from the
possibility that the fibration is globally non-trivial. The case of regular fibrations was com-
pletely clarified by J. J. Duistermaat [20], where he introduced the concept of monodromy
of a Lagrangian fibration, together with Chern and Lagrangian characteristic classes. Duis-
termaat’s results were later extended in different ways. N. T. Zung [62] has shown how to
generalize these invariants to the case of Lagrangian fibrations with singularities. Under appro-
priate non-degeneracy assumptions, strong results were obtained showing that the affine base
space classifies the system up to global symplectic equivalence. This was done by T. Delzant
[18] under the assumption that the system admits a global torus action. A generalization to
the case of semi-toric system is due to A. Pelayo and S. Vũ Ngo.c [52].

In the thesis we will consider the problem of symplectic equivalence in the local and semi-
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local setting. Since a symplectomorphism between the fibrations will preserve action variables,
the actions (or the affine structure on the base space) are a symplectic invariant. It was shown
by J.-P. Dufour, P. Molino and A. Toulet [19], that in the case of semi-local symplectic clas-
sification in one degree of freedom for fibrations with non-degenerate hyperbolic singularities,
action variables are (essentially) the only non-trivial invariants. In other words, if two Liou-
ville equivalent systems have the same actions, then they are symplectically equivalent. The
same is true for focus-focus singularities, as was shown by S. Vũ Ngo.c [55].

The aim of this thesis is to extend this class to the case of degenerate singularities in one
degree of freedom, and to that of parabolic trajectories, often occurring in systems with two
degrees of freedom.

1.2 One degree of freedom

In order for two integrable systems to be symplectically equivalent, they must first of all be
smoothly Liouville equivalent. For the case of one degree of freedom, we will assume that this
latter condition is satisfied, i.e., that a fiber-preserving real-analytic diffeomorphism is given.
In other words we reduce to the case of two different symplectic forms over the same foliated
manifold.

Let M be a real-analytic 2-dimensional manifold, H : M → R a real-analytic Hamiltonian
function. Assume thatH−1(0) is a singular fiber forH. We will consider the semi-local setting,
i.e., we will assume thatM is a neighborhood of the singular fiber of the formM = H−1[−η, η],
where η > 0 is small enough so that H−1(0) is the only singular fiber in M .

Define the Reeb graph of (M,H,ω) to be the quotient Γ := M/∼, where x ∼ y if and
only if x and y belong to the same connected fiber of H : M → R. Denote by π the projection
M → Γ. The Reeb graph Γ is endowed with the quotient topology: a subset U ⊂ Γ is open
if and only if π−1(U) is open in M . We can decompose Γ as Γ = {0} ∪i Γi where each Γi
represents a regular S1-fibration in M . Consider now a symplectic form ω ∈ Ω2(M). For each
i, the set of action variables defined over on π−1(Γi) defines an atlas over Γi having integer
affine transition functions (i.e., an integer affine structure). The Reeb graph endowed with
this integer affine structure on its regular part is called affine Reeb graph.

For each Γi we can define an action variable Ii through the formula:

Ii(t) =

∮
π−1(t)

α

where α is the action 1-form, such that dα = ω, and π−1(t) is an oriented regular fiber. Notice
that in this one-dimensional case, in a neighborhood of each regular t ∈ Γ, the action variables
are defined up to a constant.

The problem of H-preserving symplectic equivalence in the case of non-degenerate singu-
larities was studied in [16] and [19]. One way to approach degenerate singularities (e.g., cusps,
etc.) is to translate the problem into a problem of relative cohomology, as we will explain
better in a later chapter. This strategy was adopted in the local classification of volume forms
by Y. Colin de Verdiere and J. Vey [16] for the non-degenerate case and by J.-P. Francoise
[26, 27] for the degenerate case (see also [36, V.26]), and it is the starting point of this the-
sis. For this approach it is useful to reformulate affine equivalence in terms of periods. The
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period of the Hamiltonian vector field XH at t ∈ Γi, i.e., the time it takes to the flow of XH

to complete a loop around a fiber π−1(t), is given by Πω(t) = dIi(t)/dt. Each period is a
smooth function Γi → R which may diverge at 0. We can collect all periods into a period map
Πω : Γ r {0} → R. An equivalent expression for the period map is:

Πω(h) =

∮
π−1(t)

ω

dH
(1.1)

where ω/dH is the Gelfand-Leray form of ω, defined as follows (see [3]). Let x ∈ M be
a regular point for H, then we can find a neighborhood U of x and a real-analytic 1-form
ξ ∈ Ω1(U) such that dH ∧ ξ = ω on U . The form ξ is not uniquely defined, but its restriction
to the level-sets U ∩ π−1(t) is unique. To define a Gelfand-Leray form on the whole fiber
π−1(t), we need to combine the local solutions ξ via a partition of unity covering π−1(t). The
resulting form is not necessarily real-analytic, but its restriction on π−1(t) is real-analytic,
because of unicity.

The final form of the problem for the case of one degree of freedom is the following:

Problem. Suppose Πω0 = Πω1 on Γ. Is it true that there exists a H-preserving real-
analytic automorphism ψ of M such that ψ∗ω1 = ω0?

If such a map ψ exists locally (resp. semi-locally, globally), we say that the local (resp.
semi-local, global) problem has a solution. We do not restrict to non-degenerate saddle sin-
gularities, but consider more degenerate singularities. As it turns out, one way to address the
problem is to start form the local case, complexify the singularities and to frame the problem
into the theory of complex singularities. The equivalence of semi-local periods will impose
some condition on the local singularity, namely that the periods over some open curves of the
local fibration are real-analytic (see the end of Subsection 1.2 of Chapter 2). These conditions
can be sufficient for the existence of a local solution (i.e., to find a local ψ in a neighborhood
of the singularity). In this case the local singularity will be called a good singularity. Under
some additional condition, local solutions can then be extended to a semi-local, or global one
(see Section 3 of Chapter 3).

1.3 Two degrees of freedom

Let (M,Ω) be a 4-dimensional symplectic manifold, and let H,F be a pair of Poisson commut-
ing real-analytic functions defining a completely integrable Hamiltonian system onM . The bi-
furcation diagram Σ ⊂ R2 in this case will generally consist of piecewise-regular curves with sin-
gular points plus, possibly, isolated points (see for example [7]). A fiber Lh,f = {H = h, F = f}
is singular if it contains a point P such that dH(P ) and dF (P ) are linearly dependent. If
these differentials are not both zero, the R2-orbit of P is a 1-dimensional singular orbit γ.

The most frequent examples of singular orbits are given by elliptic and hyperbolic or-
bits. These non-degenerate orbits were shown to have a symplectic canonical form (in a
neighborhood of the singular orbit), in other words there is no symplectic invariant in the
non-degenerate case [48]. It typically happens that a one-parameter family of non-degenerate
singular orbits becomes degenerate at a given value of the parameter, or in other words, that a
degenerate singularity splits into several non-degenerate ones (like for Morsification of singu-
larities). In this thesis we consider a particular, but typical, type of degenerate singular orbit:
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parabolic orbits (or parabolic trajectories). These can be considered as the simplest example
of degenerate singular orbits. Because these singularities are stable under small integrable
perturbation, they occur in many examples of integrable Hamiltonian systems. Unlike non-
degenerate singularities, however, in the literature on topology and singularities of integrable
systems there are only few papers devoted to degenerate singularites including parabolic ones.
We refer, first of all, to the following six — L. Lerman, Ya. Umanskii [44], V. Kalashnikov
[37], N. T. Zung [61], H. Dullin, A. Ivanov [21] and K. Efstathiou, A. Giacobbe [23], Y. Colin
de Verdiere [15].

From the point of view of smooth classification, i.e., without taking into account the sym-
plectic structure, a parabolic orbit can be reduced to a canonical model (see [23] or Proposition
5.3 from Chapter 5): there exist coordinates (x, y, λ, ϕ) ∈ R3 × S1 in a neighborhood of the
singular orbit γ such that:

H = x2 + y3 + λy, F = λ.

The parabolic orbit is given by the curve γ = (0, 0, 0, t). As we will show however, from
the point of view of symplectic equivalence, these singularities admit non-trivial symplectic
invariants.

If instead of a neighborhood of γ we consider a saturated neighborhood of a compact
singular fiber containing γ, i.e., a cuspidal torus, then these invariants can be expressed in
terms of the action variables (i.e., the affine structure on the base). The main result (Theorem
5.6) is that the only symplectic semi-local invariant of a cuspidal torus is the integer affine
structure on the base of the fibration.

2 Content of the thesis

Part I. One degree of freedom.

• In Chapter 2 we introduce the notions of complex singularity theory which are needed in
the local case. We define analytically good singularities (Definition 2.5), a class of local
singularities for which the local problem in one degree of freedom admits a solution2 (as
explained in Theorem 2.4 and Corollary 2.2). Finally we describe toric resolutions (for
the case of Γ-non-degenerate singularities, see Definition 2.6), which are an effective tool
to simplify the study of singularities, both real and complex. We use them in Subsection
2.4 to give a description of the real local fibration.
• In Chapter 3 we define topologically good singularities (Definition 3.3), and we show that

a topologically good singularity is also analytically good (Theorem 3.1). In Section 2, we
describe an algorithm allowing to determine if a singularity is topologically, and hence
analytically, good. We give a list of good singularities in Table 3.1. Finally, we move
to the semi-local and global problems (Sections 3 and 4). We show that under some
topological rigidity hypothesis, the solution of the local problem yields a solution to the
semi-local one (Theorems 3.3 and 3.4).
This gives sufficient conditions for a solution of the local, semi-local and (smooth) global
problem (Theorem 3.5). As a particular example, we find that: if an integrable systems

2This notion is similar to the “condition (∗)” of [27]. See also [36].
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has only singularities which are non-degenerate or of the form yp−xq, with p, q different
primes, and each singular fiber has only one critical point, then a symplectic form is
uniquely determined (modulo smooth fiber-preserving isotopy) by its action variables
(Corollary 3.3).
• In Chapter 4 we use toric resolutions to study the asymptotic expansion of period inte-

grals, using the approach of Varchenko [56] and we show that such asymptotic expan-
sions allow to recognize non-degenerate singularities: a singularity is non-degenerate if
and only if it has logarithmic periods (Propositions 4.5, 4.6 and 4.7). Moreover, asymp-
totic expansions can sometimes be used to show that a singularity is analytically good
(Proposition 4.2).

Part II. Two degress of freedom. Parabolic orbits and cuspidal tori.

• In Chapter 5 we discuss in detail the case of parabolic orbits in two degrees of freedom.
First we discuss a normal form for the fibration in the neighborhood of a parabolic
orbit (Proposition 5.3). We show that, given two systems with a parabolic orbit, a local
diffeomorphism between the bases which respects the bifurcation diagrams can be lifted
to a fiber-preserving diffeomorphism between neighborhoods of the parabolic trajectories
(Proposition 5.2).
Next we give necessary and sufficient conditions for the existence of a symplectic equiv-
alence between two systems in a neighborhood of a parabolic orbit (Theorems 5.2 and
5.4). Finally we treat this problem from the semi-local point of view. We show that two
cuspidal tori are semi-locally symplectically equivalent if and only if there exists a local
integer affine equivalence between the corresponding bases (Theorem 5.6).
This part is self-contained and consists of a joint work with A. V. Bolsinov and E. A.
Kudryavtseva.
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Part I

One degree of freedom





Chapter 2

Local study: singularity theory

1 Review of complex singularity theory

We briefly review the basic constructions of singularity theory (see [4, 2, 60] for a more detailed
explanation), giving a proof of those statements which are most important or require to be
adapted for our purposes. A germ f : (Cn, 0) → (C, 0), such that df(0) = 0 is called an
isolated singularity if in a neighborhood of 0 ∈ Cn the function f has no critical points
other than zero. This is equivalent to requiring that the local algebra of the singularity

Qf :=
C{z1, . . . , zn}

(∂z1f, · · · , ∂znf)

satisfies dimCQf < ∞. Here C{z1, . . . , zn} denotes the ring of convergent complex power
series of n-variables, and (∂z1f, · · · , ∂znf) denotes the Jacobian ideal of f .

Theorem 2.1 (Milnor, see [2]). Let f : (Cn, 0) → (C, 0) be an isolated singularity. Denote
B = B(0, ε) ⊂ Cn the open ball and D = B(0, η) ⊂ C the open disc. We put

X := B ∩ f−1(D)

Xt := B ∩ f−1(t)

D∗ := D r {0}
X∗ := X rX0

Then for ε > 0 small enough (so that the fiber X0 intersects transversally ∂B) and for 0 <
η = η(ε) small with respect to ε, we have

i) f : X∗ → D∗ is a smooth locally trivial fibration, called the Milnor fibration of f
(fibers have complex dimension n− 1).

ii) For t ∈ D∗, Xt is homotopically equivalent to a bouquet of µ real (n − 1)-dimensional
spheres Sn−1, where µ = dimCQf <∞ is the Milnor number at 0.

iii) X ∼ X0 ∼ C(∂X0) is contractible (homotopic to the cone of X0).
iv) f |∂X : ∂X → D is also a locally trivial fibration, but since D is contractible it is trivial.
v) The Milnor fibration does not depend on (ε, η) (two allowed pairs give diffeomorphic

fibrations).

11
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Notice that we drop ε and η from the notation, but keeping in mind that the construction
is local, and the neighborhoods B and D can be shrinked if necessary.

Consider a closed curve γ = γ(s) : [0, 1] → D∗ in the base space with γ(0) = t0. Let
Γs : Xt0 → Xγ(s) be the continuous family of diffeomorphisms identifying the fibers along
the loop, defined (up to isotopy) by the local triviality of the Milnor bundle. The diffeomor-
phism h := Γ1 : Xt0 → Xt0 is called Picard-Lefschetz monodromy of the singularity. It
induces the monodromy automorphism in the integral homology MZ := h∗ : Hn−1(Xt0 ,Z)→
Hn−1(Xt0 ,Z). Using complex coefficients we get a map

M := h∗ : Hn−1(Xt0 ,C)→ Hn−1(Xt0 ,C)

called the monodromy operator. In this way we have defined an action of π1(D∗, t0) ' Z
on Hn−1(Xt0 ,C). Similarly, identifying Hn−1(Xt0 ,C) = Hom(Hn−1(Xt0 ,C),C), we can define
a “pull-back” operator in cohomology:

Mc := (h∗)−1 : Hn−1(Xt0 ,C)→ Hn−1(Xt0 ,C).

The collection of complex vector spaces Hn−1(Xt,C) for t ∈ D∗ defines a holomorphic
vector bundle, called the cohomology bundle, with total space

Hn−1 :=
⋃
t∈D∗

Hn−1(Xt,C).

We denote by Hn−1 the sheaf ot its holomorphic sections, which by Theorem 2.1 (ii), is a
locally free OD∗-module of rank µ.

Definition 2.1. Let ω ∈ Ωn(Cn, 0), and let t ∈ D∗. There exists a (n− 1)-form ψ, defined in
a neighborhood of Xt, such that ω = df ∧ ψ. The restriction of ψ to Xt is a uniquely defined
holomorphic (n− 1)-form, called the Gelfand-Leray form of ω, and denoted by

ψ|Xt =
ω

df

∣∣∣
Xt
.

Definition 2.2. Let ω ∈ Ωn(Cn, 0). Its Gelfand-Leray form on each fiber Xt induces a
cohomology class [

ω

df

∣∣∣
Xt

]
∈ Hn−1(Xt,C)

and the collection of [ω/df |Xt ] for t ∈ D∗ defines a section [ω/df ] of the cohomology bundle,
called the geometric section of ω.

In the following we will consider the case of curve singularities (n = 2). In this case a
regular Milnor fiber Xt is a non-compact Riemann surface. The first cohomology group of
non-compact Riemann surfaces can be computed as the holomorphic de Rham cohomology
group H1

dR,hol(X) := Ω1(X)/dO(X):

Theorem 2.2. For a non-compact Riemann surface X there is an isomorphism:

H1
dR,hol(X) ' H1(X,C). (2.1)
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Proof. For non-compact Riemann surfaces we have H1(X,O) = 0 [25, Theorem 26.1]. Now
we argue like in [25, Theorem 15.13]: consider the exact sequence 0 → C → O d−→ Ω1 → 0,
it induces a long exact sequence in cohomology, containing O(X)

d−→ Ω1(X) → H1(X,C) →
H1(X,O) = 0, and so Ω1(X)/dO(X) ' H1(X,C).

Remark 2.1. These results can be generalized to the case of a singularity of n variables. The
key fact is that the Milnor fiber for a n-variables singularity is a Stein manifold (of which
non-compact Riemann surfaces are an example [25, Corollary 26.8]). For any Stein manifold
we have Hp(X,O) = 0 for p > 0, as a particular case of Cartan’s Theorem B. The statement
and proof of Theorem 2.2 can be generalized with little modification (see [53]).

The isomorphism of cohomology groups with holomorphic de Rham cohomology can be
made locally fiberwise by the use of relative de Rham cohomology (see [40, Chapter I] for
more details). As shown by Brieskorn [11] (see also [45, 40]), this description allows to define
extensions of the sheaf Hn−1 to the whole of D. More precisely, consider the following OD-
module:

H′′ := f∗Ω
n

df ∧ d(f∗Ωn−2)

Theorem 2.3 (Brieskorn-Sebastiani). H′′ is a locally-free OD-module of rank µ (the Milnor
number of the singularity). Moreover, the sheaf H′′ provides an extension of the cohomology
bundle Hn−1 from D∗ to D, indeed:

[ω] 7→ [ω/df ]

defines an isomorphism H′′|D∗ ' Hn−1. The stalk of H′′ at 0 ∈ D,

H′′0 =
Ωn(X, 0)

df ∧ dΩn−2(X, 0)
,

is then a free C{t}-module of rank µ.

Corollary 2.1. Let ω ∈ Ωn(X, 0). There exist unique germs ψi ∈ C{t}, i = 1, . . . , µ and a
germ % ∈ Ωn−2(X, 0) such that:

ω =

µ∑
i=1

ψi(f)Ωi + df ∧ d%,

where the germs Ω1, . . . ,Ωµ ∈ Ωn(X, 0) induce a basis of H′′0.

Definition 2.3. A set of forms {Ω1, . . . ,Ωµ} as in the above corollary is called a trivialization
for f .

If f = f(x, y) is a quasi-homogeneous polynomial of weights (w1, w2) ∈ Q2
+, i.e., it is such

that f(tw1x, tw2y) = tf , then a monomial basis of the local algebra of the singularity provides
a trivialization (see [40, I.5.5]):

Proposition 2.1. Let f : (Cn, 0) → (C, 0) be a quasi-homogeneous singularity. Let {xI =
xi1 · · ·xin ∈ Qf} be a monomial basis of the local algebra of f . Then the germs ΩI = xIdx1 ∧
· · · ∧ dxn ∈ Ωn(X, 0) represent a basis of the C{t}-module H′′0.
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Now consider the case n = 2 of curve singularities. Consider a 1-cycle γ(t) in Xt for
t ∈ D∗. Letting t vary in D∗ produces a family of cycles γ(t), on the neighboring Milnor
fibers, depending continuously on t. Let α ∈ Ω1(C2, 0) and ω ∈ Ω2(C2, 0). It can be shown
(see [3] or Remark 3.1), that the functions

t 7→
∮
γ(t)

α

t 7→
∮
γ(t)

ω

df

are holomorphic functions of t ∈ D∗, and moreover, the following formula holds:

d

dt

∮
γ(t)

α =

∮
γ(t)

dα

df
.

An important consequence of Brieskorn-Sebastiani theorem is that complex periods deter-
mine a class in H′′0 . This will be important for the problem of local symplectic equivalence.
Indeed, as we will explain shortly (see Theorem 2.4), if two real-analytic symplectic forms
define the same class in H′′0 , then there exists a local symplectic equivalence between them. It
will be useful therefore to have a sufficient condition for a 2-form to induce the trivial class in
H′′0 .

Proposition 2.2. Let f : X → D be an isolated singularity.

i) Let α ∈ Ω1(C2, 0). If for every t ∈ D∗ we have
∮
γ α = 0 for all γ ∈ H1(Xt,C), then

α = %df + dg for some %, g ∈ Ω0(C2, 0).
ii) Let ω ∈ Ω2(C2, 0). If for every t ∈ D∗ we have

∮
γ ω/df = 0 for all γ ∈ H1(Xt,C), then

ω = df ∧ d% for some % ∈ Ω0(C2, 0).

Point (ii) is a direct consequence of Brieskorn-Sebastiani theorem, indeed the hypothesis
[ω/df ] = 0 means, after the isomorphism of Theorem 2.3, that [ω] = 0 as a section of H′′ over
D∗. But since the sheaf H′′ is locally free, this implies that [ω] = 0 over the whole D. This
implies the existence of a holomorphic germ % : (C2, 0)→ (C, 0) such that ω = df ∧ d%.

However the proposition above admits an analytic proof, based on Riemann’s First and
Second Extension Theorems [32, Chapter 7]. We need one more lemma:

Lemma 2.1. Let ω ∈ Ω2(C2, 0), and ω = dα with α ∈ Ω1(C2, 0). If
∮
γ(t) ω/df ≡ 0 for t ∈ D∗

then
∮
γ(t) α ≡ 0 for t ∈ D∗.

Proof. By assumption, for t ∈ D∗,

d

dt

∮
γ(t)

α =

∮
γ(t)

dα

df
=

∮
γ(t)

ω

df
≡ 0,

therefore the function t 7→
∮
γ(t) α is constant on t ∈ D∗. But by Malgrange Lemma [45]

lim
t→0

arg t=0

∮
γ(t)

α = 0.
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Proof of Proposition 2.2. For point (i) we adapt the proof of [36, Theorem 26.13]. Fix a holo-
morphic section to the fibration N : D ↪→ X, N = N(t), intersecting every fiber transversally
and not crossing the critical point 0 ∈ X.

By hypothesis all periods of α vanish, this means that over each regular fiber Xt, t 6= 0,
the restriction α|Xt is an exact form, and admits a primitive. We construct it explicitly by
integration. Let t be a regular value and x ∈ Xt. Consider a curve γ(x) joining N(t) to x; it
exists because the fibers are connected. Define the following function g on X rX0:

g(x) =

∫
γ(x)

α.

Since the periods vanish, the function is well-defined. It is a holomorphic function on X rX0

and it is bounded. Therefore it extends to a holomorphic function g on the whole X (by the
First Riemann Extension Theorem).

Consider the form α − dg. It vanishes on all vectors tangent to the fibers. Since df does
the same, the two must be proportional, i.e. α−dg = %df for some holomorphic function % on
Xr0. Since % is defined everywhere except for a single point then it extends to a holomorphic
function on the whole X (now by the Second Riemann Extension Theorem). In conclusion,
we have α = %df + dg on X.

Finally we show that (i)⇒ (ii). Put ω = dα, then we know by Lemma 2.1 that
∫
γ(t) α = 0

for all γ(t) ∈ H1(Xt,Z). But then, by (i), we have α = −%df + dg for some %, g ∈ Ω0(C2, 0).
Taking the exterior differential we find ω = dα = df ∧ d%.

1.1 Real-analytic singularities and their complexification

In the following, R{x1, . . . , xn} (resp., C{z1, . . . , zn}) will denote real-analytic (resp., holomor-
phic) germs at 0, i.e., convergent power series in the respective fields.

Consider a real-analytic germ f(x) =
∑

I aIx
I ∈ R{x1, . . . , xn} (using multi-index notation

I = (i1, . . . , in) ∈ Nn). Define the complexification of f as the holomorphic germ fC(z) :=∑
I aIz

I ∈ C{z1, . . . , zn}, this complex power series is indeed convergent. For a germ of real-
analytic differential form ω ∈ Ak(Rn, 0), described as ω =

∑
I gI(x)dxI with I = (i1, . . . , ik) ∈

Nk and dxI = dxi1 ∧ · · · ∧ dxik , we put ωC :=
∑

I g
C
I (z)dzI . This is a germ of holomorphic

k-form on Cn.
Now let f ∈ C{z1, . . . , zn} be a holomorphic function germ, let Ref = (f + f)/2 and

Im f = (f −f)/2i denote its real and complex part respectively. We will consider also the real
and complex “traces” on Rn defined by:

fRe(x) := Ref |zi=xi+i0, f Im (x) := Im f |zi=xi+i0.

If f(z) =
∑

I aIz
I , then

fRe(x) =
∑
I

Re(aI)x
I , f Im (x) =

∑
I

Im (aI)x
I .
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More generally, let α ∈ Ωk(Cn, 0), given by α =
∑

I aI(z)dz
I , we define

α :=
∑

I aI(z)dz
I (conjugation)

Re(α) := (α+ α)/2 (real part)

Im (α) := (α− α)/2i (imaginary part)

αRe := Re(α)|Rn =
∑

I a
Re
I (x)dxI (real trace)

αIm := Im (α)|Rn =
∑

I a
Im
I (x)dxI (imaginary trace)

A real-analytic germ f : (Rn, 0) → (R, 0) is said to have an algebraically isolated sin-
gularity at 0 if µ := dimRR{x1, . . . , xn}/(∂1f, . . . , ∂nf) < ∞. This implies that the singular
point is also topologically isolated in a neighborhood of 0 ∈ Rn, and even more: the complex-
ified germ fC : (Cn, 0) → (C, 0) is an isolated complex singularity with Milnor number µ. In
the following, when talking about real singularities, we will always mean algebraically isolated
plane germs f ∈ R{x, y}. We will also assume that f−1(0) ⊂ R2 is not an isolated point1.

Definition 2.4. Define the real intervals I+
η := (0, η] and I−η := [−η, 0). Let f : (R2, 0) →

(R, 0) be a real singularity, a family of real relative cycles is a connected family of level
lines f−1(t), for either t ∈ I+

η or t ∈ I−η .

1.2 Analytically good singularities

Consider an algebraically isolated real singularity f : (R2, 0) → (R, 0) and ω ∈ A2(R2, 0).
Consider a set of real relative cycles δ = δ+ ∪ δ− where δ± := {δ±i : i = 1, . . . , r±} are
positive (resp. negative) families of oriented real relative cycles. We allow relative cycles to be
disconnected2. Now we want to bound these relative cycles by real-analytic sections: for each
connected component of f−1(0) r {0} consider a point, and take a real-analytic cross-section
Ni transversal to the real fibration and passing through this point (see Figure 2.1b). We will
assume that the relative cycles δ ∈ δ± have their end-points lying on the cross-sections {Ni}.
Let I+

η = (0, η] and I−η = [−η, 0) as above. For each δ ∈ δ±, consider its (real relative) period
map Jωδ : I±η → R:

Jωδ (t) :=

∫
δ(t)

ω

df
.

Since δ(t) is bounded by real-analytic sections, Jωδ (t) is a real-analytic function on I±η . Notice
that the above integrals are not proper “periods”, meaning integrals over closed loops, but
should be understood as partial periods.

Definition 2.5. We say that the singularity f is analytically good (with respect to δ) if
for any ω ∈ A2(R2, 0) the following implication is true:

Jωδ (t) ∈ R{t}, ∀δ ∈ δ =⇒ ω = df ∧ d% for some % ∈ A0(R2, 0).

1This simpler case requires a slightly different discussion, as we explain in Remark 3.2 of the next chapter.
2The reason for this, and for the following discussion, comes from the problem of semi-local symplectic

equivalence, as will be explained at the end of this section.
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The first condition means that Jωδ can be extended to a real-analytic function in a neighborhood
of zero. If it is satisfied we say that ω has real-analytic periods over δ. Similarly we say that
it is analytically bad (with respect to δ) if it is not analytically good, i.e., if there exists a
form ω ∈ A2(R2, 0) having real-analytic periods over δ but which cannot be put in the form
ω = df ∧ d%.

When ω = df ∧ d% for some % ∈ A0(R2, 0), we say that ω is relatively exact.

The choice of the term “good” is motivated by the following proposition, which gives its
connection with the problem of local symplectic equivalence (see also the corollary below):

Theorem 2.4. Let ω0, ω1 ∈ A2(R2, 0) be two real-analytic symplectic forms. Suppose that
ω0−ω1 = df ∧d% for some real-analytic function germ %(x, y) at 0 ∈ R2. Then there is a local
diffeomorphism ψ at 0 ∈ R2 such that ψ∗f = f and ψ∗ω1 = ω0.

Proof. We adapt the proof of [26, Theorem 2.1]. The proof is based on the “Moser path
method”: put ωt = ω0 + t(ω1 − ω0). In a neighborhood of zero, the forms ωt, for t ∈ [0, 1], are
also non-degenerate, indeed the equation ω0 − ω1 = df ∧ d% implies that the two forms have
the same sign/orientation at zero and near zero. Since ωt is a convex combination of functions
with the same sign, it will also be non-zero in a neighborhood of zero. Define a real-analytic
time-dependent vector field Xt by

iXtωt = −%df.

Let ϕt be the flow generated by such Xt, we can integrate it for t ∈ [0, 1]. Notice that

LXtωt = iXtdωt + diXtωt = df ∧ d% = ω0 − ω1,

therefore
d

dt
ϕ∗tωt = ϕ∗t

(
LXtωt +

d

dt
ωt

)
= 0,

so that ϕ∗1ω1 = ω0. Moreover LXtf = 0, because of the equality:

0 = iXt(df ∧ ωt) = (iXtdf)ωt + df ∧ iXtωt = (LXtf)ωt + df ∧ iXtωt = (LXtf)ωt, (2.2)

and using ωt 6= 0. This means that f ◦ ϕt = f . Finally take ψ = ϕ1.

In other words, we have:

Corollary 2.2. Let f be an analytically good singularity with respect to a set of relative cycles
δ. Let ω0, ω1 be two real-analytic symplectic forms. If the periods of ω0 and ω1 coincide (up
to real-analytic functions) over the relative cycles δ ∈ δ, then there is a local diffeomorphism
ψ at 0 ∈ R2 such that ψ∗f = f and ψ∗ω1 = ω0.

Remark 2.2. Notice that the converse is true as well. If ψ is a local symplectomorphism
between ω0 and ω1, isotopic to the identity, and sending each oriented relative cycle to itself,
then the periods of ω0 and ω1 coincide up to real-analytic functions.
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U

(a) From semi-local to local

N1

N2

N3

N4

(b) Local sections

Figure 2.1

It is necessary, at this point, to explain how the above definitions and results are related
to the problem of symplectic equivalence. Consider a semi-local singularity f = 0 as in Figure
2.1a, and let ω0, ω1 be two symplectic forms. In this case the Reeb graph Γ has three edges,
and correspondingly the period maps Πω0 ,Πω1 are given by the integrals over three regular
families of circles (one red and two black in the figure).

Now assume that Πω0 = Πω1 identically on Γr{0}, or equivalently that Πω1−ω0 = 0. Using
cross-sections inside a small neighborhood U of the critical point (as in Figure 2.1b) we can
split Πω1−ω0 into a regular part (given by the integral over strips away from the critical point)
plus a singular part (between the sections and inside U). Since the regular part of Πω1−ω0 on
each edge of Γ extends to a real-analytic function at t = 0, the condition Πω1−ω0 = 0 implies
that the singular part of the integrals, over the relative cycles bounded by the sections {Ni},
extend to a real-analytic function at t = 0. Notice that in this example we have two connected
relative cycles (in black) plus one disconnected relative cycle (in red): this is why we allow
disconnected relative cycles in the definition of analytically good singularity. If the singularity
is analytically good with respect to these relative cycles (cut from the semi-local periods),
then by the above corollary we can find a fiber-preserving isotopy sending ω0 to ω1 inside U .
We will show in the next chapter how, under some topological hypothesis on the semi-local
fibration, it is possible to extend local solutions to semi-local ones (Theorems 3.3 and 3.4).

1.3 Symplectic equivalence in the complex case

We know that if two integrable systems are fiberwise symplectomorphic then their actions (or
periods) coincide. Let’s give the complex version of this statement.

Proposition 2.3. Let ω0, ω1 ∈ Ω2(C2, 0) be two holomorphic symplectic forms. Suppose there
is a local holomorphic diffeomorphism ψ such that ψ∗f = f and ψ∗ω1 = ω0. Moreover assume
that the map ψ∗ : H1(Xt) → H1(Xt) is the identity for t ∈ D∗. Then all complex periods of
ω0 and ω1 on Xt coincide.

Proof. ∮
γ

ω1

df
=

∮
ψ∗(γ)

ω1

df
=

∮
γ
ψ∗
(
ω1

df

)
=

∮
γ

ψ∗ω1

dψ∗f
=

∮
γ

ω0

df
.
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The last condition ψ∗ = id is satisfied if ψ is isotopic to the identity map. In the complex
case, the converse statement is also true:

Proposition 2.4. Let ω0, ω1 ∈ Ω2(C2, 0) be two symplectic forms. Suppose that all complex
periods coincide: ∮

γ

ω0

df
=

∮
γ

ω1

df

then there exists a local holomorphic diffeomorphism ψ such that ψ∗f = f and ψ∗ω1 = ω0.

Proof. By Proposition 2.2 we have ω1 − ω0 = df ∧ d%, for some % ∈ Ω0(C2, 0). Now apply [26,
Theorem 2.1].

We can give an alternative proof of the above statement based on the natural idea of
extending a local symplectomorphism through Hamiltonian flows. For i = 0, 1, let vi := ω−1

i df
and let αi ∈ Ω1(C2, 0) be holomorphic 1-form such that ωi = dαi.

