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Chapter 1

Introduction

Optimal control problems have attracted an increasing attention in the last decades and
have been proved to be wide-ranging enough to cover many classical, but also new fields
of mathematics. We are thinking in particular to the powerful approach that they have
given to the study of Riemannian and sub-Riemannian geometry ([4, 40, 5]), which can
be described through the properties of an optimal control problem, that is linear in the
controls and with a quadratic cost. In this thesis we are interested in the contribution that
this theory can offer to the study of the heat kernel of hypoelliptic operators and to the
analysis of the variation of a volume form under the projection of the Hamiltonian flow.

The results obtained on the fundamental solution of the heat equation, the so called
heat kernel, on a Riemannian manifold have inspired new interest in the study of the heat
kernel for hypoelliptic second order operators. It is worth observing at this point that
already from the daily experience, one could guess that there exists a relation between
heat and geometry. At a more accurate level, it has indeed been observed a deep interaction
between the small time asymptotics of the heat kernel with geometric quantities such as
distance [48], cut and conjugate locus [38, 41], and curvature invariants [19].

However, the extension of these results to non-Riemannian situations (from the geo-
metric viewpoint) or to non-elliptic operators (from the viewpoint of PDE) is non trivial:
some results have been obtained in the sub-Riemannian context, relating the hypoelliptic
heat kernel with its associated Carnot-Carathéodory distance [33, 34] and its cut locus
[7, 8], but much less is known concerning the relation with curvature or the generalization
to non sub-Riemannian situations.

One of the most celebrated results in the Riemannian setting, which is by now classical,
reads as follows. Denote by p(t, x, y) the heat kernel associated with the Laplace-Beltrami
operator ∆g on an n-dimensional Riemannian manifold (M, g). Then the coefficients
appearing in the small time heat kernel expansion on the diagonal

p(t, x0, x0) =
1

tn/2

(
m∑

i=0

ai(x0)t
i +O(tm)

)
(1.1)

contain information about the curvature of the manifold at the point x0, namely all ai(x0)
can be written as universal polynomials of the Riemann tensor and its covariant derivatives
computed at the point x0 (see for instance [19, 44]).
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4 Introduction

On the other hand, let us consider a smooth second order elliptic operator L, possibly
with drift, on the n-dimensional Euclidean space. Then one can extract from the principal
symbol of the operator L a good Riemannian metric g, such that the associated heat
kernel contains geometric information. Namely it is possible to choose g so that the
first coefficients of the on-the-diagonal heat kernel expansion depend on the curvature
associated to the metric g and the local structure of the drift at the point. For instance,
in [21], Bismut proved that for the operator L = ∆g + X0 associated to a Riemannian
manifold (M, g) the corresponding heat kernel satisfies

p(t, x0, x0) =
1

(4πt)n/2

(
1−

(
div(X0)

2
+

‖X0(x0)‖2
2

− S(x0)

6

)
t+O(t2)

)
, (1.2)

for t→ 0, where S is the scalar curvature of the Riemannian metric g.
However, as soon as the ellipticity assumption on the operator is removed, even the

structure of the asymptotic expansion of the fundamental solution is much less understood,
and the drift field plays a central role in the velocity of decay of the asymptotics.

Let us consider for instance the second order Hörmander-type operator on a closed
submanifold M of Rn

L =
1

2

k∑

i=1

fi + f0, (1.3)

where f0, f1, . . . , fk are smooth bounded vector fields, with bounded derivatives of any
order. We assume that the vector fields in (1.3) satisfy the Hörmander condition

Lie{(adf0)jfi | i = 1, . . . , k, j ∈ N}
∣∣
x
= TxM, ∀x ∈M. (wHC)

Here (adX)Y = [X,Y ] and LieF denotes the smallest Lie algebra containing a family of
vector fields F . As proved by Hörmander [29], this hypothesis implies the hypoellipticity
of the operator L and the existence of a smooth fundamental solution p(t, x, y).

A first step in the study of the asymptotic expansion of the heat kernel in the hy-
poelliptic setting has been done by Ben Arous and Léandre ([33, 34, 13, 15, 14]), and by
Barilari, Boscain and Neel ([8]). These results concern hypoelliptic operators without drift
field or such that the fields f1, . . . , fk satisfy the strong Hörmander condition

Lie{fi | i = 1, . . . , k}
∣∣
x
= TxM, ∀x ∈M. (sHC)

In this condition, it is not necessary to include f0 in the bracket generating process. This
is the reason why, in contrast, condition (wHC) is also referred to as weak Hörmander
condition.

Under hypothesis (sHC) it is possible to endow M with a structure of sub-Riemannian
manifold. This determines a metric on the distribution D, spanned by the fields f1, . . . , fk.
Then it is well defined on M the sub-Riemannian distance function d(x, y), also called
CC-distance, determined by the length of curves whose tangent vector lies in D. Using
probabilistic techniques, Ben Arous and Léandre were able to relate the small time be-
havior of the heat kernel to the sub-Riemannian distance function ([33, 34]), generalizing
the result by Varadhan [48] in the elliptic case; they also proved that for points x 6= y,
such that y is not in the cut locus of x, the asymptotics of p(t, x, y) has still a polynomial
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decay analogous to the elliptic case. This has been then extended in [8] to points x and y
that are not conjugate along any minimal geodesic.

However, considering the expansion on the diagonal, they experienced rather new
behaviors, that make clear why even the structure of the hypoelliptic heat kernel is not
yet well-understood. When x = y the asymptotic expansion depends strongly on the
interaction between the drift field and the diffusion generated by the second order term of
L. Let

Dx = span{f1, . . . , fk}x, and Di
x = Di−1

x + span{[D,Di−1]}x ∀i > 1,

i.e., Di
x is the subspace of TxM generated by all the Lie brackets of f1, . . . , fk up to length

i. Ben Arous showed in [15] (see also [14]) that if the drift is a smooth section of D2,
the heat kernel on the diagonal has still a polynomial decay, but of different degree, and
precisely

p(t, x, x) =
C +O(

√
t)

tQ/2
,

where Q is the Hausdorff dimension of the manifold and C > 0 is a constant depending
on x.

On the other hand, if f0(x) /∈ D2
x, then Ben Arous and Léandre showed in [17, 18] that

p(t, x, x) decays to zero exponentially fast, as exp
(
− C
tα

)
, for a positive α depending on x

and bounded above by 1.

A heuristic interpretation of this behavior is that when f0 points outside D2, its action
is so strong that it cannot be compensated by the diffusion of the fields f1, . . . , fk and
it moves the concentration of heat far from the initial concentration point x. The break
in the behavior is given by the second order Lie brackets. This can be explained since
the second order part of the operator reproduces a Brownian motion, which moves as

√
t,

while the drift field has velocity t. Then if f0 points outside D2, the diffusion generated
by the second order part is too slow.

Concerning the generalization of (1.1) about the geometric meaning of the coefficients
of the asymptotic expansion, few results are available and again only under the stronger
Hörmander condition, in particular when the drift field is either zero or horizontal. In [6] it
is computed the first term of the asymptotics for 3D contact structures, where an invariant
κ of the sub-Riemannian structure playing the role of the curvature appears. Concerning
higher dimensional structures, to our best knowledge, the only known results are [46] for
the case of a Sasakian manifold (where the trace of the Tanaka Webster curvature appears)
and the case of the two higher dimensional model spaces: CR spheres [11] and quaternionic
Hopf fibrations [12].

The research presented in the first part of this thesis wants to be an initial step to
understand the behavior of the heat kernel when the operator fails to satisfy the strong
Hörmander condition, and only its weak version (wHC) holds.

In Chapter 3, we study the order of the asymptotics at the diagonal. Let x0 be a point
where the drift field lies in D2

x0 . Then we prove that the asymptotic expansion depends
on the structure of the Lie algebra generated by the fields and on the controllability of an
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approximating system. More precisely, we say that the control problem

ẋ = f0(x) +
k∑

i=1

ui(t)fi(x) for u = (u1, . . . , uk) ∈ L∞(R;Rk) (1.4)

is small time locally controllable at x0, if for every time t it is possible to reach every point
of an open neighborhood of x0 with curves described by (1.4) starting from x0 in time not
greater than t. Then we show that only the following cases can appear.

If (1.4) is not small time locally controllable at x0, then p(t, x0, x0) = 0 for every t > 0.
If (1.4) is controllable, then we consider an appropriate nilpotent approximation of the

fields. This nilpotent approximation is chosen so that it keeps just the necessary informa-
tion on f0, f1, . . . , fk, in order to generate still an hypoelliptic operator. If the associated
control problem is small time locally controllable at x0, then the original fundamental so-
lution p(t, x0, x0) has again a polynomial decay (as in the sub-Riemannian setting) and we
find the exact order N of this polynomial decay, generalizing the already known results for
the case when (sHC) holds. The number N is a generalization of the Hausdorff dimension
of sub-Riemannian manifolds and depends on the Lie algebra generated by f0, f1, . . . , fk.

If instead the approximating system is not controllable, then we show that the decay is
faster then t−N . Indeed in this case, already Ben Arous and Léandre have shown examples
of exponentially fast decay.

In Chapter 4 we perform the first step in the characterization from a geometric view-
point of the coefficients of the asymptotics on the diagonal. In particular we focus on
the model class of linear Hörmander operators in R

n with constant second order part.
These operators are the simplest class of hypoelliptic, but not elliptic, operators satisfying
(wHC) and are classical in the literature, starting from the pioneering work of Hörmander
[29] (see also [32] for a detailed discussion on this class of operators).

For any point in the kernel of the drift field, we show that p(t, x, x) has a polynomial
decay, and we characterize all the coefficients in the asymptotitc expansion through the
trace of the drift field and some geometric-like operators defined in [2], and related to the
minimal cost of geodesics of the associated optimal control problem. This is a result in
the spirit of (1.1).

For points that are not in the kernel of the drift field, we show that the decay depends on
the value of the drift. More precisely, if the drift is in the space generated by the constant
fields of the second order term, f1, . . . , fk, then the asymptotics is still polynomial and
we find an expansion like (1.2). If the drift points outside this space, then the decay is
exponentially fast, even faster than what was found in the sub-Riemannian case. This
difference reflects the heuristic opinion that if the drift points outside the space generated
by the second order part, then it drifts apart the heat from the initial point, and the fields
f1, . . . , fk cannot compensate this strong effect.

The generalization of this geometric result to general hypoelliptic operators has been
proved to be much more complicated. As an example, in Appendix A we consider a
slightly more general operator, the Kolmogorov operator in dimension 2. Here the second
order part is constant, while the drift field has no restrictions. Then we compute the first
terms of the asymptotic expansion of the fundamental solution at the equilibrium points,
x0, of the drift. We determine also the curvature operator R0 of an associated geodesic
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fixed in x0. By a comparison between the asymptotic expansion and the curvature, we
conclude that the first coefficients in the asymptotics do not depend on R0. For this
reason, we suppose that they could be determined by some other invariants depending, in
this case, only by the drift field. Even if we have not found explicitly what is the correct
geometric interpretation, we hope that this further example can cast a new light on the
characterization of the coefficients.

The second part of the thesis concerns the variation of a smooth volume on a manifold,
under the projection of the Hamiltonian flow, for a quadratic Hamiltonian. In particular,
this class of dynamics contains the sub-Riemannian manifolds.

This study was inspired by the fact that one of the possible ways of introducing cur-
vature in Riemannian geometry is by looking for the variation of a smooth volume under
the geodesic flow. Indeed, given a point x on a Riemannian manifold (M, g) and a tangent
unit vector v ∈ TxM , it is well-known that the asymptotic expansion of the Riemannian
volume volg in the direction of v depends on the Ricci curvature at x. More precisely, the
volume element, that is written in coordinates centered in x as volg =

√
det gijdx1 . . . dxn,

satisfies the expansion for t→ 0

√
det gij(exp(tv)) = 1− 1

6
Ric(v, v)t2 +O(t3),

where exp(tv) denotes the exponential map in the direction v and Ric is the Ricci curvature
tensor.

In the sub-Riemannian setting this asymptotic cannot be directly generalized. Indeed,
the exponential map is not a diffeomorphism and to compute the volume of small balls
one should have a precise knowledge of the structure of the cut locus, which is not easy.
Nevertheless the geodesic flow on the Riemannian manifold can be seen as a Hamiltonian
flow on the cotangent bundle, associated to a non-degenerate quadratic Hamiltonian. On a
sub-Riemannian manifold, and more in general even for structures deriving from an affine
control, the Hamiltonian flow is defined in a similar way. In particular, if the structure
is sub-Riemannian, the restriction of the Hamiltonian to any fiber is a degenerate non-
negative quadratic form. The projection on the manifold, M , of its integral curves are
geodesics, but, contrary to the Riemannian case, in general not all the geodesics can
be obtained in this way. These projected geodesics are then parametrized by the initial
covector in the cotangent bundle and if they are sufficiently regular (ample and equiregular
geodesics), it is possible to compute the variation of the volume in a “smooth” way by
looking at the measure as an n-form in the cotangent space T ∗M , which has dimension
2n, restricted to the fiber T ∗

xM .
To give some insight on this procedure, let us come back to a Riemannian manifold

(M, g), endowed with a smooth volume µ = eψvolg. In the Hamiltonian language, the ex-
ponential map on M can be seen as the projection of its Hamiltonian flow in the cotangent
bundle. Indeed let expx(t, v) denote the point reached by a curve at time t starting from x
with velocity v, i.e., expx(t, v) = expx(tv). The metric g induces a canonical identification
between TxM and the cotangent space T ∗

xM . So the exponential map can be seen as a
Hamiltonian flow

expx(tv) = expx(t, v) = π
(
et
~Hλ
)
,
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where in the last expression λ denotes the element in T ∗
xM corresponding to v. Then

the variation of µ is obtained as its pull-back through the map π ◦ et ~H : T ∗M → M .
Observe that the pull-back (π ◦ et ~H)∗µ defines an n-form on the cotangent bundle T ∗M ,
that has dimension 2n. The quantity that we compute is the restriction of this form to the
n-dimensional fiber T ∗

xM . Moreover, the volume µx defines naturally a volume µλ on the
fiber T ∗

xM . With this Hamiltonian interpretation, the classical Riemannian asymptotics

can be read as the variation of (π ◦ et ~H)∗µ restricted to the fiber T ∗
xM , with respect to the

volume µλ, i.e.,

(π ◦ et ~H)∗µ
∣∣∣
T ∗
xM

= tn e
´ t
0 ψ

′(γ(τ))dτ
(
1− 1

6
Ricg(v, v)t

2 +O(t3)

)
µλ. (1.5)

Figure 5.3 illustrates this variation from the metric measure view point. Indeed let Ω ⊂
T ∗
xM be a small neighborhood of λ and let Ωx,t := π ◦ et ~H(Ω) be its image on M with

respect to the Hamiltonian flow. For every t it is a neighborhood of γ(t). Then

µ(Ωx,t) =

ˆ

Ω
(π ◦ et ~H)∗µ,

and (1.5) represents the variation of the volume element along γ.

b

λ

x

γ(t)

M

T ∗
xM

bb
b

π ◦ et ~H

γ

b

Ω

Ωx,t

Figure 1.1: Variation of volume

Eq. (1.5) underlines geometric properties of the variation of the volume, as well as
its measure properties, separated in distinct parts. Indeed, we see that the order term tn

depends only on the dimension of the manifold. The asymptotics in the brackets contains
only geometric information, that depend on the metric g on M . The constant term eψ(x)

depending on µ at the initial point is contained in the associated volume µλ. Finally, the
measure information is encoded in the exponential term. Indeed it represents the variation
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of µ along the geodesic and is equal to the exponential of
´ t
0 ψ

′(τ)dτ =
´ t
0 〈gradψ, γ̇(τ)〉dτ .

In particular, it defines a measure invariant function ρ at every initial cotangent vector λ:

ρ(λ)µλ :=
d

dt

∣∣∣∣
t=0

(
t−n (π ◦ et ~H)∗µ|λ

∣∣∣
T ∗
xM

)
, λ ∈ T ∗

xM. (1.6)

In Chapter 5 we generalize the asymptotics (1.5) to a sub-Riemannian structure, and
more in general to any structure arising from a non-negative quadratic Hamiltonian. Let
M be a smooth manifold and let ~H denote a quadratic, possibly degenerate, Hamiltonian.
A special class of dynamics is given by the Hamiltonian, whose restriction to a fiber T ∗

xM
is a degenerate homogeneous quadratic form (i.e., without linear or constant terms). Then
this case recovers the sub-Riemannian structures on the manifold M .

Fix λ ∈ T ∗
xM and let γ(t) = π(et

~Hλ) be the associated geodesic onM . The asymptotics
that we obtain is expressed as in (1.5) and we interpret every component as a generalization
of the corresponding Riemannian element. In particular, the Hamiltonian at λ generates
a constant leading term c0 and influences the order of the asymptotic. Indeed, we observe
that the order of the asymptotics is not constant, but depends on the particular geodesic.
Moreover, the asymptotics depends on two geometric invariants, that are rational functions
in the initial covector λ. The first one is a modification of the Ricci tensor, that is
substituted now by the trace of a curvature operator in the direction of λ. This curvature
operator, Rλ, is a generalization of the sectional curvature and is defined in [3] for the wide
class of geometric structures arising from affine control systems. The second invariant is the
generalization of ρ(λ), introduced in (1.6). It is a measure metric invariant and represents
how the volume changes along the curve with respect to a reference n-dimensional form
given by the Hamiltonian.

The structure of the thesis is as follows. In Chapter 2 we give a brief introduction on
classical results in stochastic differential equations and on the Hörmander theorem, since
they play an important role in the understanding of the heat kernel. Chapter 3 is based on
[43] and shows the proofs about the order of the heat kernel asymptotic expansion on the
diagonal. Chapter 4 contains the results on the model class of the Hörmander operators
with linear drift and constant second order term, which can be found in [9]. Chapter 5
concerns the asymptotic expansion of the volume under the Hamiltonian flow, which is
the content of [1]. Finally in Appendix A we give a further example of the on-the-diagonal
asymptotics of the heat kernel for Kolmogorov hypoelliptic operators in dimension 2.

Aknowledgements. I would like to thank my supervisor Andrei Agrachev for having
suggested these problems and for having introduced me to the research. His dedication and
enthusiasm for mathematics have fascinated me since the beginning. I’m also grateful to
Davide Barilari, that has followed this project with contagious interest and shared with me
many parts of this work.





Chapter 2

On stochastic differential

equations and Hörmander’s

theorem

In this chapter we give a brief survey on stochastic differential equations and on the
hypoellipticity of operators, proved by Hörmander’s theorem. In particular we exploit
the relation between the probability density of a stochastic process with the fundamental
solution of certain PDEs, which is based on Kolmogorov backward equation. These are
classical theorems that we want to recall since their relation is useful for the understanding
of the results of the next chapters. We refer to [30] and [42] for a complete presentation
of stochastic processes and differential equations and to [29, 35, 27, 28] for what concerns
Hörmander’s theorem and the existence of the fundamental solution.

In this chapter we give a presentation in the Euclidean setting R
n, but everything is

valid also on a closed submanifold M of Rn. Details can be found in [30], Chapter 5.

2.1 Stochastic differential equations

Let Rn be the n-dimensional Euclidean space and f0, f1, . . . , fk be smooth vector fields on
R
n. In coordinates (x1, . . . , xn), we denote by f ij the i-th component of the vector field fj ,

i.e., fj =
∑n

i=1 f
i
j
∂
∂xi

.
Consider the time independent stochastic differential equation in Stratonovich form

for an n-dimensional stochastic process ξt

dξit = f i0(ξt) +
k∑

j=1

f ij(ξt) ◦ dwj(t), (2.1)

where w(t) = (w1(t), . . . , wk(t)) is a Brownian motion. This equation can be written
equivalently in Itô differential form, by a modification of the field f0. Indeed (2.1) is
equivalent to

dξit = f̄ i0(ξt) +
k∑

j=1

f ij(ξt)dwj(t), (2.2)

11



12 On stochastic differential equations and Hörmander’s theorem

where

f̄ i0 = f i0 +
1

2

k∑

j=1

n∑

h=1

fhj
∂f ij
∂xh

.

We recall the definition of solution of the stochastic differential equation.

Definition 2.1. By a solution of equation (2.2) we mean an n-dimensional continuous
stochastic process ξt, t ≥ 0, defined on a probability space (Ω,F , P ) such that

(i) there exists an increasing, right-continuous family (Ft)t≥0 of sub-σ-algebras of F ;

(ii) there exists a k-dimensional (Ft)-Brownian motion w(t), with w(0) = 0 a.s.;

(iii) (ξt)t≥0 is an n-dimensional continuous process adapted to (Ft)t≥0, i.e., ξt(ω) is con-
tinuous in t for every ω ∈ Ω, and it is Ft measurable for every t;

(iv) the processes fj(ξt(ω)) for j = 1, . . . , k and f̄0(ξt(ω)) are a.s. L2
loc([0, T ]) and

L1
loc([0, T ]) integrable respectively, for every T > 0;

(v) with probability one, ξt and wt satisfy

ξit − ξi0 =

ˆ t

0
f̄ i0(ξs)ds+

k∑

j=1

ˆ t

0
f ij(ξs)dwj(s) ∀1 ≤ i ≤ n.