Proposition 2.5. There exists an holomorphic diffeomorphism ψ in a neighborhood of zero
such that ψ∗f = f and ψ∗ω1 = ω0 if and only if for any homology cycle γ the complex actions
Ii(t) =

∮
γ αi, i = 0, 1 of the two symplectic forms coincide, i.e., I0(t) ≡ I1(t), for t ∈ D∗.

Proof. Fix a section N : D ↪→ X as in the proof of Proposition 2.2. Let Φvi denote the flow
of the complex vector field vi. Define the “time” function τi(x) by Φ

τi(x)
vi (N(f(x))) = x. It

measures the complex time it takes to the Hamiltonian flow of vi to go from the section N to
x. On X rX0, the function τi(x) can be computed as:

τi(x) :=

∫
γ(x)

ωi
df
, i = 0, 1.

Were γ(x) is a path joining N(t) to x on the fiber Xt. The path γ(x) (and hence the functions
τ0 and τ1) is not well-defined, more exactly it is defined modulo homology cycles. Nevertheless
the difference τ := τ1 − τ0 is well defined because, for any cycle γ, we have by hypothesis:∮

γ

ω1 − ω0

df
=

d

dt

∮
γ
(α1 − α0) = 0.

Now define the map ψ = ψ(x) for x ∈ X rX0 as

ψ(x) := Φτ0(x)
v1

◦ Φ−τ0(x)
v0

(x) = Φτ0(x)−τ1(x)
v1

(x). (2.3)

Being the composition of Hamiltonian flows, ψ is a fiber-preserving symplectomorphism
on X rX0. Notice that any such map must satisfy (2.3). Now we need to extend the map ψ
to the singular fiber X0. Put α = α1 − α0 and ω = ω1 − ω0, and define the function:

g(x) =

∫
γ(x)

α.

Consider a point x ∈ X0 r {0}, and let (t, u) be a local complex coordinate system at x, such
that f = t. Let α = α1(u, t)du+ α2(u, t)dt in these coordinates. In this neighborhood we can
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split τ(u, t) = τ(0, t) +
∫ u

0 ω/df and g(u, t) = g(0, t) +
∫ u

0 α. It follows from Proposition 3.2
(taking N ′ = {u = 0} and working in coordinates (u, t)), that τ(u, t) = ∂g(u, t)/∂t+ α2(u, t).
As was shown in Proposition 2.2, g(x) can be extended to a holomorphic function on X. This
implies that τ can be extended to a holomorphic function on X r {0}, and therefore (by
the Second Riemann Extension Theorem) to the whole X. Now (2.3) defines a holomorphic
fiber-preserving local symplectomorphism on (X, 0).

The above results mean that two symplectic forms with the same complex periods are
holomorphically equivalent, i.e., that complex periods contain all required information for
symplectic equivalence. In the real case we do not see all complex vanishing cycles, but
only the real relative cycles. Nevertheless periods over real relative cycles can be enough to
determine all complex periods (in which case we speak of good singularities). In Chapter 3 we
give sufficient conditions for this to happen.

2 Toric resolutions

We briefly recall the definition of toric resolutions, following [50, 4]. Toric resolutions provide
a way to “unfold” (or blow-up) the singularity, and make it simpler. We need them to give a
description of the real fibration of the singularity and to understand its relationship with the
complex Milnor fiber of its complexification. This will be used in the next chapter, when we
will discuss sufficient conditions for a singularity to be analytically good.

Consider a matrix σ ∈ SL(2,Z),

σ =

(
α β
γ δ

)
.

Associate to σ the following birational morphism

πσ : (C∗)2 → (C∗)2

(x, y) 7→ (xαyβ, xγyδ)

called the monomial map (associated to σ). If α, γ ≥ 0 (resp. β, δ ≥ 0) the map can be
extended to x = 0 (resp. y = 0). Notice that for σ, τ ∈ SL(n,Z) we have:

πστ = πσ ◦ πτ
π−1
σ = πσ−1

Now consider in R2
+ a set of m + 2 integral vectors {P0, . . . , Pm+1}, Pi = (ai, bi)

t ∈ Z2
+,

satisfying:

– P0 = (1, 0)t, Pm+1 = (0, 1)t

– gcd(ai, bi) = 1 for all i = 0, . . . ,m

– det(Pi, Pi+1) > 0 for all i = 0, . . . ,m.

For each i = 0, . . . ,m consider the cone Cone(Pi, Pi+1) ⊆ R2
+ spanned by Pi and Pi+1.

The vectors {P0, . . . , Pm+1} define a cone subdivision of R2
+. If det(Pi, Pi+1) = 1 for all

i = 0, . . . ,m we say that the cone subdivision is regular.
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Suppose {P0, . . . , Pm+1} define a regular cone subdivision. Identify each cone Cone(Pi, Pi+1)
with the matrix σi ∈ SL(2,Z)

σi =

(
ai ai+1

bi bi+1

)
.

For each cone σi consider a copy C2
σi ≈ C2 with coordinates (xi, yi) and the monomial map

πσi : C2
σi → C2 associated to σi. Now consider the complex manifold given by

X =
⋃m+1
i=0 C2

σi /∼

where two points (xi, yi) ∈ C2
σi and (xj , yj) ∈ C2

σj are identified if and only if the birational map
πσ−1

j σi
is defined at (xi, yi) and πσ−1

j σi
(xi, yi) = (xj , yj). The projections πσi , i = 0, . . . ,m+ 1,

glue together to a well-defined projection π : X → C2, called the (complex) toric blow-up of
(C2, 0) associated with {P0, . . . , Pm+1}. We will denote by (x, y) the coordinates of the base
C2. The toric blow-up satisfies the following properties:

• {C2
σi , (xi, yi)}, i = 0, . . . ,m, are coordinate charts for X.

• For each i = 1, . . . ,m, the subsets {yi−1 = 0} ⊂ C2
σi−1

and {xi = 0} ⊂ C2
σi glue together

to a projective line Ei ≈ P1(C) called an exceptional divisor, and π−1(0) = ∪iEi.
• π : X r π−1(0)→ C2 r {0} is an isomorphism.
• Ei∩Ej 6= ∅ if and only if j = i±1 and in this case they intersect transversely at a point.

Moreover Ei ∩ Cσj 6= ∅ if and only if j = i± 1.

By considering the monomial maps πσi as real birational maps defined on the real subspace
R2
σi ⊂ C2

σi → R2 we obtain the real part XR ⊂ X of the toric blow-up, again endowed with
a projection πR : XR → R2. Equivalently, the real part is the subset defined in each chart C2

σi

by requiring the coordinates (xi, yi) to be real-valued. Now π−1
R (0) consists of real exceptional

divisors which are real projective lines ER
i ≈ P1(R), the real part of the Ei’s.

2.1 Algorithm to complete a fan to a regular fan

Suppose we are given a cone subdivision {Q0, . . . , Qk+1}, not necessarily regular. We will need
to complete this subdivision to a regular one, by adding primitive integer vectors. This can
be done step-by-step as follows.

Consider two integer covectors a, b ∈ Z2
+, a = (a1, a2)t and b = (b1, b2)t, with gcd(a1, a2) =

gcd(b1, b2) = 1 and det(a, b) > 0. We look for a new integer covector x such that:{
det(a, x) = 1

det(x, b) is positive and minimal.

To find x, apply the following procedure:

1. If det(a, b) = 1, then put x = b.
2. Using the Euclid algorithm find s = (s1, s2) ∈ Z2 such that a1s2 − a2s1 = 1, in other

words det(a, s) = 1.
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3. The integer vectors x such that det(a, x) = 1 are the ones which belong to the family
k 7→ s+ ka. We have det(a, s+ ka) = 1, for all k.
There are two possibilities.

– Case 1: there exists k ∈ Z such that det(s + ka, b) = 0, then s + ka is parallel to
b. Put s+ ka = λb. But then the condition 1 = det(a, s+ ka) = λdet(a, b) implies
that λ = 1 and det(a, b) = 1. Put x = b.

– Case 2: such a k does not exist. Therefore the number ` := −det(s, b) det(a, b)−1

is not an integer. Let k be the (unique) integer in the open interval (`, `+ 1). Put
x = s+ ka, then

det(x, b) = det(s, b) + k det(a, b) > det(s, b) + `det(a, b) = 0

det(x, b) < det(s, b) + (`+ 1) det(a, b) = det(a, b). (2.4)

After repeating this procedure several times to the fan, we will eventually obtain a regular
fan. Equation (2.4) shows that at each step the determinant is strictly decreasing. Since the
determinants are all integer-valued, this implies that the algorithm will eventually stop.

2.2 Topology of the real part

We want to understand what a small neighborhood of 0 ∈ R2 looks like in R2
σi . Consider a

rectangular neighborhood of 0 ∈ R2 of the form U = [−δ, δ]2, then πσi(xi, yi) ∈ U if and only
if {

|x|ai |y|ai+1 ≤ δ
|x|bi |y|bi+1 ≤ δ

This means we have the three possible cases represented in Figure 2.2.

xi

yi

(a) Pi = (1, 0), Pi+1 positive

xi

yi

(b) Pi, Pi+1 positive

xi

yi

(c) Pi positive, Pi+1 = (0, 1)

Figure 2.2

It remains to explain how these local pictures are glued together. To reconstruct the
topology of the real part of the resolution, we need to understand how different charts {R2

σi}
are glued together, i.e., transition functions:

Lemma 2.2.

π−1
σj ◦ πσi

(
xi
yi

)
=

(
x

det(Pi,Pj+1)
i y

det(Pi+1,Pj+1)
i

x
− det(Pi,Pj)
i y

−det(Pi+1,Pj)
i

)
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Proof.

σ−1
j σi =

(
aj aj+1

bj bj+1

)−1(
ai ai+1

bi bi+1

)
=

(
bj+1 −aj+1

−bj aj

)(
ai ai+1

bi bi+1

)
=

(
det(Pi, Pj+1) det(Pi+1, Pj+1)
−det(Pi, Pj) −det(Pi+1, Pj)

)
.

If we consider just a neighborhood of the form YU = π−1(U), then the topology of the gluing
is simpler. It follows from the properties of the toric blow-up that two charts corresponding
to non-consecutive cones are identified away from the axes. For the case j = i + 1, of two
consecutive cones, the monomial transition map is

π−1
σi+1
◦ πσi

(
xi
yi

)
=

(
x

det(Pi,Pi+2)
i yi

1/xi

)
(2.5)

Consider the oriented segments (1, t) and (−1, t), for |t| small, in R2
σi . They are mapped to

(t, 1) and ((−1)det(Pi,Pi+2)t,−1) respectively in R2
σi+1

. Notice that det(Pi, Pi+2) > 0, and so
the topological behavior of the gluing map (2.5) depends only on one thing: if det(Pi, Pi+2) is
even or odd. The resulting picture, in the case of det(Pi, Pi+2) odd, is shown in Figure 2.3.

(0; 0)(1; 0)

(0; 1)(1; 1)

(0; 0)(1; 0)

(0; 1)(1; 1)

Figure 2.3: Gluing of consecutive charts

The final manifold, obtained gluing together several crosses, is a 2-dimensional surface YU
called a Möbius necklace (borrowing the expression from [30]). See Figure 2.5 below for an
example.

Proposition 2.6. The real surface YU is not orientable.

Lemma 2.3. For any triple of plane vectors (a, b, c) the following formula holds:

det(a, b)c+ det(b, c)a = det(a, c)b.

For each quadruple of plane vectors (a, b, c, d) we have the Plücker relations:

det(a, b) det(c, d) + det(b, c) det(a, d) = det(a, c) det(b, d).
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Proof. Easy computation. The second equation follows by applying det(·, d) to the first one.

Proof of Proposition 2.6. Consider a sequence {P0, P1, . . . , Pm+1} of covectors in a regular fan.
Recall that this means

• det(Pi, Pi+1) = 1 for i = 0, . . . ,m,
• if i < j then det(Pi, Pj) > 0, since covectors are in counter-clockwise order.

The manifold will be orientable if and only if all transition maps for successive charts have
no Möbius twist. In other words, if and only if det(Pi, Pi+2) is always even. Assume by absurd
that it is true. Then we show that the sequence i 7→ det(P0, Pi) is non-decreasing, i.e.,

det(P0, Pi) ≤ det(P0, Pi+1). (2.6)

First induction cases: for i = 0 we have det(P0, P0) = 0 ≤ 1 = det(P0, P1), and for
i = 1 we have det(P0, P1) = 1 ≤ 2 ≤ det(P0, P2) because det(P0, P2) is even and non-zero by
hypothesis.

Now suppose equation (2.6) holds up to some i ≥ 1, then the Plücker relation with
(a, b, c, d) = (P0, Pi, Pi+1, Pi+2), together with the induction step, gives

det(P0, Pi+2) = det(P0, Pi+1) det(Pi, Pi+2)− det(P0, Pi)

≥ 2 det(P0, Pi+1)− det(P0, Pi+1)

= det(P0, Pi+1).

Finally, equation (2.6) gives the following contradiction

2 ≤ det(P0, P2) ≤ · · · ≤ det(P0, Pm) ≤ det(P0, Pm+1) = 1.

2.3 Toric resolution of a singularity

Let K = R or C. Let f : (K2, 0) → (K, 0) be an analytic function germ with Taylor series
f(x, y) =

∑
α,β aαβx

αyβ . Its Newton polygon is the subset of R2
+ given by

Γ+(f) = the convex hull of the set
⋃

aαβ 6=0

{(α, β) + R2
+}.

The Newton diagram Γ(f) is the union of the compact (0 and 1-dimensional) faces be-
longing to the boundary of Γ+(f). For each compact face γ ⊂ Γ(f) denote by fγ the quasi-
homogeneous polynomial fγ(x, y) =

∑
(α,β)∈γ aαβx

αyβ .

Definition 2.6. The germ f is Γ-non-degenerate over K if for every face γ ⊂ Γ(f), the
restriction fγ : (K∗)2 → K has no critical points.

The supporting function of the Newton polygon is defined, for Q ∈ Z2
+, by

`(Q) := min
x∈Γ(f)

〈Q,x〉
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and the tangent line to the Newton polygon associated to Q ∈ Z2
+ is the line of points

achieving this minimum t(Q) := {x ∈ R2 : 〈Q,x〉 = `(Q)}. The trace of Q ∈ Z2
+ is defined as

tΓ(Q) = t(Q) ∩ Γ(f).

Let {γ1, . . . , γk} be the compact 1-dimensional faces of Γ(f). For each γi let Qi be the
unique primitive integral vector such that tΓ(Qi) = γi. We assume γ1, . . . , γk are ordered in
such a way that det(Qi, Qi+1) > 0, i.e., the vectors Q1, . . . , Qk are in counter-clockwise order.
Consider the cone subdivision defined by the vectors {Q0, . . . , Qk+1} where Q0 = (1, 0)t and
Qk+1 = (0, 1)t. This can be completed to a regular cone subdivision by adding in each
cone Cone(Qi, Qi+1) new primitive positive integer vectors Ti,1, . . . , Ti,ri between Qi and Qi+1

in counter-clockwise order (as explained in Subsection 2.1). Denote by {P0, . . . , Pm+1} the
resulting regular cone subdivision, and consider its associated toric blow-up π : (X,XR, 0)→
(C2,R2, 0).

The next lemma shows that this blow-up provides a resolution of the singularity f , meaning
that the pulled back function only has normal crossing singularities. The properties of the
resolved functions, both in the real and complex blow-up, can be deduced from the following:

Lemma 2.4. Consider the cone σi = Cone(Pi, Pi+1)

i) f ◦ πσi(xi, yi) = x
`(Pi)
i y

`(Pi+1)
i f̃i(xi, yi) with f̃i not divisible by xi nor yi.

ii) If tΓ(Pi) = tΓ(Pi+1) = {(α, β)} then f̃i(xi, yi) = aαβ + (xiyi).
iii) If tΓ(Pi) = γi is a face and tΓ(Pi+1) = {(α, β)} ∈ γi then

f̃i(xi, yi) =
∑
γi

aky
〈Pi+1,k〉−`(Pi+1)
i + (xiyi)

iv) If tΓ(Pi+1) = γi+1 is a face and tΓ(Pi) = {(α, β)} ∈ γi+1 then

f̃i(xi, yi) =
∑
γi+1

akx
〈Pi,k〉−`(Pi)
i + (xiyi)

v) If tΓ(Pi) = γi and tΓ(Pi+1) = γi+1 are both faces then

f̃i(xi, yi) =
∑
γi

aky
〈Pi+1,k〉−`(Pi+1)
i +

∑
γi+1

akx
〈Pi,k〉−`(Pi)
i −

∑
γi∩γi+1

ak + (xiyi).

Proof. If f(x, y) =
∑

α,β aαβx
αyβ , then

f ◦ πσi(xi, yi) =
∑
α,β

aαβx
aiα
i y

ai+1α
i xbiβi y

bi+1β
i =

∑
α,β

aαβx
〈Pi,(α,β)〉
i y

〈Pi+1,(α,β)〉
i .

Let k = (α, β) the summation index, then we can split the sum as follows∑
Γ

akx
〈Pi,k〉
i y

〈Pi+1,k〉
i =

∑
tΓ(Pi)∪ tΓ(Pi+1)

akx
〈Pi,k〉
i y

〈Pi+1,k〉
i + x

`(Pi)
i y

`(Pi+1)
i (xiyi)

= x
`(Pi)
i

∑
tΓ(Pi)

aky
〈Pi+1,k〉
i + y

`(Pi+1)
i

∑
tΓ(Pi+1)

akx
〈Pi,k〉
i − x`(Pi)

i y
`(Pi+1)
i

∑
tΓ(Pi)∩ tΓ(Pi+1)

ak + x
`(Pi)
i y

`(Pi+1)
i (xiyi)

= x
`(Pi)
i y

`(Pi+1)
i

 ∑
tΓ(Pi)

aky
〈Pi+1,k〉−`(Pi+1)
i +

∑
tΓ(Pi+1)

akx
〈Pi,k〉−`(Pi)
i −

∑
tΓ(Pi)∩ tΓ(Pi+1)

ak + (xiyi)


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All the assertions follow from this decomposition.

Definition 2.7. Consider the divisor Ei for i = 1, . . . ,m defined by {yi−1 = 0} on C2
σi−1

and
by {xi = 0} on C2

σi . Then we define the weight of the divisor Ei as `i := `(Pi).

Next we need to describe the proper preimage of f−1(0).

Lemma 2.5. If f is Γ-non-degenerate over C, then the proper preimage of f−1(0) in X
intersects the exceptional divisors transversely (idem for the real exceptional divisors in XR,
if f is real and Γ-non-degenerate over R).

Proof. Indeed consider the affine part {yi = 0} ⊂ Ei+1 of the exceptional divisor, and let
(xi, 0) ∈ Ei+1 be such that f̃i(xi, 0) = 0, then {f̃i = 0} intersects Ei+1 transversely at (xi, 0)
if and only if ∂f̃i/∂xi(xi, 0) 6= 0. It follows from point (v) above that for γ = tΓ(Pi+1),

fγ(xaii y
ai+1

i , xbii y
bi+1

i ) = x
`(Pi)
i y

`(Pi+1)
i f̃i(xi, 0).

Suppose f̃i(xi, 0) = ∂f̃i/∂xi(xi, 0) = 0. Taking xi∂/∂xi and yi∂/∂yi in the equation above,
we find yi 6= 0 such that:{

ai(x
ai
i y

ai+1

i ) · ∂fγ/∂x(πσi(xi, yi)) + bi(x
bi
i y

bi+1

i ) · ∂fγ/∂x(πσi(xi, yi)) = 0

ai+1(xaii y
ai+1

i ) · ∂fγ/∂x(πσi(xi, yi)) + bi+1(xbii y
bi+1

i ) · ∂fγ/∂x(πσi(xi, yi)) = 0

Composition with π−1
σ : (R∗)2 → (R∗)2 gives{

aix · ∂fγ/∂x(x, y) + biy · ∂fγ/∂x(x, y) = 0

ai+1x · ∂fγ/∂x(x, y) + bi+1y · ∂fγ/∂x(x, y) = 0

where (x, y) = π−1
σi (xi, yi) ∈ (R∗)2. Since aibi+1 − ai+1bi 6= 0 this implies ∇fγ = 0 at (x, y),

contradicting the Γ-non-degeneracy.

This means we are reduced to studying the restriction of f̃i to Ei+1. We have

f̃i(xi, 0) =
∑

k∈tΓ(Pi+1)

akx
〈Pi,k〉−`(Pi). (2.7)

For i = 0, . . . ,m let ki = tΓ(Pi) ∩ tΓ(Pi+1). Then we can rewrite

f̃i(xi, 0) =
∑

k∈tΓ(Pi+1)

akx
〈Pi,k−ki〉.

For k = (α, β)t denote k = (β,−α)t, so that 〈y,k〉 = det(y,k). All the integer points
k ∈ tΓ(Pi+1) are of the form k = ki + jP i+1, for j = 0, 1, 2, . . .. Notice that P i+1 is the
smallest integer vector in its direction, otherwise its coordinates would not be coprime. Since
〈Pi,k− ki〉 = 〈Pi, jP i+1〉 = j det(Pi, Pi+1) = j, we can write

f̃i(xi, 0) =

λ(Pi+1)∑
j=0

ãj(Pi+1)xj , with ãj(Pi+1) := aki+jP i+1
,
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where λ(Pi+1) is the integer length of tΓ(Pi+1), i.e. the number of integer points in tΓ(Pi+1):

λ(Pi+1) = max{j ∈ N : ki + jP i+1 ∈ tΓ(Pi+1)}
= max{j ∈ N : ãj(Pi+1) 6= 0}
= 〈Pi,ki+1 − ki〉
= 〈Pi+2,ki − ki+1〉.

Lemma 2.6. We have

i) ∂f̃i(xi, 0) = det(Pi, Pi+2)`(Pi+1)− (`(Pi+2) + `(Pi))

ii) gcd(`(Pi) + ∂f̃i(xi, 0), `(Pi+1)) = gcd(`(Pi+1), `(Pi+2)).

Proof. Applying the Plücker relations to the quadruple (Pi, Pi+1, Pi+2,ki) we get

〈Pi,ki〉+ 〈Pi+2,ki〉 = −
(
det(Pi,ki) + det(Pi+2,ki)

)
= −det(Pi, Pi+2) det(Pi+1,ki)

= det(Pi, Pi+2)〈Pi+1,ki〉
= det(Pi, Pi+2)`(Pi+1)

We have ∂f̃i(xi, 0) = λ(Pi+1) = 〈Pi+2,ki − ki+1〉 = 〈Pi+2,ki〉 − `(Pi+2), therefore

`(Pi) + ∂f̃i(xi, 0) = 〈Pi,ki〉+ 〈Pi+2,ki〉 − `(Pi+2)

= det(Pi, Pi+2)`(Pi+1)− `(Pi+2).

This implies (i), for (ii) take gcd(·, `(Pi+1)) on both sides.

2.4 Sign layouts and real relative cycles

For the rest of the chapter we will only work with the real part of the toric resolution, which
we denote by π : X → R2, hence dropping the suffix. For the same reason, we will denote the
real part of the exceptional divisors by Ei. We want to give a description of the real relative
cycles inside the toric resolution.

Consider the real toric resolution π : Y ⊂ X → R2, where Y denotes the Möbius necklace
associated to f . On the surface Y we can distinguish the connected regions of the set Y r
(f ◦ π)−1(0) and label them according to the sign of f ◦ π. In the cone chart R2

σi , consider a
neighborhood Vi of {yi = 0} ⊂ Ei+1 in Y . The sign-layout of f ◦ π in this neighborhood, i.e.,
the decomposition of Y into positive and negative regions, is determined by:

• the sign of f̃i(0, 0);
• the weights `(Pi), `(Pi+1) (for the sign-layout at (xi, yi) = (0, 0));
• the number of positive and negative zeros of f̃i(xi, 0).

This is sufficient because, due to the assumption of Γ-non-degeneracy, the function f̃i
changes sign whenever crossing a zero-level line ⊂ {f̃i = 0} ∩ Vi (Lemma 2.5).

Remark 2.3. If f is polynomial, the number of positive and negative zeros of f̃(xi, 0) can be
computed by the Sturm theorem.
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Knowing the sign-layout of f ◦ π and the structure of the Möbius necklace it is possible
to describe the “chord diagram” of the original singularity f : (R2, 0) → R (i.e., the order of
the intersections of S1

δ = ∂{(x, y) ∈ R2 : |x|2 + |y|2 ≤ δ2} with the branches of {f = 0})
and to identify the connected components of the positive/negative level-sets of f (i.e., the real
relative cycles). To do this we need to “follow” a connected level line along the different cone
charts. The preimage of S1

δ is clearly connected on Y , and the strict preimage of f−1(0) will
intersect it transversely as well. If f is divisible by x (resp. y) then we will find the preimage
of x = 0 (resp. y = 0) only in the first (resp. last) cone chart.

For i = 0, . . . ,m − 1, consider the real divisor Ei+1 defined by the equations {yi = 0} on
R2
σi and by {xi+1 = 0} on R2

σi+1
. Let r±i+1 denote the number of positive (resp. negative)

roots of f̃i(xi, 0), and ri = r+
i + r−i . Let Z±i = (z±i,1, . . . , z

±
i,r±i

) denote the oriented sequences

of positive (resp. negative) zeros of f̃i(xi, 0), i.e., the intersections of the proper preimage of
f−1(0) with the divisor Ei+1, oriented from xi = −∞ to xi =∞.

Consider the following graph D: for each real divisor Ei+1 consider the points xi = 0 and
xi = ∞ as vertices. Orient the divisor Ei+1 from xi = −∞ to xi = ∞, and consider the
segments e−i+1 := (−∞, 0] and e+

i+1 := [0,∞) as oriented edges connecting the vertices xi = 0
and xi =∞ of the graph D.

e
+
1

e
−

1

e
+
2

e
−

2

e
+
m

e
−

m

z
+

1;1

z
+

1;2 z
+

2;1

z
−

2;1

Figure 2.4: The graph D

The preimage π−1(S1
δ ) is still a connected boundary circle. Consider the closed path going

along this circle, starting from the positive quadrant of the first chart R2
σ0
. After contracting

the Möbius necklace to π−1(0) = ∪mi=1Ei, this path becomes a loop on the graph D (not
necessarily following the orientation of the edges). It is clear that the chord diagram of f is
determined by this path, more precisely: by the order of the zeros z±i,j encountered along this
path.

On R2
σi , i = 0, . . . ,m, label the quadrants in counter-clockwise order, starting from the

positive one, with (0, 0), (1, 0), (1, 1), (0, 1) ∈ Z2
2, as in Figure 2.3. Denote by Qi ' Z2

2 the
set of quadrants of R2

σi . An element q ∈ Qi will denote, depending on the context, both an
element of Z2

2 and the corresponding quadrant of R2
σi .

The gluing rules of Section 2.2, can be described as follows: the quadrant yi ∈ Z2
2 of R2

σi is
identified with a quadrant ϕ(yi) of R2

σi+1
according to the linear bijection ϕ : Z2

2 → Z2
2 defined

by:

yi 7→ ϕ(yi) =

(
si 1
1 0

)
yi, si := det(Pi, Pi+2) mod 2.
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In the opposite direction

ϕ−1(yi+1) =

(
0 1
1 si

)
yi+1.

To understand the path along the boundary, we must apply ϕ and its inverse repeatedly. We
assume for simplicity that the Newton polygon of f intersects both axes, so that `(P0) =
`(Pm+1) = 0. The description of real relative cycles, and of the chord diagram of the singu-
larity, is contained in the following proposition.

Proposition 2.7. Suppose Γ(f) intersects both the x-axis and the y-axis. The curve {f =
0} ⊂ R2 is composed of r =

∑m
1 ri branches, whose chord diagram is determined by the

following path along the graph D:

e+
1 · · · e

+
m eα

′′
m
m · · · e

α′′1
1 e

β′0
1 · · · e

β′m−1
m eγ

′′
m
m · · · e

γ′′1
1 ,

where
αj = ϕj(b), βj = ϕj(b+ (1, 0)), γj = ϕj(1, 0),

b = ϕ−m(0, 1), and z′ = (−1)z1, z′′ = (−1)z2 for z = (z1, z2) ∈ Z2
2.

Proof. Consider the path starting from the (0, 0)-quadrant of R2
σ0

and going around the bound-
ary. This path goes through all the (0, 0)-quadrants from the first to the last chart. When
the last chart R2

σm is reached, the path continues to αm = (0, 1) of R2
σm , and then moves

back through the quadrants αm, αm−1, . . . up to α0 = b = ϕ−m(0, 1) in R2
σ0
, which is either

b = (1, 1) or b = (0, 1), otherwise the loop will become closed.

In either case the path then continues to β0 = b+(1, 0) ∈ Q0 in R2
σ0
. Denote by β0, . . . , βm

the second sequence of quadrants in the positive direction, and by γm, . . . , γ0 the final path
going back to R2

σ0
. This means that α0 = b, β0 = b+(1, 0) and γ0 = (1, 0), and the subsequent

terms can be obtained applying ϕ multiple times. It is then easy to see that the sign of the
edge e±i is determined by the first coordinate of Z2

2 when going in the positive direction (i.e.,
for βi), and by the second coordinate when going in the negative direction (αi and γi).

Example 2.1. We consider a simple example: f(x, y) = y2 − x4. A regular fan is given by:
{(1, 0), (1, 1), (1, 2), (0, 1)}, consequently we have:

f ◦ πσ0(x0, y0) = f(x0y0, y0) = y2
0(1− x4

0y
2
0)

f ◦ πσ1(x1, y1) = f(x1y1, x1y
2
1) = x2

1y
4
1(1− x2

1)
f ◦ πσ2(x2, y2) = f(x2, x

2
2y2) = x4

2(y2
2 − 1)

There are two exceptional divisors E1, E2 with weight `1 = `(1, 1) = 2 and `2 = `(1, 2) = 4,
respectively. The real neighborhood of E1 is orientable, and for E2 is not. The topology of
the Möbius necklace associated to f is represented in Figure 2.5. The exceptional divisors are
represented by blue circles.

The proper preimage of f−1(0) intersects only the second divisor, in two real points (x1 =
±1). By applying ϕ and its inverse several times (as in the above proposition) we find the
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(0; 0)(1; 0)

(0; 1)(1; 1)

y

xπ

+

+

− −

(0; 0)(1; 0)

(0; 1)(1; 1)

(0; 0)(1; 0)

(0; 1)(1; 1)

E1

E2

δ
+
1

δ
+
2

δ
−

1 δ
−
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Figure 2.5: Möbius necklace for f = y2 − x4.

following sequence of quadrants:

(0, 0) // (0, 0) // (0, 0)

��
(1, 1)

��

(1, 1)oo (0, 1)oo

(0, 1) // (1, 0) // (1, 1)

��
(1, 0) (0, 1)oo (1, 0)oo

This corresponds to the path e+
1 e+

2 e−2 e−1 e+
1 e−2 e+

2 e−1 on D. There are 4 real relative cycles
visible from the figure, two positive approaching only E2 (in red) and two negative approaching
both E1 and E2 (in black).



Chapter 3

Good singularities

1 Topologically good singularities

Now we want to characterize good singularities in a topological way. First we need to introduce
a few preliminary notions. Let f : (R2, 0)→ (R, 0) be an algebraically isolated real singularity.
We still denote by f its complexification f : (C2, 0) → (C, 0). Let f : X → D the associated
Milnor fibration, and M : H1(Xη,C) → H1(Xη,C) the monodromy operator acting on the
fiber f = η > 0.

For each t ∈ D consider the collar Ct = Xt ∩ (Bε r Bε′) with 0 < ε′ < ε. This defines a
smooth trivial fibration C := ∪tCt → D, let ϕ : C

∼−→ C0 × D be a trivialization. Consider
a loop γ = γ(s) : [0, 1] → D∗, with γ(0) = γ(1) = η making a counter-clockwise loop around
0, and let Γs : Xγ(0) → Xγ(s) be the continuous family of maps identifying the fibers along
the loop defined by the local triviality of the Milnor bundle. These maps can be chosen to be
compatible with the trivialization of C, meaning that

ϕ ◦ Γs ◦ ϕ−1(x, t0) = (x, γ(s)), x ∈ C0,

(see for example [59]). This implies that if we consider a cycle δ ∈ H1(Xη, Xη ∩ Cη), then
the composition Γ1δ − δ defines a class Var δ ∈ H1(Xη). In this way we define the classical
variation operator:

Var : H1(Xη, Xη ∩ Cη) −→ H1(Xη).

In the following, when working with real singularities, we will need to relate the Milnor
fibers corresponding to negative and positive values. Consider the path γ− in D∗ which
connects −η to η below zero (see Figure 3.1), and let T− : H1(X−η,C) → H1(Xη,C) be the
map induced by identifying the fibers of the Milnor fibration along γ−.