Solutions to equation (2.2) with Lipschitz continuous fields and starting condition
ξ0 = x are also called (time-homogeneous) Itô diffusions. In particular, Itô diffusions
satisfy the Markov property, i.e., for any bounded Borel function ϕ from R

n to R and any
t, s ≥ 0 it holds

E[ϕ(ξt+s)|Ft] = E[ϕ(ξt+s)|ξt],
where E denotes the expectation value. In other words, the probability of the process at
future steps depends only on the process at the moment ξt and not on the previous times.

We recall classical existence and uniqueness theorems for the solution to (2.2), with
the sufficient assumptions for this thesis. For less restrictive conditions and the proofs we
refer to [30]. In particular, by admitting that solutions can explode, it is possible to prove
an existence theorem also for only continuous fields.

Theorem 2.2 (Existence theorem). If the fields f0, f1, . . . , fk are bounded with bounded
first order derivatives, then for any given probability measure µ on R

n with compact sup-
port, there exists a solution (ξ, w) of (2.2) such that the law of ξ0 coincides with µ, i.e.,
P [ξ0 ∈ A] = µ[A] for any Borel set A ∈ R

n.

Definition 2.3 (Pathwise uniqueness). We say that the solution of Eq. (2.2) is path-
wise unique if whenever ξ and ξ′ are two solutions defined on the same probability space
(Ω,F , P ) with the same reference family (Ft)t≥0 and the same k-dimensional Brownian
motion w(t), such that ξ0 = ξ′0 a.s., then ξt = ξ′t for all t ≥ 0 a.s.

Theorem 2.4 (Uniqueness theorem). Suppose f̄0, f1, . . . , fk are locally Lipschitz contin-
uous, then equation (2.2) has a pathwise unique solution.
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We end this section by recalling Itô’s differential formula for stochastic processes. For
a proof we refer to [42] Chapter 4.

Theorem 2.5 (Itô formula). Let ξt be a stochastic process solution of (2.2) and let ψ(t, x)
be a function of class C2(R+×R

n;R) (by R
+ we mean the strictly positive real line). Then

it holds

dψ(t, ξt) =
∂ψ(t, ξt)

∂t
dt+

n∑

i=1

∂ψ(t, ξt)

∂xi
dξit +

1

2

n∑

i,h=1

k∑

j=1

f ij(ξt)f
h
j (ξt)

∂2ψ(t, ξt)

∂xi∂xh
dt.

2.2 Fundamental solution and Kolmogorov backward equa-

tion

In this section we recall the relation between second order operators and solutions to
equation (2.1). Let us consider the operator

∂ϕ

∂t
− f0(ϕ)−

1

2

k∑

i=1

f2i (ϕ) ∀ϕ ∈ C∞(R× R
n) (2.3)

and denote by L the operator f0 + 1
2

∑k
i=1 f

2
i .

Definition 2.6. The fundamental solution of an operator ∂
∂t−L over R×R

n is a function
p(t, x, y) ∈ C∞(R+ × R

n × R
n) such that

• for every fixed y ∈ R
n, it holds ∂

∂tp(t, x, y) = Lxp(t, x, y), where the operator L acts
on the x variable;

• for any ϕ0 ∈ L2(Rn), we have

lim
tց0

ˆ

Rn

p(t, x, y)ϕ0(y)dy = ϕ0(x).

In other words, if we want to solve the partial differential equation ∂ϕ
∂t = Lϕ with initial

condition ϕ(0, x) = ϕ0(x), the fundamental solution allows to reconstruct ϕ by convolution
of ϕ0 with p(t, x, y).

The Kolmogorov backward equation relates the fundamental solution of (2.3) to the
stochastic process solution of (2.2) (see also Corollary 2.8 below).

Theorem 2.7 (Kolmogorov backward equation). Let ϕ ∈ C∞
c (Rn) and ξt be the stochastic

process solution of (2.2). Then the function

u(t, x) := E[ϕ(ξT )|ξt = x] T > t ≥ 0, x ∈ R
n

satisfies {
∂u(t,x)
∂t + Lu(t, x) = 0

limtրT u(t, x) = ϕ(x).
(2.4)
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Proof. Let us fix the function ϕ ∈ C∞
c (Rn). The limit condition is easily true.

For the differential equation, notice that the function u(t, x) has the following prop-
erties: E[u(t, ξt)|ξt = x] = u(t, x) and E[u(T, ξT )|ξt = x] = u(t, x). Then by Itô formula
and since the Brownian motion has zero expectation value, we have the following series of
identities

0 =E[u(T, ξT )− u(t, ξt)|ξt = x] = E

[
ˆ T

t
du(s, ξs)

∣∣∣∣ ξt = x

]

=E

[
ˆ T

t

∂u(s, ξs)

∂s
+

n∑

i=1

f̄ i0(ξs)
∂u(s, ξs)

∂xi

+
1

2

n∑

i,h=1

k∑

j=1

f ij(ξs)f
h
j (ξs)

∂2u(s, ξs)

∂xi∂xh
ds

∣∣∣∣∣∣
ξt = x




=E

[
ˆ T

t

∂u(s, ξs)

∂t
+ Lu(s, ξs)

∣∣∣∣ ξt = x

]
.

Since this equation holds for every t < T and x ∈ R
n, also the punctual equation (2.4) is

satisfied.

Let us assume for a moment that the process ξt admits a smooth density function,
that means that there exists a smooth function p(T, y; t, x) for 0 < t ≤ T and x, y ∈ R

n

such that for all Borel sets A ⊂ R
n

P [ξT ∈ A|ξt = x] =

ˆ

A
p(T, y; t, x)dy,

where P denotes the probability. Then the function u defined in Theorem 2.7 is

u(t, x) =

ˆ

Rn

ϕ(T, y)p(T, y; t, x)dy.

Since the theorem holds for any function ϕ with compact support, the probability density
itself satisfies (2.4). More precisely

{
∂p(T,y;t,x)

∂t + Lxp(T, y; t, x) = 0
limtրT p(T, y; t, x) = δy(x),

where δy is the Dirac delta centered in y and Lx denotes that the operator is acting on
the x variable. Let p(t, x, y) denote the density of ξt with initial condition ξ0 = x. By the
Markov property of ξt we know that p(T, y; t, x) = p(T − t, x, y). With a change of the
time variable we have then proved the following corollary.

Corollary 2.8. Let ξt be the solution of (2.1), with initial condition ξ0 = x and assume
that it admits a smooth density function

p(t, x, y)dy := P [ξt ∈ dy|ξ0 = x].

Then p(t, x, y) is the fundamental solution of the operator in (2.3), i.e.,
{

∂p(t,x,y)
∂t = Lxp(t, x, y)

limtց0 p(t, x, y) = δy(x).



2.3 Hörmander Theorem 15

2.2.1 Fundamental solution of the adjoint operator

Let p(t, x, y) be the fundamental solution of the operator ∂
∂t − L and define the heat

operator

etLϕ(x) =

ˆ

Rn

p(t, x, y)ϕ(y)dy ∀ϕ ∈ L2(Rn).

Let L∗ be the adjoint operator to L.

Lemma 2.9. The fundamental solution, p∗(t, x, y), associated to the adjoint operator L∗

can be obtain from the fundamental solution of L as

p∗(t, x, y) = p(t, y, x). (2.5)

Proof. Let ϕ, ψ ∈ L2(Rn) then by definition of adjoint operator we have
ˆ

Rn

ϕ(y)etL
∗
ψ(y)dy =

ˆ

Rn

ψ(x)etLϕ(x)dx

=

ˆ

Rn

ψ(x)

ˆ

Rn

p(t, x, y)ϕ(y)dydx

=

ˆ

Rn

(
ˆ

Rn

ψ(x)p(t, x, y)dx

)
ϕ(y)dy.

Since this identity holds for any ϕ, ψ ∈ L2(Rn), Eq. (2.5) follows.

2.3 Hörmander Theorem

In the previous section we have seen how to find the fundamental solution for the operator
(2.3), provided that (2.1) admits a smooth probability density. This condition is satisfied
if the operator is elliptic, namely if the vector fields f1, . . . , fk span R

n. However many
interesting operators do not satisfy this property and one would like to have a criterion
to admit the existence of a fundamental solution also for only hypoelliptic operators, i.e.,
for operators that have the following smoothing property.

Definition 2.10. The operator (∂t − L) is said to be hypoelliptic if for every function u
and every open set A ∈ R× R

n such that (∂t − L)u ∈ C∞(A), then u ∈ C∞(A).
Here we use the shorthand ∂t to denote the partial derivative in the time variable.

We say that the operator (2.3) satisfies Hörmander condition if the Lie algebra gener-
ated by the vector fields ∂t − f0, f1, . . . , fk is equal to R× R

n at every point, i.e., if

Lie(t,x){∂t − f0, f1, . . . , fk} = R× R
n ∀x ∈ R

n. (2.6)

By the Lie algebra spanned by the vector fields {Xi}ki=0 we mean the space generated by
all the vector fields obtained with the Lie brackets of any order of X0, . . . , Xk. Since the
vector fields ∂t and fi are completely independent condition (2.6) is equivalent to require
that

spanx{fi, [fi, fj ], [f0, fi], [fi, [fj , fh]], . . . : 1 ≤ i, j, h ≤ k} = R
n ∀x ∈ R

n,
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where in the generating set we take the fields f1, . . . , fk (not f0) and all the Lie brackets
of any order of all the vector fields f0, . . . , fk. In other words, f0 is not in the set, it is
there only inside a Lie bracket with other vector fields.

Hörmander proved in [29] that this hypothesis is sufficient to imply that the operator
(2.3) is hypoelliptic. Moreover if we assume also the boundedness of the vector fields
f0, . . . , fk and of their derivatives of any order, it is possible to prove that (2.3) admits
a fundamental solution. This conclusion was first proved by Hörmander in [29] with
analytical tecnics and subsequently by Malliavin [35] with a probabilistic approach, using
Malliavin calculus. Here we refer to Hairer’s version in [28] and [27].

Theorem 2.11. Assume that all vector fields in (2.1) are bounded with bounded derivatives
of any order. If moreover they satisfy Hörmander condition (2.6), then the solution of (2.1)
admits a smooth density with respect to Lebesgue measure.

Proof. The proof of this deep theorem can be found in [28] and [27], where the Malliavin
calculus is used.

Here we want to stress that under the hypothesis of the theorem, there exists a fun-
damental solution of (2.3) and it is determined in Corollary 2.8.

Remark 2.12. The hypothesis on the boundedness of the fields in Theorem 2.11 can be
partially weaken. For the interested reader we refer to [28] Section 4. Here we write the
main ideas.

Let Φt(x) be the solution map of (2.1) with initial condition x. For a given initial
condition x0 we denote by J0,t the derivative of Φt evaluated at x0. Moreover let ξt =
Φt(x0). A differentiation of (2.1), yields that J0,t is a solution of

dJ0,t = Df0(ξt) J0,t dt+
k∑

i=1

Dfi(ξt) J0,t ◦ dwi(t), J0,0 = Idn

where Idn is the n × n identity matrix. Higher order derivatives J (k)
0,t with respect to the

initial condition can be defined in a similar way. Moreover let J−1
0,t be the inverse of the

Jacobian matrix, which also solves an analogous differential equation.
Then in Theorem 2.11 it is enough to require that the fields f0, f1, . . . , fk are C∞, with

all their derivatives that grow at most polynomially at infinity. Furthermore, we assume
that they are such that the processes ξt, J

(k)
0,t and J−1

0,t satisfy

E[sup
t≤T

|ξt|p] <∞, E[sup
t≤T

|J (k)
0,t |p] <∞ E[sup

t≤T
|J−1

0,t |p] <∞

for every initial condition x0 ∈ R
n, every terminal time T > 0, every k > 0 and every

p > 0.
Notice that the boundedness of the vector fields and of all their derivatives, in particular

implies this weaker hypothesis.

2.4 Example: linear operators

The simplest example of hypoelliptic operator is the linear partial differential operator with
constant second order coefficients and affine drift field, that satisfy Hörmander condition.
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Since this is the subject of chapter 4, for the reader’s convenience we derive here explicitly
its fundamental solution.

Let us consider the partial differential equation

∂ϕ

∂t
−

n∑

j=1

(α+Ax)j
∂ϕ

∂xj
− 1

2

n∑

j,h=1

(BB∗)jh
∂2ϕ

∂xj∂xh
= 0, ∀ϕ ∈ C∞

0 (R× R
n), (2.7)

where α is a constant column vector of dimension n, A is an n × n real matrix, which
represents the linear part of a drift field, and B is an n× k real matrix, with 1 ≤ k ≤ n,
that generates the diffusion coefficients.

We will further assume Hörmander condition (2.6), which in this context becomes a
condition on the matrices A and B, called Kalman condition, namely

rk[B,AB,A2B, . . . , An−1B] = n. (2.8)

We have seen in Corollary 2.8 that the fundamental solution, p(t, x, y), of (2.7) is given by
the probability density of the solution ξt of the associated stochastic differential equation

{
dξt = (α+Aξt)dt+Bdw(t)
ξ0 = x

(2.9)

where w(t) = (w1(t), . . . , wk(t)) is a k-dimensional Brownian motion. (Notice that since
B is constant, the Itô and the Stratonovich equations coincide.) In other words, p(t, x, y)
is the C∞(R+ × R

n × R
n) function such that for every Borel set U ∈ R

n the probability
of ξt to be in U at time t is given by

P [ξt ∈ U |ξ0 = x] =

ˆ

U
p(t, x, y)dy.

By R
+ we denote, here and in the following, the strictly positive real line. The stochastic

process solution of (2.9) is equal to

ξt = etAξ0 + etA
ˆ t

0
e−sAdsα+ etA

ˆ t

0
e−sABdw(s),

as it can be readily verified with a derivation. In particular, if the initial value ξ0 is
Gaussian distributed, then ξt is a Gaussian process, since by definition of solution ξ0 and
w(t) are independent. The initial condition is a Dirac delta centered in x, so it is a
degenerate Gaussian with mean x and vanishing covariance matrix, therefore to find the
distribution of ξt it is enough to determine its mean value and covariance matrix. To this
end we use Itô’s differential formula of Theorem 2.5 applied to some auxiliary functions
ψ.

To find the mean value of ξt let us fix ψ := xj for 1 ≤ j ≤ n, then

ξj(t)− ξj(0) =

ˆ t

0
(α+Aξ(τ))jdτ +

ˆ t

0

k∑

i=1

Bjidwi(τ).
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Let mj(t) be the j-th component of the mean value of ξt. By the previous formula, since
the integral of the Brownian motion has zero mean value, we find that m(t) satisfies the
differential equation ṁj(t) = (α+Am(t))j with initial condition m(0) = x. Therefore

E[ ξt | ξ0 ] = etA
(
x+

ˆ t

0
e−sAdsα

)
. (2.10)

To compute the covariance matrix let us choose ψ = (xj −mj(t))(xh −mh(t)), then by
Itô differential formula it holds

ψ(t, ξ(t))− ψ(0, ξ(0)) =

ˆ t

0
−ṁj(τ)(ξh(τ)−mh(τ))− ṁh(τ)(ξj(τ)−mj(τ))dτ

+

ˆ t

0
(α+Aξ)j(ξh(τ)−mh(τ)) + (α+Aξ)h(ξj(τ)−mj(τ)) + (BB∗)jhdτ

+

ˆ t

0

k∑

i=1

Bji(ξh(τ)−mh(τ)) +Bhi(ξj(τ)−mj(τ))dwi(τ).

Let us take the expectation value and denote by ρjh(t) the jh-component of the covariance
matrix. Recall that E[(ξj(t)−mj(t))|ξ(0)] = 0. To evaluate

E [(Aξ(τ))j(ξh −mh(τ))|ξ(0)]

we rewrite it as

E [(A(ξ(τ)−m(τ)))j(ξh −mh(τ)) + (Am(τ))j(ξh −mh(τ))|ξ(0)] = (Aρ(τ))jh + 0.

Then ρ(t) satisfies the differential equation ρ̇jh(t) = (Aρ(t))jh+(Aρ(t))hj +(BB∗)jh with
vanishing initial value, whose solution is

Dt := E[(ξj −mj(t))(ξh −mh(t))|ξ(0)] = etA
ˆ t

0
e−τABB∗e−τA

∗
dτetA

∗
.

By Kalman’s condition (2.8), the matrix Dt is invertible for every t > 0. Therefore we
can conclude that the C∞ fundamental solution of equation (2.7) is given by the non-
degenerate Gaussian

p(t, x, y) =
eϕ(t,x,y)

(2π)n/2
√
detDt

,

where

ϕ(t, x, y) = −1

2

(
y − etA

(
x+

ˆ t

0
e−sAdsα

))∗
D−1
t

(
y − etA

(
x+

ˆ t

0
e−sAdsα

))

and it is determined by the mean value (2.10) and the covariance matrix Dt. In the case
when α = 0 the formula for p(t, x, y) reduces to

p(t, x, y) =
e−

1
2
(y−etAx)∗D−1

t (y−etAx)

(2π)n/2
√
detDt

for t > 0, x, y ∈ R
n. (2.11)



Chapter 3

Order of the asymptotic expansion

of the heat kernel on the diagonal

This chapter is based on the results of [43] and contains the proofs about the order of the
heat kernel asymptotic expansion on the diagonal.

3.1 Overview of the Chapter

Let M be a closed n-dimensional submanifold of the Euclidean space and let µ be a volume
form onM . Given f0, f1, . . . , fk smooth vector fields onM we consider the following partial
differential operator:

∂ϕ

∂t
− f0(ϕ)−

1

2

k∑

i=1

f2i (ϕ) ∀ϕ ∈ C∞(R×M). (3.1)

We assume that the fields f0, f1, . . . , fk are bounded with bounded derivatives of any
order and that they satisfy the Hörmander condition

Lie(t,x)

{
∂

∂t
− f0, f1, fk

}
= R× TxM ∀x ∈M, t > 0, (3.2)

where Lie denotes the Lie algebra generated by the fields. As explained in Chapter 2,
under these conditions the operator is hypoelliptic and admits a fundamental solution,
p(t, x, y).

As soon as the ellipticity assumptions on the operator is removed, even the structure
of the asymptotic expansion of the fundamental solution is not well understood, and the
drift field plays a central role in the velocity of decay of the asymptotics. Already the order
of the small time asymptotic expansion of p on the diagonal is not completely known and
some results exist only under the assumption of the strong Hörmander condition (sHC).
Let

Dx = span{f1, . . . , fk}x, and Di
x = Di−1

x + span{[D,Di−1]}x ∀i > 1,

i.e., Di
x is the subspace of TxM generated by all the Lie brackets of f1, . . . , fk up to length

i. Ben Arous showed in [15] (see also [14]) that if the drift is a smooth section of D2, the

19
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heat kernel on the diagonal has a polynomial decay, but the degree in different from the
elliptic case, and precisely

p(t, x, x) =
C +O(

√
t)

tQ/2
, (3.3)

where Q is the Hausdorff dimension of the manifold and C > 0 is a constant depending
on x.

Conversely, if f0(x) /∈ D2, then Ben Arous and Léandre showed in [17, 18] that p(t, x, x)
decays to zero exponentially fast, as exp

(
− C
tα

)
, for a positive α depending on x and

bounded above by 1.
In this chapter we study the order of the asymptotics at the diagonal, when only the

weak Hörmander condition (3.2) holds. Our results apply to any point, x0, where the drift
field f0 lies in D2

x0 . We underline that this is a property at the point x0, it is not necessary
that the drift is a section of D2.

However, if f0 is even a section of D2, then the weak Hörmander condition implies
also the strong one, and indeed we recover the small time asymptotics presented in (3.3),
which depends on the Hausdorff dimension Q of the sub-Riemannian manifold.

In the general case, when f0(x0) ∈ D2
x0 only at the point x0, then the decay can

be either polynomially fast, as in the sub-Riemannian case, or exponential, depending
on the principal part of the fields f0, f1 . . . , fk, that we will soon introduce. Moreover,
in the polynomial case we show the exact order of decay. This is given by a number
N that depends on the Lie algebra generated by the fields. This number generalizes the
Hausdorff dimension, which in this case could actually even not be defined, since the strong
Hörmander condition is not guaranteed. However, if Q exists, then we show that N ≤ Q,
that means that the drift field produces a slower decay of the heat at its equilibrium points.

To present the details of these results, let us introduce some notation. The proof relies
on a homogeneity property of the operator in (3.1) under dilation and it is suggested by
the following observation. The fundamental solution, p(t, x, y), is characterized as the
probability density of the stochastic process ξt, starting from the point x, and solution of
the stochastic differential equation written in Stratonovich form

dξt = f0(ξt)dt+
k∑

i=1

fi(ξt) ◦ dwi(t), (3.4)

where w = (w1, . . . , wk) denotes a k-dimensional Brownian motion. Heuristically the flow
of the drift field has order t, while a Brownian motion moves as

√
t. Therefore the idea

is to introduce weights of the fields and to assign to f0 a double weight with respect to
the other fields. Accordingly, we then define a new filtration of the tangent space at x0,
G = {Gi(x0)}, which involves f0 as follows: every layer Gi is spanned by the Lie brackets
of f0, . . . , fk up to length i, where f0 is counted twice. For example the first 4 layers are

G0 = {0},
G1 = span{f1, . . . , fk},
G2 = span{fi, [fi, fj ], f0 : i, j = 1, . . . , k},
G3 = span{fi, [fi, fj ], f0, [fi, [fj , fh]], [f0, fi] : i, j, h = 1, . . . , k}.