The last preliminary notion is that of cyclic subspaces of a linear map:

Definition 3.1. Let V be a complex vector space, L : V → V a linear operator and let v be
a vector of V . The L-cyclic subspace generated by v is defined as

Z(v, L) := {g(L)v : g ∈ C[x]}
= SpanC{v, Lv, · · · , Lkv, · · · }

31
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Re t

Im t

γ
−

−η η

Figure 3.1: Definition of T−

Definition 3.2. Given a set of real relative cycles δ = δ+ ∪ δ−, the subspace of visible
vanishing cycles (generated by δ) of H1(Xη,C) is by definition the subspace

Z(δ(η)) :=
∑
δ∈δ+

Z(Var δ(η),M) +
∑
δ∈δ−

Z(T−(Var δ(−η)),M) ⊆ H1(Xη,C).

Definition 3.3. An algebraically isolated real singularity is topologically good (with respect
to δ) if Z(δ(η)) = H1(Xη,C), in which case δ is said to be a good set of relative cycles for
f . The singularity is topologically bad if it is not topologically good, i.e., if Z(δ(η)) (
H1(Xη,C).

In other words, a singularity is topologically good with respect to a set of relative cycles
if applying repeatedly the monodromy map to their variation we obtain a set of cycles which
generates the whole homology group.

1.1 Topologically good implies analytically good

We use the same notation of the previous section. Consider two real points P, P ′ ∈ (f−1(0)r
0) ∩ (Bε r Bε′) and two holomorphic sections N,N ′ : D → X of the Milnor fibration with
N(0) = P and N ′(0) = P ′. By continuity, if D is small enough, the sections N and N ′ are
entirely contained in Bε rBε′ , and therefore in the collar C.

Definition 3.4. A (N,N ′)-cycle on Xt is a path δ lying in Xt and connecting N(t) to N ′(t).

Consider a curve γ = γ(s) : [0, 1] → D∗ with γ(0) = η. Starting from a (N,N ′)-cycle
v 7→ δ(v) on Xγ(0) consider its lift δN ′N (v, s) over γ(s), with end-points prescribed by N(γ(s))
and N ′(γ(s)), in other words a lift for the pair (I, ∂I).

If γ makes a counter-clockwise loop around 0, we obtain a curve on Xγ(1) = Xγ(0) which
differs from the starting one, because of monodromy, but the end-points for both curves will
be again N(γ(0)) and N ′(γ(0)). Therefore we get a variation operator

Var N
′

N : H1(Xη, Xη ∩ Cη) −→ H1(Xη).

Without loss of generality we can assume that the sections N and N ′ are constant in the
trivialization of C, which implies that this variation operator coincides with the classical one.
A more detailed proof is as follows.
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Proposition 3.1. Let δ be a (N,N ′)-cycle, then Var N
′

N δ = Var δ.

Proof. It is sufficient to show that the final curves on Xγ(1) are homotopic with the same
end-points. Consider a neighborhood of (P, 0) in C0 × T of the form U × T , where U ⊂ C0 is
contractible. Because of continuity we can restrict T in order to have ϕ ◦N(T ) ⊂ U × T .

For each s ∈ [0, 1] on the surface Xγ(s) we have two points: Γs(N(t0)) and N(γ(s)),
both belonging to the contractible “slice” ϕ−1(U ×{γ(s)}). Therefore we can find a homotopy
N = N(u, s) : I×I → X over γ(s) with N(0, s) = Γs(N(γ(0))) and N(1, s) = N(γ(s)). In the
same way we find N′ = N′(u, s) for the second section. Let δ = δ(v) be the starting (N,N ′)-
cycle, δ(v, s) = Γs(δ(v)) be its ordinary deformation, and δN ′N (v, s) be family of (N,N ′)-cycles
defined above.

Now consider the pair (I2, ∂I2), and the homotopy G : I2 × I → T ∗ given by G(v, u, s) =
γ(s). Let Ĝ : I2 × I → X∗ be a lift of G, f ◦ Ĝ(v, u, s) = G(v, u, s) = γ(s), with initial
condition G(v, u, 0) = δ(v), and prescribed on ∂I2 as follows:

Ĝ(v, 0, s) = δ(u, s)

Ĝ(v, 1, s) = δN
′

N (u, s)

Ĝ(0, u, s) = N(u, s)

Ĝ(1, u, s) = N′(u, s)

The restriction Ĝ(v, u, 1) provides the required homotopy.

Consider the function
J(t) :=

∫
δN
′

N (t)

ω

df
, t ∈ D∗. (3.1)

It follows from its definition that

J ≡ Jωδ , on (0, η].

Moreover, as we proceed to show, J is holomorphic on D∗. First, we have:

Proposition 3.2. Let α ∈ Ω1(C2, 0), then the function

I(t) =

∫
δN
′

N (t)
α

is holomorphic on D∗ and

dI(t) =

(∫
δN
′

N (t)

dα

df

)
dt+ (N ◦ f)∗α− (N ′ ◦ f)∗α. (3.2)

For the proof we adapt the usual technique of Leray coboundaries, used to prove the
analyticity of periods over vanishing cycles, to the case of relative curves. Let t ∈ D∗ and
Dε ⊂ D a small disc around t. Consider a smooth family of (N,N ′)-curves δ(s) on Dε and
define a real “tube” surface around δ(t):

Γε :=
⋃

s∈∂Dε

δ(s)
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Define the following 2-form

Ωα(t) :=
df

f − t
∧ α

Lemma 3.1.

lim
ε→0

∫
Γε

Ωα(t) = 2πi

∫
δ(t)

α

Proof. ∫
Γε

df

f − t
∧ α =

∫
∂Dε

(∫
δ(s)

α

)
ds

s− t

=

∫
∂Dε

(∫
δ(t)

α

)
ds

s− t
+

∫
∂Dε

(∫
δ(s)

α−
∫
δ(t)

α

)
ds

s− t
.

The first integral in the last line is 2πi
∫
δ(t) α, the second one tends to 0 as ε → 0. Therefore

taking the limit ε→ 0 in the first equation we obtain the formula.

Let Γ := Γε0 be a fixed tube around δ(t).

Lemma 3.2.

2πi

∫
δ(t)

α =

∫
Γ

Ωα(t)

Proof. The difference Γ − Γε is given by two annuli, Aε on N and A′ε on N ′. Consider the
boundary surface Σε := ∂

(
∪η∈[ε,1]Γη

)
= Γ−Γε +Aε−A′ε. The integral of the closed form Ωα

over Σε is zero by Stokes’ formula, and:∫
Γε

Ωα =

∫
Γ

Ωα +

∫
Aε

Ωα −
∫
A′ε

Ωα.

Since we choose N and N ′ to be holomorphic (complex submanifolds of X of complex dimen-
sion 1), then Ωα|N = σ∗Ωα = 0 (holomorphic 2-form on a 1-dimensional complex manifold).
Similarly Ωα|N ′ = 0. This means that the last two integrals vanish, and we have:∫

Γε

Ωα =

∫
Γ

Ωα

Taking ε→ 0 and using Lemma 3.1, we get the formula.

The above lemma is used to prove that t 7→
∫
δ(t) α is a holomorphic function, being the

integral over a fixed surface of a holomorphic 2-form.

Lemma 3.3. Let Σ ⊂ X be any real surface such that Σ ⊂ X rXt, then

d

dt

∫
Σ

df

f − t
∧ α =

∫
Σ

df

f − t
∧ dα
df
−
∫
∂Σ

α

f − t
.
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Proof.

d

dt

∫
Σ

df ∧ α
f − t

=

∫
Σ

df ∧ α
(f − t)2

=

∫
Σ
d

(
−1

f − t

)
∧ α

= −
∫

Σ
d

(
α

f − t

)
+

∫
Σ

dα

f − t

= −
∫
∂Σ

α

f − t
+

∫
Σ

df

f − t
∧ dα
df
.

Proof of Proposition 3.2. By Lemma 3.2

2πi

∫
δ(t)

α =

∫
Γ

Ωα.

Applying Lemma 3.3 to Γ we get

2πi
d

dt

∫
δ(t)

α =
d

dt

∫
Γ

Ωα

=

∫
Γ

Ωdα/df −
∮
∂Γ

α

f − t

= 2πi

(∫
δ(t)

dα

df
− Resf=t

N∗α

f − t
+ Resf=t

(N ′)∗α

f − t

)
.

For the first term in the last line we applied again Lemma 3.2.

This implies that

Corollary 3.1. Let ω ∈ Ω2(X). Then t 7→
∫
δ(t) ω/df is holomorphic on D∗.

Proof. Let α be such that dα = ω, and apply Proposition 3.2.

Remark 3.1. The same arguments prove that the integrals over families of vanishing cycles
are holomorphic. For this it is sufficient to take N = N ′ in the above proof.

Start from a real value t = η > 0, and consider the counter-clockwise loop around the
origin. This gives multi-valuedness:

J(e2πi · t) = J(t) +

∮
Var N

′
N δN

′
N (t)

ω

df

= J(t) +

∮
Var δ(t)

ω

df

Lemma 3.4. Let δ be a positive (resp., negative) relative cycle. Suppose Jωδ admits a real-
analytic extension to a neighborhood of t = 0, then∮

Var δ(t)

ω

df
= 0 for t ∈ I+

η (resp., I−η ).
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Proof. Let Jωδ (t) = Θ(t) for t > 0, where Θ ∈ R{t} is a real convergent power series at
t = 0. The complexification ΘC is a holomorphic function around t = 0 and therefore single-
valued. Moreover ΘC ≡ J on I±η , and hence everywhere. So J is single-valued, in other words∮

Var δ(t) ω/df = 0.

Now we can prove:

Theorem 3.1. If a singularity is topologically good then it is analytically good (with respect
to the same set of relative cycles).

Proof. Assume f : (R2, 0)→ (R, 0) is a topologically good singularity, we want to prove that
it is analytically good. Starting with positive relative cycles, assume that all periods Jωδ (t), for
t ∈ (0, η] and δ ∈ δ+, are real-analytic at zero. Consider the holomorphic extension J of Jωδ
defined by (3.1). It follows from the lemma above that 〈ω/df,Var δ(t)〉 = 0 for all t ∈ (0, η].

Now consider the real-analytic, complex-valued function I(t) := 〈ω/df,Var δ(t)〉 on t ∈
(0, η]. By continuously deforming Var δ(t) to complex values of t, this function extends to a
holomorphic function Î on D∗. But since Î = 0 on (0, η], then Î ≡ 0 on D∗. This implies,
after taking a loop around the origin, that 〈ω/df,M(Var δ(t))〉 = 0. By iterating the same
argument we deduce that 〈ω/df,Mk(Var δ(t))〉 = 0 for all k ∈ N. This means that [ω/df ] = 0
on Z(Var δ(t),M).

For a negative relative cycle δ ∈ δ− we get 〈ω/df,Var δ(t)〉 = 0 for t ∈ [−η, 0) and by
analytic continuation, 〈ω/df, T−(Var δ(t))〉 = 0 for t ∈ (0, η]. Doing this for every δ ∈ δ we
deduce that [ω/df ] = 0 on Z(δ(t)). Since by hypothesis, the singularity is topologically good
we have Z(δ(t)) = H1(Xt,C). Using Proposition 2.2 we find a holomorphic function germ %
such that ωC = dfC ∧ d%, and taking the real trace of this equation

ω = (ωC)Re = (dfC ∧ d%)Re = (dfC)Re ∧ (d%)Re −����
(dfC)Im ∧ (d%)Im = df ∧ d(%Re)

we find ω = df ∧ d%Re. We have shown that any germ of 2-form which has analytic periods on
δ is relatively exact. In other words, that the singularity f is analytically good with respect
to the set δ.

Remark 3.2. The case of f−1(0) = {0} can be treated similarly. Depending on the sign of f
outside zero, δ = f−1(±η) ⊂ X±η will be a closed curve representing an element of H1(X±η).
The singularity f is then topologically good if Z(δ,M) = H1(X±η). The simplest example is
f = x2 + y2, in which case the cycle f−1(η) already gives a homology basis for the complex
Milnor fiber Xη = {fC = η}.

1.2 Counterexamples

It is easy to find examples of singularities which are not analytically good. The following
counterexample is known in the literature [36]. Consider the singularity f(x, y) = y4−x4 +x6.
It is an algebraically isolated singularity with Milnor number µ = 9. The manifold U =
f−1[−η, η] ⊂ R2 is already globally embedded in R2, and it is eight-shaped with symmetry
with respect to both axes. Consider on U the symplectic forms: ω0 = dx ∧ dy and ω1 =
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(1 + λy) dx ∧ dy (which is non-degenerate on the whole U if λ > 0 is small enough), so that
ω1 − ω0 = λy dx ∧ dy.

From the symmetry, and being ω1 − ω0 odd in y, it follows that all its areas on the three
families of ovals vanish, for each value of f , therefore all global periods are zero. The difference
ω1−ω0 however, is not relatively exact, since df ∧ d% = y dx∧ dy can’t be solved for % (as can
be seen by comparing the order of vanishing of the two hand sides).

1.3 Naive general criteria

Let M ∈ GL(µ,Z) denote the monodromy matrix in some basis of vanishing cycles. There are
naive criteria for a singularity to be good, which can be readily verified. For instance we may
use the following sufficient condition:

If for any integer vector v ∈ Zn, the cyclic subspace Z(v,M) is the whole Cµ ' H1(Xη,C),
i.e., if there is no proper cyclic subspace generated by an integer vector, then the singularity is
topologically good (with respect to any relative cycle having non-zero variation).

This is guaranteed if, e.g., the characteristic polynomial pM (t) of M is irreducible over Z:

Proposition 3.3.

i) If there exists v ∈ Zn r 0 such that Z(v,M) 6= Cµ ⇒ pM (t) is reducible over Z.
ii) If pM (t) = q(t)r(t) for some q, r ∈ Z[t] with deg q,deg r > 0, and q(M) and r(M) are

not both zero ⇒ ∃v ∈ Zn r 0 such that Z(v,M) 6= Cµ.

Lemma 3.5. If M is an integer matrix, then KerM admits a C-basis consisting of integer
vectors.

Proof. Let rank M = k. We can assume that M is of the form:

M =

(
A B
C D

)
where A is a k × k invertible integer matrix. Since the lower rows are dependent from
the upper ones, KerM = Ker (A|B) and therefore the equation Mv = 0 for v = (x,y) =
(x1, . . . , xk, yk+1, . . . , yn), is reduced to the equation:

x = −A−1By = − 1

detA
A∗By

where A∗ denotes the adjugate matrix of A. Consider the solutions of the form

(x,y) = − 1

detA
(A∗By,y)

for y = (1, 0, . . .), (0, 1, . . .), and so on. To get the integer solutions it suffices to multiply
these solutions by detA. If we write all solutions as a matrix, it is clear that the rows are
independent, because we have a (n−k)× (n−k) block of the form (detA)Id on the right.
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Proof of Proposition 3.3. (i) Let v ∈ Zµ r 0, and ei = M i−1v. Assume e1, . . . , ek are linearly
independent over C, and Z(v,M) = SpanC{e1, . . . , ek}. Complete the set {e1, . . . , ek} to a
basis {e1, . . . , eµ} of integer vectors. With respect to this basis, the monodromy matrix is
block upper triangular with rational coefficients. So its characteristic polynomial pM (t) splits
in Q[t]. Since, in the original basis, M is an integer matrix, the polynomial pM (t) has integer
coefficients. Therefore, by Gauss’s Lemma, it also splits in Z[t].

(ii) Assume q(M) 6= 0. The integer matrix q(M) is not zero, but also not invertible,
indeed if q(t) =

∏
i(t − λi)

ki , where λi are eigenvalues of M and ki are not all zero, then
det q(M) =

∏
i det(M − λiId)k1 = 0. Let v be an integer vector in Ker q(M) (Lemma 3.5).

Then all M iv ∈ Ker q(M), therefore Z(v,M) ⊂ Ker q(M) 6= Cµ.

However the irreducibility of pM (t) is a rare event, since the characteristic polynomial is
generally a product of polynomials, according to the following theorem, holding for Γ-non-
degenerate1 singularities.

Theorem 3.2 (Varchenko [57]). Let f(x, y) be Γ-non-degenerate isolated singularity, with
f(x, 0) = xa and f(0, y) = yb. Let γj, j = 1, . . . , k be the faces of Γ(f), and Qj the primitive
integer vector corresponding to γj. Then

pM (t) = (t− 1)

∏k
j=1(1− t`(Qj))λ(Qj)−1

(1− ta)(1− tb)
.

Proof. See [51].

Notice that if the Newton polygon has more than one face, the characteristic polynomial
will be always divisible by t− 1. Assume now that Γ(f) has just one face γ = tΓ(Q) where Q
is a primitive integer vector. In this case λ(Q) = gcd(a, b) + 1 and `(Q) = lcm(a, b), therefore

pM (t) =
(t− 1)(1− tlcm(a,b))gcd(a,b)

(1− ta)(1− tb)
. (3.3)

Suppose a, b are different prime numbers, then using the relation tn − 1 =
∏
d|n Φd(t), where

Φn(t) denotes the n-th cyclotomic polynomial, we find pM (t) = −Φab(t), which is irreducible.

Corollary 3.2. The singularities of type f(x, y) = yp − xq with p, q different primes are
topologically good. Any relative cycle constitutes a good set for the singularity.

Example 3.1 (Cusps). Let f(x, y) = y2 − xr with r > 2 prime. Then pM (t) = (t − 1)(1 −
t2r)/(1− t2)(1− tr) = −Φ2r(t), therefore it is irreducible. Notice that this type of singularities
can have arbitrarily large Milnor number, while they only have two real relative cycles. Still
they are (topologically and analytically) good with respect to each relative cycle.

Remark 3.3. One possible way to improve the above criterion is to consider an M -invariant
decomposition of the Milnor fiber, and compute the homology group starting from this de-
composition (see [51]). Moreover, one could improve the criterion by taking into account the
position of relative cycles.

1See Definition 2.6.
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2 Algorithm using toric resolutions

In this section we describe an algorithm allowing to determine if a given Γ-non-degenerate
singularity is topologically good.

2.1 Local description at a point of normal crossing

Let f : (R2, 0) → (R, 0) be an algebraically isolated real singularity. In order to determine
if the singularity is topologically good with respect to a given set of relative cycles, we need
to compute the cyclic subspaces generated by the variation of such cycles. This essentially
amounts to computing the monodromy and variation operators (for real relative cycles). In
order to do so, it is convenient to consider a resolution of the singularity. After the toric
resolution (discussed in the previous chapter) we are left with a normal crossing fibration,
equivalent to the original one, and whose monodromy is easier to study. The monodromy
of normal crossing fibration was studied by Clemens in [14] (see also [12, Section 8.5], [46,
Chapter 7], [60, Chapter 9,10]).

The first step in order to understand the topology and the action of the monodromy is
to look at what happens locally, so let us consider the function f : U ⊂ C2 → C given by
f(x, y) = xmyn, for some positive natural numbers m,n ∈ N, where U is a neighborhood of 0.
We can assume that U is the polydisc U = {|x|, |y| ≤ 1}.

Let ε > 0 be a small real positive number, and consider the level set Xη = {xmyn = ε} ⊂
C2. Consider the projection px(x, y) = x to the x-coordinate. Its restriction to Xη defines a
covering map px : Xη → {|x| ≤ 1} of degree n. The fiber above x = eiθ consists of the y’s
which are solution of eimθyn = ε, that is y = ε1/neiψ with mθ + nψ = 0 mod 2π. We denote
the solutions as

yk(θ) = ε1/n exp

(
−m
n
θ − 2πk

n

)
, k = 0, . . . , n− 1. (3.4)

We see that
yk(θ + 2π) = yk+m(θ).

Consider the path x = γ(θ) = eiθ with θ ≥ 0, and consider the lifted path γ̂(θ) on the covering
space defined by γ̂(0) = ya(0). The equation above shows that the curve γ̂(θ) passes through
the preimages ya(0), ya+m(0), ya+2m(0), . . . , ya+`m(0) as x = γ(θ) loops ` times around 0. Here
the indices a + km should be considered as congruence classes modulo n. The lifted curve
becomes closed at ` = the smallest positive number satisfying a + `m ≡ a mod n, i.e. for
` = n/ gcd(m,n).

More precisely, we have

Lemma 3.6.

i) ya(0) and yb(0) belong to the same connected circle in the preimage of {|x| = 1} if and
only if a ≡ b mod gcd(m,n).

ii) The preimage of the unit circle |x| = 1 consists of gcd(m,n) circles.

Before proving this we recall an elementary fact about congruence equations:
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Lemma 3.7. The equation x ≡ `m mod n admits a solution ` ∈ Z if and only if x ≡ 0
mod gcd(m,n).

Proof. By Bezout theorem we can find integers r, s such that gcd(m,n) = rm+sn. Now assume
x = q gcd(m,n), then ` = qr is a solution of the first congruence, indeed x = q gcd(m,n) =
(qr)m+ (qs)n = `m+ n(qs). The other implication is obvious.

Proof of Lemma 3.6. Let a, b ∈ {0, . . . , n − 1}. Now yb(0) belongs to the same component of
ya(0) if and only if b ≡ a+ `m mod n for some ` ∈ N. By the above Lemma the congruence
b− a ≡ `m mod n admits a solution ` if and only if gcd(m,n)|b− a. This proves (i), and (ii)
is an immediate consequence.

2.2 Cell decomposition of the Milnor fiber

Let f : (R2, 0) → (R, 0) be a Γ-non-degenerate singularity, and consider a toric resolution of
f , as defined in Section 2 of the previous chapter (we will use the same notations here). Recall
that the pullback of f on each chart R2

σi takes the form:

f ◦ πσi(xi, yi) = x
`(Pi)
i y

`(Pi+1)
i f̃i(xi, yi),

where {P0, . . . , PN+1} is the regular fan defining the toric resolution. Then we will have N
exceptional divisors Ei, i = 1, . . . , N of weight `i = `(Pi).

Let η be a small positive number2. In order to describe the Milnor fiber Xη we will describe
it as a cell complex of dimension 2. Later we will describe relative cycles and the monodromy
operator in terms of this cell decomposition.

Consider one of the divisors Ei ' P1(C), which is homeomorphic to a 2-sphere. On this
sphere we consider the points 0i and ∞i and also the roots zi,1, . . . , zi,qi of f̃i(xi, 0) = 0 as
marked points. These roots are simple because of the hypothesis of Γ-non-degeneracy, so
that qi = deg f̃i(xi, 0).

At each point p ∈ Ei we can find local coordinates (X,Y ) such that f ◦πσi(X,Y ) = XmY `i ,
for some m ∈ N. The number mi(p) := m is called the multiplicity of p on Ei. Clearly

mi(zi,j) = 1 j = 1, . . . , qi

mi(0i) = `i−1

mi(∞i) = `i+1

mi(p) = 0 for any other p

Let Ni be a tubular neighborhood of Ei. For each marked point p ∈ Ei choose a small
polydisc of the form ∆(p) = {(X,Y ) : |X|, |Y | ≤ δ}. Let ∆i denote the union of all such
polydiscs.

Let D(p) = ∆(p)∩Ei, which is a small ball around p and put E∗i := Eir∪pD(p). The part
of the Milnor fiber contained in Ni, i.e., Xi := Xη ∩ Ni is then decomposed into two pieces:

2For simplicity we restrict to positive η. It is not difficult to include the case of negative η, and to describe
the action of T− between the corresponding homology groups.
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Figure 3.2

Xη ∩∆, which is a collection of annuli, and Xi ∩ (Ni r∆) which is a cyclic `i-fold covering of
E∗i . Let pi : Xi ∩ (Ni r ∆) → E∗i denote the corresponding projection. We can assume that
p preserves the real part of the toric resolution. The previous section shows that if we denote
the preimages of a point x0 ∈ E∗i by an element of Z`i , then the monodromy of the covering
after a loop around p is given by x 7→ x+mi(p) in Z`i .

Consider a tree σ lying on Ei and connecting all the marked points of the divisor. For
each marked point p, let λ(p) denote the oriented small loop ∂D(p) around p. In the graph σ,
replace each marked point p with the small loop λ(p), let Σi be the resulting graph on Ei (see
Figure 3.2). The small loops λ(0i), λ(∞i) will be called red loops, and the remaining ones,
λ(zi,j), green loops.

The Milnor fiber Xη is obtained by gluing together the preimages Xi := p−1(E∗i ) of the
divisors along their common boundaries, which are given by the preimages of the red loops.
The graph Σi provides a cell decompostion of the surface E∗i , which can be lifted to a cell
decomposition of the Milnor fiber, as we now explain. The preimage Σ̂i := p−1(Σi) in the
Milnor fiber is easy to describe according to the local description of the previous section. Let
di(p) := gcd(mi(p), `i), then:

• Each point p ∈ Σi has `i preimages;
• p−1(λ(zi,j)) is a connected circle;
• p−1(λ(0i)) consists of gcd(`i−1, `i) = di(0i) connected circles;
• p−1(λ(∞i)) consists of gcd(`i, `i+1) = di(∞i) connected circles.

In short, for each marked point p, the preimage of λ(p) consists of di(p) connected circles,
each containing `i/di(p) vertices. The connected circles are parametrized as in Equation (3.4),
so that their orientation is induced from the corresponding loop on Ei. The circles belonging
to the preimage of a red (resp. green) loop will still be called red (resp. green) loops (of Σ̂i).
The preimages of red loops coming from consecutive divisors must be identified respecting
the cyclic order, while green loops are the boundary components of the Milnor fiber Xη. The
graph resulting from gluing the graphs Σ̂i along red loops will be denoted by Σ̂.
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In order to reconstruct the whole preimage Xi of E∗i we need to attach to the 1-skeleton
Σ̂i the boundary components given by p−1(Ei r Σi). Since Ei r Σi is a 2-disk its preimage
will consist of `i disconnected disks, so that we have `i boundary components. In this way we
obtain a cell decomposition of Xi. Let X(i) denote the union of cells of dimension ≤ i.

We need to describe these sets more explicitly, together with the attaching maps. The
preimage of each loop λ(p) contains deg(p)`i vertices, where deg(p) is the degree of p in the
graph σ. We label these vertices according to the corresponding class modulo `i. The `i
preimages of each edge of Σi will connect pairs of vertices with the same label. We label each
edge of Σ̂i with the same label of its end-points.

1 + 2`i−1

1 + `i−1

0 `i−1

2`i−1

1

(`i−1; `i)− 1

(`i−1; `i)− 1 + `i−1

0 1
2

0

1

`i+1

Figure 3.3: Σ̂i = p−1(Σi)

The attaching map of the boundary 2-cells are given by the following paths on Σ̂i: for
each j ∈ Z`i , start from a red loop in p−1(λ(0i)) at the vertex labeled by j, and follow the
edges labeled by j until a red loop at infinity is reached. Each time the path reaches a loop,
it follows the orientation of that loop. In the same way we go back to the red loop at zero.
Each time the path completes a loop λ(p) we have an identification of the preimages in the
covering map, which is given by x 7→ x + mi(p) mod `i. The list of edges belonging to the
loop now described, is:

j, j, . . . , j, j + `i+1, j + `i+1 + 1, . . . , j + `i+1 + qi, j + `i+1 + `i−1 + qi.

We denote this loop by ri,j . Notice that this path is indeed a closed curve, because `i−1 +
`i+1 + qi ≡ 0 mod `i due to Lemma 2.6.

2.3 Homology and Milnor number

Lemma 3.8. Let S be an orientable surface with boundary consisting of r connected circles.
Let S̃ the surface obtained by attaching a 2-cell on each connected component of the boundary.
Then the genus of S̃ is

g(S̃) =
2− r − χ(S)

2
.

where χ(S) is the Euler number of S.
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Proof. We have 2− 2g(S̃) = χ(S̃) = χ(S) + r, since we are adding r faces.

As known the Euler characteristic of a surface S can be described as the alternating sum
of Betti numbers bi = rank Hi(S,Z). In the case of a connected surface with boundary,
we have b1 = 1 and b2 = 0, therefore we find χ(S) = rank H1(S,Z) + 1, or equivalently
rank H1(S,Z) = χ(S) − 1. Applying this to the Milnor fiber we get: µ = 1 − χ(Xη). The
Milnor number can be easily computed in terms of the toric resolution:

Proposition 3.4. µ =
∑

i `iqi − (`1 + `N ) + 1.

Remark 3.4. This result follows from Theorem 3.2, here we present an elementary proof.

Proof. Let N be the number of divisors. The Euler characteristic is additive with respect to
the operation of gluing along boundary circles, therefore:

χ(Xη) = χ
(
p−1(D(01)) ∪ p−1(D(∞N )) ∪

⋃
i

Xi

)
= `1 + `N +

∑
i

χ(Xi).

Next, by removing from Xi the `i boundary faces given by p−1(E∗i r Σi), we find

χ(Xi) = χ(Σ̂i) + `i.

Now we can simplify Σ̂i with operations which leave the Euler characteristic unchanged. On
each circle (corresponding to a marked point), we concentrate all vertices in a single point by
contracting small arcs on the circle. Each circle becomes a loop in the new graph. The last
operation is to identify all these loops to a single one. The resulting graph has the same Euler
characteristic as the original one, and is composed by one loop (counting as 1 vertex and 1
edge) plus `i · |E(σ)| = `i(|V (σ)| − 1) = `i(qi + 1) edges. In conclusion χ(Σ̂i) = −`i(qi + 1),
therefore χ(Xi) = −`iqi. Putting everything together,

µ = 1− χ(Xη) = 1− (`1 + `N )−
∑
i

(−`iqi).

2.4 Monodromy

Given the cell decomposition above, we can describe the homologyH1(Xη) by giving generators
and relations (i.e., as a finitely presented Z-module). Consider again the cell decomposition
{X(i)} of Xη. In the long exact homology sequence of the pair (X(2), X(1)) we find:

H2(X(2)) −→ H2(X(2), X(1))
∂−−→ H1(X(1)) −→ H1(X(2)) −→ H1(X(2), X(1))

where ∂ is the connecting boundary homomorphism. Since X(2) = Xη is a manifold with
boundary, and H1(X(2), X(1)) = 0, the sequence becomes

0 −→ H2(Xη, X
(1))

∂−−→ H1(X(1)) −→ H1(Xη) −→ 0 (3.5)

so that we have

H1(Xη) '
H1(X(1))

Im ∂
.
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The first homology group of the graph X(1) can be computed by finding a spanning tree
T ⊂ X(1) for X(1). The group H1(X(1)) is then a free abelian group with one generator for
every edge in X(1) r T . To find a basis of H1(Xη), we first express Im ∂ in terms of the basis
of H1(X(1)). A basis for H1(Xη) is then given by a set of vectors completing Im ∂ to a basis
of H1(X(1)).

The monodromy homeomorphism acts nicely on the cell decomposition, and induces a map
M̂ : Σ̂ → Σ̂, given by a rotation on Σ̂ according to the cyclic order. On the edges it acts as
the multiplication by exp(2πi/`i), i.e., sending each edge x ∈ Z`i to x + 1 ∈ Z`i . Moreover
it preserves the boundary components Im ∂, thus inducing a homomorphism on the quotient
MZ : H1(Xη) → H1(Xη). We can complexify the above sequence (3.5) and get a morphism
M : H1(Xη,C)→ H1(Xη,C).

2.5 Real relative cycles and variation operator

Finally we need to compute the subspace Z(δ,M), for a given real relative cycle δ. A relative
cycle of Xη is given by path on Σ̂ connecting two green loops. Real relative cycles are those
relative cycles which project to ER

i . In order to simplify the description of real relative cycles in
Σ̂ we choose the tree σ on each divisor Ei to be symmetric with respect to complex conjugation
in the corresponding cone chart C2

σi . Since f̃i(xi, 0) has real coefficients its complex roots are
conjugated, and we can label the roots accordingly. Let u1, u2, . . . be the real roots and
w1, w1, w2, w2, . . . the conjugate pairs of complex roots. We order the real roots u1, u2, . . .
from xi = −∞ to xi = +∞, while for the complex roots we assume Imwi > 0 and order
the wi first by their real part, and then by their imaginary part. The tree σ which connects
all marked points is described as follows: all real roots, 0i and ∞i are connected by a real
segment. Then connect the point 0i to the complex roots w1, w2, . . . (if present) with a new
curve, and finally connect 0i to the conjugated roots w1, w2, . . . using the curve obtained by
complex-conjugating the first one.

Next we need to understand the respective positions of the real relative cycles on Σ̂. This
can be understood by locally studying each real marked point. By performing a half-loop
around the marked point (like in (3.4)) we can determine which preimages of the vertex at the
end of the half-loop will be real (if any). This depends on the weights mi(p) and `i. Finally
we consider the relative cycle represented by the real interval [−∞, x], where x ∈ R is the
minimum real marked point. We can deform this path in E∗i to a path connecting λ(x) to
λ(∞i) and following the orientations along the loops. The lift of this new path in Σ̂ (with the
same end-points) will represent the original relative cycle in Xη.

Finally we describe the variation operator. Let δ : [0, 1]→ Σ̂ be a real relative cycle in Σ̂.
Its image M̂δ is again a relative cycle starting and ending at the same green loops of δ. The
end-points of the two relative cycles δ and M̂δ will be consecutive vertices on the respective
green loops. Let β0 and β1 denote the directed paths, over the green loops, connecting the
end-points of δ with the end-points of M̂δ. Then the variation of δ is represented by the cycle

Var δ = M̂δ − β1 − δ + β0

over the lifted graph Σ̂.
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In this way we obtain, for each real relative cycle, an explicit expression for its variation
and for the cyclic subspace it generates. It is now possible to determine if a set of relative
cycles is good for a given Γ-non-degenerate singularity.