(3.5)

Let ki := dimGi(x0). By condition (wHC) there exists a smallest integer m such that
Gm(x0) = Tx0M . The integer N that determines the order of the polynomial decay is
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defined as

N :=
m∑

i=1

i · (ki − ki−1) =
m∑

i=1

i(dimGi(x0)− dimGi−1(x0)),

i.e. it is the dimension of the manifold, where each coordinate in the i− th layer, that is
not in the (i− 1)− th layer, is counted i times. Notice that, if the drift field is identically
zero, we recover the sub-Riemannian case, where every layer Gi of the filtration coincides
with Di and N = Q.

Analogously to the procedure usually done in the sub-Rimannian contest, we take
nilpotent approximations of the fields f0, f1, . . . , fk with respect to the filtration Gx0 .
Namely, let (x1, . . . , xn) be coordinates, in a neighborhood of x0, adapted to the filtration
(see Definition 3.9) and for ǫ > 0 define a dilation, which multiplies every coordinate of
the i-th layer of a factor ǫi, for 1 ≤ i ≤ m. Then let f̂1, . . . , f̂k be the principal parts of the
fields fi homogeneous of order 1, with respect to the dilations, and let f̂0 be the principal
part of the drift field, homogeneous of order 2.

This construction produces a split in the operator L as follows: let L0 be the operator
defined by the principal parts of the fields

L0 := f̂0 +
1

2

k∑

i=1

f̂2i . (3.6)

Then the operator L can be seen as a sum of two parts, L0 and L−L0. The careful choice
of the filtration G, guaranties that the principal operator L0 preserves the weak Hörmander
condition in the equilibrium points of the drift field, therefore it is still hypoelliptic and it
admits a smooth fundamental solution q0(t, x, y) on R

n. Moreover, q0 behaves well under
a rescaling, indeed for every t > 0 we have the homogeneity property

q0(t, x, y) =
1

tN/2
q0(1, δ1/

√
tx, δ1/

√
ty) ∀x, y ∈ R

n.

Finally we can state our main results. We prove that the asymptotics of the funda-
mental solution depends on the controllability of some control problems, associated to the
stochastic equation (3.4). Consider the control problem

ẋ(t) = f0(x(t)) +
k∑

i=1

ui(t)fi(x(t)) (3.7)

where u = (u1, . . . , uk) ∈ L∞(R;Rk) are the controls. If the control problem (3.7) is
not small time locally controllable around the point x0, i.e. from x0 we can not reach a
neighborhood of x0 using curves described by the control problem, then

p(t, x0, x0) = 0 ∀t > 0.

We consider also the control problem induced by the approximating system

ẋ(t) = f̂0(x(t)) +
k∑

i=1

ui(t)f̂i(x(t)). (3.8)
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If this control problem is small time locally controllable, then so is also the original one
(3.7) and we can prove that the small time asymptotics of the fundamental solution is
polynomial, precisely

p(t, x0, x0) =
q0(1, x0, x0) +O(t)

tN/2
. (3.9)

In particular, if the operator arises from a sub-Rimemannian manifold with no drift field,
the approximating control problem is always controllable. Moreover, the integer N is equal
to the homogeneous dimension Q of the manifold and we recover Ben Arous result (3.3).
On the other hand, if the drift field is not identically zero, but still the fields f1, . . . , fk
satisfy the strong Hörmander condition, then we prove the inequality N ≤ Q.

In the intermediate case in which the approximating control problem (3.8) is not small
time locally controllable in x0, but the original control problem (3.7) is still small time
locally controllable, then the behavior of the asymptotics can be more general. It blows
up faster than t−N/2, and possibly even exponentially fast, as it was already pointed out
in some examples by Ben Arous and Léandre in [18].

These conclusions are obtained by a careful generalization of Stroock and Varadhan’s
support theorem for diffusion operators, that allows to characterize when the leading term
q0(1, x0, x0) in (3.9) is strictly positive.

The structure of the chapter is as follows. We begin by describing in details in Section
3.2 the homogeneity properties of the operator (3.1). In particular we derive the conditions
that the dilations have to satisfy in order to produce the right split of the operator, into
a hypoelliptic principal part plus a perturbation. We also give a brief introduction into
Duhamel’s formula in Subsection 3.2.1, since it is an important tool to study the perturbed
operator. In Section 3.3 we introduce the coordinates that give the right dilations of the
space. These coordinates are defined from a filtration of the tangent space to x0 determined
by the fields f0, f1, . . . , fk and give rise to a graded structure around x0, which defines an
anisotropic dilation. In Section 3.4 we define the nilpotent approximation, that determines
the principal operator (3.6). We compute also the integer N appearing in the asymptotics
(3.9), that comes from the change of the volume form under the dilations. In Section 3.5
we prove the asymptotics (3.9), by using the tools introduced in the previous sections. In
the following Section 3.6 we focus our study on the operator derived from the nilpotent
approximating system and its associated control problem. By proving a modification of
Stroock and Varadhan’s support theorem, we give a necessary and sufficient condition
for the positivity of the fundamental solution of the principal operator, that is based on
the controllability of the approximating control system. Finally we end the chapter with
Section 3.7, where we show a series of examples, illustrating how this formula recovers in
particular the known results recalled in the introduction.

3.2 The fundamental solution and its behavior under the

action of a dilation

Let us consider the operator in (3.1). We will call f0 the drift field and we will denote by
L the operator f0 + 1

2

∑k
i=1 f

2
i . Let us recall the definition of fundamental solution.

Definition 3.1. The fundamental solution of an operator ∂
∂t −L over R×M with respect

to the volume µ is a function p(t, x, y) ∈ C∞(R+ ×M ×M) such that
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• for every fixed y ∈ M , it holds ∂
∂tp(t, x, y) = Lxp(t, x, y), where the operator L acts

on the x variable;

• for any ϕ0 ∈ L2(M), we have

lim
tց0

ˆ

M
p(t, x, y)ϕ0(y)µ(y) = ϕ0(x).

In other words, if we want to solve the partial differential equation ∂ϕ
∂t = Lϕ with initial

condition ϕ(0, x) = ϕ0(x), the fundamental solution allows to reconstruct ϕ by convolution
of ϕ0 with p(t, x, y).

Remark 3.2. The choice of the volume form µ, that defines the fundamental solution, is
not relevant in our study. Indeed the order of the asymptotics of p(t, x, y) on the diagonal
does not depend on the fixed smooth volume form. This can be proved by noting that the
fundamental solution changes with respect to the given volume µ in the following way: let
µ and ν be two volume forms on M , and let g be a smooth function such that ν = egµ. Let
pµ and pν denote the fundamental solutions of ∂

∂t −L with respect to µ and ν respectively.
Then for every initial condition ϕ0 ∈ C∞

0 (M), the solution ϕ(t, x) of

{
∂ϕ
∂t = f0(ϕ) +

1
2

∑k
i=1 f

2
i (ϕ)

ϕ(0, x) = ϕ0(x)

is given by

ϕ(t, x) =

ˆ

M
pµ(t, x, y)ϕ0(y)µ(y)

=

ˆ

M
pν(t, x, y)ϕ0(y)ν(y) =

ˆ

M
pν(t, x, y)ϕ0(y)e

g(y)µ(y),

where the equalities follow since the solution is unique for smooth vector fields. Since ϕ0

is arbitrary, we have

pµ(t, x, y) = eg(y)pν(t, x, y) ∀t > 0, ∀x, y ∈M.

From the point of view of the asymptotics of the fundamental solution on the diagonal,
it follows that the two asymptotics are the same for both volume forms up to a multiplicative
constant eg(x0) 6= 0 depending on the relation between the two volumes and on the point
where we compute the asymptotics.

For the study of the small time asymptotics on the diagonal, we will then suppose
without loss of generality that µ = dx1 ∧ . . . ∧ dxn near the point x0.

Let x0 be a point where the drift field lies in D2
x0 . In the rest of this section we explain

the perturbative method, that we use for the proof of our results on the order of the
asymptotic of p(t, x0, x0).

Definition 3.3. Let (U, x) be a coordinate neighborhood of x0, i.e. U ⊂ M is an open
set, x0 ∈ U and x = (x1, . . . , xn) : U → R

n is such that x(x0) = 0. Let (w1, . . . , wn) be
positive integers, called weights of the coordinates (x1, . . . , xn).
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For 0 < ǫ ≤ 1 we define the dilation, δǫ, of order ǫ and weights (w1, . . . , wn) around
x0, as the function δǫ : U → U , such that

δǫ(x1, . . . , xn) := (ǫw1x1, ǫ
w2x2, . . . , ǫ

wnxn) ∀x = (x1, . . . , xn) ∈ U.

For ǫ > 1 we define the dilation in the same way, but only from the smaller domain δ 1
ǫ
U .

Under the action of the dilations δǫ, the coordinate functions and the coordinate vector
fields behave as

xi ◦ δǫ = ǫwixi, δ 1
ǫ
∗
∂

∂xi
=

1

ǫwi

∂

∂xi
∀1 ≤ i ≤ n. (3.10)

Here δ1/ǫ∗X denotes the pushforward of a vector field X under the action of δǫ. Let the
volume µ be represented in the coordinate neighborhood (U, x) by µ = dx1 ∧ . . . ∧ dxn.
By Remark 3.2 this assumption is not restrictive for the study of the asymptotics along
the diagonal. Then the volume µ changes under the action of the dilation δǫ as

δ∗ǫ (dx1 ∧ . . . ∧ dxn) = ǫ
∑n

i=1 widx1 ∧ . . . ∧ dxn, (3.11)

where δ∗ǫ denotes the pull-back.
When we apply a dilation to the space around x0 and we rescale the time variable,

also the fundamental solution is changed accordingly, as it is proved in the following
proposition.

Proposition 3.4. Let (U, x) be a coordinate neighborhood around the point x0 and let µ
be a volume form on M such that µ = dx1 ∧ . . . ∧ dxn in U . For weights (w1, . . . , wn)
and 0 < ǫ < 1 consider the dilation δǫ : U −→ U . Let α be any real positive number. Let
p(t, x, y) be the fundamental solution of the operator in (3.1) with respect to the volume µ.
Then the fundamental solution on U of the operator

∂

∂t
− ǫα

(
δ1/ǫ∗f0 +

1

2

k∑

i=1

(
δ1/ǫ∗fi

)2
)

(3.12)

is the function

qǫ(t, x, y) := ǫ
∑n

i=1 wi p(ǫαt, δǫ(x), δǫ(y)) ∀x, y ∈ U.

Remark 3.5. The coefficient of normalization ǫ
∑n

i=1 wi, that we have used to define qǫ, is
necessary in order to reconstruct all the solutions of the differential operator, by convolution
with qǫ. This coefficient appears as soon as we make a change of coordinates in the integral
of the convolution. Moreover, we will see that this coefficient defines the order of the
asymptotics of the fundamental solution for small time.

Proof. First of all notice that the dilation δ1/ǫ : δǫ(U) → U can be defined only on the
smaller neighborhood δǫ(U) of U . Then the fields δ1/ǫ∗fi are vector fields just on the
coordinate neighborhood U .

Next let us prove the first property of the fundamental solution, i.e. that the function
qǫ is a solution of the operator in (3.12). For convenience, we call ψ the dilation from
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R
+ × δ1/ǫU to R

+ × U defined by ψ(t, x) := (ǫαt, δǫ(x)). Then the function qǫ can be
written as qǫ(t, x, y) = p(ψ(t, x), δǫ(y)) and the operator in (3.12) is

ψ−1
∗

∂

∂t
− ψ−1

∗ f0 −
1

2

k∑

i=1

(
ψ−1
∗ fi

)2
,

where we are using a little abuse of notation, by considering ∂
∂t , f0, . . . , fk as vector fields

defined on the product space R
+ × U . Recall the definition of the pushforward of a

vector field X under the action of a diffeomorphism ψ: for every function g we have
Xx((g ◦ ψ)|x) = ψx∗(X)(g)|ψ(x). Then we compute for fixed y ∈ U

(
ψ−1
∗

∂

∂t

)
qǫ(t, x, y) = ǫ

∑n
i=1 wi

(
ψ−1
∗

∂

∂t

)∣∣∣∣
(t,x,y)

(p(ψ(t, x), δǫy))

= ǫ
∑n

i=1 wi ψ∗

((
ψ−1
∗

∂

∂t

)∣∣∣∣
(t,x,y)

)
p|(ψ(t,x),δǫy)

= ǫ
∑n

i=1 wi
∂

∂t

∣∣∣∣
(ψ(t,x),δǫy)

p|(ψ(t,x),δǫy)

= ǫ
∑n

i=1 wi L|(ψ(t,x),δǫy) p|(ψ(t,x),δǫy) ,

where the last equality follows since p is the fundamental solution of the operator ∂
∂t −L.

Applying the same computations to the fields ψ−1
∗ fi for i = 0, . . . , k, we find that qǫ

satisfies

ψ−1
∗

∂

∂t
qǫ(t, x, y) = ψ−1

∗ f0(qǫ(t, x, y)) +
1

2

k∑

i=1

(
ψ−1
∗ fi

)2
(qǫ(t, x, y))

and hence qǫ is a solution for the operator in (3.12).
Let us prove the second property of a fundamental solution. Here it becomes clear that

the constant of normalization ǫ
∑n

i=1 wi in the definition of qǫ is exactly the parameter that
we need in order to construct the other solutions of the partial differential equation by
convolution with the fundamental solution. Indeed let us prove that for any ϕ0 ∈ L2(U),
it holds

lim
tց0

ˆ

U
qǫ(t, x, y)ϕ0(y)µ(y) = ϕ0(x).

This follows by a change of variable and the same property valid for the fundamental
solution p(t, x, y):

lim
tց0

ˆ

U
qǫ(t, x, y)ϕ0(y)µ(y) = lim

tց0

ˆ

U
ǫ
∑n

i=1 wip(ǫαt, δǫx, δǫy)ϕ0(y)µ(y)

= lim
tց0

ˆ

M
ǫ
∑n

i=1 wip(ǫαt, δǫx, δǫy)ϕ0(y)µ(y).

Here we integrate on M , by considering ϕ0 as a function on M that is zero outside U .
Now let us do a change of variable with z = δǫy. As computed in (3.11), the volume is
transformed as µ(z) = ǫ

∑n
i=1 wiµ(y). Then

lim
tց0

ˆ

U
qǫ(t, x, y)ϕ0(y)dy = lim

tց0

ˆ

M
ǫ
∑n

i=1 wip(ǫαt, δǫx, z)(ϕ0 ◦ δ1/ǫ)(z)
µ(z)

ǫ
∑n

i=1 wi

= (ϕ0 ◦ δ1/ǫ)(δǫx) = ϕ0(x),
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where the second equality follows because p is a fundamental solution.

Let us investigate better the behavior of the fields fi under the action of the dilations.
We write every component f (j)i of the fields fi in a Taylor expansion centered in x0 = 0
for x in the coordinate neighborhood U

f
(j)
i (x)

∂

∂xj
= f

(j)
i (0)

∂

∂xj
+

n∑

l=1

∂f
(j)
i (0)

∂xl
xl

∂

∂xj
+ o(|x|).

By the properties of a dilation acting on the coordinate functions and on the coordinate
vector fields, (3.10), when we apply a dilation to the vector fields fi, every component has
a different degree with respect to ǫ. Depending on the value of the weights (w1, . . . , wn)
and on the coefficients of the Taylor expansion of the fields fi, for every i = 0, . . . , k, there
exist an integer αi and a principal vector field f̂i such that

δ 1
ǫ
∗fi =

1

ǫαi
f̂i + o

(
1

ǫαi

)
,

where f̂i contains the components of every f (j)i
∂
∂xj

that is homogeneous of degree −αi with

respect to the dilations. Applying this formula to the dilated operator in (3.12), we find
that the operator L rescales as

δ1/ǫ∗f0 +
1

2

k∑

i=1

(
δ1/ǫ∗fi

)2
=

1

ǫα0
f̂0 +

1

2

k∑

i=1

1

ǫ2αi
f̂2i + o

(
1

ǫα

)

where α := max{α0, 2α1, . . . , 2αk}.
The main task in our study is to find suitable coordinates and good weights wi, so that

all the principal parts of the vector field f0 and of f21 , . . . , f
2
k rescale with the same degree

α under the dilations, but they keep "enough" information from the original vector fields.
Let L0 be the operator defined by the principal vector fields f̂0, f̂1, . . . , f̂k as

L0 := f̂0 +
1

2

k∑

i=1

f̂2i .

Notice that by definition L0 is homogeneous under the dilation, and in particular

∂t − ǫαδ1/ǫ∗L0 = ∂t − L0.

(Here and in what follows ∂t is a shorthand to denote the derivation in the time vari-
able). Let us assume for a moment that ∂t − L0 admits a fundamental solution q0. By
Proposition 3.4, for every ǫ > 0 the fundamental solution of ∂t − ǫαδ1/ǫ∗L0 is

qǫ(t, x, y) := ǫ
∑n

i=1 wiq0(ǫ
αt, δǫx, δǫy) = q0(t, x, y), (3.13)

where the last identity follows since the dilated operator is again ∂/∂t − L0.
Let us split the operator L as

∂

∂t
− L =

∂

∂t
− L0 + (L0 − L), (3.14)

where we have underlined the principal part L0 plus a modification L0−L. To an operator
like this we can apply Duhamel’s formula, that gives the asymptotics of the fundamental
solution as a perturbation of the asymptotics of the fundamental solution of the principal
operator.
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3.2.1 Duhamel’s formula

In this section we recall briefly a famous formula, called Duhamel’s formula, which allows
to find the asymptotics of the fundamental solution of a perturbed operator, once we have
the explicit fundamental solution of its principal part. This method, also called parametrix
technique, is a perturbative method that has been already introduced in Chapter 3 of [44],
in [6] and more in general in [36]. There exist also powerful tools to have two-sided
pointwise estimates on the fundamental solution. For the non degenerate case we refer to
the monograph by [25], while there are some recent results for the hypoelliptic case of the
Kolmogorov operators in [23] and [24].

Let L be an operator on a Hilbert space with fundamental solution p(t, x, y) (in our
setting L = ∂t − L) and let us define the following operator on the Hilbert space

etLϕ(x) =
ˆ

p(t, x, y)ϕ(y)dy.

By the properties of the fundamental solution this is an heat operator etL, i.e. an operator
such that

∂etLϕ
∂t

= LetLϕ and lim
t→0

etLϕ = ϕ.

Suppose that L can be decomposed in a sum,

L = L0 + X ,
of a principal part, L0, and a perturbation, X , and assume that L0 has a well defined heat
operator etL0 . Then Duhamel’s formula allows to reconstruct the heat operator of L by a
perturbation of the heat operator of L0 (see Chapter 3 of [44] for a proof), namely

etL = etL0 +

ˆ t

0
e(t−s)LX esL0ds = etL0 + etL ∗ X etL0 , (3.15)

where with ∗ we denote the convolution operator between two operators, A(t) and B(t),
on the Hilbert space:

(A ∗B)(t) =

ˆ t

0
A(t− s)B(s)ds.

Let a(t, x, y) and b(t, x, y) be the heat kernels of A(t) and B(t) respectively and let X be
an operator. Then the heat kernel of (A ∗ XB)(t) is

(a ∗ X b)(t, x, y) =
ˆ t

0

ˆ

M
a(s, x, z)Xzb(t− s, z, y)dzds.

Indeed, for any function ϕ in the Hilbert space, we have

[(A ∗ XB)(t)ϕ] (x) =

[
ˆ t

0
A(t− s)XB(s)ds ϕ

]
(x)

=

[
ˆ t

0
A(t− s)

[
X
ˆ

M
b(s, ·, y)ϕ(y)dy

]
ds

]
(x)

=

ˆ t

0

ˆ

M
a(t− s, x, z)Xz

(
ˆ

M
b(s, z, y)ϕ(y)dy

)
dzds

=

ˆ

M

(
ˆ t

0

ˆ

M
a(t− s, x, z)Xzb(s, z, y))dzds

)
ϕ(y)dy.
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From (3.15) we can now derive an approximation of the heat kernel p(t, x, y) of the per-
turbed operator L, by means of the heat kernel p0(t, x, y) of the principal operator:

p(t, x, y) = p0(t, x, y) + (p ∗ Xp0)(t, x, y). (3.16)

3.2.2 The perturbative method

We can apply Duhamel’s formula to the operator in (3.14). Indeed it is the sum of a
principal operator

L0 = f̂0 +
1

2

k∑

i=1

f̂2i

perturbed by X := L0−L. If we find good coordinates and weights, so that ∂
∂t−L0 admits

a fundamental solution q0(t, x, y), then by Duhamel’s formula (3.16) the asymptotics of
the fundamental solution p(t, x, y) is

p(t, x, y) = q0(t, x, y) + (p ∗ X q0)(t, x, y). (3.17)

Recall the homogeneity property of the function q0 written in equation (3.13) and choose
ǫ = t−1/α, then

q0(t, x, y) =q0(ǫ
−α1, x, y) = ǫ

∑n
i=1 wiq0(t, δǫx, δǫy)

=
1

t
∑n

i=1 wi/α
q0(1, δ1/tαx, δ1/tαy).

Let us choose x = y = x0 in Eq. (3.17), and let t go to zero. Then

p(t, x0, x0) = q0(t, x0, x0) + (p ∗ X q0)(1, x0, x0)

=
1

t
∑n

i=1 wi/α

(
q0(1, x0, x0) + t

∑n
i=1 wi/α(p ∗ X q0)(t, x0, x0)

)
.