2.6 Examples

Example 3.2. f(x, y) = y2−x2 (non-degenerate saddle), i.e., the simplest example. A regular
fan is: {(1, 0), (1, 1), (0, 1)}. There is just one exceptional divisor E1, of degree 2, with one
positive and one negative root. The graph Σ̂ is represented in Figure 3.4.

λ0 λ1

e1

e0

1

0 0

1

δ

Figure 3.4: Σ̂

In order to simplify the description of generators, we retract the dashed part of each loop
to a point (we use the same notation for the edges before and after the contraction). We shall
keep track of which edges were retracted for later, when we will express boundary components
and the action of monodromy in terms of the retracted graph. A spanning tree (in the retracted
graph) is T = e1. A basis of H1(X(1)) is given by the loops: {b0 = e1 − e0, λ0, λ1} while Im ∂
is generated by the two cycles:

r0 = −b0 = e0 − e1

r1 = b0 + λ0 + λ1 = e1 + λ1 − e0 + λ0

The Milnor number is then, of course µ = 3 − 2 = 1. The element λ0 completes {r0, r1}
to a basis of H1(X(1)), so that its class is a basis of H1(Xη).

The edge δ = e0 represents a real relative cycle, with Var δ = b0 + λ0, whose class modulo
Im ∂ obviously generates H1(Xη). The same is true for every real relative cycle, so that
f(x, y) = y2 − x2 is topologically good with respect to any of its real relative cycles (in this
trivial case we don’t even need to compute the cyclic subspaces).

Example 3.3. f(x, y) = y2 − x4. We continue from Example 2.1 of Chapter 2, using the
same toric resolution. Recall that there are two exceptional divisors E1, E2 with weight `1 =
`(1, 1) = 2 and `2 = `(1, 2) = 4, respectively. Since gcd(`1, `2) = 2, the red loop λ(02)
has 2 connected preimages. Since E1 contains no marked points other than 01 and ∞1, the
corresponding surface X1 is composed of two disjoint discs. Analogously, p−1(D(∞2)) is made
of 4 disjoint discs. After contracting the corresponding red loops of Σ̂ to a point, Σ̂ becomes
as in Figure 3.5.

The thick line in the figure represents a spanning tree T of Σ̂. As in the previous example,
we retract the dashed part of each loop to a point and keep using the same notation for the
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Figure 3.5: Σ̂

edges. After this, by looking at the edges which do not belong to T , we find the following
basis {b0, b1, b2, b3, b4, λ0, λ1} for H1(X(1)):

b0 = e02 − e00

b1 = e03 − e01

b2 = e12 − e10

b3 = e13 − e11

b4 = e03 + e11 − e10 − e00

The monodromy matrix in this basis is given by:

M =



0 −1 0 0 0 0 0
1 0 0 0 1 0 0
0 0 0 −1 1 0 0
0 0 1 0 0 0 0
0 0 0 0 −1 0 0
0 1 0 0 1 1 0
0 0 0 −1 0 0 1


The subgroup of relations Im ∂ is generated by the four cycles:

r0 = e00 + e10 − e11 − e03 + λ0 = −b4 + λ0

r1 = e01 + e11 − e12 − e00 = −b1 − b2 + b4
r2 = e02 + e12 − e13 − e01 = b0 + b1 + b2 − b3 − b4
r3 = e03 + e13 − e10 − e02 + λ1 = −b0 + b3 + b4 + λ1

The Milnor number is therefore µ = 7 − 4 = 3. The elements {b0, b1, b2} complete Im ∂ to
a basis of H1(X(1)), and therefore provide a basis {b0, b1, b2} of the quotient H1(Xη). The
monodromy matrix in the new basis {b0, b1, b2, r0, r1, r2, r3} is given by:

M ′ =



0 −1 1 0 0 0 0
1 1 0 0 0 0 0
0 1 0 0 0 0 0
0 1 0 0 0 0 1
0 1 −1 1 0 0 0
0 0 −1 0 1 0 0
0 0 0 0 0 1 0


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Finally, the matrix of the induced monodromy morphism onH1(Xη) in the basis {b0, b1, b2}
is:

M =

 0 −1 1
1 1 0
0 1 0


Its characteristic polynomial is pM (t) = (1+t2)(t−1) (in agreement with Theorem 3.2), which
is not irreducible. The two positive relative cycles identified in Example 2.1 of Chapter 2 are
given by:

δ0 = e00 − e02

δ1 = −e13 + e11.

They are represented by dotted curves in Figure 3.5. Their variation is:

Var δ0 = e01 − e03 + e02 − e00 = b0 − b1
Var δ1 = −e10 + e12 − e11 + e13 + λ1 = b2 + b3 + λ1

We have Var δ1 = Var δ0 + Im ∂, so that the two cycles in fact induce the same element
γ = b0 − b1 ∈ H1(Xη). Since dimZ(γ,M) = 2, we conclude that no combination of the
relative cycles δ0 and δ1 gives a good set of relative cycles for f(x, y). However, with a little
reflection one can see that the paths

δ2 = e01 + e11

δ3 = −e13 − e03

represent the two negative relative cycles (after the identification T−). In this case

Var δ2 = e02 + e12 − e01 − e11 = b0 + b1 + b2 − b4 = b1 + Im ∂
Var δ3 = e13 + e03 − e10 − e00 + λ1 − λ0 = b3 + b4 + λ1 − λ0 = b0 − b1 − b2 + Im ∂

and dimZ(b1,M) = dimZ(b0 − b1 − b2,M) = 3. In conclusion, f(x, y) is topologically
good. Despite the characteristic polynomial of the monodromy is not irreducible, each negative
real relative cycle alone is a good set for of relative cycles for the singularity.

Finally, we consider those sets of relative cycles which are given by the restriction of the
fibers of a semi-local singularity (see Figure 3.6). There are two possibilities arising from a
semi-local picture: either the positive cycles appear together (Case 1), or the negative cycles
appear together (Case 2). The corresponding subspaces of visible vanishing cycles are given,
respectively, by:

Z1 = Z(Var δ0 + Var δ1,M) + Z(Var δ2,M) + Z(Var δ3,M)

Z2 = Z(Var δ0,M) + Z(Var δ1,M) + Z(Var δ2 + Var δ3,M)

It is interesting to notice that dimZ1 = 3 but dimZ2 = 2. In other words, the two cases are
different, and only Case 1 yields a good set of relative cycles.

Remark 3.5. Pictures and computations become much more complicated for singularities
with high Milnor number. However, the above algorithm only requires to know the Newton
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Figure 3.6: Semi-local realizations of f(x, y) = y2 − x4.

polygon and the number of positive, negative and complex roots of the functions f̃i(xi, 0).
This allows in principle to implement the algorithm on a computer and to produce a list of
Γ-non-degenerate good singularities. Notice that similar algorithms can be obtained also for
singularities which are not Γ-non-degenerate. A resolution in this case can be obtained by
ordinary blow-ups or towers of toric blowing-ups (see [50] for definitions).

Remark 3.6. We mention an alternative way to study particular examples based on the
methods of A’Campo [1] and Gusein-Zade [35]. In these methods, the intersection numbers
among vanishing cycles is computed starting from a “real Morsification” of the singularity, and
the monodromy matrix then follows from Picard-Lefschetz formulas. It is not difficult to see
that the formulas for intersection numbers can be used to compute the intersection index of
real relative cycles as well.

We collect in Table 3.1 a list of examples of good singularities, together with corresponding
good sets of relative cycles. For some of the examples, we also indicate a “bad” set of relative
cycles δ, i.e., such that Z(δ) is not the whole homology.

3 Semi-local case

Let M = f−1[−η, η] be a semi-local singularity, and ω0, ω1 ∈ Ω2(M) be two symplectic forms
on M inducing the same orientation. The following proposition gives the connection between
our problem and relative cohomology:

Proposition 3.5. If ω1−ω0 = df ∧ d%̂ for some real-analytic function %̂ : M → R, then there
exists an isotopy ϕt on M , such that ϕ0 = id, ϕ∗t (f) = f and ϕ∗1ω1 = ω0

Proof. As for Theorem 2.4, the proof is based on Moser path method. Let ωt = ω0+t(ω1−ω0).
Let’s write ω1 = ρω0 with ρ ∈ C∞(M). By compactness ν := minM ρ > 0. Now consider
ωt = (1 − t + tρ)ω0. It is symplectic if 1 − t + tρ > 0 on M , but 1 − t + tρ ≥ (1 − t) + tν ≥
min{1, ν} > 0.

The rest of the proof is identical to the proof of Theorem 2.4. Define a real-analytic time-
dependent vector field Xt by iXtωt = −%̂df . Let ϕt be the flow generated by such Xt, we can
integrate over all times sinceM is compact. Notice that LXtωt = df ∧d% therefore d

dtϕ
∗
tωt = 0,

so that ϕ∗1ω1 = ω0. Moreover LXtf = 0, which means that f ◦ ϕt = f .
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Singularity Good δ Bad δ

y2 − xp
p prime
p > 2

δ
+
1

δ
−

1 {δ+
1 }, {δ

−
1 }

y2 − x2k

k = 2, 3
δ
−

1δ
−

2

δ
+
1

δ
+
2

{δ+
1 + δ+

2 , δ
−
1 , δ

−
2 } {δ+

1 , δ
+
2 , δ

−
1 + δ−2 }

yp − xq
p, q prime

p, q > 2, p 6= q δ
−

1

δ
+
1

{δ+
1 }, {δ

−
1 }

y3 − x2y

δ
−

2 δ
−

1

δ
−

3

δ
+
1

δ
+
3δ

+
2

{δ+
1 , δ

+
2 , δ

+
3 ,

δ−1 + δ−2 + δ−3 },
same with + ↔ −

{δ+
1 + δ+

2 + δ+
3 ,

δ−1 + δ−2 + δ−3 }

y2k − x2y
k = 2, 3

δ
−

2 δ
−

1

δ
+
1

δ
+
2

{δ+
1 + δ+

2 , δ
−
1 , δ

−
2 } {δ+

1 , δ
+
2 , δ

−
1 + δ−2 }

y5 − x2y

δ
−

2 δ
−

1

δ
−

3

δ
+
2 δ

+
3

δ
+
1

{δ+
1 , δ

+
2 , δ

+
3 ,

δ−1 + δ−2 + δ−3 },
same with + ↔ −

{δ+
1 + δ+

2 + δ+
3 ,

δ−1 + δ−2 + δ−3 }

x3 − xy3

δ
−

1

δ
−

2

δ
+
1

δ
+
2

{δ+
1 , δ

+
2 , δ

−
1 + δ−2 },

same with + ↔ −

Table 3.1: Topologically good singularities
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3.1 Extension of relative exactness from local to semi-local, one critical
point

Consider a semi-local singularity f : M → R, where M = f−1[−η, η], and let ω0 and ω1 be
two symplectic forms on M defining the same orientation. Suppose the critical leaf {f = 0}
contains only one algebraically isolated critical point x0 (see below for the general case). Let
K := f−1(0), it consists of a finite number of edges {K1,K2, . . .} starting and ending at x0

and oriented by the Hamiltonian flow of ω−1
0 df . Consider the Reeb graph Γ of the singularity.

We can distinguish positive and negative edges of Γ according to the value of f . Let eK be
the number of edges of K, and e+

Γ and e−Γ the number of positive and negative edges of Γ
respectively; we have of course e±Γ ≤ eK . We define an eΓ× eK matrix R with values in {0, 1}
as follows

Rij =

{
1 if for f → 0 the circles Γi(f) get arbitrarily close to the edge Kj

0 otherwise

We say that the semi-local singularity is rigid if KerR = 0.

Example 3.4.

• The “annulus” shape is rigid. This corresponds, for example, to the semi-local neighbor-
hood of regular fibers or of singularities of given locally by f(x, y) = y2 − xk with k > 2
odd (like the cusp).
• The classical “eight shape”, occurring e.g. for non-degenerate saddles, or for f(x, y) =
y2 − xk, k > 1 even, etc. (see e.g. Figure 2.1a) is rigid.
• Consider now the singularity f(x, y) = x2y − y3 (three intersecting lines). It has two

semi-local realizations (shown in Figure 3.7). In Case (a) the Reeb graph Γ has 4 edges,
in Case (b) it has only 2 edges. Case (a) is rigid, while (b) is not.

(a) Rigid (b) Not rigid

Figure 3.7: Semi-local realizations of f(x, y) = x2y − y3.

Theorem 3.3. Let f be a semi-local singularity with one critical point x0. Assume f is rigid.
Suppose there exists a real-analytic germ % : U → R defined in a small neighborhood U of x0

and such that ω1−ω0 = df ∧d% on U . If the period maps of the two symplectic forms coincide,
i.e., Πω0 = Πω1 on Γ r {0}, then % can be extended to a real-analytic function %̂ on M such
that ω1 − ω0 = df ∧ d%̂ on the whole M .

Proof. For each oriented edge of the singular fiber f−1(0) we fix a source section f 7→ σi(f)
and a target section f 7→ τi(f) which are both real-analytic and contained in U . We extend %
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by integration:

%̂(f, y) := %(σi(f)) +

∫ y

σi(f)

ω1 − ω0

df

∣∣∣
Γi(f)

.

We need to show that: (a) %̂ is well-defined, (b) it is real-analytic, (c) it satisfies %̂|U = %
and (d) ω1 − ω0 = df ∧ d%̂ on M . Point (b) is immediate, (c) follows from the fact that
ω1−ω0
df

∣∣
Γi(f)

= d%
∣∣
Γi(f)

inside U , and (d) is easy to see in coordinates (f, t), where t is the
time variable defined by the flow of ω−1

0 df (these are analytic coordinates due to Cauchy-
Kovalevskaya theorem). The non-trivial part is to prove (a). To this end, let’s introduce the
obstruction functions:

δi(f) := %̂(τi(f))− %(τi(f))

=

∫ τi(f)

σi(f)

ω1 − ω0

df

∣∣∣
Γi(f)

+ %(σi(f))− %(τi(f)). (3.5)

Let’s show that if δi = 0 for all i then %̂ is well-defined. Indeed let y ∈ U be the end-point of
a path starting from σi(f) and ending inside U just once (let’s call it a simple path). Then y
and τi(f) can be joined by a path lying entirely inside U , and we have:

%̂(f, y) = %(σi(f)) +

∫ τi(f)

σi(f)

ω1 − ω0

df

∣∣∣
Γi(f)

+

∫ y

τi(f)

ω1 − ω0

df

∣∣∣
Γi(f)

= %̂(f, τi(f)) +

∫ y

τi(f)

ω1 − ω0

df

∣∣∣
Γi(f)

= %̂(f, τi(f)) + %(f, y)− %(f, τi(f))

= %(f, y) + δi(f).

Therefore if δi = 0, then the two functions agree at y. For points y which are end-points of
paths entering U multiple times it suffices now to split the paths into simple ones, and apply
the above argument to each piece.

It follows by the same argument that the obstruction functions are independent of the
choice of source and target sections. Moreover they are related to the periods in the following
way. Let’s consider the period maps of Γi. For f > 0 (or f < 0, depending on the edge Γi)
we have, by choosing a proper reordering of source and target sections, that

Πi
ω1

(f)−Πi
ω0

(f) =

∫
Γi(f)

ω1 − ω0

df

∣∣∣
Γi(f)

=
∑

j :Rij 6=0

(∫ τj(f)

σj(f)

ω1 − ω0

df

∣∣∣
Γi(f)

+ %(σj(f))− %(τj(f))

)

=
∑
j

Rijδj(f)

If Πi
ω1

(f) = Πi
ω0

(f) for, let’s say, f > 0 then
∑

j Rijδj(f) = 0 for f > 0. But the obstruc-
tion functions δj are analytic, therefore we get

∑
j Rijδj(f) = 0 for all f . The assumption

that all periods are the same becomes: Rδ(f) = 0, where δ(f) = (δ1(f), . . . , δeK (f))t. But
now our rigidity assumption implies δ = 0.
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In order to generalize to the case of several critical points we need to introduce the notion
of ribbon graph.

3.2 Ribbon graphs

A ribbon graph, in short, is a graph endowed with a cyclic orientation on the half-edges
incident to each vertex. To give a rigorous definition, it is convenient to consider a graph as
a directed graph with pairs of (opposite) directed edges. We follow the exposition of [41].

A directed graph is a triple G = (V,E, ϕ) where V and E are sets whose elements are
called edges and vertices respectively and ϕ : E → V × V , e 7→ (e−, e+) is a map. The
vertices e− and e+ are called, respectively, the tail and the head of e.

A graph is a pair (G, ι) where G = (V,E, ϕ) is a directed graph, and ι : E → E, e 7→ e is
a fixed point free involution on E satisfying e+ = e−, e− = e+. A pair (e, e) in E2 is called a
geometric edge of (G, ι).

By cyclic ordering on a finite set S we mean a bijection s : S → S such that for any
x ∈ S the orbit {x, s(x), s2(x), . . .} is the whole S. For a given x ∈ S, the element s(x) is
called the successor of x and s−1(x) the predecessor of x.

Definition 3.5. Let (G, I) be a graph. For v ∈ V the star of v is the set of edges starting
from v: Ev := {e ∈ E : e− = v}. A ribbon graph is a graph equipped with a cyclic order
on the star of every vertex. A face of the ribbon graph is an equivalence class (up to cyclic
permutation) of n-tuples (e1, . . . , en) of edges such that e+

p = e−p+1 and se+p (ep) = ep+1 for all
1 ≤ p ≤ n, where we put en+1 = e1.

Ribbon graphs represent triangulations of oriented surfaces. Consider a graph G as mod-
eled by a 1-dimensional cell complex. The graph G embedded in a surface S is filling if each
connected component of S rG is homeomorphic to the disc. Then we have:

Proposition 3.6 (See [41]). Every compact oriented surface admits a filling ribbon graph.
Conversely, for any ribbon graph G there exists a unique compact oriented surface SG (up to
homeomorphism) such that G can be embedded into SG as a filling ribbon graph.

We are going to use the cohomology of a ribbon graph. Let V,E, F denote the sets of
vertices, edges and faces of a ribbon graph G. Define the following cochain groups:

C0(G) = {f : V → R}
C1(G) = {f : E → R : f(e) = −f(e)}
C2(G) = {f : F → R}

Define the two differentials:

δ0 : C0(G)→ C1(G), (δ0f)(e) = f(e+)− f(e−)

δ1 : C1(G)→ C2(G), (δ0α)(f) =
∑
e∈f

α(e).
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It is easily verified that δ1 ◦ δ0 = 0, therefore we can define the first cohomology group of the
ribbon graph as:

H1(G) :=
Ker δ1

Im δ0
.

Remark 3.7. As usual, one can define cohomology H1(G,A) with coefficients in a ring A.

3.3 Several critical points

In order to define rigid singularities in the case of several critical points we need to interpret
M as the surface associated to a ribbon graph RM . Each edge Γi ⊂ Γ of the Reeb graph
represents one face of the ribbon graph RM , the oriented edges are the ones of K, and the
vertices are the critical points of f lying inside K.

Definition 3.6. The semi-local singularity defined by f is rigid if H1(RM ,R{t}) = 0.

Remark 3.8. One can check that, in the case of a single critical point, this definition agrees
with the previously given one.

Now we can generalize Proposition 3.3 to the case of general semi-local singularities:

Theorem 3.4. Let f : M → R be a rigid semi-local singularity (possibly with several critical
points). Suppose for each critical point xi ∈ {f = 0} there exists a real-analytic germ %i :
Ui → R defined in a small neighborhood Ui of xi and such that ω1 − ω0 = df ∧ d%i on Ui. If
the period maps of the two symplectic forms coincide, i.e., Πω0 = Πω1 on Γ r {0}, then there
exists a real-analytic function %̂ on M such that ω1 − ω0 = df ∧ d%̂ on the whole M .

Proof. We show that if H1(RM ,R{t}) = 0 and Πω0 = Πω1 then the obstruction functions
can be made vanish by proper adjustments of the local solutions %i. Each critical point xi
corresponds to a vertex v ∈ V (RM ). We denote Uv and %v the corresponding neighborhood
and function germ (given by the hypothesis). As in Proposition 3.3, we fix, for each oriented
edge e ∈ E(RM ), a source section σe ⊂ Ue− and a target section τe ⊂ Ue+ , and we define an
obstruction function δe as in Equation (3.5). The collection of obstruction functions defines
an element ∆ ∈ C1(RM ,R{t}).

The condition that one period Π : Γi → R is zero means that the sum of the obstruction
functions of the edges belonging to the face of RM represented by Γi are zero. In other words,
we can write Π = δ∆ and we are assuming 0 = Π = δ∆ as an element of C2(RM ,R{t}).
Since δ∆ = 0, and because f is rigid, then ∆ = δg for some g ∈ C0(RM ,R{t}). For each
v ∈ V (RM ), replace %v with %̃v = %v+gv(f), then the obstruction ∆ transforms, by definition,
to ∆̃ = ∆− δg = 0.

4 Smooth global case

Consider a compact surface M foliated by a real-analytic function H having algebraically
isolated singularities and let Γ be the Reeb graph of (M,H). Let ω0, ω1 be two symplectic
forms onM . We consider the original problem for one degree of freedom systems mentioned in
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the Introduction: assume the period maps of the two symplectic forms coincide, i.e., Πω0 = Πω1

on Γ r {0}. Is it true that there exists a H-preserving automorphism ψ of M such that
ψ∗ω1 = ω0?

If we require ψ to be only smooth, and not real-analytic, then a solution to the semi-local
problem extends to a global solution without obstructions. To each vertex v ∈ V (Γ) there
corresponds a critical point xv ∈ M of H, and an associated semi-local fibration. Consider
two symplectic forms ω0 and ω1. Suppose that the semi-local equivalence problem is solved
around every singular fiber, i.e., for each v ∈ V (Γ) the two forms are (semi-locally) relatively
exact: there exists a real-analytic function %v in a semi-local neighborhood of the critical point
xv, solving ω1 − ω0 = dH ∧ d%v.

The functions %v can be smoothly extended to semi-local neighborhoods Uv that cover the
whole M : take smooth cross-sections to the fibration, extend %v to a smooth function on the
section, and then integrate (ω1 − ω0)/dH along the fibers to extend %v (like in Proposition
3.3). Again the identity of the periods guarantees that the result is well-defined.

Now choose partition of unity {ρv : v ∈ V (Γ)} on the graph Γ, such that ρv is identically
equal to 1 in a neighborhood of v, and Supp ρv ⊂ Uv. Then we see that ω1 − ω0 = dH ∧ d%̃
where %̃ =

∑
v∈V (Γ) ρv(H)%v, and the Moser path method can be applied as in the semi-local

case (Proposition 3.5).

Putting together the results of the above sections, we obtain sufficient conditions for the
affine Reeb graph to determine uniquely the symplectic form modulo H-preserving smooth
isotopy. We assume that every singular fiber contains just one critical point. Remember that
the equality of semi-local periods imply, after restricting to a local neighborhood of the critical
point, the real-analyticity of partial periods over some set of local relative cycles (see Figure
2.1b). We have:

Theorem 3.5. LetM be a real-analytic surface and H : M → R be a real-analytic Hamiltonian
function. Let Γ be the corresponding Reeb graph. Let ω0, ω1 ∈ A2(M) be two symplectic forms.
Assume that:

i) Each singular fiber of H contains one algebraically-isolated critical point,
ii) Each singularity of H is good with respect to the relative cycles obtained by restricting

semi-local cycles to a neighborhood of the critical point,
iii) Each singular fiber is rigid.

If the period maps of the two symplectic forms coincide, i.e., Πω0 = Πω1 on Γr{0}, then there
exists an H-preserving smooth diffeomorphism ψ : M →M such that ψ∗ω1 = ω0.

Proof. Let H−1(c) be a critical fiber with critical point x0. Choose real-analytic source and
target sections in a neighborhood U of x0 like in Proposition 3.3. Each period is then split
into an integral inside U (i.e., over some real relative cycle δi(t)), plus an integral which exits
U , which is a real-analytic function of t. There is one relative cycle for each edge of the Reeb
graph incident to the vertex c ∈ Γ representing the critical fiber H−1(c), i.e., there are deg(c)
relative cycles. The condition Πω0(t) = Πω1(t) for t in a neighborhood of c ∈ Γ, then implies
that ω1 − ω0 has real-analytic periods over the relative cycles δi(t), i = 1, . . . ,deg(c), which
by assumption form a good set of relative cycles. This means that ω1 − ω0 is relatively exact
locally at each critical point. Since each semi-local singularity is rigid then, by the results
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of Section 3, we can extend local solutions to semi-local solutions, and finally, as explained
above, to a smooth global solution.

As a particular example, we find:

Corollary 3.3. Consider an integrable system whose singularities are either non-degenerate
or of the form yp − xq, with p, q different primes. Assume each singular fiber only has one
critical point. Then a symplectic form is uniquely determined (modulo smooth fiber-preserving
isotopy) by its period map.

Proof. These singularities are good for any choice of relative cycles (see Table 3.1), and their
semi-local singularity is an annulus, and thus rigid. So in this case the conditions of the
theorem are satisfied.
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Chapter 4

Asymptotics of period integrals

In this chapter we study the asymptotic behavior of actions and periods, and we show how
this asymptotic behavior can give information about the singularity.

1 Real quasi-homogeneous case

Consider a real quasi-homogeneous polynomial singularity f : (R2, 0) → (R, 0) of weights
(w1, w2) ∈ Q2

+, i.e., such that f(tw1x, tw2y) = tf . Let δ(t) denote a family of connected fibers
of {f = t} with t > 0, having its end-points in two real-analytic transversal sections ν(t) and
ν ′(t). We are interested in the behavior for t→ 0+ of the partial periods

Jωδ (t) =

∫
δ(t)

ω

df
, t > 0,

(with ω not necessarily symplectic).

Proposition 4.1. Let ω = xiyj dx ∧ dy, then

Jωδ (t) =

{
Ctr(i,j) + R{t} if r(i, j) /∈ N
Ctr(i,j) log t+ R{t} if r(i, j) ∈ N

where r(i, j) := ( w1
w2 ) ·

(
i+1
j+1

)
− 1 and C ∈ R.

Recall that R{t} denotes real-analytic germs at zero. Before giving the proof we need two
lemmas. The first one is the real version of Lemma 3.2 of Chapter 2:

Lemma 4.1. Let α ∈ Ω1(R2, 0), then d
dt

∫
δ(t) α =

∫
δ(t)

dα
df + R{t}.

Proof. Let t0 > 0 be fixed. Let A(t0, t) be a connected strip {t0 ≤ f ≤ t} between ν and ν ′.
For |t − t0| small enough we can divide the strip into a number of small rectangles Ai(t0, t),
delimited by small transversal sections νi(t) and ν ′i(t), and in which fx 6= 0 or fy 6= 0.

57
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Consider one such rectangle Ai(t0, t) and suppose fy 6= 0 there, then we can use coordinates
(x, f). In these coordinates we have:

α = p(x, f)dx+ q(x, f)df

dα = (pf (x, f)− qx(x, f))df ∧ dx
dα

df
= (pf (x, f)− qx(x, f))dx

Denote δi(t) := δ(t) ∩Ai(t0, t) and apply Stokes and Fubini theorems:∫
δi(t)

α−
∫
δi(t0)

α+

∫
νi

α−
∫
ν′i

α =

∫
Ai(t0,t)

dα

=

∫ t

t0

(∫ ν′i(f)

νi(f)
(pf (x, f)− qx(x, f))dx

)
df

=

∫ t

t0

(∫ ν′i(f)

νi(f)

dα

df

)
df

Taking the sum over all rectangles we obtain:∫
δ(t)

α−
∫
δ(t0)

α+ β(t0, t) =

∫ t

t0

(∫ ν′(f)

ν(f)

dα

df

)
df.

Where β(t0, t) =
∫ t
t0
ν∗α−

∫ t
t0

(ν ′)∗α is a real-analytic function of (t0, t). Taking ∂/∂t|t0 we
obtain

d

dt

∣∣∣
t0

∫
δ(t)

α =

∫
δ(t0)

dα

df
+ b(t0)

where b(t)dt = −∂β(t0, t)/∂t|t0 = (ν ′)∗α− ν∗α.

Lemma 4.2. Let ωij = xiyj dx ∧ dy,

d

dt

∫
δ(t)

ωij
df

=
r(i, j)

t

∫
δ(t)

ωij
df

+
1

t
b(t)

where b is real-analytic.

Proof. Define the following 1-forms inside U :

αij = xiyj(−w2y dx+ w1x dy)

They satisfy the following equation:

df ∧ αij = xiyj(fx dx+ fy dy) ∧ (−w2y dx+ w1x dy)

= xiyjf dx ∧ dy
= fωij
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telling us that:
ωij
df

=
αij
f
.

Moreover, the following (differential) equation is satisfied:

dαij = (j + 1)w2x
iyj dx ∧ dy + (i+ 1)w1x

iyj dx ∧ dy
= (r(i, j) + 1)ωij .

Therefore, using Lemma 1

d

dt

∫
δ(t)

ω

df
=

d

dt

(
1

t

∫
δ(t)

α

)

= − 1

t2

∫
δ(t)

α+
1

t

(∫
δ(t)

dα

df
+ b(t)

)

=
���

���
− 1

t2

∫
δ(t)

α+
r(i, j) +��1

t

∫
δ(t)

α

f
+

1

t
b(t)

=
r(i, j)

t

∫
δ(t)

ω

df
+

1

t
b(t).

Proof of Proposition 4.1. Put J(t) := Jωδ (t) and r := r(i, j). By Lemma 2 we have the
following differential equation

tJ ′(t) = rJ(t) + b(t). (4.1)

After multiplying by t−r−1 this becomes (t−rJ(t))′ = t−r−1b(t), so that for any r we have

J(t) = Ctr + tr
∫
s−r−1b(s)ds

for some constant C. Let k be any natural number > r. Put b(s) =
∑k

i=0 bis
i + sk+1b̃(s) with

b̃(s) =
∑∞

i=k+1 bis
i−(k+1) still convergent in the same interval of b. We can suppose that t lies

in the interval of convergence of b and b̃. We have

J(t) = Ctr + tr

(
k∑
i=0

bi

∫
si−r−1ds+

∫
sk−r b̃(s)ds

)

= Ctr + tr

 k∑
i=0
i 6=r

bi
ti−r

i− r
+ br log t+

∫ ∞∑
i=k+1

bis
i−r−1ds


Here we mean br = 0 for r /∈ N. Notice that the power series defining b̃ converges uni-
formly on the compact sets inside its interval of convergence, and since k − r > 0 then also
sk−r

∑∞
i=k+1 bis

i−(k+1) is uniformly convergent. This means that we can interchange sum and
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integral signs:

J(t) = Ctr + tr

 k∑
i=0
i 6=r

bi
ti−r

i− r
+ br log t+

∞∑
i=k+1

bi

∫
si−r−1ds



= Ctr +

 ∞∑
i=0
i 6=r

bi
ti−r

i− r
+ br log t

 tr

= Ctr + brt
r log t+

∞∑
i=0
i 6=r

bi
i− r

ti (br = 0 if r /∈ N).

Summarizing: if r ∈ N, then the term Ctr is analytic, and we find J(t) = brt
r log t + R{t}.

Otherwise br = 0 and J(t) = Ctr + R{t}.

1.1 Criterion for analytically good singularities

The above formulas suggest a possible criterion to check if a singularity is analytically good,
involving the independence over R[[t]] (formal power series) of the asymptotic expansions of
basic period integrals. To illustrate this, we consider the example of the cusp f = y3 − x2

(which will be treated in more detail in Chapter 5). The cusp is quasi-homogeneous with weight
(1/2, 1/3). It follows from Corollary 2.1 that any holomorphic 2-form ω can be decomposed,
in a sufficiently small neighborhood U of 0 ∈ C2, as follows

ω = α(f)dx ∧ dy + β(f)ydx ∧ dy + df ∧ d% (4.2)

for some holomorphic germ %(x, y), and unique α, β ∈ C{t}. It follows from Proposition 4.1
that a partial period Jωδ (t) of a real symplectic form ω can be written for t > 0 as

Π(t) = a(t)t−1/6 + b(t)t1/6 + c(t), t > 0, (4.3)

where a, b, c ∈ R{t} and a(t) = C0α(t) and b(t) = C1β(t) for some constants C0, C1 ∈ R. We
will show in Chapter 5, Section 4 that the coefficients C0, C1 are non-zero. Assume now that ω
has real-analytic periods over the family δ(t): Π(t) ∈ R{t}. It is easy to check, by expanding
a(t), b(t), c(t) in Equation (4.3) into a power series and working modulo 6, that this implies
a(t) = b(t) = 0 (i.e., the periods of the trivialization are independent over R[[t]]), which in turn
implies α(t) = β(t) = 0, so that ω = df ∧ d%. Therefore f is analytically good.

In general, the partial periods Jωδ of a 2-form ω have an asymptotic expansion of the form

Jωδ (t) ≈
∞∑
k=1

2∑
m=1

ak,mt
λk−1(log t)m−1, ak,m ∈ R,

where the λ′ks belong to a finite number of rational arithmetic sequences [4] (see also the next
section). The above example suggests the following criterion:
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Proposition 4.2. Let f : (R2, 0) → (R, 0) be a singularity and let δ = {δ1, . . . , δr} be a set
of relative cycles. Let {Ω1, . . . ,Ωµ} be a trivialization for fC (Definition 2.3). Consider the
vectors J i = (JΩi

δ1
, . . . JΩi

δr
)t for i = 1, . . . , µ, where each element is considered as a formal

asymptotic expansion. If the vectors J i (modulo terms in R[[t]]r) are independent over R[[t]],
then f is analytically good with respect to δ.