Provided we can control the error term t
∑n

i=1 wi/α(p∗X q0)(t, x, y), we have then found the
desired asymptotics.

In conclusion, in the choice of the coordinates (U, x) and the weights (w1, . . . , wn) it will
be important that the principal parts, f̂0, f̂1, . . . , f̂k, of the vector fields make homogeneous
the principal part L0 of the dilated operator and, moreover, that they satisfy Hörmander
condition, so that it is guaranteed the existence of a fundamental solution q0 of the principal
operator. Finally we will need to check that the remainder term in the asymptotics of p
goes to zero, as t goes to zero.

3.3 Graded structure induced by a filtration

In this section we introduce some notation and recall the definition of local graded structure
of a manifold, induced by a filtration. This terminology is essential in order to find the
right coordinates to rescale the differential operator L and to compute the order of the
asymptotics of the fundamental solution. We constantly refer to Bianchini and Stefani’s
paper [20].
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3.3.1 Chart adapted to a filtration

Let M be an n-dimensional smooth manifold, let f0, f1, . . . , fk be smooth vector fields on
M , that satisfy the Hörmander condition (3.2), and consider the hypoelliptic operator on
R×M defined as

∂

∂t
− f0 −

k∑

i=1

f2i .

(In this part of the chapter the boundedness assumption on the fields is not necessary).
The role played by the drift field f0 and the other vector fields, f1, . . . , fk, in the sum

of squares, is different, and in particular the fields f1, . . . , fk are applied twice as many
times as the drift field is. For this reason we want to treat differently the two kinds of
fields, by giving to them two different weights.

Let LieX be the Lie algebra generated by a set {X0, X1, . . . , Xk} of noncommutative
indeterminates.

Definition 3.6. For every bracket Λ in LieX we denote by |Λ|i the number of times that
the indeterminate Xi appears in the definition of Λ. We will call this number the length
of Λ with respect to Xi.

For example, the bracket Λ = [X0, [X2, X0]] has lengths |Λ|0 = 2, |Λ|1 = 0 and |Λ|2 = 1,
and it has zero length with respect to any other indeterminate.

By fixing a weight, li, to every indeterminate X0, . . . , Xk we can define the weight of
a bracket Λ.

Definition 3.7. Given a set of integers (l0, l1, . . . , lk), we define the weight of a bracket
Λ ∈ LieX as

||Λ|| :=
k∑

i=0

li|Λ|i if Λ 6= 0

and we set ||0|| = 0.

In order to give different importance to the drift field, with respect to the other vector
fields, in the following we fix the integers to be

l0 = 2 and l1 = . . . = lk = 1.

This means that the indeterminate X0 will have weight 2, while the other indeterminates
will have weight 1. For more complex Lie brackets, we have for example that the weight
of the bracket considered before Λ = [X0, [X2, X0]] is

||Λ|| = 2 · |Λ|0 + 1 · |Λ|2 = 5.

By means of the weight of the indeterminates we introduce now a filtration of the Lie
algebra spanned by f0, f1, . . . , fk in the following way. For every bracket Λ in LieX we
denote by Λf the vector field on M obtained by replacing every indeterminate Xi with the
corresponding field fi for 0 ≤ i ≤ k. Then we define an increasing filtration G = {Gi}i≥0

of Vec(M) by
Gi = span{Λf : Λ ∈ LieX, ||Λ|| ≤ i}. (3.18)
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In other words Gi is the subalgebra of Vec(M) that contains all the vector fields obtained
from a bracket of weight less then or equal to i. In particular, following our choice of
weights, the first subspaces of the filtration are

G0 = {0}
G1 = span{f1, . . . , fk}
G2 = span{fi, [fi, fj ], f0 : i, j = 1, . . . , k}
G3 = span{fi, [fi, fj ], f0, [fi, [fj , fh]], [f0, fi] : i, j, h = 1, . . . , k}

...

Notice moreover that for every i, j ≥ 0, the following properties hold

• Gi ⊂ Gi+1

• [Gi, Gj ] ⊂ Gi+j

• ⋃i≥0Gi = Lie{f0, f1, . . . , fk} and
⋃
i≥0Gi(x) = TxM , for every x ∈ M , since by

assumption the family {f0, . . . , fk} satisfies the weak Hörmander condition (3.2).

When we evaluate G at the stationary point x0 we get a stratification of the tangent space
Tx0M at x0. Let

ki := dimGi(x0) ∀i ≥ 0.

In particular, k0 = 0 and k1 ≤ k. Moreover, by Hörmander condition (3.2), there exists
a smallest integer m such that Gm(x0) = Tx0M . We call this number the step of the
filtration G at x0.

The filtration G induces a particular choice of coordinates centered at x0, as proved by
the following proposition.

Proposition 3.8 (Bianchini, Stefani [20]). There exists a chart (U, x) centered at x0 such
that for every 1 ≤ j ≤ m

(i) Gj(x0) = span{ ∂
∂x1

, . . . , ∂
∂xkj

}

(ii) Dxh(x0) = 0 for every differential operator D ∈ Aj := {Z1 · · ·Zl with Zs ∈ Gis and
i1 + · · ·+ il ≤ j} and for every h > kj.

Definition 3.9. We call a chart that satisfies the properties of Proposition 3.8 an adapted
chart to the filtration G at x0.

Since this kind of coordinates will reveal to be very important in our study, we give
here the proof of the proposition, which relies upon the following Lemma:

Lemma 3.10. Let m be the step of the filtration G at x0 and let j < m be an integer. Let
ϕ ∈ C∞(M) be such that dx0ϕ 6= 0 and Zϕ(x0) = 0 for all Z ∈ Gj. Then there exists an
open neighborhood U of x0 and a function ϕ̂ ∈ C∞(U) such that

• dx0ϕ = dx0ϕ̂

• Dϕ̂(x0) = 0, for every D ∈ Aj = {Z1 · · ·Zl : Zs ∈ Gis , i1 + · · ·+ il ≤ j}.
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Proof. Let Y1, . . . , Yn be vector fields on M such that they form a basis of Tx0M at x0
and such that

• {Y1, . . . , Yki} are in Gi and form a basis of Gi at x0, for every i ≤ j,

• Yiϕ(x0) = 0 for every i ≤ n− 1,

• Ynϕ(x0) = 1.

We choose the chart y = (y1, . . . , yn) as the local inverse of the map

(y1, . . . , yn) 7→ eynYn · · · ey1Y1x0.

Then the function ϕ̂ := yn is such that dx0ϕ = dx0ϕ̂.
Let D = Z1 · · ·Zl ∈ Aj with Zs ∈ Gis and i1 + · · · + il ≤ j and let us prove the

second property required for the function ϕ̂, by induction on l. Since dx0ϕ = dx0ϕ̂ and
Zϕ(x0) = 0 for all Z ∈ Gj by hypothesis, the property is satisfied for l = 1. For l > 1,

since Zl ∈ Gil we can write Zl(x0) =
∑kil

i=1 aiYi(x0) for some ai so

Dϕ̂(x0) =

kil∑

i=1

ai (Zl−1 · Yi · Zl−2 · · ·Z1 + [Yi, Zl−1] · Zl−2 · · ·Z1) ϕ̂(x0)

The second component on the left side vanishes because, by the definition of the filtration,
[Gi, Gh] ∈ Gi+h, so we can apply on this component the induction hypothesis. By applying
again the same commutation we have

Dϕ̂(x0) =

kil∑

i=1

aiZl−1 · · ·Z1Yiϕ̂(x0).

Iterating the same procedure also to Zl−1, . . . , Z1 we can write Dϕ̂(x0) as a linear combi-
nation of elements of the type

Yil · · ·Yi1ϕ̂(x0),
with 1 ≤ ih ≤ kj < n for every h = 1, . . . , l. Therefore we get Dϕ̂(x0) = Dyn(x0) = 0.

Proof of Proposition 3.8. Let (U, x) be any chart centered at x0. We can get a chart with
property (i) of the proposition by a linear change of coordinates. Let us still denote it by
(U, x). For every i ≤ n let j be such that kj < i ≤ kj+1. Then the coordinate function
xi satisfies the hypothesis of the Lemma with respect to the integer j. By applying the
Lemma to each function of the chart we get the statement.

In Section 3.4.1 we present an example of adapted chart.

3.3.2 Graded structure

For 1 ≤ i ≤ m we define the integers

di := ki − ki−1,

which indicate the number of new coordinates achieved with every new layer i of the
filtration at x0.
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Definition 3.11. Let us denote a point x = (x1, . . . , xn) ∈ U by the m-tuple (x1, x2, . . . , xm) ∈
R
d1 ⊕R

d2 ⊕ . . .⊕R
dm , where each component xi := (xki−1+1, . . . , xki) is a vector of length

di. Then for every 0 < ǫ ≤ 1 we define the anisotropic dilations around x0 of factor ǫ as

δǫ(x) = δǫ(x
1, . . . , xm) := (ǫx1, ǫ2x2, . . . , ǫmxm).

For ǫ > 1 we define δǫ in the same way, but it will be defined only on δ 1
ǫ
U .

The dilations δǫ act on every coordinate function and on the coordinate vector fields
with a different weight, namely

xj ◦ δǫ = ǫixj , (δǫ)∗
∂

∂xj
= ǫi

∂

∂xj
∀ki−1 < j ≤ ki.

For every 1 ≤ i ≤ n let wj be the order of expansion of the coordinate xj , that is wj := i
if ki−1 < j ≤ ki. We call wj the weight of the coordinate xj . Then the dilation δǫ is a
particular choice of dilations of Definition 3.3 with respect to the coordinates induced by
the filtration G and the weights (w1, . . . , wn).

Accordingly we define the weight of a monomial to be

W(xα1
1 · · ·xαn

n ) :=
n∑

j=1

αjwj ,

and the weight of a polynomial to be the greatest order of its monomials. Moreover we
define the graded order, O(g), of a function g ∈ C∞(U) to be the smallest weight of the
monomials that appear in any Taylor approximation of g at x0.

For example, let n = 2 and suppose that x1 has weight 1 and x2 has weight 2. Then
the polynomial x1x2 − (x1)2(x2)2

6 has weight 6, because the two monomials composing it
are x1x2 of weight 3 and the rest of weight 6. On the other hand, sin(x1x2) = x1x2 −
(x1)2(x2)2

6 + o
(
(x1)

2(x2)
2
)

has graded order 3.
We extend these definitions to differential operators. We say that a polynomial vector

field Z is homogeneous of weight i if

W(Zϕ) = W(ϕ)− i ∀ monomial ϕ of weight W(ϕ).