Notice that in the example above the non-vanishing of the coefficients C0, C1 is essential.
Let’s consider another example.

Example 4.1. Let f(x, y) = y2 − x4, which is quasi-homogeneous of weights (w1, w2) =
(1/4, 1/2). A trivialization for f is given by the forms Ω1 = dx ∧ dy, Ω2 = xdx ∧ dy and
Ω3 = x2dx ∧ dy. It follows from Proposition 4.1 that the corresponding periods have singular
part, respectively: C1t

−1/4, C2 log t and C3t
1/4. Consider the four relative cycles δ±i from

Figure 2.5. Remember that two possible sets of relative cycles arise as restriction of semi-local
periods: δ = {δ+

1 +δ+
2 , δ

−
1 , δ

−
2 } or δ′ = {δ

+
1 , δ

+
2 , δ

−
1 +δ−2 }. We have already observed at the end

of Example 3.3 that f is (topologically) good with respect to δ and not for δ′. This difference
is visible also from the analytic point of view: if we consider the period over a positive cycle
we find C2 = 0 because of the x-simmetry of Ω2, while for negative cycles all constants Ci are
non-zero. This implies that f is analytically good with respect to δ. However, the sum of the
periods of Ω2 over δ−1 and δ−2 is zero. Therefore the constant C2 is zero for all the cycles in δ′.

The explicit computation of period integrals is often difficult. Although for this reason the
above criterion is not always applicable, it is important to study the asymptotic expansions of
period integrals. In particular, we are interested in the periods of monomial forms (especially
for quasi-homogeneous singularities, in view of Proposition 2.1). One way to derive such
properties (for the cusp, and in general) when explicit computation is not available, is by
looking at the resolution of the singularity, as indicated in the next section.

2 General results using resolution of singularities

Let f : (R2, 0) → (R, 0) be a real singularity. Let A denote a connected component of
U r f−1(0) ⊂ R2, for a small neighborhood U of 0. We consider the following function:

JA(t) =

∫
δA(t)

ϕ(x, y)
xp1yp2 dx ∧ dy

df

where ϕ ∈ C∞0 (R2, 0) is such that ϕ ≡ 1 near the origin and δA(t) = {f = t} ∩ A. We are
interested in the asymptotic expansion of JA(t) as t→ 0+. For this it is convenient to consider
the Mellin transform of JA: the so-called zeta function:

ZA(λ) :=M[JA](λ) =

∫ ∞
0

tλJA(t) dt =

∫
R2

(f(x, y)χA(x, y))λϕ(x, y) dx dy

It is clear that ZA(λ) is holomorphic for Reλ > 0. As we will show later, this function
admits a meromorphic continuation to the whole complex plane, with poles belonging to a
finite number of arithmetic sequences. The asymptotic expansion of JA(t) is determined by
the Laurent expansion of (the analytic continuation of) ZA(λ) around its poles, indeed:
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Proposition 4.3. [29, Chapter III, Section 4.5] Let ZA(λ) have poles −λ1,−λ2, . . . with
0 < λ1 < λ2 < · · · and let mk = multiplicity of the k-th pole, then

JA(t) ≈
∞∑
k=1

mk∑
m=1

ak,mt
λk−1(log t)m−1

where

ak,m =
(−1)m−1

(m− 1)!
× (coefficient of (λ+ λk)−m in the Laurent expansion of ZA(λ) around λ = −λk).

For this reason we are going to study the poles of the zeta function. A good way to do
this is to consider a resolution of the singularity. As we will explain in the next subsection,
the resolution allows to reduce the problem to the following basic case:

Z(λ) =

∫ ∞
0

∫ ∞
0

Xk1λ+p1Y k2λ+p2ϕ(X,Y, µ) dXdY.

where ϕ(X,Y, µ) is a C∞0 function of (X,Y ) and an holomorphic function of µ ∈ C, and
k1, k2, p1, p2 ∈ N. Define the two arithmetic sequences:

Pi(j) := −pi + 1 + j

ki
, i = 1, 2, j ∈ N

and let Pi := ∪jPi(j) ⊂ C. We have:

Lemma 4.3. The integral Z(λ) admits a meromorphic continuation to C with poles belonging
to P1∪P2. A pole λ0 has multiplicity ≤ 2 if it belongs to P1∩P2 and ≤ 1 otherwise. Moreover:

• If λ0 ∈ P1 r P2, with λ0 = P1(`1), then

Resλ=λ0Z(λ) = KY,`1(λ0)

• If λ0 ∈ P2 r P1, with λ0 = P2(`2), then

Resλ=λ0Z(λ) = KX,`2(λ0)

• If λ0 ∈ P1 ∩ P2, with λ0 = P1(`1) = P2(`2), then

Resλ=λ0Z(λ) = Resλ=λ0 (KY,`1(λ) +KX,`2(λ))

lim
λ→λ0

(λ− λ0)2Z(λ) =
1

k1k2

1

`1!`2!

∂`1+`2ϕ(0, 0, λ0)

∂X`1∂Y `2
.

where

KX,`2(λ) := an.cont

(
1

k2

1

`2!

∫ ∞
0

Xk1λ+p1
∂`2ϕ(X, 0, λ)

∂Y `2
dX

)
KY,`1(λ) := an.cont

(
1

k1

1

`1!

∫ ∞
0

Y k2λ+p2
∂`1ϕ(0, Y, λ)

∂X`1
dY

)
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Here an.cont
(∫∞

0 xλk+mϕ(x) dx
)
denotes, for given k,m ∈ N and ϕ ∈ C∞0 (R, 0), the

analytic continuation of the function λ 7→
∫∞

0 xλk+mϕ(x) dx, explicitly given in the half-plane
Re(λ+m+N) > −1 (for any positive integer N) by the formula:

an.cont

(∫ ∞
0

xλk+mϕ(x) dx

)
=

∫ 1

0

xλk+mRN (x) dx+

∫ ∞
1

xkλ+mϕ(x) dx+

N−1∑
j=0

ϕ(j)(0)

j!

1

kλ+m+ j + 1
,

where RN (x) = ϕ(x) −
∑N−1

j=0 ϕ(j)(0)xj/j! denotes the Taylor remainder. Notice that this
formula coincides with

∫∞
0 xλk+mϕ(x) dx for Re(λk+m) > −1, and therefore gives its analytic

continuation. In a similar way, on can define the analytic continuation of integrals over an
interval for functions having algebraic singularities at the end points [29, Chapter I, Section
3.8].

Proof. The first two points follow from [4, Lemma 7.2 and Lemma 7.3]. The residue formula
in the third case can be proved similarly.

2.1 Asymptotics and Newton diagram

Let f be a Γ-non-degenerate singularity. Let A denote a connected component of Urf−1(0) ⊂
R2, for a small neighborhood U of 0. We assume that f > 0 on A.

Remark 4.1. The case A = U ∩ {±f > 0} is typically considered in the study of oscillating
integrals. See [56, Proposition 1.4, Part 3], for the non-vanishing of the leading coefficient in
the case of ω symplectic, and [13, Section 5.1] for ω = xpyq dx ∧ dy where p, q are even. In
this section we adapt the same arguments to the case of general A.

Let {P0, . . . , Pm+1} be the regular cone subdivision defined from the Newton polygon
of f , and π : Y → (R2, 0) be (the real part of) the corresponding toric resolution. We
assume for simplicity that the Newton polygon of f intersects both axes. This implies that
`(P0) = `(Pm+1) = 0. For i = 1, . . . ,m define the arithmetic sequences:

Pi(j) := −〈Pi,p + 1〉+ j

`(Pi)
, j ∈ N,

where p = (p1, p2), 1 = (1, 1), and put Pi := ∪jPi(j).
Together with the pullback of f on the charts R2

σi , we need to understand the pullback of
ω = ϕ(x, y)xp1yp2 dx ∧ dy. However, because Y is not orientable (see Chapter 2, Proposition
2.6) we shall consider ω as a density, ω = ϕ(x, y)xp1yp2 dxdy.

Lemma 4.4. Let πσi(xi, yi) = (xaii y
ai+1

i , xbii y
bi+1

i ),

i) det Jπσi (xi, yi) = xa1+a2−1
i yb1+b2−1

i

ii) π∗σi(x
p1yp2 dxdy) = x

〈Pi,p〉
i y

〈Pi+1,p〉
i

∣∣∣xa1+a2−1
i yb1+b2−1

i

∣∣∣ dxidyi, where p = (p1, p2).

Summarizing, on R2
σi we have{

π∗σiω = x
〈Pi,p〉
i y

〈Pi+1,p〉
i

∣∣∣xa1+a2−1
i yb1+b2−1

i

∣∣∣ϕ(πσi(xi, yi)) dxidyi

π∗σif(xi, yi) = x
`(Pi)
i y

`(Pi+1)
i f̃i(xi, yi)

(4.4)
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and sgn f̃i(0, 0) = sgn (tΓ(Pi) ∩ tΓ(Pi+1)).
Consider a partition of unity {(Ui, ρi) : i = 0, . . . ,m + 1} on Y covering π−1(0) and such

that Supp ρi ⊂ R2
σi . We can assume that for |xi| small (resp. |yi| small) ρi depends only on yi

(resp. xi). Moreover we can assume that Supp ρi contains all zeros of f̃i(xi, 0) but no zeros of
f̃i(0, yi). Then we can rewrite ZA(λ) as:

ZA(λ) =

∫
R2

(f(x, y)χA(x, y))λ ϕ(x, y)xp1yp2 dxdy

=
∑
i

∫
Ui

(f(πσi(xi, yi))χA(πσi(xi, yi)))
λ
ρi(xi, yi)π

∗
σi
ω

=
∑
i

∫
R2

(
x
`(Pi)
i y

`(Pi+1)
i f̃i(xi, yi)

)λ
A
x
〈Pi,p〉
i y

〈Pi+1,p〉
i

∣∣∣xa1+a2−1
i yb1+b2−1

i

∣∣∣ ρi(xi, yi)ϕ(πσi(xi, yi)) dxidyi

=
∑
i

∑
q=(q1,q2)∈Qi

(−1)q1〈Pi,p〉+q2〈Pi+1,p〉×

×
∫
π−1(A)∩q

|xi|`(Pi)λ+〈Pi,p+1〉−1|yi|`(Pi+1)λ+〈Pi+1,p+1〉−1|f̃i(xi, yi)|λ ρi(xi, yi)ϕ(πσi
(xi, yi)) dxidyi

where (F (xi, yi))A := F (xi, yi) · χπ−1(A) and Qi ⊂ Z2
2 is the set of quadrants of R2

σi according
to the notation of Proposition 2.7 of Chapter 2. Denote by QAi ⊆ Qi the quadrants of R2

σi
having non-empty intersection with π−1(A).

Notice that the function χπ−1(A) = χA◦π is the characteristic function of the set π−1(A) ⊂
Y of points which are projected to A. This region depends on the configuration of the Möbius
strips in the resolution, as described by Proposition 2.7 of Chapter 2.

Before applying Lemma 4.3 to the integral∫
π−1(A)∩q

|xi|`(Pi)λ+〈Pi,p+1〉−1|yi|`(Pi+1)λ+〈Pi+1,p+1〉−1|f̃i(xi, yi)|λ ρi(xi, yi)ϕ(πσi(xi, yi))dxidyi

(4.5)
we must take into account the presence of the term |f̃i(xi, yi)|λ and the zeros of f̃i. If f̃i(xi, 0)
has no zeros for xi ∈ R, then (after shrinking U if necessary) Lemma 4.3 applies and shows
that the integral (4.5), as a function of λ ∈ C, admits a meromorphic continuation to C with
poles in Pi ∪ Pi+1. The poles have order ≤ 2 if they belong to Pi ∩ Pi+1 and ≤ 1 otherwise.

Consider in particular the contribution to the residue of ZA at λ0 = Pi+1(0) coming from
this integral. According to Lemma 4.3 and Subsection 2.2, this residue is given by:

Cq,i =
1

`(Pi+1)

∫
R±
|xi|`(Pi)λ0+〈Pi,p+1〉−1|f̃i(xi, 0)|λ0ρi(xi, 0)dxi (4.6)

where ± = (−1)q1 and the integral is intended as a regularized integral. Notice that the
integral (4.6) is convergent if and only if λ0 = Pi+1(0) > Pi(0).

If instead the closure of π−1(A) contains a zero zi of f̃(xi, 0), then by a local change of
variables we can assume that f̃(xi, yi) = xi in a neighborhood of zi. By the use of a second
partition of unity we are reduced to an integral of the form∫

q
|xi|λ|yi|`(Pi+1)λ+〈Pi+1,p+1〉−1 ϕ̃i(xi, yi)dxidyi (4.7)
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where q is a new quadrant, relative to the new local coordinates. By Lemma 4.3 this integral
admits a meromorphic continuation with poles in Pi+1 ∪ (−N). In general, we see that chart
R2
σi contributes to the poles in Pi ∪ Pi+1 ∪ (−N).

The above formula for the residue can be used in this second case as well. Similarly
to the previous case, the integral formula for the residue will be convergent if and only if
λ0 = Pi+1(0) > −1. Let (α, β) denote the interval obtained as the intersection of the closure
of π−1(A)∩ q with the half-line R±, without the end-points. The end-points α, β can be zeros
of f̃i(xi, 0), but also 0,±∞. The residue of λ0 = Pi+1(0) is given by:

Cq,i =
1

`(Pi+1)

∫
(α,β)

|xi|`(Pi)λ0+〈Pi,p+1〉−1|f̃i(xi, 0)|λ0ρi(xi, 0)dxi. (4.8)

The above results, used in conjunction with Proposition 2.7 of Chapter 2, allow to study
the properties of the coefficients in the asymptotic expansion of period integrals over real
relative cycles. We limit ourselves to point out some results which follow from the previous
discussion, summarizing them in a proposition.

For each divisor Ei, i = 1, . . . ,m, defined by {yi−1 = 0} ⊂ R2
σi−1

and {xi = 0} ⊂ R2
σi , put

β(Ei) := Pi(0).

Proposition 4.4. Let A ⊂ U ∩ {f > 0}, let its pre-image π−1(A) be described by the path
γA ⊂ e±i e

±
i+1 . . . e

±
k on the graph D with end-points α ∈ e±i and β ∈ e±k , and let IA be the set

of indices appearing in the path γA.

• The poles of ZA belong to the set: ∪i∈IAPi ∪ (−N) and are of order ≤ 2.
• Let βA(p) = max{β(Ei) : i ∈ IA}. Assume that the divisors which achieve this maximum
are non-consecutive and that βA(p) > −1, so that the integral formulas for the residue
at βA(p) are convergent. If for all j satisfying β(Ej) = βA(p) or β(Ej+1) = βA(p) we
have

q1〈Pj ,p〉+ q2〈Pj+1,p〉 ≡ 0 mod 2, ∀q ∈ QAj ,

then Resλ=βA(p)ZA(λ) 6= 0. (In particular, this happens if p1, p2 are even)
• Let λ0 /∈ (−N), then:

lim
λ→λ0

(λ− λ0)2ZA(λ) =
∑
i∈J

1

`(Pi)`(Pi+1)

∑
q∈QAi

(−1)q1`i+q2`
′
i δi,q

`i!`′i!

∂`i+`
′
i |f̃i(xi, yi)|λ0

∂x`ii ∂y
`′i
i

∣∣∣
(0,0)

,

where J = {i : λ0 ∈ Pi ∩ Pi+1}, δi,q = (−1)q1〈Pi,p〉+q2〈Pi+1,p〉 and `i = P−1
i (λ0), `′i =

P−1
i+1(λ0).

2.2 Connection with Gelfand-Leray derivatives

It is interesting to note that the formulas for residues of Lemma 4.3 and therefore also equations
(4.6), (4.8), admit a more intrinsic interpretation in terms of Gelfand-Leray residues. Consider
again the situation {

ω = Xp1Y p2ϕ(X,Y )dX ∧ dY
f = Xk1Y k2
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and denote aj(X) = ∂jϕ/∂Y j(X, 0). In the region X > 0, introduce the function h = f1/k2 =

X
k1
k2 Y and the form

ω̃ = h−p2ω

= X
p1−p2

k1
k2

(
a0(X) + a1(X)Y +

1

2
a2(X)Y 2 + . . .

)
dX ∧ dY

= X
p1− k1

k2
(p2+1)

(
a0(X) + a1(X)X

− k1
k2 h+

1

2
a2(X)X

−2
k1
k2 h2 + . . .

)
dX ∧ dh

=

∞∑
j=0

X
p1− k1

k2
(p2+1+j) 1

j!
aj(X)hjdX ∧ dh

From this expression we derive the formula

X
p1− k1

k2
(p2+j+1)

aj(X)dX =
dj

dhj

(
ω̃

dh

) ∣∣∣
Y=0

More precisely the form ω̃ = f
− p2
k2 ω extends to a real-analytic form on Y = 0, as well as

its higher order Gelfand-Leray derivatives with respect to dh. Using dh = 1
k2
f

1
k2
−1
df , we can

reformulate in terms of the original Gelfand-Leray forms:

X
p1− k1

k2
(p2+k+1)

ak(X)dX = Dk

(
g(f) · f−

p2
k2
ω

df

)
, (4.9)

where
D : {1-forms} → {1-forms}, D(β) = g(f)

dβ

df
, g(f) = k2f

− 1
k2

+1
.

Remark 4.2. The above definition in the case j > 0 requires some further justification.
Indeed, higher order Gelfand-Leray residues are not uniquely defined, even on the {h = 0}
level set [29]. The formulas above correspond therefore to a particular choice of the Gelfand-
Leray residue.

Remark 4.3. A less elementary but probably more straightforward way to prove the above re-
sults, at the expense of working with orbifolds, is to first apply Mumford semi-stable reduction
(see e.g. [58, Section 4.2]).

3 Recognizing non-degenerate singularities

3.1 Quasi-homogeneous case

Let f be a real quasi-homogeneous singularity of weights (w1, w2). The expansion of the period
of the basic form ω = xiyj dx ∧ dy is given by Proposition 4.1.

Proposition 4.5. Let f : (R2, 0) → R be a quasi-homogeneous singularity, and let ω ∈
Ω2(R2, 0) be symplectic. Let δ be a positive relative cycle. If Jωδ (t) = C log t + R{t} with
C 6= 0, then the singularity is a non-degenerate saddle.
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Remark 4.4. Since f is quasi-homogeneous its Newton polygon consists of a straight line in
the plane (i, j) of equation w1i + w2j = 1. The distance d(f) of the Newton polygon to the
origin, i.e., the value s at which the diagonal line s 7→ (s, s) intersects the Newton polygon, is
then given by s = 1/(w1 + w2). Therefore we have r(0, 0) = 1/d(f)− 1.

Proof of Proposition 4.5. The proof consists of the following simple observations.

• If ω is a symplectic form, it must contain dx ∧ dy in its decomposition into basic forms
ω =

∑
i ψi(f)Ωi + df ∧ d%, otherwise it will vanish at 0.

• The value r = r(0, 0) is achieved only for i = j = 0, that is for the form dx∧dy, because
it is the strict minimum value taken by r(i, j). Therefore in the asymptotic expansion
of Jωδ , the term, Ctr(0,0) or C log t, coming from dx ∧ dy cannot be deleted by the other
ones (which can however delete each other).
• But if ω has only log t appearing in its expansion, then this term must be the one

corresponding to r(0, 0). Since it is a log, we know that r(0, 0) = 0, that is to say
w1 + w2 = 1.
• Finally, r(0, 0) = 0 implies that f is non-degenerate. Indeed in this case, by the above

remark, d(f) = 1 which implies that f is non-degenerate.

3.2 General local case

We have already shown for quasi-homogeneous singularities that if the periods of a symplectic
form are logarithmic then the singularity must be non-degenerate. This is true for general
singularities:

Proposition 4.6. Let ω be symplectic and whose partial period J(t) =
∫
{f=t}

ω
df has asymptotic

expansion J(t) ≈ C± log(±t) + smooth terms, with C± 6= 0, for both t → 0+ and t → 0−.
Then the singularity is non-degenerate.

Proof. It follows from [56, Proposition 1.4, Part 3 and Proposition 3.1], together with Propo-
sition 4.3, that in a appropriate system of coordinates (x, y) of (R2, 0)∫

{f=t}

ω

df
≈ t

1
d(f)
−1

(a+ b log t) + higher order terms,

with a, b not both zero. Here d(f) is the distance of the Newton polygon with respect to the
coordinates (x, y). The hypothesis implies that 1/d(f) − 1 = 0, therefore d(f) = 1 and the
singularity is non-degenerate.

3.3 Semi-local case

We can consider the semi-local situation as well:

Proposition 4.7. Let (M,ω) be a 2-dimensional symplectic manifold and f an Hamiltonian
function. Let t 7→ δ(t) ⊂ {f = t} be a connected family of trajectories, and let P1, . . . , Pm be
the singular points of f approached by δ(t) as t → 0+. Suppose P1, . . . , Pm are all of quasi-
homogeneous type. If the asymptotic expansion of the period over δ is purely logarithmic, that
is Πω(t) = C log t+ R{t}, then P1, . . . , Pm are non-degenerate saddles.
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Proof. For each singular point Pk let rk(i, j) denote its quasi-homogeneous weights (in a suit-
able system of coordinates). Let Crk(i,j) denote the coefficient of the term trk(i,j) or trk(i,j) log t
in the partial period of xiyjdx ∧ dy computed on the restriction of δ around Pk. We have

• −1 < rk(0, 0) ≤ 0 for each i
• rk(0, 0) = 0 if and only if Pk is non-degenerate
• Crk(0,0) > 0 since ω is symplectic.

Suppose by absurd that r̂ := mink{rk(0, 0)} < 0. Then in the asymptotic expansion of
Πω(t) we will have the term C̃tr̂ appearing with a positive constant C̃, and the asymptotic
expansion is not purely logarithmic, in contrast with the hypothesis. This implies that all
rk(0, 0) = 0, and we can conclude as in Proposition 4.5.

D1

(a)

(b)

Figure 4.1

Remark 4.5. The above proposition can sometimes be used to obtain information about the
topology of the semi-local fibration, given the Reeb graph. Consider for example the Reeb
graph Γ of type D1 (in the classification of [7]). It can correspond to two singular fibrations
(see Figure 4.1). If we assume however that the periods on Γ are purely logarithmic, then all
the critical points must be non-degenerate saddles, and possibility (b) is excluded.
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Chapter 5

Parabolic orbits and cuspidal tori

In this chapter we discuss normal forms and symplectic invariants of parabolic orbits and cus-
pidal tori in integrable Hamiltonian systems with two degrees of freedom. Such singularities
appear in many integrable systems in geometry and mathematical physics and can be consid-
ered as the simplest example of degenerate singularities. We also suggest some new techniques
which apparently can be used for studying symplectic invariants of degenerate singularities of
more general type. These results have been obtained in a joint work with A. V. Bolsinov and
E. A. Kudryavtseva.

1 Introduction

An integrable Hamiltonian system on a symplectic manifold (M2n,Ω) is defined by n pairwise
commuting functions F1, . . . , Fn which are independent on M2n almost everywhere. We will
consider the case n = 2 and denote such a pair of commuting functions by H and F (H is
usually considered as the Hamiltonian and F as an additional first integral). Under the above
assumptions, on M4 we can introduce the structure of a singular Lagrangian fibration whose
fibers are, by definition, common level surfaces Lh,f = {H = h, F = f}, (h, f) ∈ R2 (or their
connected components). We will assume that all the fibers are compact (unless we study local
properties of a system). The functions H and F also define a Hamiltonian R2-action on M4.

According to Liouville theorem, regular compact connected fibers are 2-dimensional La-
grangian tori of dimension 2 which coincide with orbits of the R2-action. We say that a fiber
Lh,f is singular if it contains a singular point, i.e., a point P such that dH(P ) and dF (P ) are
linearly dependent. Equivalently, we may say that Lh,f is singular if it contains an orbit of a
non-maximal dimension, i.e., 1 or 0. A general problem of the theory of singularities of inte-
grable systems is to describe the topology of singular fibers and their saturated neighborhoods
(similarly for singular orbits). Notice that the fact that F and H commute makes this theory
rather different as compared to the classical singularity theory for smooth maps.

Saying “describe” we may mean at least three different settings: topological, smooth and
symplectic. For instance, saying that two given singularities (points, orbits or fibers) are
symplectically equivalent we mean the existence of a fiberwise symplectomorphism between
their neighborhoods. In the following, in addition, we will assume that all the objects we are
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working with are real (or complex) analytic.

In this chapter we discuss just one particular type of singularitites, namely parabolic orbits
and cuspidal tori (speaking informally, a cuspidal torus is a compact singular fiber that contains
one parabolic orbit and no other singular points).

Recall that typical (non-degenerate) singular orbits in integrable Hamiltonian systems can
be of two different types: elliptic and hyperbolic. In integrable systems of two degrees of
freedom, we may very often observe a transition from elliptic to hyperbolic in a smooth one-
parameter family of singular orbits. At the very moment of transition, the orbit becomes
degenerate and of parabolic type. This scenario is rather natural and parabolic can be viewed
as the simplest possible type of degenerate singularities.

Another important property of parabolic orbits is their stability under small integrable
perturbations [31]. This is one of the reasons why such orbits can be observed in many
examples of integrable Hamiltonian systems: Kovalevskaya top [10], other integrable cases in
rigid body dynamics including Steklov case, Clebsch case, Goryachev–Chaplygin–Sretenskii
case, Zhukovskii case, Rubanovskii case and Manakov top on so(4) [7], as well as systems
invariant w.r.t. rotations [38], [39], see also examples discussed in [23], [21]. Unlike non-
degenerate singularities, however, in the literature on topology and singularities of integrable
systems there are only few papers devoted to degenerate singularites including parabolic ones.
We refer, first of all, to the following six — L. Lerman, Ya. Umanskii [44], V. Kalashnikov [37],
N. T. Zung [61], H. Dullin, A. Ivanov [21], K. Efstathiou, A. Giacobbe [23] and Y. Colin de
Verdière [15] — which we consider to be very important in the context of general classification
programme for bifurcations occurring in integrable systems.

It is well known that from the smooth point of view, all parabolic orbits are equivalent,
i.e. any two parabolic orbits admit fiberwise diffeomorphic neighborhoods (Lerman-Umanskii
[43, 44], Kalashnikov [37]). The same is true for cuspidal tori [23]. The simplest model for a
parabolic singularity is as follows.

Consider the direct product of R3 with coordinates x, y, λ and a circle S1 parametrized by
ϕ mod 2π and two functions on this product R3 × S1:

H = x2 + y3 + λy and F = λ. (5.1)

They commute with respect to the symplectic form

Ω = dx ∧ dy + dλ ∧ dϕ. (5.2)

The curve γ0(t) = (0, 0, 0, t) is a parabolic orbit of an integrable Hamiltonian system
defined by commuting functions H and F . However, in general, we cannot assume that these
coordinates x, y, λ, ϕ are canonical (in other words, the formula for Ω could be different).

Our starting point is the following question. We know that elliptic and hyperbolic orbits
have no (non-trivial) symplectic invariants [48]. In other words, for any elliptic or hyperbolic
(with orientable or non-orientable separatrix diagram) orbit there exists a symplectic canonical
form, one and the same for all orbits of a given type (see, e.g., [6]). Is the same true for parabolic
orbits or they admit non-trivial symplectic invariants?

It appears that non-trivial symplectic invariants do exist (a very simple invariant is given
by Proposition 5.10). Moreover, we show that all symplectic invariants of parabolic orbits
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can be expressed in terms of action variables (Theorem 5.4). The next natural step would
be to extend a fiberwise symplectomorphism between tubular neighborhoods of two parabolic
orbits to saturated neighborhoods of the cuspidal tori that contain these orbits. This is
done in Section 6: Theorems 5.5 and 5.6 (see also Remark 5.7) give necessary and sufficient
conditions for symplectic equivalence of cuspidal tori. The latter theorems basically say the
only symplectic semi-local invariant of a cuspidal torus is the canonical integer affine structure
on the base of the corresponding singular Lagrangian fibration. In other words, cuspidal tori
satisfy the following principle formulated in [8]:

Let ϕ : M → B and ϕ′ : M ′ → B′ be two singular Lagrangian fibrations. If B and B′ are
affinely equivalent (as stratified manifolds with singular integer affine structures), then these
Lagrangian fibrations are fiberwise symplectomorphic.

Also we would like to notice that although parabolic singularities are rather simple and
specific, some techniques developed and used in this chapter are quite general and can be used
for analysis of more complicated singularities. They also can be generalised to the case of
many degrees of freedom.

2 Definition of parabolic singularities. Canonical form with no
symplectic structure

We begin with the definition of parabolic orbits following [23]. Let H and F be a pair of
Poisson commuting real-analytic functions on a real-analytic symplectic manifold (M4,Ω).
They define a Hamiltonian R2-action (perhaps local) on M4. The dimension of the R2-orbit
through a point P ∈ M4 coincides with the rank of the differential of the momentum map
F = (H,F ) : M4 → R2 at this point and we are interested in one-dimensional orbits. In the
following we will assume, without loss of generality, that dF (P ) 6= 0. Consider the restriction
of H onto the three-dimensional level set of F through P , that is, H0 := H|{F=F (P )}. We
assume that the rank of dF at the point P equals one. This is equivalent to any of the
following:

• P is a critical point of H0;
• there exists a unique k ∈ R such that dH(P ) = kdF (P ), in particular, P is a critical

point of F − kH.

These properties hold true for each singular point P of rank one of the momentum mapping
F = (H,F ) under the condition that dF (P ) 6= 0.

Definition 5.1. A point P (and the corresponding R2-orbit through this point) is called
parabolic if the following conditions hold:

i) the quadratic differential d2H0(P ) has rank 1;
ii) there exists a vector v ∈ Ker d2H0(P ) such that v3H0 6= 0 (by v3H0 we mean the third

derivative of H0 along the tangent vector v at P );
iii) the quadratic differential d2(H − kF )(P ) has rank 3, where k is the real number deter-

mined by the condition dH(P ) = kdF (P ).

Remark 5.1. In this definition, we use the third derivative of a function along a tangent
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vector which, in general, is not well defined. In our special case, however, this derivative
makes sense as dH0(P ) = 0 and v ∈ Ker d2H0(P ). These two properties allows us to define it
as follows:

v3(H0) =
d3

dt3
|t=0H0(γ(t)),

where γ(t) is an arbitrary curve on the hypersurface {F = F (P )} such that γ(0) = P ,
dγ
dt (0) = v. The result does not depend on the choice of γ(t). Indeed,

d3

dt3
H0(γ(t)) = d3H0(γ′, γ′, γ′) + 3d2H0(γ′, γ′′) + dH0(γ′′′) = d3H0(γ′, γ′, γ′) = d3H0(v, v, v),

as dH0 = 0 and γ′ ∈ Ker d2H0. This computation also shows that the third differential d3H0

is a well-defined cubic form on Ker d2H0 so that condition (ii) is equivalent to the fact that
the third differential d3H0 does not vanish on Ker d2H0 (at the point P ).

Remark 5.2. It can be checked that in Definition 5.1, we may replace H and F by any other
independent functions H̃ = H̃(H,F ), F̃ = F̃ (H,F ) such that dF̃ (P ) 6= 0. In other words, the
property of being parabolic refers to a singularity of the momentum mapping F : M4 → R2

and does not depend on the choice of local coordinates in a neighborhood of F(P ) ∈ R2.
Necessary details can be found in Appendix, see Proposition 5.14.

The following statement describes the structure of the singular Lagrangian fibration in a
neighborhood of a parabolic point P . As we are mostly interested in this fibration (rather than
specific commuting functions H and F ), we allow ourselves to replace H with H̃ = H̃(H,F )

where ∂H̃
∂H 6= 0 and to shift and change the sign of F , so that H̃ and F̃ = ±F + const still

commute and define the same Lagrangian fibration as H and F . Notice that according to
Remark 5.2, P is parabolic for H̃ and F̃ .

Proposition 5.1. Locally in a neighborhood of P there exist a transformation

H̃ = H̃(H,F ), with
∂H̃

∂H
6= 0,

F̃ = ±F + const,

(5.3)

and a local coordinate system x, y, λ, ϕ such that (x, y, λ, ϕ)|P = (0, 0, 0, 0) and

H̃ = H̃(H,F ) = x2 + y3 + λy and F̃ = λ. (5.4)

Remark 5.3. We do not require that this coordinate system is canonical and, in this view,
Proposition 5.1 describes a normal form of a parabolic singularity in the sense of Singularity
Theory with no symplectic structure involved. This statement is local and we do not need to
assume that the orbit through P is closed. Later on, the variable ϕ will be one of the angle
variables defined modulo 2π, but here ϕ just belongs to a certain interval.

Proof. The proof of this statement if well known but we still want to briefly explain some of
its steps to reveal important underlying phenomena. The first step is to find x, y, λ, ϕ without
touching H and F .
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Lemma 5.1. Under the above assumptions, there exist local coordinates x, y, λ, ϕ such that
(x, y, λ, ϕ)|P = (0, 0, F (P ), 0) and

H = ±(x2 + y3 + b(λ)y + a(λ)), F = λ, (5.5)

where a(λ) and b(λ) are real-analytic functions with b(F (P )) = 0, b′(F (P )) 6= 0.

Proof. Without loss of generality, we assume that H(P ) = F (P ) = 0. First of all we need to
kill one dimension using the fact that H and F Poisson commute. Since dF (P ) 6= 0 we can
choose a canonical coordinate system p1, q1, p2, q2 such that F = q2. Since H and F commute,
we conclude that H does not depend on p2, i.e., H = H(p1, q1, q2). Thus, p2 does not play
any role, so we may forget about it and continue working with p1, q1, q2.

Let us now think of H as a function of two variables q1 and p1 depending on q2 = λ as a
parameter. We have ∂H/∂p1|P = ∂H/∂q1|P = 0 and, without loss of generality, ∂2H/∂p2

1|P 6=
0. We are now in a quite standard situation in singularity theory.

By a parametric version of the Morse lemma, the function H can be written as H =
±(x2+f(q1, λ)), for some new local variable x = x(p1, q1, λ) such that x|P = 0 and ∂x/∂p1 6= 0.
Now, condition (ii) of the definition of a parabolic point is satisfied if and only if the function
f(q1, 0) in one variable q1 has order 3 at the point q1|P . Hence, this function can be written
as ŷ3 for some variable ŷ = ŷ(q1) with ŷ(q1(P )) = 0.

Now the function f(q1, λ) is a 1-parameter “deformation” of the function f(q1, 0) = ŷ3

with the parameter λ. It follows from [3, Sec. 8.2, Theorem or Example] that the deformation
ŷ3 + λ2ŷ + λ1 is right-infinitesimally versal. By the versality theorem [3, Sec. 8.3], it is right-
versal (for a definition of a versal deformation, see [3, Sec. 8.1]). Since any deformation is
right-equivalent to a deformation induced from the right-versal one, we have f(q1, λ) = y3 +
b(λ)y + a(λ) for some real-analytic functions y = y(ŷ, λ), a(λ) and b(λ) such that y(ŷ, 0) = ŷ,
a(0) = b(0) = 0. Since, by assumption, the quadratic differential d2(H − kF )(P ) has rank 3,
we have b′(0) 6= 0. So, we obtain the representation (5.5).

Later on we will need to rearrange leaves of our singular Lagrangian fibration by using
some transformations of the form (the fibration itself remains unchanged)

H 7→ H̃ = H̃(H,F ), F 7→ F̃ = F̃ (H,F ). (5.6)

So we need to understand if such a transformation (acting on the base of the Lagrangian
fibration) can be realised by a fiberwise analytic diffeomorphism upstairs. In other words, we
want to know which of transformations (5.6) are liftable.

Let us look at the (local) bifurcation diagram (i.e. the set of critical values) of the map
defined by H and F from (5.5). This bifurcation diagram is as follows, for a + sign in (5.5):

Σ =

{(
H − a(F )

)2
= − 4

27
b(F )3

}
⊂ R2(H,F ),

and it has a cusp at the point (H(P ), F (P )) that splits Σ into two smooth branches, Σell

and Σhyp, corresponding to one-parameter families of elliptic and hyperbolic orbits. The
bifurcation diagram for a(λ) = 0 and b(λ) = λ is shown on Figure 5.3. Notice that our choice
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of the + sign in (5.5) simply means that the monotone function H − kF |Σ increases w.r.t. the
orientation of Σ from Σell to Σhyp.

It can be easily seen (see the proof of Proposition 5.2 below) that this bifurcation diagram
allows us to reconstruct both functions a(λ) and b(λ). We will use this observation to prove
the following

Proposition 5.2. Assume we have two parabolic singularities defined by functions H,F at a
point P and H̃, F̃ at a point P̃ respectively. A map (local analytic diffeomorphism)

ϕ : R2(H,F )→ R2(H̃, F̃ )

is liftable if and only if ϕ transforms the bifurcation diagram of (H,F ) to that of (H̃, F̃ ),
i.e. ϕ(Σ) = Σ̃, together with its partition into elliptic and hyperbolic branches. In other
words, the condition ϕ(Σ) = Σ̃ is necessary and sufficient for the existence of a local analytic
diffeomorphism Φ such that the diagram

M4 M̃4

R2 R2

Φ

(H,F ) (H̃,F̃ )

ϕ

is commutative.

Proof. The “only if” part is obvious.

Let us prove the “if” part. Denote ϕ ◦ (H,F ) by (H1, F1). Clearly, ϕ transforms the
bifurcation diagram of (H,F ) to that of (H1, F1), together with their partitions into ellip-
tic and hyperbolic branches. Hence, the bifurcation diagram Σ1 of (H1, F1) coincides with
the bifurcation diagram Σ̃ of (H̃, F̃ ), together with its partition into elliptic and hyperbolic
branches.

As shown above, under the condition that dF̃ (P̃ ) 6= 0, the bifurcation diagram Σ̃ of the
mapping F̃ = (H̃, F̃ ) : M̃4 → R2(h, f) is defined by

Σ̃ = {(h, f) ∈ R2 | (h− ã(f))2 = − 4

27
b̃(f)3}

for some functions a(·) and b(·) determined by the canonical form (5.5). Hence Σ̃ lies entirely
in a half-plane {(h, f) | b̃(f) ≤ 0} ⊂ R2(h, f) bounded by a line {f = const} through the cusp
point (H̃(P̃ ), F̃ (P̃ )). Since Σ1 = Σ̃, we conclude that dF1(P ) 6= 0 as well.

By Lemma 5.1, there exist local (real-analytic) coordinates x1, y1, λ1, ϕ1 in a neighborhood
U1 of P and coordinates x̃, ỹ, λ̃, ϕ̃ in a neighborhood Ũ of P̃ such that

η1H1 = x2
1 + y3

1 + b1(λ1)y1 + a1(λ1), F1 = λ1,

η̃H̃ = x̃2 + ỹ3 + b̃(λ̃)ỹ + ã(λ̃), F̃ = λ̃,
(5.7)

for some signs η1, η̃ ∈ {1,−1}. The elliptic and hyperbolic branches of Σ̃ have the form

Σ̃ell =
{

(h, f) =
(
η̃
(
ã(f)− 2(−b̃(f)/3)3/2

)
, f
) ∣∣∣ b̃(f) < 0

}
,

Σ̃hyp =
{

(h, f) =
(
η̃
(
ã(f) + 2(−b̃(f)/3)3/2

)
, f
) ∣∣∣ b̃(f) < 0

}
,
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in particular, η̃h − ã(f) > 0 on the hyperbolic branch of Σ̃ and < 0 on its elliptic branch.
Since similar properties and formulae hold for the elliptic and hyperbolic branches Σ1,ell and
Σ1,hyp of Σ1, moreover Σ1,ell = Σ̃ell and Σ1,hyp = Σ̃hyp, we obtain the equalities

η1 = η̃, a1(λ) = ã(λ), b1(λ) = b̃(λ) (5.8)

where the equalities of functions hold in a half-neighbourhood {λ | b̃(λ) ≤ 0} of the point
F̃ (P̃ ) ∈ R. Since all functions are real-analytic at this point, the equalities of functions in
(5.8) hold in an entire neighbourhood.

Define a (real-analytic) diffeomorphism germ Φ : (U1, P ) → (Ũ , P̃ ) given by the identity
map in the local coordinates (x1, y1, λ1, ϕ1) and (x̃, ỹ, λ̃, ϕ̃). By (5.7) and (5.8), Φ transforms
(H̃, F̃ ) to (H1, F1), so it has the desired property ϕ ◦ (H,F ) = (H1, F1) = (H̃, F̃ ) ◦ Φ.

Proposition 5.2 implies the following

Corollary 5.1. Let P be a parabolic point for an integrable Hamiltonian system with the
momentum mapping F = (H,F ) : M4 → R2. Assume that the local bifurcation diagram
Σ ⊂ R2(H,F ) of F takes the standard form

Σ =

{
H2 = − 4

27
F 3

}
with Σell = Σ ∩ {H < 0}, Σhyp = Σ ∩ {H > 0}. (5.9)

Then in a neighborhood of a parabolic point there exists a local coordinate system (x, y, λ, ϕ)
in which H = x2 + y3 + λy and F = λ.

Proof. It is sufficient to notice that the pair of functions H̃ = x2 + y3 + λy, F̃ = λ define a
parabolic singular point with the standard bifurcation diagram (5.9). According to Proposition
5.2 any other parabolic singularity with the same bifurcation diagram is fiberwise diffeomorphic
to this simplest model, moreover, the map ϕ : R2(H,F ) → R2(H̃, F̃ ) between the bases is
defined by H̃ = H, F̃ = F .

We are now able to complete the proof of Proposition 5.1. In view of Corollary 5.1, it is
sufficient to show that by a suitable transformation (5.3) the bifurcation diagram, together
with its partition into elliptic and hyperbolic branches, can be reduced to the standard form
(5.9).

As shown above, for the original functions H and F the bifurcation diagram is defined by
the equation

Σ =

{(
H − a(F )

)2
= − 4

27
b(F )3

}
(here we assume that H in (5.5) comes with +).

Let F (P ) = f0 so that b(f0) = 0 and b′(f0) 6= 0, then we can represent b(λ) as b(λ) =
(λ− f0)c(λ) with c(f0) 6= 0 and rewrite the equation for Σ in the form(

H − a(F )

|c(F )|3/2

)2

= −ηF
4

27
(F − f0)3
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with ηF = c(f0)/|c(f0)| or, equivalently,

Σ =

{
H̃2 = − 4

27
F̃ 3

}
with Σell = Σ ∩ {H̃ < 0}, Σhyp = Σ ∩ {H̃ > 0},

for H̃ =
H − a(F )

|c(F )|3/2
and F̃ = ηF (F − f0), which coincides with (5.9) as required.

3 Description of a neighborhood of a parabolic orbit with sym-
plectic structure

Our next goal is to describe the symplectic structure Ω near a parabolic orbit.

An important property of a parabolic orbit is the existence (in real-analytic case) of a
free Hamiltonian S1-action in its tubular neighborhood (N.T. Zung [61], compare Kalashnikov
[37]). In other words, without loss of generality we may assume that one of the commuting
functions, say F , generates this S1-action, i.e., the Hamiltonian flow of F is 2π-periodic. From
the viewpoint of singularity theory, this means that in our case the parameter of the versal
deformation is essentially unique and is given by the Hamiltonian of the S1-action (or in slightly
different terms, by the action variable related to the cycle in the first homology group of fibers
that corresponds to this S1-action). The latter interpretation, in particular, means that one
of two action variables is a real-analytic function defined on the whole neighborhood U(L0) of
L0 including singular fibers, where L0 denotes the singular fiber (cuspidal torus) containing
the parabolic orbit γ0. The action variable F is defined up to changing F → ±F + const, and
we can (and will) choose F in such a way that F (P ) = 0 and the bifurcation diagram Σ is
located in the domain {F ≤ 0}.

Basically, what we want to do next is to reduce our Hamiltonian system w.r.t. this action.
We shall think of F as a parameter and denote it by λ as above. In particular, now we can
choose a coordinate system x, y, λ, ϕ in a tubular neighborhood U(γ0) of γ0 in such a way that
the Hamiltonian vector field of λ is ∂

∂ϕ . Since H commutes with F = λ, we conclude that
H = H(x, y, λ) and we are in the situation discussed in the previous section. If we are only
interested in the symplectic topology of the fibration, we are free in the choice of H (in contrast
to F which is essentially unique), so according to Proposition 5.1 we may assume without loss
of generality that H = x2 + y3 +λy. However, these coordinates are not canonical, so that (in
the tubular neighborhood U(γ0)) the symplectic structure takes the following form (here we
take into account the condition that Ω is closed and the Hamiltonian vector field of λ is ∂

∂ϕ
or, equivalently, i∂/∂ϕΩ = dλ):

Ω = f(x, y, λ)dx ∧ dy + dλ ∧ dϕ+ dλ ∧
(
P (x, y, λ)dx+Q(x, y, λ)dy

)
=

= ωλ + dλ ∧ dϕ+ (additional terms).
(5.10)

The form ωλ = f(x, y, λ)dx∧dy can be considered as the restriction of Ω onto the common
level of λ and ϕ (we assume that ϕ = 0 but λ varies and is considered as a parameter). The
other interpretation of ωλ is that it is the one-parameter family of symplectic forms obtained
from Ω by the reduction w.r.t. the Hamiltonian S1-action (or, using old-style terminology,
w.r.t. the cyclic variable ϕ). Here is a more formal statement.
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Proposition 5.3. In a tubular neighborhood of a parabolic orbit γ0 we can choose a coordinate
system x, y, λ, ϕ (with ϕ mod 2π ∈ R/2πZ) such that (x, y, λ)|γ0 = (0, 0, 0) and our singular
Lagrangian fibration is given by two functions

F = λ and H = x2 + y3 + λy

and the symplectic form

Ω = f(x, y, λ)dx ∧ dy + dλ ∧ dϕ+ (additional terms)

as in (5.10). �

Remark 5.4. Without loss of generality we may assume that f(x, y, λ) > 0 in (5.10). Indeed,
in order for the latter property to be fulfilled, we only need to replace x with −x if necessary.
We also notice that since Ω is closed, formula (5.10) can be rewritten as

Ω = dX(x, y, λ) ∧ dy + dλ ∧ dϕ̃

for a certain real-analytic function X(x, y, λ) with ∂X
∂x > 0 and ϕ̃ = ϕ + R(x, y, λ) for some

real-analytic function R(x, y, λ).

It follows from Proposition 5.3 that the function F is uniquely defined (being a generator of
the S1-action), but H is not. However H cannot be chosen arbitrarily because the bifurcation
diagram for F and H must be of a very special form, namely (5.9). If this condition is fulfilled
then H is allowed and, using Corollary 5.1, we can modify Proposition 5.3 in the following
way.

Proposition 5.4. Consider a tubular neighborhood of a parabolic trajectory. Let H and F be
two functions defining our fibration and satisfying the following conditions:

i) the bifurcation diagram of (H,F ) is canonical, i.e., as in (5.9);
ii) F is 2π-periodic, i.e., is a generator of a free Hamiltonian S1-action.

Then there exists a coordinate system (x, y, λ, ϕ) as in Proposition 5.3. �

Remark 5.5. It follows from Proposition 5.3 that if we are given two integrable systems with
parabolic trajectories, we can always find a fiberwise real-analytic diffeomorphism between
their tubular neighborhoods that respects the S1-actions and corresponding periodic Hamil-
tonians. This means that without loss of generality we may assume that we are given just one
single fibration defined by H and F having canonical form (5.4) with two different symplectic
forms given by (5.10) (i.e. such that H and F commute and the Hamiltonian vector field of λ
is ∂

∂ϕ):
Ω = ωλ + dλ ∧ dϕ+ (additional terms) (5.11)

and
Ω̃ = ω̃λ + dλ ∧ dϕ+ (additional terms). (5.12)

We still have two different integrable systems but after the above “pre-identification” they
have many common properties. Namely,

i) They have a common local coordinate system (x, y, λ, ϕ) from Proposition 5.3;
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ii) F = λ is a 2π-periodic integral for both systems;
iii) The S1-actions defined by F for Ω and Ω̃ coincide (i.e., XF = X̃F = ∂

∂ϕ where XF and
X̃F denote the Hamiltonian vector fields generated by F w.r.t. Ω and Ω̃ respectively);

iv) The bifurcation diagrams of these two systems coincide;
v) The orientations and coorientations of the parabolic trajectory γ0(t)=(0, 0, 0, ϕ=t) in-

duced by Ω and Ω̃ coincide (see Section 5, Theorem 5.2).

We need to find out whether Ω can be transformed to Ω̃ by a suitable fiberwise diffeo-
morphism Φ. First, we impose a stronger condition on Φ by requiring that Φ preserves not
only the fibration but also each particular fiber, i.e. the functions H and F (in other words,
rearrangements of fibers are temporarily forbidden, i.e. Φ induces the identity map on the
base of the fibration).

The following statement reduces this 4-dim problem for Ω and Ω̃ to a similar problem for
the reduced forms ωλ and ω̃λ (in other words, we now reduce our “two-degrees-of-freedom”
problem to a parametric “one-degree-of-freedom” problem).

Consider the singular fibration defined by the functions H = x2 +y3 +λy and F = λ. This
fibration is obviously Lagrangian w.r.t. any of the symplectic structures (5.11) and (5.12) in
a neighborhood of the parabolic orbit γ0 = {x = y = λ = 0}.

Proposition 5.5. The following two statements are equivalent.

i) In a tubular neighborhood of the parabolic orbit γ0 there is a (real-analytic) diffeomor-
phism Φ such that

• Φ preserves H and F ;
• Φ∗(Ω̃) = Ω.

ii) There exists a one-parameter family of local diffeomorphisms ψλ(x, y) (real-analytic in
x, y and λ) leaving fixed the origin in R2(x, y) at λ = 0 and such that, for each λ ∈ R
close enough to 0,

• ψλ preserves H(x, y, λ);
• ψ∗λ(ω̃λ) = ωλ.

Roughly speaking, this statement says that the additional terms in (5.11) and (5.12) are
not important and can be ignored. We also remark that we can replace the conditions that H
and F are preserved by saying that the fibration is preserved.

Proof. The fact that (i) implies (ii) is almost obvious. Indeed, since Ω and Ω̃ are of quite
special form, Φ∗(Ω̃) = Ω and F = λ is preserved, then in local coordinates x, y, λ, ϕ, the
diffeomorphism Φ takes the following form:

x̃ = x̃(x, y, λ),

ỹ = ỹ(x, y, λ),

λ̃ = λ,

ϕ̃ = ϕ+R(x, y, λ),
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then if we consider the first two functions as a family of diffeomorphisms ψλ(x, y), then we
will immediately see that (ii) holds. Since Φ preserves H and F , it leaves invariant the set of
such points (x, y, λ, ϕ) that dH(x, y, λ, ϕ) and dF (x, y, λ, ϕ) are proportional. But for λ = 0
this set coincides with γ0, so Φ maps γ0 to itself. Therefore ψ0(0, 0) = (0, 0).

The proof of the converse statement consists of two steps. Assuming that ψλ(x, y) satisfies
the conditions from (ii), we define Φ1 as follows:

(x̃, ỹ) = ψλ(x, y),

λ̃ = λ,

ϕ̃ = ϕ.

It is easily checked that, for this Φ1, the symplectic forms Φ∗1(Ω̃) and Ω coincide up to additional
terms, that is

Φ∗1(Ω̃)− Ω = dλ ∧
(
P (x, y, λ)dx+Q(x, y, λ)dy

)
. (5.13)

Hence, our goal is to show that these additional terms do not play any essential role and can
be killed by an appropriate shift ϕ 7→ ϕ−R(x, y, λ) (without changing the other coordinates).
In other words, we need to find R(x, y, λ) such that dλ ∧ dR(x, y, λ) = dλ ∧

(
P (x, y, λ)dx +

Q(x, y, λ)dy
)
. The existence of such a function follows immediately from the closedness of

the form dλ ∧
(
P (x, y, λ)dx + Q(x, y, λ)dy

)
(this form is the difference of two closed forms

Φ∗1(Ω̃) and Ω). Finally, we define Φ as the composition of Φ1 and the above shift, and we get
Φ∗(Ω̃) = Φ∗1(Ω̃)− dλ ∧ dR(x, y, λ) = Ω due to (5.13).

It remains to notice that, since ψ0(0, 0) = (0, 0) and γ0 = {x = y = λ = 0}, we have
Φ(γ0) = γ0, thus Φ is defined in a neighborhood of γ0 as required.

Our next observation is that symplectic invariants do exist, in other words, the desired
map Φ (or, equivalently, the family ψλ) may not exist. Moreover, the existence of just one
map ψ0 implies rather strong condition. To show this, we treat the case λ = 0 in detail.

4 The case λ = 0, one-degree of freedom problem

In this Section, for notational convenience, we use a different sign in the definition of H.
Consider the function H = y3−x2 (in a neighborhood of the origin) and two symplectic forms
ω0 and ω̃0 (all of our objects are real-analytic). We want to know necessary and sufficient
conditions for the existence of a local diffeomorphism ψ0 satisfying ψ∗0ω̃0 = ω0 and (two
versions):

• either preserving H (strong condition);
• or preserving the (singular) fibration defined by H (weaker condition) (more formally,
ψ∗0(H) = h(H) where h(H) is real-analytic and h′(0) 6= 0).

The complex version of the first problem was studied in [26], in this Section we adapt some
of these results to the real case we are considering. In the following, R{H} and C{H} will
denote, respectively, real-analytic germs and complex-analytic germs in the variable H at 0,
i.e., convergent power series in the respective fields. Consider H = y3 − x2 as a holomorphic
function, we have:
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Figure 5.1: Two cross-sections N1, N2 to the fibration defined by H = y3 − x2

Proposition 5.6 ([26, Theorems 2.3 and 3.0]). Any holomorphic 2-form ω0 can be decomposed,
in a sufficiently small neighborhood U of 0 ∈ C2, as follows

ω0 = α(H)dx ∧ dy + β(H)ydx ∧ dy + dH ∧ dη (5.14)

for some holomorphic germ η(x, y), and unique α, β ∈ C{H}.

Remark 5.6. If ω0 is symplectic, then α(0) 6= 0.

In our case we are dealing with real objects ω0 and H, in this case α(H), β(H) are real-
analytic, and η(x, y) can be chosen to be real-analytic, as can be shown by taking the real
part of Equation (5.14).

Choose two one-dimensional cross-sections N1, N2 to the fibration defined by H as shown
in Figure 5.1. Each non-singular leaf τH of this fibration (with a given value of H) now will
be interpreted as a trajectory of the Hamiltonian vector field XH = ω−1

0 (dH) with respect to
the symplectic form ω0. For each trajectory τH we can measure the passage time Π(H) from
N1 to N2. This function can be expressed as

Π(H) =

∫ N2

N1

ω0

dH
(5.15)

(integral taken along the trajectory τH) where ω0/dH is the Gelfand-Leray form associated
to the pair (ω0, H), i.e., any 1-form γ defined in the region dH 6= 0 and such that dH ∧γ = ω0

(the form γ is not uniquely defined, but its restriction to the level-sets H = const is unique).

We can similarly consider the area function area(H) defined as the integral of ω0 over the
subset of {0 ≤ H(x, y) ≤ H} bounded by the sections N1, N2. As a consequence of Fubini’s
theorem, one has

darea(H)

dH
= Π(H). (5.16)

Clearly, Π(H) is a real-analytic function defined for all (small) H. As H tends to 0, the
passage time Π(H) tends to infinity and it is natural to look at the asymptotic behaviour of
Π(H) at zero.
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Lemma 5.2. The function Π(H) for H > 0 can be written as

Π(H) = a(H)H−1/6 + b(H)H1/6 + c(H), H > 0, (5.17)

where a, b, c ∈ R{H}. Moreover, a(H) = C0α(H) and b(H) = C1β(H) for some non-zero
constants C0, C1 ∈ R, with C0 > 0 and C1 < 0.

Before proving the lemma, we give some remarks:

• The functions in this representations are uniquely defined, i.e., if

a(H)H−1/6 + b(H)H1/6 + c(H) = ã(H)H−1/6 + b̃(H)H1/6 + c̃(H),

then a(H) = ã(H), b(H) = b̃(H) and c(H) = c̃(H).
• If we change the sections N1 and N2 by a deformation in the class of such sections, then

the function Π(H) changes by adding a certain analytic function, given by the passage
time between the old and the new sections. However, if we replace N1 and N2 by each
other, then the function Π(H) will be replaced by −Π(H). This shows that the functions
a(H) and b(H) (up to multiplying with −1 simultaneously) do not depend on the choice
of the cross-sections N1 and N2. Since we are working with a symplectic form, we have
α(0) 6= 0 and a(0) 6= 0, and we can be more specific: the functions a(H) and b(H) with
a(0) > 0 do not depend on the choice of the cross-sections N1 and N2.
• In a similar way, we can define the functions ã, b̃ and c̃ for the second symplectic structure
ω̃0. If ψ preserves H and transforms ω0 to ω̃0, then the Hamiltonian vector field XH

will be transformed to the Hamiltonian vector field X̃H = ω̃−1
0 (dH) (with the same

Hamiltonian H). Since ψ does not preserve the cross-sections N1 and N2, the passage
time Π̃(H) will, in general, differ from Π(H) by adding some analytic functions (and,
possibly, by multiplying with −1), which shows that the functions a(H) and b(H) with
a(0) > 0 remain invariant under ψ, i.e. a(H) = ã(H), b(H) = b̃(H), provided that
ã(0) > 0 too. In other words, a(H) and b(H) with a(0) > 0 are symplectic invariants
(under the condition that ψ preserves H).
• It is easy to give an example of two symplectic structures producing two different pairs

of functions a and b in the asymptotic decomposition (5.17).

Proof of Lemma 5.2. Consider the decomposition (5.14). Taking the integral of the Gelfand-
Leray form we get:

Π(H) = α(H)

∫ N2

N1

dx ∧ dy
dH

+ β(H)

∫ N2

N1

ydx ∧ dy
dH

+N∗2 η(H)−N∗1 η(H)

(the coefficients can be taken outside of the integral, since we integrate along a trajectory τH
where H is constant). The last two terms give a real-analytic contribution. To finish the proof
it is sufficient to show that, for H > 0∫ N2

N1

dx ∧ dy
dH

− C0H
−1/6 ∈ R{H},

∫ N2

N1

ydx ∧ dy
dH

− C1H
1/6 ∈ R{H}, (5.18)
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for some non-zero real constants C0, C1, so that a(H) = C0α(H) and b(H) = C1β(H). We
can assume that N1 = {x = 1} and N2 = {x = −1}. We have

yjdx ∧ dy
dH

= − dx

3y2−j , j = 0, 1.

Hence, we are reduced to compute, for j = 0, 1, the integral:

Jj(H) = −1

3

∫ −1

1
y(H,x)j−2 dx =

2

3

∫ 1

0
(H + x2)

j−2
3 dx

=
2

3
H

j−2
3

∫ 1

0

(
1 + x2

H

) j−2
3
dx =

1

3
H

j−2
3

∫ 1

0
t

1
2−1 (1 + t

H

) j−2
3 dt

=
2

3
H

j−2
3 F

(
2−j

3 , 1
2 ,

3
2 ;− 1

H

)
where F (p, q, r; z) is the hypergeometric function. In this case we can use the connection
formula ([42, Eq. (9.5.9)])

F (p, q, r; z) = c1(−z)−pF (p, 1 + p− r, 1 + p− q; 1/z)+

+ c2(−z)−qF (q, 1 + q − r, 1 + q − p; 1/z)

where
c1 =

Γ(r)Γ(q − p)
Γ(r − p)Γ(q)

, c2 =
Γ(r)Γ(p− q)
Γ(r − q)Γ(p)

.

This gives:

Jj(H) = 2
3H

j−2
3

(
c1H

2−j
3 F (2−j

3 , 1−2j
6 , 7−2j

6 ;−H) + c2H
1/2F (1

2 , 0,
5+2j

6 ;−H)
)

= 2
3c1F (2−j

3 , 1−2j
6 , 7−2j

6 ;−H) + 2
3c2H

2j−1
6

= CjH
2j−1

6 + dj(H), dj ∈ R{H},

where C0 =
√
π

3
Γ(1/6)
Γ(2/3) and C1 =

√
π

3
Γ(−1/6)
Γ(1/3) . This proves (5.18) as required.

For r ∈ Q, consider the operator ϕr : R{H} → R{H} defined by ϕr : A(H) 7→ A′(H)H +
rA(H). If r /∈ Z then ϕr is bijective.

Corollary 5.2. The function area(H) for H ≥ 0 can be written as

area(H) = A(H)H5/6 +B(H)H7/6 + C(H), H ≥ 0, (5.19)

where A,B,C ∈ R{H} are the unique real-analytic germs such that

a(H) = A′(H)H + 5
6A(H), b(H) = B′(H)H + 7

6B(H), c(H) = C ′(H), C(0) = 0,

in other words A = ϕ−1
5/6(a), B = ϕ−1

7/6(b). �

Theorem 5.1. Let ω0, ω̃0 be two real-analytic symplectic forms. Suppose that ω0−ω̃0 = dH∧dη
for some real-analytic function germ η(x, y) at 0 ∈ R2. Then there is a local diffeomorphism
ψ at 0 ∈ R2 such that ψ∗H = H and ψ∗ω̃0 = ω0.
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Proof. The proof follows [26, Theorem 2.1]. See Theorem 2.4 in Chapter 2.

In the following we will specify as a subscript the symplectic structure ω0 in the notation
for α, β, a, b and A,B, that is, writing αω0 , βω0 , aω0 , bω0 and Aω0 , Bω0 . In the rest of the
Section, for the reasons explained in the second and third remarks below Lemma 5.2, we will
consider symplectic forms inducing a fixed orientation. In this regard we can consider, without
loss of generality, only symplectic forms ω satisfying αω(0) > 0. Such a symplectic form is
said to be positively-oriented.

In the above setting and notation we come to the following statement:

Proposition 5.7. Let ω0, ω̃0 be positively-oriented symplectic forms. An H-preserving map ψ
such that ψ∗ω̃0 = ω0 exists, if and only if the following conditions hold:

αω0(H) = αω̃0
(H) and βω0(H) = βω̃0

(H)

or, equivalently, aω0(H) = aω̃0
(H) and bω0(H) = bω̃0

(H) or Aω0(H) = Aω̃0
(H) and Bω0(H) =

Bω̃0
(H).

Proof. Sufficiency: suppose αω0 = αω̃0
and βω0 = βω̃0

, then ω0 − ω̃0 = dH ∧ dη for some
real-analytic germ η, and Theorem 5.1 proves the assertion. From Lemma 5.2 and Corollary
5.2 we know that equalities of any of these invariants are equivalent.

Necessity: suppose ψ exists, let us prove that the invariants coincide. Since ψ preserves
H and sends ω̃0 to ω0, we conclude (due to Lemma 5.2 and the third remark below it) that
aω0(H) = aω̃0

(H) and bω0(H) = bω̃0
(H), which implies αω0(H) = αω̃0

(H) and βω0(H) =
βω̃0

(H).

It follows from the above proposition, together with the first remark below Lemma 5.2,
that:

Corollary 5.3. Let ω0, ω̃0 be positively-oriented symplectic forms. An H-preserving map ψ
such that ψ∗ω̃0 = ω0 exists if and only if Πω0(H) − Πω̃0

(H), which is defined on {H > 0},
extends to a real-analytic function in a neighborhood of H = 0. �

We can also reformulate this result in terms of normal forms.

Proposition 5.8. For H = y3 − x2 and ω0 = f(x, y)dx ∧ dy there is a real-analytic local
coordinate system u, v and germs α, β ∈ R{H} such that

H = v3 − u2 and ω0 = α(H) · du ∧ dv + β(H) · v du ∧ dv.

For positively-oriented symplectic forms, the functions α(H) and β(H) are uniquely defined
(the coordinates u, v are not). �

Let us now see what happens if ψ does not preserveH, but transforms it to a function of the
form h(H), h′(0) 6= 0 (in fact h′(0) > 0). Let ω0, ω̃0 be positively-oriented symplectic forms.
We consider necessary and sufficient conditions for the existence of a local diffeomorphism ψ
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such that ψ∗ω̃0 = ω0 and ψ∗H = h(H) with h′(0) > 0, i.e. a local symplectomorphism ψ
making the following diagram commutative:

(R2, 0) (R2, 0)

(R, 0) (R, 0).

ψ

H H

h

Lemma 5.3. Suppose there exists ψ such that ψ∗ω̃0 = ω0 and ψ∗H = h(H) with h(H) =
H · g(H), g(0) > 0. Then we have the following relations:

i) {
Aω0(H) = g(H)5/6Aω̃0

(h(H)),

Bω0(H) = g(H)7/6Bω̃0
(h(H)),

ii) {
αω0(H) = g(H)−1/6 (g′(H)H + g(H))αω̃0

(h(H)),

βω0(H) = g(H)1/6 (g′(H)H + g(H))βω̃0
(h(H)),

iii) {
aω0(H) = g(H)−1/6 (g′(H)H + g(H)) aω̃0

(h(H)),

bω0(H) = g(H)1/6 (g′(H)H + g(H)) bω̃0
(h(H)).

For proving Lemma 5.3, we need the following:

Lemma 5.4. For any real-analytic map h(H) with h(0) = 0 and h′(0) > 0 there exists ψ
(local real-analytic diffeomorphism) such that

H(ψ(x, y)) = h(H(x, y)).

In other words, any local diffeomorphism germ H 7→ h(H) at 0 with h′(0) > 0 is liftable.

Proof. Let h(H) = H · g(H). Define rh(x, y) :=
(
g(H(x, y))1/2x, g(H(x, y))1/3y

)
, then

H(rh(x, y)) = g(H(x, y))H(x, y) = h(H(x, y)).

Proof of Lemma 5.3. (i) The integrals below are taken over subsets bounded by the sections
N1, N2. For any H ≥ 0, we have

areaω0(H) =

∫
0≤H(x,y)≤H

ω0 =

∫
0≤H(x,y)≤H

ψ∗ω̃0

=

∫
ψ(0≤H(x,y)≤H)

ω̃0 +D(H) =

∫
0≤H(x′,y′)≤h(H)

ω̃0 +D(H)

= areaω̃0
(h(H)) +D(H), D ∈ R{H}.

Substituting in (5.19) and comparing coefficients gives (i).
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(ii) Put Ψ := ψ ◦ r−1
h , then Ψ∗ω̃0 = (r−1

h )∗ω0 and H ◦ Ψ = H. Therefore by Proposition
5.7 we have

ω̃0 − (r−1
h )∗ω0 = dH ∧ dη

or again

r∗hω̃0 − ω0 = dH ∧ d
(
dh(H)

dH
r∗hη

)
.

We want to understand the relationship between αω0 , βω0 and αω̃0
, βω̃0

. The Jacobian
matrix of the transformation rh is given by:

Jrh =

(
1
2g(H)−1/2g′(H)∂H∂x x+ g(H)1/2 1

2g(H)−1/2g′(H)∂H∂y x
1
3g(H)−2/3g′(H)∂H∂x y

1
3g(H)−2/3g′(H)∂H∂y y + g(H)1/3

)

and
|Jrh | = det Jrh = g(H)−1/6

(
g′(H)H + g(H)

)
.

This means that:

r∗hω̃0 = αω̃0
(h(H))|Jrh |dx ∧ dy + βω̃0

(h(H))|Jrh |g(H)1/3ydx ∧ dy + dh(H) ∧ d(r∗hη̃).

The last term can be written as dH ∧ dη′ with η′ = dh(H)
dH r∗hη̃. By uniqueness of the charac-

teristic series we get the relations.

(iii) Follows from (ii) and Lemma 5.2.

Let’s discuss the opposite statement:

Proposition 5.9. Consider two positively-oriented symplectic forms ω0, ω̃0. Suppose there
exists a real-analytic function h(H) = H · g(H) such that g(0) > 0 and one of the three
relations (i), (ii), (iii) of Lemma 5.3 is satisfied. Then there exists an H-fibration preserving
map ψ such that ψ∗ω̃0 = ω0.

Proof. We assume (ii) is satisfied, the other two cases are equivalent. Consider the map rh
from the proof of Lemma 5.4. It satisfies r∗hH = h(H) and (trivially) transforms ω̃0 to r∗hω̃0,
therefore by Lemma 5.3

αr∗hω̃0
(H) = g−1/6(H)

(
g′(H)H + g(H)

)
αω̃0

(h(H)) = αω0(H),

βr∗hω̃0
(H) = g1/6(H)

(
g′(H)H + g(H)

)
βω̃0

(h(H)) = βω0(H).

This shows that ω0 and r∗hω̃0 have the same charateristic series, therefore

ω0 − r∗hω̃0 = dH ∧ dη,

for some real-analytic germ η. As we know from the case of H-preserving maps, this equa-
tion implies the existence of a H-preserving diffeomorphism ϕ such that ϕ∗r∗hω̃0 = ω0. In
conclusion, ψ = rh ◦ ϕ is the map we are looking for.
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Finally we show how one symplectic invariant survives in the case of H-fibration-preserving
maps. Consider a positively-oriented symplectic form ω0. Suppose we can solve the equation

αω0(H) = Kg(H)−1/6
(
g′(H)H + g(H)

)
, K ∈ R, (5.20)

for g(H). Then the rescaling map rh, with h(H) = H · g(H), transforms H to h(H) and the
symplectic form ω̃0 = (r−1

h )∗ω0 to ω0, where αω̃0
(H) = K. After this, the other characteristic

series βω̃0
(H) survives as an invariant in the usual sense (of H-preserving local diffeomor-

phisms).

Lemma 5.5. The invariant aω0(H) can be reduced to a constant.

Proof. By assumption we have aω0(0) > 0. It follows from Corollary 5.2 that Aω0(0) > 0
as well. Setting g(H) = Aω0(H)6/5 and ω̃0 = (r−1

h )∗ω0, we obtain from Lemma 5.3 that
Aω̃0

(H) = 1. With this choice of h(H) = H · g(H), we have Aω0(H) = g(H)5/6, therefore by
Corollary 5.2

aω0(H) = A′ω0
(H)H + 5

6Aω0(H)

= 5
6g(H)−1/6

(
g′(H)H + g(H)

)
,

so that aω̃0
(H) is constant (and αω̃0

(H) as well).

Proposition 5.10. A real-analytic singular Lagrangian fibration with one degree of freedom
is symplectomorphic, in a neighborhood of an A2 singularity, to (one of) the following model:

H = y3 − x2, ω0 = dx ∧ dy + f(y3 − x2) · y dx ∧ dy.

Or, equivalently, in a neighborhood of an A2 singularity (with one degree of freedom) we can
always find local coordinates x and y such that the fibration is defined by the function H =
y3 − x2 and the symplectic structure takes the form ω0 = dx ∧ dy + f(y3 − x2) · y dx ∧ dy.

In this representation, the real-analytic function f(H) is uniquely defined. �

This proposition says that as a complete symplectic invariant of an A2 singular fibration
with one degree of freedom we may consider one (real-analytic) function in one variable. Since
such a fibration appears as a symplectic reduction of the Lagrangian fibration near a parabolic
orbit (for λ = 0), we conclude that parabolic orbits possess non-trivial symplectic invariants
and the next section is aimed at describing “all of them”.

5 Parametric version

Our next step is a parametric version of the above construction. We now assume that H
depends on λ as a parameter:

H(x, y, λ) = Hλ(x, y) = x2 + y3 + λy

and for each value of λ we consider a symplectic structure ωλ = f(x, y, λ)dx ∧ dy, f > 0.
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We first give necessary and sufficient conditions for the existence of a family of maps ψλ
from Proposition 5.5.

Following the same idea as before, we choose two 2-dimensional sections N1 and N2 anal-
ogous to the above sections N1 and N2 (but now for all values of λ) and define the passage
time

Π(H,λ) =

∫ N2(H,λ)

N1(H,λ)

ωλ
dHλ

for each trajectory with parameters H and λ, (H,λ) 6∈ Σhyp, see Figure 5.2. Also we see that
for each λ < 0 we have a family of closed trajectories also parametrized by H and λ. Let us
denote by Π◦(H,λ) the period of these trajectories1. We can compute these functions for both
forms ωλ and ω̃λ. For ω̃λ, we denote them by Π̃(H,λ) and Π̃◦(H,λ).

N2

N1

Figure 5.2: Two cross-sections N1,N2 to the fibration near a parabolic orbit

Proposition 5.11. A family of local diffeomorphisms ψλ from Proposition 5.5 exists if and
only if

i) Π(H,λ) − Π̃(H,λ) extends to a real-analytic function in a neighborhood of the point
H = 0, λ = 0,

ii) Π◦(H,λ) = Π̃◦(H,λ).

Proof. We need to justify the “if” part only. First of all we notice that, for each λ (if we
consider each slice {λ = const} separately), a map ψλ exists. Indeed, for λ > 0, there are no
obstructions for the existence of ψλ at all, since our fibration is regular. For λ = 0, the existence
of ψλ was proved in Corollary 5.3. As for λ < 0, this property follows from non-degeneracy of
singular points (see [19]).

1Alternatively we may compute the area area◦(H,λ) = 2πI◦(H,λ) enclosed by such a trajectory. This
function can be understood as the action variable corresponding to this family of closed cycles. Notice that
Π◦ and I◦ are related by differentiation: Π◦(H,λ) = 2π ∂

∂H
I◦(H,λ), comp. (5.16).
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We only need to “combine” all these maps into one single Ψ(x, y, λ) = ψλ(x, y) in such a
way that Ψ is real-analytic with respect to all variables (including λ).

To that end, we notice first of all that the maps ψλ can be chosen in such a way that each
section N1,λ = {(x, y, λ) ∈ N1 with λ fixed} (i.e. the intersection of N1 with the corresponding
λ-slice) is mapped to itself, i.e., ψλ|N1,λ

= id. This choice (of the initial data) makes our
construction unique. In other words, we may assume without loss of generality that Ψ leaves
N1 fixed.

Let σt and σ̃t denote the Hamiltonian flows of Hλ w.r.t. ωλ and ω̃λ respectively. Since H
is preserved and ψ∗λ(ω̃λ) = ωλ, we conclude that ψλ sends the Hamiltonian flow of H w.r.t ωλ
to that w.r.t. ω̃λ, i.e., the following relation holds

ψλ ◦ σt = σ̃t ◦ ψλ.

This relation implies a simple “explicit” formula for ψλ (for those points Q which can be
obtained from N1 by shifting along the flow σt). Namely, let Q = σt(Q)(Q0) with Q0 ∈ N1.
Then applying the above relation to the point Q with t = −t(Q) we get

ψλ ◦ σ−t(Q)(Q) = σ̃−t(Q) ◦ ψλ(Q)

or, equivalently,
ψλ(Q) = σ̃t(Q) ◦ ψλ ◦ σ−t(Q)(Q)

and, using that ψλ ◦ σ−t(Q)(Q) = ψλ(Q0) = Q0 = σ−t(Q)(Q), we finally get:

ψλ(Q) = σ̃t(Q) ◦ σ−t(Q)(Q), (5.21)

where the time t(Q) is chosen in such a way that σ−t(Q)(Q) ∈ N1. Notice that the family
ψλ so defined automatically satisfies the required conditions (ii) from Proposition 5.5 and is
locally analytic w.r.t. all the variables (including the parameter λ) everywhere where it makes
sense. The problem, however, is that (5.21) works neither at the singular points nor at the
points lying on “small” closed trajectories that appear for λ < 0 (the reason is obvious: the
Hamiltonian flow σt starting from N1 does not reach them).

Below, we will use a slightly different version of formula (5.21). Notice that Q can also be
obtained from Q0 ∈ N1 by shifting along the other Hamiltonian flow σ̃t, that is, Q = σ̃t̃(Q)(Q0)
for some t̃(Q) ∈ R. Hence,

ψλ(Q) = σ̃t(Q)◦σ−t(Q)(Q) = σ̃t(Q)−t̃(Q)◦σ̃t̃(Q)◦σ−t(Q)(Q) = σ̃t(Q)−t̃(Q)◦σ̃t̃(Q)(Q0) = σ̃t(Q)−t̃(Q)(Q),

or, finally,
ψλ(Q) = σ̃r(Q)(Q), where r(Q) = t(Q)− t̃(Q). (5.22)

This formula has a very natural meaning. If Q can be obtained by shifting a certain point
Q0 ∈ N1 along the flows σt and σ̃t, then ψλ simply shiftsQ along σ̃t by time r(Q) = t(Q)−t̃(Q),
where t(Q) (resp. t̃(Q)) is the time necessary for the flow σt (resp. σ̃t) to reach Q starting
from the section N1.

Our goal is to show that this formula extends to a neighborhood of the parabolic point up
to a well defined real-analytic map (in the sense of all the variables x, y and λ).



5. PARAMETRIC VERSION 91

To that end, we will use a “complexification trick”. Since all the objects under consideration
are real-analytic we can naturally complexify them, that is, we may think of x, y, λ as complex
variables, H and F as complex functions, ω and ω̃ as complex symplectic forms, etc. We will
also assume that the section N1 is given by an analytic equation like f(x, y) = 0, so that the
same equation defines a (local) complex hypersurface that is transversal to all complexified
leaves Lε1,ε2 = {H = ε1, F = ε2}, (ε1, ε2) ⊂ C2, for small enough |ε1| + |ε2|. We are now
looking for a local holomorphic map Ψ(x, y, λ) = ψλ(x, y) which preserves H and F and
transforms ω̃λ to ωλ.

We want this map to be the “complexification” of the family ψλ defined above (in particular,
the complex section N1 does not move under the action of ψλ). We keep the same notations
for all the objects, but now we think of them from the complex viewpoint. In particular, the
parameter t for the flows σt and σ̃t is complex and plays the role of “complex time”. Similarly,
t(Q), t̃(Q) and r(Q) are complex functions which, by construction, are locally holomorphic.

One of the advantages of the complexified picture is that all the leaves Lε1,ε2 (both regular
and singular) are now connected, each of them intersects the section N1 at exactly one point
and, moreover, every regular point Q (even if it belongs to a singular leaf) can be joint with
N1 by a continuous path lying on the leaf. Notice that the regular part of each leaf Lε1,ε2 can
be understood as a complex trajectory of the complex flow σt or σ̃t.

The problem coming with “complexification” is that t(Q) and t̃(Q) are not uniquely defined
anymore. Indeed, the complex leaf Lε1,ε2 = {H = ε1, F = ε2} is now a two-dimensional
surface with a non-trivial topology. In particular, the first homology group of Lε1,ε2 is non-
trivial and this leads to the fact that Q can be reached from N1 in many different ways, e.g.,
σt1(Q0) = σt2(Q0) = Q. So we need to make sure that the choice of ti does not affect the final
result of (the complex version of) (5.21) and (5.22).

Let us discuss this issue in more detail. Consider one particular leaf Lε1,ε2 (not necessarily
regular). It intersects the section N1 at exactly one point Q0. For Q ∈ Lε1,ε2 , consider a
path γ(s) connecting this point with Q0 so that γ(0) = Q0 and γ(1) = Q. Each point of
this path can be written as γ(s) = σt(s)(Q0) = σ̃t̃(s)(Q0) with t(s) ∈ C, t(s) continuous and
t(0) = 0. In this way, we set t(Q) = t(1) and t̃(Q) = t̃(1). It is easy to see that deforming
γ(s) continuously does not change t(Q) and t̃(Q). Thus, this construction shows that t(Q)
and t̃(Q) (and consequently r(Q) = t(Q)− t̃(Q)) are uniquely defined if we fix the homotopy
type of a curve connecting Q0 and Q. If we choose two homotopically different curves γ1 and
γ2, then, in general, t1(Q) 6= t2(Q) and t̃1(Q) 6= t̃2(Q).

The condition we need is r1(Q) = t1(Q)− t̃1(Q) = t2(Q)− t̃2(Q) = r2(Q) or, equivalently,
t1(Q) − t2(Q) = t̃1(Q) − t̃2(Q). The latter has a very simple geometric meaning. Namely,
Q = σt1(Q)(Q0) = σt2(Q)(Q0) means that σt1(Q)−t2(Q)(Q) = Q. In other words, t1(Q)− t2(Q)
is the period of Lε1,ε2 as a “complex trajectory” of the flow σt, which corresponds to the
(homotopy class of the) loop formed by the curves γ1 and −γ2. In other words, the condition
that we need can be formulated as follows: for each loop γ on Lε1,ε2 , the corresponding periods
of the Hamiltonian flows generated by Hλ w.r.t. the symplectic forms ωλ and ω̃λ coincide.
These periods can be computed explicitly as (compare with (5.15)):

Πγ(H,λ) =

∮
γ

ωλ
dHλ

and Π̃γ(H,λ) =

∮
γ

ω̃λ
dHλ

,
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so that the required condition takes the following form:

Πγ(H,λ) = Π̃γ(H,λ) (5.23)

for any closed loop γ on Lε1,ε2 = LH,λ (equivalently, for any cycle of the first homology group).

Let us assume that this condition holds true (we will below explain why, under our as-
sumptions, this is indeed the case) and make the next step of our construction. As just shown,
(5.23) guarantees that the function r(Q) is well defined for any point Q that can be reached by
the flows σt and σ̃t starting from the section N1. Since (after complexification) every regular
point satisfies this property, r(Q) is defined everywhere except for singular points and is locally
holomorphic by construction. But the set of singular points,{

∂H

∂x
= 0,

∂H

∂y
= 0

}
=
{
x = 0, 3y2 + λ = 0

}
,

is an algebraic variety of (complex) codimension 2, and therefore by the second Riemann
extension theorem ([34, Theorem 4.4] or [32, Theorem 7.2]), r(Q) can be extended up to a
holomorphic function defined everywhere in the considered domain. In particular, this function
is bounded and therefore, by taking a smaller neighborhood of the parabolic point, we may
assume that the flow σt is well defined for all t satisfying |t| ≤ max |r(Q)|.

After this, our formula (5.22) can be applied to every point from this neighborhood giving
a well defined holomorphic map Ψ with required properties. It remains to return to the real
world (i.e., restrict ψλ to the real part of our complex neighborhood) and we are done2.

To complete the proof we need to explain why condition (5.23) is fulfilled in our case.
First we notice that the first homology group of complex leaves Lε1,ε2 is generated by 2
cycles (topologically, Lε1,ε2 is a torus with one hole if (ε1, ε2) 6∈ ΣC = {ε2

1 = − 4
27ε

3
2}, a 2-

disk with one hole if (ε1, ε2) = (0, 0), and a pinched torus with one hole otherwise, where
one of the basic cycles is pinched to a point). Consider the (real) “swallow-tail domain”
{(ε1, ε2) ∈ R2 | ε2

1 < − 4
27ε

3
2} ⊂ {λ < 0}. Then one of these two cycles can be chosen real.

Such a cycle is shown in Figure 5.2 as a small loop, whose periods w.r.t. ωλ and ω̃λ were
denoted by Π◦(H,λ) and Π̃◦(H,λ). By our assumption Π◦(H,λ) = Π̃◦(H,λ), i.e., one of the
required conditions coincides with the second condition (ii) of Proposition 5.11.

Now consider condition (i) for {(ε1, ε2) ∈ R2 | ε2
1 < − 4

27ε
3
2} ⊂ {λ < 0}. When approaching

a hyperbolic singular leaf, the functions Π(H,λ) and Π̃(H,λ) both have logarithmic singularity.
This is a well known property of non-degenerate hyperbolic points ([19, 9]), in other words,
they have the following asymptotics3:

Π(H,λ) = α(H,λ) ln
∣∣∣3√3H − 2(−λ)3/2

∣∣∣+ β(H,λ),

Π̃(H,λ) = α̃(H,λ) ln
∣∣∣3√3H − 2(−λ)3/2

∣∣∣+ β̃(H,λ)

2A more technical proof of this part can be deduced from [33] (see also [28]). It follows from [33, Propositions
2.3 and 3.1], that if a 3-form β satisfies [β/dH ∧ dλ] = 0 ∈ H1(Lε1,ε2 ,C) on every regular fiber Lε1,ε2 , then
β = dH ∧ dλ ∧ dη(x, y, λ), η defined in a neighborhood of zero. Applying this to β = dλ ∧ (Ω − Ω̃), with
Ω, Ω̃ from (5.11), (5.12), we deduce ω̃λ − ωλ = dH ∧ dη(x, y, λ). Now we can apply Moser path method, as in
Theorem 5.1, to each slice λ = const.

3In the domain {(ε1, ε2) ∈ R2 | ε2
1 > − 4

27
ε3

2}, similar asymptotics for Π(H,λ) and Π̃(H,λ) hold, where
the coefficients α, β, α̃, β̃ are replaced by 2α, δ, 2α̃, δ̃ for some real-analytic functions δ, δ̃ in a neighbourhood of
Σhyp.
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for some real-analytic functions α, β, α̃, β̃ in a neighborhood of Σhyp = Σ∩{H > 0}. Condition
(i) of Proposition 5.11, therefore, implies that α(H,λ) = α̃(H,λ). For hyperbolic points,
this coefficient in front of logarithm is known to be proportional to the period of the second
(invisible in the real setting) cycle on the complex leaf LH,λ (see Proposition 5.15 and discussion
in Appendix).

Thus, for real λ < 0 and real H ∈
(
−2(−λ)3/2/(3

√
3), 2(−λ)3/2/(3

√
3)
)
the required

conditions (5.23) are fulfilled. Since the periods Πγ and Π̃γ are locally holomorphic (we cannot
consider them as single-valued functions because of the monodromy phenomenon) and coincide
on an open real domain, we conclude that (5.23) is fulfilled identically, which completes the
proof of Proposition 5.11.

We now return to our discussion on symplectic invariants of parabolic trajectories that
we started in Section 3. According to Proposition 5.3, this problem can be reduced to the
situation explained in Remark 5.5.

Namely, we consider two functions H = x2 + y3 + λy and F = λ that commute simul-
taneously with respect to two symplectic forms Ω and Ω̃ defined by (5.11) and (5.12) with
ωλ = f(x, y, λ)dx ∧ dy and ω̃λ = f̃(x, y, λ)dx ∧ dy and f, f̃ > 0. Combining Proposition 5.5
and Proposition 5.11, we obtain the following

Proposition 5.12. The following two statements are equivalent.

i) In a tubular neighborhood of the parabolic orbit γ0(t) = (0, 0, 0, ϕ=t) there is a (real-
analytic) diffeomorphism Φ such that

• Φ preserves H and F ;
• Φ∗(Ω̃) = Ω.

ii) The functions Π,Π◦, Π̃, Π̃◦ (real-analytic in the complement of the bifurcation diagram)
satisfy the relations

• Π(H,λ)− Π̃(H,λ) is real-analytic (in a neighborhood of the point H = 0, λ = 0),
• Π◦(H,λ) = Π̃◦(H,λ). �

In fact, the functions Π(H,λ) and Π◦(H,λ) are not independent. Indeed, as H →
2(−λ)3/2/(3

√
3) (i.e., when the real disconnected regular fiber approaches the hyperbolic

singular one) these two functions have a logarithmic singularity with the same logarithmic
coefficient, that is, we have the following asymptotics:

Π(H,λ) = α(H,λ) ln
∣∣∣3√3H − 2(−λ)3/2

∣∣∣+ β(H,λ),

Π◦(H,λ) = α(H,λ) ln
∣∣∣3√3H − 2(−λ)3/2

∣∣∣+ β◦(H,λ).

In other words, the functions β(H,λ) and β◦(H,λ) are different and not related to each other
in any sense, but the coefficients α(H,λ) are the same for both functions. According to
Proposition 5.12, however, the regular part β(H,λ) of Π(H,λ) does not play any role, so
that the only important information for us is the coefficient α(H,λ) which, as we have just
explained, can be “obtained” from Π◦(H,λ). Hence we conclude that Π◦(H,λ) contains all
the information we need for symplectic characterisation of a parabolic trajectory.
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We also note that the period Π◦(H,λ) of closed trajectories can naturally be interpreted
in terms of the action variables of our integrable system. Indeed, the family of small closed
trajectories shown on Figure 5.2 corresponds to a family of “narrow” two-dimensional Liouville
tori (recall that a four-dimensional neighborhood U(γ0) of the parabolic orbit γ0 is the product
(Figure 5.2)×S1). For this family, we can naturally define two action variables I1 and I2. The
first of them corresponds to the free Hamiltonian S1-action on U(γ0) generated by F = λ, that
is, I1 = λ. The other I2(H,λ) corresponds to the family of vanishing cycles shown in Figure
5.2 as small closed trajectories. We re-denote this function as I2(H,λ) = I◦(H,λ). Without
loss of generality we will assume that

I◦ > 0 and I◦ → 0 as (H,λ)→ (H(γ0), F (γ0)), (5.24)

i.e., as we approach the singular fiber. Notice that, in a coordinate system (x, y, λ, ϕ), I◦(H,λ)
can be defined by an explicit formula. Fixing H and λ, we define a unique closed cycle (see
Figure 5.2). This cycle bounds a certain domain VH,λ ⊂ R2(x, y) on the corresponding layer
{λ = const}. Then

I◦(H,λ) =
1

2π
area◦

(
VH,λ

)
=

1

2π

∫
VH,λ

ωλ.

It is well-known that I◦(H,λ) and Π◦(H,λ) > 0 are related in the following very simple
way:

Π◦(H,λ) = 2π
∂

∂H
I◦(H,λ),

which shows that Π◦(H,λ) can be reconstructed from I◦(H,λ), so that we finally come to the
following equivalent version of Proposition 5.12.

Proposition 5.13. In the same assumptions as in Proposition 5.12, the following two state-
ments are equivalent.

i) In a tubular neighborhood of the parabolic orbit γ0 there is a (real-analytic) diffeomor-
phism Φ such that

• Φ preserves H and F ;
• Φ∗(Ω̃) = Ω.

ii) The actions (real-analytic on the “swallow-tail domain” corresponding to a family of “nar-
row” Liouville tori) corresponding to the family of vanishing cycles (cf. (5.24)) coincide,
I◦(H,F ) = Ĩ◦(H,F ). �

We now want to give one more version of the criterion for the existence of Φ by omitting
the condition F = λ which, in particular, means that F is a 2π-periodic integral (equivalently,
the action variable I1) simultaneously for both integrable systems.

Consider H and F commuting with respect to Ω and Ω̃ in a tubular neighborhood of a
parabolic orbit γ0. Notice that now we are not allowed to assume that these two integrable
systems share the same canonical coordinate system (x, y, λ, ϕ) as we did in Propositions 5.12
and 5.13.

Let dF |γ0 6= 0. We will say that Ω and Ω̃ induce
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• the same orientation of γ0 if the Hamiltonian flows of F w.r.t. Ω and Ω̃ induce the same
orientation of γ0;
• the same coorientation of γ0 if (the restrictions of) Ω and Ω̃ induce the same orientation

of a (local) 2-dimensional surface in {F = F (γ0)} transversal to γ0 (i.e., on a 2-dim
Poincaré section).

Without loss of generality, we may (and will) assume that Ω and Ω̃ induce the same
orientation and the same coorientation of γ0. Indeed, we can easily achieve this condition by
using additional maps (x, y, λ, ϕ) 7→ (x, y, λ,−ϕ) and (x, y, λ, ϕ) 7→ (−x, y, λ, ϕ) (written in
a canonical coordinate system from Proposition 5.3) that change respectively the orientation
and coorientation without changing the functions F and H.

As above we can define two natural action variables for each of these two integrable sys-
tems I(H,F ), I◦(H,F ) and Ĩ(H,F ), Ĩ◦(H,F ). Here I(H,F ) and Ĩ(H,F ) are smooth on a
certain neighborhood U(γ0) and are generators of the Hamiltonian S1-actions w.r.t. Ω and Ω̃
respectively.

Alternatively, we may define I(H,F ) by

I(H,F ) =
1

2π

∮
γ
κ, where dκ = Ω

and γ = γH,F is a closed cycle on the fiber LH,F that is homotopic to γ0 (recall that locally
our fibration can be understood as the direct product of S1 and a three-dimensional foliated
domain V shown in Figure 5.2, then γH,F can be taken of the form S1 × {P} where P ∈ V is
a point lying on the corresponding fiber).

The other action variable I◦(H,F ) is only defined on the family of “narrow” Liouville tori
corresponding to small oriented loops µ◦ = µ◦(H,F ) shown in Figure 5.2:

I◦(H,F ) =
1

2π

∮
µ◦

κ, where dκ = Ω.

In other words, I◦(H,F ) is a function defined on the “swallow-tail” domain on R2(H,F )
bounded by the bifurcation diagram Σ (this definition coincides with (5.24) up to, perhaps,
changing the sign).

The actions Ĩ(H,F ) and Ĩ◦(H,F ) for the second system are defined in a similar way by
integrating κ̃, dκ̃ = Ω̃, over the same cycles γ and µ◦ with the same orientations.

Theorem 5.2. Suppose that the singular fibration defined by the functions H and F is La-
grangian w.r.t. both the symplectic forms Ω and Ω̃. Suppose that Ω and Ω̃ induce the same
orientation and the same coorientation of a parabolic orbit γ0. Then the following two state-
ments are equivalent.

i) In a tubular neighborhood of the parabolic orbit γ0 there is a (real-analytic) diffeomor-
phism Φ such that

• Φ preserves H and F ;
• Φ∗(Ω̃) = Ω.

ii) These two integrable systems have common action variables described above, i.e.,

I(H,F ) = Ĩ(H,F ) + const and I◦(H,F ) = Ĩ◦(H,F ).
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Proof. Suppose (ii) holds true. First of all we replace the functions F and H by new functions
F̂ and Ĥ satisfying the following conditions (cf. Proposition 5.1 and Remark 5.2):

• F̂ = ±I(H,F ) + const where ± and const are chosen in such a way that F̂ = 0 on the
parabolic trajectory γ0 and F̂ < 0 on the swallow-tail domain of the bifurcation diagram;
• Ĥ is chosen in such a way that the bifurcation diagram of F̂ = (F̂ , Ĥ) takes the standard

form (5.9).

After this we apply Proposition 5.4 which says that formulas from Proposition 5.3 holds
true exactly for the functions F̂ and Ĥ. In other words, we can introduce two different “good”
coordinate systems (x, y, λ, ϕ) and (x̃, ỹ, λ̃, ϕ̃) as in Proposition 5.3 for (Ĥ, F̂ ,Ω) and (Ĥ, F̂ , Ω̃)
respectively (notice that λ = λ̃ automatically as both λ and λ̃ coincide with F̂ ).

The next step is to consider the map Ψ : (x, y, λ, ϕ) 7→ (x̃, ỹ, λ̃, ϕ̃) and after this continue
working with the forms Ω and Ψ∗(Ω̃). Now (x, y, λ, ϕ) is a common “good” coordinate sys-
tem for both systems and the conditions of Theorem 5.2 are still fulfilled for Ω and Ψ∗(Ω̃).
After this, it remains to apply Proposition 5.13 for the integrable systems (Ĥ, F̂ ,Ω) and
(Ĥ, F̂ ,Ψ∗(Ω̃)).

The fact that (i) implies (ii) follows from the assumption that the symplectic forms Ω and
Ω̃ induce the same orientation and coorientation on γ0. Indeed this implies that Φ preserves
the homology class of γ and µ◦ on each “narrow” torus. Therefore if we set κ = Φ∗κ̃ in
the definition of the actions I(H,F ) and I◦(H,F ), then I(H,F ) = Ĩ(H,F ) and I◦(H,F ) =
Ĩ◦(H,F ).

In fact, we do not even need to mention H and F in the statement of Theorem 5.2 at all.
We may simply say:

Theorem 5.3. Consider a singular fibration with a parabolic orbit γ0 which is Lagrangian
with respect to two symplectic structures Ω and Ω̃. Suppose that Ω and Ω̃ induce the same
orientation and the same coorientation of γ0. The necessary and sufficient condition for the
existence of a (real-analytic) diffeomorphism Φ in a tubular neighborhood of γ0 sending each
fiber to itself and such that Φ∗(Ω̃) = Ω is that these two systems have common action variables
in the sense that for every closed cycle τ on any “narrow” torus we have∮

τ
κ =

∮
τ
κ̃, for dκ = Ω, dκ̃ = Ω̃,

where κ and κ̃ are chosen in such a way that
∮
γ0
κ =

∮
γ0
κ̃ = 0. �

Notice that due to analyticity it is sufficient to compare the actions only on the family of
“narrow” tori, although I and Ĩ are defined on the whole neighborhood U(γ0).

Finally, we want to relax the condition that each fiber goes to itself (indeed, this assumption
makes no sense at all if we want to compare parabolic orbits for two different integrable
systems).

Assume that we are given two integrable systems with parabolic orbits γ0 and γ̃0, respec-
tively. For both systems we consider the bifurcation diagrams (or bifurcation complexes), Σ
and Σ̃ respectively, and the “swallow-tail domains” corresponding to the families of “narrow”
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Liouville tori. On each of these domains we have two actions I and I◦ (as functions of H and
F ) and correspondingly Ĩ and Ĩ◦ (as functions of H̃ and F̃ ) defined as above. Without loss of
generality we will assume that these action variables are “normalised” in such a way that

• all of them vanish at the corresponding cusp point,
• I◦ and Ĩ◦ are positive on the corresponding “swallow-tail” domains,
• I and Ĩ are negative on the corresponding “swallow-tail” domains.

Combining Theorem 5.2 with Proposition 5.2 we obtain

Theorem 5.4. The necessary and sufficient condition for the existence of a real-analytic fiber-
wise symplectomorphism Φ : U(γ0)→ Ũ(γ̃0) between some tubular neighborhoods U(γ0), Ũ(γ̃0)
of the parabolic orbits γ0, γ̃0 is that these two systems have common action variables in the
sense that there is a real-analytic diffeomorphism

ϕ : (H,F ) 7→ (H̃, F̃ ) (5.25)

between some neighborhoods of the cusp points (H(γ0), F (γ0)) and (H̃(γ̃0), F̃ (γ̃0)) in R2 that

• respects the bifurcation diagrams together with their partitions into hyperbolic and elliptic
branch4:

ϕ(Σ) = Σ̃, moreover ϕ(Σell) = Σ̃ell and ϕ(Σhyp) = Σ̃hyp,

• and preserves the action variables described above: I = Ĩ ◦ ϕ and I◦ = Ĩ◦ ◦ ϕ, i.e., for
the action variables defined on the “swallow-tail domains” we have

I(H,F ) = Ĩ(H̃(H,F ), F̃ (H,F )) and I◦(H,F ) = Ĩ◦(H̃(H,F ), F̃ (H,F )). �

The latter conclusion basically means that the only symplectic invariants of hyperbolic
orbits are action variables. This conclusion does not provide any tools to decide whether a
suitable map (5.25) (making the actions equal) exists or not, but some necessary conditions
can be easily found. Some of them have been already described in Section 4, e.g., the function
f(·) from Proposition 5.10. This function is a symplectic invariant of a parabolic singularity
which “corresponds” to the level λ = 0, where λ, as above, denotes the first action variable
I(H,F ). We now want to describe another non-trivial symplectic invariant which will be a
function h(λ), λ < 0.

Since λ = λ(H,F ) is a real-analytic function, we can consider it as a parameter on the
hyperbolic branch Σhyp of the bifurcation diagram Σ. Consider I◦(H,λ) as a function of H
(with λ as a parameter). This function is defined on the interval(

−2(−λ)3/2/(3
√

3), 2(−λ)3/2/(3
√

3)
)
,

is strictly increasing from 0 to its maximum attained on the hyberbolic branch. We denote
it by h(λ) = maxH I◦(H,λ). Obviously, h(λ) does not depend on the choice of commuting

4Equivalently, we may say that ϕ defines a (local) homeomorphism between the corresponding bifurcation
complexes.
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functions H and F defining the Lagrangian fibration, so that h(λ) can be considered as a
symplectic invariant of a parabolic singularity.

The problem of an explicit description of a complete set of symplectic invariants is equiv-
alent, as shown above, to the analysis of the asymptotics of the function I◦(H,λ). More pre-
cisely, we should describe invariants of such functions under (real-analytic) transformations of
the form (H,λ) 7→

(
H̃(H,λ), λ̃ = λ

)
.

6 Semi-local invariants of cusp singularities

Finally, we want to describe semi-local invariants of cusp singularities. In other words, we now
consider a saturated neighborhood of a compact singular fiber L0 containing a parabolic orbit,
i.e., cuspidal torus. We assume that this fiber contains no other critical points, so that the
topology of the fibration in a neighborhood of L0 is standard and illustrated in Figure 5.3. This
figure also shows the bifurcation complex, i.e., the base of this fibration, which consists of two
2-dimensional strata (attached to each other along Σhyp, one of the branches of the bifurcation
diagram Σ that corresponds to the family of hyperbolic orbits). Each stratum represents a
family of Liouville tori and therefore we can naturally assign a pair of action variables to each
of them. Our goal is to show that fibrations with the same actions are symplectomorphic.

In a neighborhood U(L0) of the singular fiber L0, on all neighboring Liouville tori we can
choose a natural basis of cycles in the first homology group of H1(T 2

F,H ,Z) where T 2
H,F is the

Liouville torus defined by fixing the values of the integrals F and H respectively. These cycles
are shown in Figure 5.3. One of them corresponds to the S1-action defined on U(L0) (in Figure
5.3, this cycle γ is denoted by S1). The other cycle can be obtained by considering a global
3-dimensional cross-section to this S1-action. Since this S1-action (and the corresponding S1-
fibration) is topologically trivial, such a cross section exists. It is illustrated on the left in Figure
5.3 and denoted by V so that we may think of U(L0) as the direct product V × S1 = U(L0).
Each Liouville torus T 2

F,H intersects V along a closed curve (these curves are shown in Figure
5.3) and this curve is taken as the second basis cycle µ in H1(T 2

F,H ,Z). More precisely, we
need to take into account that for a point (F,H) from the swallow-tail zone, we will have two
disjoint Liouville tori. The corresponding cycles will be denoted by µ and µ◦, where µ◦ is
used for the vanishing cycle on the family of “narrow” tori, the other, i.e., µ, corresponds to a
“wide” torus.

Notice that the first cycle γ is uniquely defined by the S1-action. The cycle µ◦ is also
well defined by the topology of the fibration (as a vanishing cycle). The other cycle µ is not.
It is easy to see that µ is defined up to the transformation of the form µ 7→ µ + kγ, k ∈ Z.
This is caused by ambiguity in the choice of the cross-section V which can be chosen in many
homotopically different ways (this phenomenon is discussed and explained in details in [7]).

Summarizing, on each stratum of the bifurcation complex, we have a pair of action variables
Iγ , Iµ and Iγ , Iµ◦ (the latter for the swallow-tail stratum). Each of these functions can be
treated as a real-analytic function of H and F . In fact, we have already considered the actions
Iγ and Iµ◦ in the previous Section 5, where they were denoted by I(H,F ) and I◦(H,F ). We
will keep this notation here, i.e., we set Iγ = I, Iµ◦ = I◦. The remaining action will be denoted
by Iµ so that we have 3 action variables I, I◦ and Iµ. The first two of them are well-defined,
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but Iµ is defined modulo transformation Iµ 7→ Iµ + kI.

Also notice that I(H,F ) is real-analytic everywhere (strictly speaking we need to dis-
tinguish this action for the families of “narrow” and “wide” tori, but due to real-analyticity
I(H,F ), as function of H and F , is the same for both families). The function Iµ(H,F ) is
defined and is real-analytic everywhere except for the hyperbolic branch Σhyp of the bifurca-
tion diagram. When approaching Σhyp the function tends to certain finite limits, but these
limits from above and from below are different. The function I◦ is defined on the swallow-tail
domain and is continuous on its closure.

bifurcation
complexbifurcation

diagram

×S1

F

H

(H;F )

N2

N1

µ

µ◦

Figure 5.3: Singular fibration near a cuspidal torus

Our final result basically states that the systems with equal actions are symplectomor-
phic. We will give two versions of this result. Consider two integrable Hamiltonian systems(
H,F,Ω, U(L0)

)
and

(
H̃, F̃ , Ω̃, Ũ(L̃0)

)
defined on some neighborhoods5 of cuspidal tori L0

and L̃0.

5We do not specify the sizes of these neighborhoods, but assume that they are sufficiently small. In other
words, we are talking about germs of fibrations and germs of maps.
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Theorem 5.5. Assume that there is a fiberwise diffeomorphism Ψ : U(L0) → Ũ(L̃0) that
preserves the actions in the sense that for every cycle τ ⊂ LH,F we have∮

Ψ(τ)
κ̃ =

∮
τ
κ

for some 1-forms κ and κ̃ satisfying dκ = Ω, dκ̃ = Ω̃. Then there exists a fiberwise symplec-
tomorphism Φ : U(L0)→ Ũ(L̃0).

Remark 5.7. The converse statement is obviously true, since a fiberwise symplectomorphism
Φ preserves the actions: ∮

Φ(τ)
κ̃ =

∮
τ
κ

where κ and κ̃ are related by Φ∗κ̃ = κ.

A stronger version is as follows. For each system we compute the actions I(H,F ), I◦(H,F )
and Iµ(H,F ) and respectively Ĩ(H̃, F̃ ), Ĩ◦(H̃, F̃ ) and Ĩµ̃(H̃, F̃ ) for the second system as ex-
plained above.

Theorem 5.6. Assume that there is a local real-analytic diffeomorphism ϕ : (H,F ) 7→ (H̃, F̃ ),
H̃ = H̃(H,F ) and F̃ = F̃ (H,F ) that

• respects the bifurcation diagrams together with their partitions into hyperbolic and elliptic
branches:

ϕ(Σ) = Σ̃, moreover ϕ(Σell) = Σ̃ell and ϕ(Σhyp) = Σ̃hyp,

• and makes the actions equal (for some choice of µ and µ̃):

I(H,F ) = Ĩ(H̃(H,F ), F̃ (H,F )),

I◦(H,F ) = Ĩ◦(H̃(H,F ), F̃ (H,F )) and

Iµ(H,F ) = Ĩµ̃(H̃(H,F ), F̃ (H,F )).

Then there exists a fiberwise symplectomorphism Φ : U(L0)→ Ũ(L̃0).

Remark 5.8. Notice that the converse statement is also true: a fiberwise symplectomorphism
Φ : U(L0) → Ũ(L̃0) induces a diffeomorphism ϕ between the bases of the fibrations which
automatically satisfies the properties above (where the choice of µ̃ is induced by Φ and µ).

Remark 5.9. We can rewrite this statement in a slightly different and shorter way. For each of
the above integrable systems we may consider the momentum map π : U(L0)→ B ⊂ R2(H,F )
and π : Ũ(L̃0)→ B̃ ⊂ R2(H̃, F̃ ), where B and B̃ are some neighborhoods of the corresponding
cusp points of the bifurcation diagrams. Then we can think of the actions as functions on B
(more precisely on the corresponding domains defined by the bifurcation diagrams). Then
Theorem 5.6 can be rephrased as follows:

Assume that there exists a local real-analytic diffeomorphism ϕ : B → B̃ respecting the
bifurcation diagrams Σ and Σ̃ and such that I = Ĩ ◦ϕ, I◦ = Ĩ◦ ◦ϕ and Iµ = Ĩµ̃ ◦ϕ. Then there
exist a fiberwise symplectomorphism Φ : U(L0)→ Ũ(L̃0).
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The proof of this theorem is based on the following lemma. Consider two (non-singular)
integrable systems (H,F,Ω) and (H̃, F̃ , Ω̃) defined in some neighborhoods T 2×B and T̃ 2× B̃
of regular Liouville tori. Here B and B̃ are 2-dimensional discs viewed as the bases of the
corresponding (regular) Lagrangian fibrations endowed with induced integer affine structures
(action variables). The functions (H,F ) and (H̃, F̃ ) are treated as smooth functions on B and
B̃ respectively. We also consider the Hamiltonian R2-actions σ(t1,t2) and σ̃(t1,t2), (t1, t2) ∈ R2

generated by the commuting functions (H,F ) and (H̃, F̃ ). Here σ(t1,t2) denotes the com-
position of the Hamiltonian shifts along vector fields XH and XF by time t1 and time t2
respectively. Similarly for σ̃(t1,t2).

Lemma 5.6. Assume that we have a real-analytic diffeomorphism

ϕ : B → B̃,

which provides an (integer) affine equivalence between B and B̃. Let H = H̃ ◦ϕ and F = F̃ ◦ϕ
and consider two Liouville tori Tp = T 2 × {p} and T̃ϕ(p) = T̃ 2 × {ϕ(p)} where p ∈ B is an
arbitrary point (in other words, these tori correspond to each other under the map ϕ : B → B̃).
Let x ∈ Tp and x̃ ∈ T̃ϕ(p) be arbitrary two points from these fibers.

Then σ(t1,t2)(x) = x (or more generally σ(t1,t2)(x) = σ(t′1,t
′
2)(x)) if and only if σ̃(t1,t2)(x̃) = x̃

(respectively σ̃(t1,t2)(x̃) = σ̃(t′1,t
′
2)(x̃)).

Proof. We will give a proof of this statement in the case of n degrees of freedom. Recall
that B and B̃ are endowed with integer affine structures induced by the action variables. By
definition, ϕ : B → B̃ is an (integer) affine equivalence if ϕ sends “actions to actions”. More
precisely, let Ĩ1, . . . , Ĩn be action variables for B̃, which means that these functions define the
Hamiltonian action of the standard torus Rn/Γ0 where Γ0 = Zn is the standard integer lattice
in Rn. We say that ϕ : B → B̃ is an affine equivalence, if I1 = Ĩ1 ◦ ϕ, . . . , In = Ĩn ◦ ϕ are
action variables on B.

If in Lemma 5.6 instead of (H,F ) and (H̃, F̃ ) we consider (I1, I2) and (Ĩ1, Ĩ2), then the
statement is obvious: both relations σ(t1,t2)(x) = x and σ̃(t1,t2)(x̃) = x̃ simply mean that
(t1, t2) belongs to the standard integer lattice, i.e., t1, t2 ∈ Z.

Let us see what happens if take arbitrary functions (H,F ) or, more generally, (F1, F2, . . . Fn)
in the case of n degrees of freedom. The relation σ(t1,...,tn)x = x means that (t1, . . . , tn) be-
longs to the period lattice Γ ⊂ Rn which is the stationary subgroup of x in the sense of the
Hamiltonian Rn-action generated by F1, F2, . . . Fn. Since this lattice is the same for any point
x from a fixed torus Tp, p ∈ B, we may denote it by Γ(Tp). This lattice is not standard
anymore and it depends on two things, the torus Tp (or just a point p ∈ B) and the generators
F1, F2, . . . Fn of the Hamiltonian Rn-action.

If we know the expressions of F1, . . . , Fn in terms of the actions I1, . . . , In, then the lattice
Γ(Tp) is easy to describe. Namely:

Γ(Tp) = Γ0 · J−1(p),

where Γ0 is the standard integer lattice and J(p) denotes the Jacobi matrix J(p) =
(
J ij = ∂Fi

∂Ij
|p
)
.

In more details,

(t1, . . . , tn) ∈ Γ(Tp) if and only if (t1, . . . , tn) = (k1, . . . , kn) · J−1(p)
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for (k1, . . . , kn) ∈ Γ0, i.e., for some vector with integer components ki ∈ Z.
The same, of course, holds for x̃ ∈ T̃ϕ(p), that is

(t1, . . . , tn) ∈ Γ(T̃ϕ(p)) if and only if (t1, . . . , tn) = (k1, . . . , kn) · J̃−1(ϕ(p))

where J̃(ϕ(p)) =
(
J̃ ij = ∂F̃i

∂Ĩj
|ϕ(p)

)
. It remains to notice that under our assumptions these

matrices coincide. The reason is obvious: since Ik = Ĩk ◦ ϕ and also Fi = F̃i ◦ ϕ, we see that
Fi = fi(I1, . . . , In) implies that F̃ = fi(Ĩ1, . . . , Ĩn), i.e., Fi depends on I1, . . . , In exactly in
the same way as F̃i depends on Ĩ1, . . . , Ĩn so that the corresponding partial derivatives (being
computed at p and ϕ(p), i.e., at those points for which (I1, . . . , In) = (Ĩ1, . . . , Ĩn)) obviously
coincide. In other words, we have proved that Γ(Tp) = Γ(T̃ϕ(p)), which is equivalent to our
statement.

This lemma implies the following two extension results.

Under the assumptions and notation from Lemma 5.6, assume that N and Ñ are La-
grangian (real-analytic) sections of the Lagrangian fibrations π : T 2×B → B and π̃ : T̃ 2×B̃ →
B̃ respectively. Since the sections N and Ñ can be naturally identified with the bases B and
B̃, the map ϕ : B → B̃ induces a natural map between N and Ñ which we denote by the same
letter ϕ : N → Ñ . For any point y ∈ T 2 × B we can find (not uniquely!) (t1(y), t2(y)) ∈ R2

such that x = σ(t1(y),t2(y))(y) ∈ N . Consider the map Φ : T 2 ×B → T̃ 2 × B̃ defined by

Φ(y) = σ̃(−t1(y),−t2(y))(ϕ(x)), where x = σ(t1(y),t2(y))(y) ∈ N.

Corollary 5.4. The map Φ(y) is well defined and is a fiber-wise real-analytic diffeomorphism
satisfying Φ∗(Ω̃) = Ω.

Proof. The fact that Φ is well defined (i.e., does not depend on the choice of (t1, t2) ∈ R2 with
the property σ(t1,t2)(y) ∈ N) follows from Lemma 5.6. To show that Φ is symplectomorphism,
i.e., Φ∗(Ω̃) = Ω, we notice that the position of each point y ∈ T 2 ×B is defined by the values
of H,F (which can be understood as coordinates on B) and t1, t2 (which can be understood
as coordinates on the torus T 2 with the “origin” (0, 0) located on N). These four functions
define a canonical coordinate system, i.e.,

Ω = dH ∧ dt1 + dF ∧ dt2.

A similar canonical coordinate system H̃, F̃ , t̃1, t̃2 can be defined on T̃ 2×B̃ by using the action
σ̃ and the Lagrangian section Ñ . It remains to notice that our map Φ in these coordinate
systems, by construction, takes the form H̃ = H, F̃ = F , t̃1 = t1, t̃2 = t2.

Let U ⊂ T 2 × B be an open subset such that the intersection of U with each fiber is
connected and non-empty. Let Φloc : U → Ũ be a real-analytic fiber-wise diffeomorphism
with a certain open subset Ũ ⊂ T̃ 2 × B̃ such that Φ∗loc(Ω̃) = Ω. Since Φloc is fiberwise and U
intersects each fiber, Φloc induces a real-analytic map ϕ between the bases B and B̃.

Corollary 5.5. Φloc can be extended up to a real-analytic fiber-wise diffeomorphism Φ : T 2 ×
B → T̃ 2 × B̃ with the property Φ∗(Ω̃) = Ω if and only ϕ : B → B̃ is an integer affine
equivalence.
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Proof. First of all we notice that such an extension (if it exists) is always unique. Indeed,
since Φ is a symplectomorphism, we have

Φ ◦ σ(t1,t2) = σ̃(t1,t2) ◦ Φ,

where σ and σ̃ are Hamiltonian R2-actions generated by H,F and H̃ = H ◦Φ−1, F̃ = F ◦Φ−1

respectively. Therefore for any y ∈ T 2 ×B, its image Φ(y) is uniquely defined by:

Φ(y) = σ̃(t1,t2) ◦ Φloc ◦ σ(−t1,−t2)(y), (5.26)

where (t1, t2) are chosen in such a way that σ(−t1,−t2)(y) ∈ U (such (t1, t2) ∈ R2 exists as
each orbit of the action σ has a non-trivial intersection with U). Moreover, this formula can
be understood as an explicit formula for the required extension. In a neighborhood of every
point y, the expression σ̃(t1,t2) ◦ Φloc ◦ σ(−t1,−t2) (with fixed (t1, t2)) is a composition of three
real-analytic fiberwise symplectomorphisms. So the only condition we need to check is that
formula (5.26) is well defined, i.e., does not depend on the choice of (t1, t2) ∈ R2.

Assume that
y = σ(t1,t2)(x) = σ(t′1,t

′
2)(x′) with x, x′ ∈ U.

We need to check that

σ̃(t1,t2) ◦ Φloc ◦ σ(−t1,−t2)(y) = σ̃(t′1,t
′
2) ◦ Φloc ◦ σ(−t′1,−t′2)(y) (5.27)

or, equivalently,
σ̃(t1,t2) ◦ Φloc(x) = σ̃(t′1,t

′
2) ◦ Φloc(x

′). (5.28)

By our assumption, the intersection of U with each torus (interpreted now as an orbit of σ)
is connected, therefore there exists a continuous curve (ε1(s), ε2(s)), s ∈ [0, 1] and ε1(0) =
ε2(0) = 0 such that

σ(ε1(s),ε2(s))(x) ∈ U for all s ∈ [0, 1] and σ(ε1(1),ε2(1))(x) = x′.

Since Φloc is a fiberwise symplectomorphism, we have

Φloc ◦ σ(ε1(s),ε2(s))(x) = σ̃(ε1(s),ε2(s)) ◦ Φloc(x)

for any s and, in particular,

Φloc(x
′) = σ̃(ε1(1),ε2(1)) ◦ Φloc(x).

Hence (5.28) can be rewritten as

σ̃(t1,t2)
(
Φloc(x)

)
= σ̃(t′1+ε1(1),t′2+ε2(1))

(
Φloc(x)

)
. (5.29)

On the other hand, since σ(t1,t2)(x) = σ(t′1,t
′
2)(x′), we also have

σ(t1,t2)(x) = σ(t′1+ε1(1),t′2+ε2(1))(x). (5.30)

According to Lemma 5.6, if ϕ is an affine equivalence then (5.30) implies (5.29) and there-
fore (5.27), as needed.

The necessity of the condition that ϕ : B → B̃ is an integer affine equivalence is obvious:
every fiberwise symplectomorphism induces an affine equivalence between B and B̃.
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We now use Corollary 5.5 to prove Theorem 5.6.

Proof. First we apply Theorem 5.4 which guarantees the existence of a real-analytic fiberwise
diffeomorphism Φloc

6 between some neighborhoods of parabolic trajectories γ0 ⊂ L0 and
γ̃0 ⊂ L̃0. We now need to extend Φloc up to the desired fiberwise symplectomorphism Φ :
U(L0)→ Ũ(L̃0).

According to Corollary 5.5 such an extension exists for all Liouville tori (more precisely,
we only need to consider “wide” Liouville tori because all “narrow” Liouville tori are already
contained in the domain of Φloc). Thus, it remains to explain why this map can be extended
by continuity to each singular fiber.

On Figure 5.3 we can see the domain U on which Φloc is already defined and the com-
plementary domain W to which Φloc should be extended. Without loss of generality we may
assume that both domains are bounded by the sections N1 and N2. Namely, U is located
to the right of N1 and N2 and contains all singular orbits including the parabolic one. The
complimentary domain W is located to the left of N1 and N2 and contains no singularities at
all.

Let y ∈W be an arbitrary point located on one of singular fibers and V (y) be a sufficiently
small neighborhood of y. Then there exists (t1, t2) ∈ R2 such that σ(−t1,−t2)(V (y)) ⊂ U and
we may apply our extension formula (5.27) to define Φ on V (y). Obviously, this formula
defines a real-analytic fiberwise (local) symplectomorphism from V (y) to its image in Ũ(L̃0)
and moreover, due to the uniqueness of such an extension, this map coincides with Φ that has
been already defined on non-singular fibers (Liouville tori). This is equivalent to saying that
Φ can be naturally extended (by continuity) from Liouville tori to all singular fibers. This
completes the proof.

Remark 5.10. Our final remark is that the statement of Theorem 5.6 given in Remark 5.9
can be also understood in terms of natural affine structures defined on B and B̃.

A necessary and sufficient condition for the existence of a semi-local fiberwise symplec-
tomorphism Φ : U(L0) → Ũ(L̃0) between neighborhoods of two cuspidal tori L0 and L̃0 is
that the corresponding bases B and B̃ are locally equivalent as manifolds with singular integer
affine structures. Moreover, every affine equivalence ϕ : B → B̃ can be lifted up to a fiberwise
symplectomorphism Φ.

This gives a partial answer to Problem 27 from the collection [8] of open problems in the
theory of finite-dimensional integrable systems.

7 Appendix

In this appendix we give a formal proof of the statement made in Remark 5.2, namely we
prove the following

Proposition 5.14. Let P be a parabolic point of a momentum mapping F = (F,H) : M4 →

6In Theorem 5.4, this map was denoted by Φ.
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R2 in the sense of Definition 5.1 we (in particular, dF (P ) 6= 0) and

H̃ = H̃(H,F ), F̃ = F̃ (H,F ) (5.31)

be a non-degenerate transformation such that dF̃ (P ) 6= 0. Then P is still parabolic w.r.t. H̃
and F̃ .

Proof. First of all, we notice that in Definition 5.1 we can replace H by H − constF and,
in particular, by H − kF where k ∈ R is chosen in such a way that d(H − kF ) = 0. In
other words, without loss of generality we may assume that dH(P ) = 0 and similarly for H̃.
Under this additional assumption, the quadratic differential d2H(P ) makes sense on the whole
tangent space TPM4. Taking into account that the tangent space to the hypersurface {F =
F (P )} coincides with the kernel of the differential dF (here we use the fact that Ker dF(P ) =
Ker dF (P ) = TP {F = F (P )}), we can reformulate the first condition (i) as follows:

i) the rank of the restriction d2H(P )|Ker dF equals 1.

The advantage of such a reformulation is that now this condition does not depend on the
choice of F at all. Therefore to verify the invariance of Condition (i) w.r.t. transformation
(5.31), it is sufficient to prove

Lemma 5.7. Let H̃ = H̃(H,F ) and dH̃(P ) = 0, then the forms d2H(P )|Ker dF and d2H̃(P )|Ker dF
are proportional with a non-zero factor.

Proof. It is sufficient to compare the Taylor expansions of H and H̃ at the point P up to
second order terms. Let

∆H̃ ' a1∆H + a2∆F + a11∆H2 + 2a12∆H∆F + a22∆F 2 . . .

Since dH̃(P ) = dH(P ) = 0, we conclude that a2 = 0 and a1 6= 0 and obtain:

∆H̃ ' a1

2
d2H(∆x,∆x) + a22 (dF (∆x))2 + . . . (5.32)

(all the other terms are of order ≥ 3 and we omit them) or equivalently:

d2H̃ = a1d
2H + 2a22dF ⊗ dF (5.33)

(the differentials and second differentials are taken at the point P ). Restricting to Ker dF =
Ker dF , we get d2H̃(P )|Ker dF = a1d

2H̃(P )|Ker dF with a1 6= 0, as required.

Suppose that Condition (i) holds. Then the invariance of Condition (iii) w.r.t. transfor-
mation (5.31) amounts to the following

Lemma 5.8. Let H̃ = H̃(H,F ), dH̃(P ) = 0 and rank (d2H)|Ker dF = 1. Then the conditions
rank d2H(P ) = 3 and rank d2H̃(P ) = 3 are equivalent.

Proof. It is sufficient to use formula (5.33), namely:

d2H̃ = a1d
2H + 2a22dF ⊗ dF.
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In general, these two forms d2H̃ and d2H do not necessarily have the same rank, but under the
condition that rank (d2H)|Ker dF = 1 (using Ker dF = Ker dF ), the statements rank d2H̃ = 3
and rank d2H = 3 become equivalent (simple exercise in Matrix Algebra). Indeed, if we choose
a basis e1, e2, e3, e4 in such a way that e1, e2, e3 span Ker dF and e2, e3 span Ker d2H|Ker dF

and, in addition, dF (e4) = 1 we will see that in matrix terms, the above formula (5.33) can
be rewritten as

d2H =


α 0 0 β
0 0 0 γ
0 0 0 δ
β γ δ λ

 , d2H̃ = a1


α 0 0 β
0 0 0 γ
0 0 0 δ
β γ δ λ

+ 2a22


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

 .

Now it is easy to see that both statements rank d2H = 3 and rank d2H̃ = 3 are equivalent to
the condition (γ, δ) 6= (0, 0), which completes the proof.

Finally, we need to verify the invariance of Condition (ii) w.r.t. transformation (5.31).
We first show that this condition does not change if we change F . Consider a new function
F̃ = F̃ (F,H). Since scaling F 7→ const · F does not affect the surface {F = F (P )}, we may
assume that ∂F̃

∂F |F(P ) = 1.

According to the definition of v3H0 we need to differentiate the same function H but
along two different curves γ(t) ⊂ {F = F (P )} and γ̃(t) ⊂ {F̃ = F̃ (P )}. Let us choose local
coordinates x1, . . . , xn on M in such a way that x1 = F and P = (0, . . . , 0). It is easy to
see that if we set x̃1 = F̃ , then still x̃1, x2, . . . , xn is a good coordinate system. Moreover,
the Jacobi matrix of the corresponding transformation at P is the identity. In coordinates
x1, . . . , xn, the curve γ(t) can be defined as γ(t) = (0, x2(t), . . . , xn(t)). The curve γ̃(t) in the
same coordinate system will be defined as

γ̃(t) = (x1(t), x2(t), . . . , xn(t)) = γ(t) + (x1(t), 0, . . . , 0)

(all functions are the same except for x1(t) which should be chosen in such a way that F̃ = 0
along the curve. In other words, x1 can be found as a function of the other variables x2, . . . , xn
from the implicit relation

0 = F̃ (F,H) = F̃
(
x1, H(x1, x2, . . . , xn)

)
⇔ x1 = g(x2, . . . , xn)

and correspondingly x1(t) = g
(
x2(t), . . . , xn(t)

)
.

Our goal is to show that

d3

dt3
|t=0H(γ̃(t)) =

d3

dt3
|t=0H(γ(t)). (5.34)

It is easy to see that the Taylor expansion of x1 = g(x2, . . . , xn) starts with quadratic
terms. Indeed, if (w.l.o.g. we assume that F (P ) = 0 and H(P ) = 0 so that ∆F = F and
∆H = H)

F̃ (F,H) = F + b2H + b11F
2 + 2b12FH + b22H

2 + . . .

then we need to resolve the equation (with respect to x1)

0 = x1 + b2H + b11x
2
1 + · · · = x1 + b2

1

2

n∑
i,j=1

∂2H

∂xi∂xj
xixj + b11x

2
1 + . . . (5.35)
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These quadratic terms are sufficient to reconstruct the quadratic terms of the Taylor ex-
pansion of the function x1 = g(x2, . . . , xn). This can be done by using the implicit function
theorem, but we can also use the substitution

x1 = g(x2, . . . , xn) =
n∑

i,j=2

cijxixj + . . .

into (5.35). If we collect (after substitution) all quadratic terms we obtain:

0 =

n∑
i,j=2

cijxixj + b2
1

2

n∑
i,j=2

∂2H

∂xi∂xj
xixj + . . .

which means that up to a constant factor the quadratic expansions of g and H0 coincide:

g(x2, . . . , xn) = −b2
2

n∑
i,j=2

∂2H

∂xi∂xj
xixj + . . .

or
d2g(ξ, ξ) = −b2d2H(ξ, ξ) for any ξ ∈ Ker dF = Ker dF . (5.36)

Now we are ready to verify (5.34). We have:

d3

dt3
|t=0H(γ̃(t)) = d3H(γ̃′, γ̃′, γ̃′) + 3d2H(γ̃′, γ̃′′) + dH(γ̃′′′),

and
d3

dt3
|t=0H(γ(t)) = d3H(γ′, γ′, γ′) + 3d2H(γ′, γ′′) + dH(γ′′′).

Since γ′ = γ̃′ = v and dH(P ) = 0, we only need to compare the middle terms. In
the second relation this term vanishes because γ′′ ∈ Ker dF (as the first component of γ(t)
identically vanishes) and γ′ belongs to the kernel of (d2H)|Ker dF .

Consider the difference between d2H(γ̃′, γ̃′′) and d2H(γ′, γ′′). Since γ̃′ = γ′, we have

d2H(γ̃′, γ̃′′)− d2H(γ′, γ′′) = d2H(γ′, (γ̃ − γ)′′).

But γ̃ − γ = (g(x2(t), . . . , xn(t)), 0, . . . , 0) so that for the potentially non-zero component of
γ̃ − γ we get

d2

dt2
|t=0g(x2(t), . . . , xn(t)) = d2g(γ′, γ′) = (see (5.36)) = −b2 d2H(γ′, γ′).

It remains to notice that d2H(γ′, γ′) = 0 as v = γ′ ∈ Ker (d2H)|Ker dF . Thus, (γ̃ − γ)′′ = 0.

Thus, we have shown that condition (iii) does not depend on the choice of F (keeping H
fixed). The last step is to show that (iii) does not depend on the choice of H (keeping F
fixed). Again we use the Taylor expansion (5.32), but now up to third order terms

∆H̃ = a1∆H + 2a12∆H∆F + a22(∆F )2 + a222(∆F ) + . . . , a1 6= 0.
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We do not need other terms (like (∆H)2 for example) as in local coordinates ∆H starts with
quadratic terms. This formula shows that under the condition ∆F = 0, the Taylor expansions
of H and H̃ (up to cubic terms) are proportional with a non-zero factor. In particular for any
curve γ(t) lying on the surface {F = F (P )} = {∆F = 0} we have

d3

dt3
|t=0H̃(γ(t)) = a1

d3

dt3
|t=0H(γ(t)) or equivalently v3H̃0 = a1v

3H0,

as needed. This shows that (ii) is invariant under transformations (5.31) completing the proof
of Proposition 5.14.

We also want to explain one important phenomenon mentioned in the proof of Proposition
5.11: for hyperbolic points, this coefficient in front of logarithm is known to be proportional
to the period of the second (invisible in the real setting) cycle on the complex leaf LH,λ. More
rigorously, this statement can be formulated as follows.

Consider an analytic integrable system with one degree of freedom with the Hamiltonian
of the form H = xy and symplectic structure ω = f(x, y)dx ∧ dy.

Thinking of x and y as real variables, consider one-parameter family of curves

γH = {xy = H, 0 < x ≤ 1, 0 < y ≤ 1}

and the function (cf. Section 4)

Π(H) =

∫
γH

ω

dH
.

It can be easily checked by an explicit computation that this function has the following
asymptotics at zero:

Π(H) = a(H) lnH + b(H),

where a(H) and b(H) are both real-analytic in a neighborhood of zero. Similar to Section 4,
here we integrate along a trajectory of the Hamiltonian flow between two sectionsN1 = {y = 1}
and N2 = {x = 1}. If we change these sections, then b(H) changes too whereas a(H) remains
the same so that a(H) has an invariant meaning, i.e., does not depend on the choice of local
coordinates (x, y).

On the other hand if we think of x and y as complex variables, then the level {xy = H},
from the real viewpoint, is a surface locally homeomorphic to a cylinder which contains a
non-trivial cycle of the form

γ̂H = {x(t) = Heit, y(t) = e−it},

so that we can introduce another function

Π̂(H) =

∫
γ̂H

ω

dH
.

This function is analytic in H. The relation between Π(H) and Π̂(H) is given by the following
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Proposition 5.15. We have a(H) = ± 1
2πiΠ̂(H) or equivalently,

Π(H) = ± 1

2πi
Π̂(H) lnH + b(H)

with b(H) being analytic7.

Proof. One can proof this fact by using monodromy arguments (which is nice and conceptual),
but we will use a well known “isochore Morse lemma” [16] which allows to get this result by
an explicit computation: there exists a local coordinate system such that

H = xy and ω = f(H)dx ∧ dy.

The form
ω

dH
can be replaced by the form f(H)y−1dy and we obtain:

Π̂(H) =

∫
γ̂H

ω

dH
=

∫
γ̂H

f(H)y−1dy = f(H)

∫ 2π

0
(e−it)−1d(e−it) = −2πif(H)

On the other hand, γH can be parametrised as y = t, x = Ht−1, t ∈ [H, 1] and we get:

Π(H) =

∫
γH

ω

dH
=

∫
γH

f(H)y−1dy = f(H)

∫ 1

H

dt

t
= −f(H) lnH.

Comparing these formulas for Π̂(H) and Π(H) gives the required result.

7The sign ± reflects the fact that both Π(H) and Π̂(H) depend on the choice of orientations on the curves
γH and γ̂H .
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