In other words Z subtracts weight i to every function. Then the weight of a polynomial
vector field is the smallest weight of its homogeneous components. We define the graded
order, O(D), of a differential operator D by saying that

O(D) ≤ j if and only if O(Dϕ) ≥ O(ϕ)− j ∀ polynomial ϕ,

that is D subtracts at most weight j from the functions. For example the graded order of
a vector field like (xα1

1 · · ·xαn
n ) ∂

∂xh
is

O
(
(xα1

1 · · ·xαn
n )

∂

∂xh

)
= wh −




n∑

j=1

αjwj


 .

Coming back to the previous example, the graded order of a field like sin(x1x2)
∂
∂x1

is
obtained as 1−O(sin(x1x2)) = −2.



3.4 Nilpotent approximation and the order of the dilations 33

By means of the graded order we can give a generalization of the concept of Taylor
approximation of a function up to weight h. Namely, for any ϕ ∈ C∞(U) and every integer
h ≥ 0, there is a unique polynomial ϕ(h) of weight h such that O(ϕ− ϕ(h)) ≥ h.

Definition 3.12. The polynomial ϕ(h) is called the graded approximation of weight h of ϕ
and it is the sum of the polynomials of weight less then or equal to h in the formal Taylor
expansion of ϕ at x0.

For every vector field V ∈ Vec(U) and each integer h ≤ m there is a polynomial vector
field V(h) of weight h such that O(V − V(h)) ≤ h− 1.

Definition 3.13. V(h) is called the graded approximation of weight h of V and it is the
sum of the homogeneous vector fields of weight greater than or equal to h in the formal
Taylor expansion of V at x0.

Notice that, since V(h) is a polynomial vector field, we can consider it as defined on
the whole Euclidean space R

n.
We will see in the next sections how to apply this graded structure in order to un-

derline the most important properties of the operator in (3.1), concerning the small time
asymptotics of its fundamental solution.

3.4 Nilpotent approximation and the order of the dilations

In this section we apply the graded structure, that we have just developed, to define a
special class of vector fields, which approximate the original one f0, f1, . . . , fk and we show
an example to clarify the setting. Finally we compute how the dilations change the volume
form and we introduce the order that will appear in the asymptotics of the heat kernel.

3.4.1 Nilpotent approximation

Let (x, U,w) be the graded structure around x0 introduced in Section 3.3 and f0, f1, . . . , fk
be the vector fields used to define the filtration of Tx0M . Then as proved in [20] Theorem
3.1, for every f ∈ Gi, we have a bound on the graded order, namely O(f) ≤ i, where O is
the graded order associated to the graded structure (x, U,w) defined in Section 3.3.

Recall the integers l0 = 2 and l1 = . . . = lk = 1 introduced in Section 3.3 to define the
filtration and denote by f̂i the graded approximation of weight li of fi. In other words, f̂i
has weight li and O(fi − f̂i) < li.

Definition 3.14. The vector fields f̂0, f̂1, . . . , f̂k are called the nilpotent approximation
of f0, f1, . . . , fk.

The fields f̂i, for 0 ≤ i ≤ k, are polynomials, so they can be defined on R
n.

We can describe more precisely the structure of the approximating fields f̂i:

• f̂0 contains the terms of weight 2; therefore every component f̂ j0 of f̂0 depends only
linearly on the coordinates of weight wj−2 and more than linearly on the coordinates
of less weight, but does not depend on the coordinates of weight greater than or equal
to wj − 1, that are xh with h > kj−2.
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• f̂i contains the terms of weight 1 for i = 1, . . . , k; therefore every component f̂ ji of
f̂i depends only linearly on the coordinates of weight wj − 1 and more than linearly
on the coordinates of less weight, but do not depend on the coordinates of weight
greater than or equal to wj , that are xh with h > kj−1.

To make the construction more clear we end this subsection with an example, in which
we present the filtration in x0, the induced adapted chart and the graded structure, and
we find the related nilpotent approximation.

Example 1. Let M = R
2, and let the number of controlled vector fields be k = 1. Define

the vector fields

f1 :=
∂

∂x1
+ x1

∂

∂x2
and f0 := sin(x21)

∂

∂x2

and recall the choice of weights l0 = 2 and l1 = 1. The non vanishing Lie brackets that
contribute to span the tangent space in any point are given by

[f1, f0] = 2x1 cos(x
2
1)

∂

∂x2
, [f1, [f1, f0]] = (2 cos(x21)− 4x21 sin(x

2
1))

∂

∂x2
.

Then Hörmander assumption (3.2) holds in any point and the filtration defined in (3.18)
is equal to

• G1 = span{f1}

• G2 = span{f1, f0}

• G3 = span{f1, f0, [f1, f0]}

• G4 = span{f1, f0, [f1, f0], [f1, [f1, f0]]}

Let x0 ∈ R
2 be a stationary point of the drift field, and center the coordinates so that

x0 = (0, 0). The filtration in x0 is given by

G1(x0) = G2(x0) = G3(x0) = span{ ∂

∂x1
} and G4(x0) = R

2 (3.19)

and the dimensions are: k1 = k2 = k3 = 1, k4 = 2.
Let us find an adapted chart to the filtration at x0 = (0, 0). As one can easily see, the

coordinates (x1, x2) are not adapted, since f21 (x2)
∣∣
x0

= 1 6= 0 and the second property of
the adapted chart then fails. Following the constructive proof of Lemma 3.10, one can find
that the new coordinates (y1, y2) defined by

{
y1 = x1 − x21

2 + x2

y2 = −x21
2 + x2

give an adapted chart at (0, 0). In these coordinates the two vector fields are written as

f1 =
∂

∂y1
and f0 = sin((y1 − y2)

2)

(
∂

∂y1
+

∂

∂y2

)
.
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For ǫ > 0 the dilations defined in Definition 3.11 are

δǫ : (y1, y2) 7→ (ǫy1, ǫ
4y2). (3.20)

Then the weights of the coordinate functions are W(y1) = 1 and W(y2) = 4, and the
weights of the coordinate vector fields are W( ∂

∂y1
) = 1 and W( ∂

∂y2
) = 4.

Finally, let us write the Taylor expansion of the two vector fields f1, f0:

f1 =
∂

∂y1

f0 =
(
y21 − 2y1y2 + y22 + o(|(y1, y2)|2

) ∂

∂y2

We can see that f1 has already weight 1, while the only part of weight 2 in f0 is y21
∂
∂y2

. We
can therefore conclude that the nilpotent approximation of f0, f1 is given by

f̂0 = y21
∂

∂y2
and f̂1 =

∂

∂y1
.

3.4.2 Order of the dilations

We analyze here the order of the dilations, that is the order of homogeneity of the volume
form under the action of the dilations. This number will be crucial to find the order of
degeneracy of the fundamental solution of the operator (3.1).

Let us consider the dilations δǫ. They were defined by introducing the notation x =
(x1, . . . , xm), where each component xi is a vector of length di = ki − ki−1. Then we
set δǫ(x1, x2, . . . , xm) = (ǫx1, ǫ2x2, . . . , ǫmxm). Let N be the order of homogeneity of the
volume form dx1 ∧ dx2 ∧ . . . ∧ dxn around the point x0, that is a number such that

(δǫ)∗(dx1 ∧ dx2 ∧ . . . ∧ xn) = ǫNdx1 ∧ dx2 ∧ . . . ∧ dxn.

Then N is given by

N :=
m∑

i=1

i · di =
m∑

i=1

i (dimGi(x0)− dimGi−1(x0)) . (3.21)

Since this number is very important we give here some examples to understand its meaning.

Example 2 (Continuation of Example 1). As a first example we consider the one given
in Example 1. We have already computed the filtration in Eq. (3.19), so we already know
that the integers di := dimGi − dimGi−1 are

d1 = 1 d2 = d3 = 0 and d4 = 1.

Therefore the order of the dilations is N = 1 · 1 + 4 · 1 = 5, as one can compute directly
from the explicit expression of the dilations in (3.20).

Example 3 (Sub-Riemannian manifold). Let us assume that the operator in (3.1) is
induced by a sub-Riemannian structure. In other words, we consider an operator without
drift field, and the vector fields f1, . . . , fk generate a completely non-holonomic distribution,
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∆, of step m. Recall that the growth vector of the distribution is defined as the vector, at
any point q of the manifold, given by

(∆(q),∆2(q), . . . ,∆m(q)) where ∆i+1 := ∆i + [∆,∆i].

Then the filtration Gi = ∆i for every i and the integers di related to the filtration are the
same defined by the growth vector, i.e. di = dim(∆i)− dim(∆i−1). Finally the number N
is exactly the homogeneous dimension Q of the manifold. More explicitly

N = Q = 1 · d+ 2 · d2 + · · ·m · dm =

m∑

i=1

i(dim(∆i)− dim(∆i−1)).

In particular for the 2n + 1 dimensional Heisenberg group, for which dim∆ = 2n and
[∆,∆]q = TqM for every q ∈M , the homogeneous dimension is Q = 2n+ 2.

Example 4 (Linear case). As a last example, we consider an involutive distribution D,
spanned locally by k constant vector fields, and assume that the drift field is linear in a
neighborhood of x0.

The operators arising from such a structure include the Kolmogorov equations, that
appear in diffusion theory, probability and finance. Important results on this type of equa-
tions have been achieved by Lanconelli, Pascucci and Polidoro [31, 32]. See also [22] for
an analysis for continuity methods.

Without loss of generality we can assume that

fi =
∂

∂xi
∀1 ≤ i ≤ k and f0 =

n∑

i,j=1

Aijxi
∂

∂xj

for some constants Aij. Under these assumptions, the only Lie brackets different from
zero are the one involving only one vector field of the distribution and the drift field. Let
us call A the n × n matrix with entries equal to Aij and B the n × k matrix that is the
identity in the first k rows and is equal to zero in the last n− k rows. Then Hörmander’s
condition of hypoellipticity (3.2) is also called in this linear setting Kalman’s condition of
controllability for linear control systems and becomes the following condition on the rank
of Kalman’s n× (nk) matrix

rank[B,AB,A2B, . . . , An−1B] = n. (3.22)

The filtration is then completely determined and we have

G2i−1(x0) = G2i(x0) = span{AjB : 0 ≤ j ≤ i− 1}.

Consequently the numbers k2i−1 = k2i are determined by the rank of the Kalman’s matrix
in (3.22), where we stop the series of matrices at Ai−1B. The numbers dj are zero if j is
even, while if j = 2i−1 they are the number of new linearly independent columns obtained
by adding the matrix Ai−1B to the previous one. The step of the distribution is then an
odd number 2m̃− 1 and N is equal to an odd sum of integers:

N =
m̃∑

i=1

(2i− 1)d2i−1 = 1 · d1 + 3 · d3 + 5 · d5 + · · ·+ (2m̃− 1)d2m̃−1.



3.4 Nilpotent approximation and the order of the dilations 37

3.4.3 Comparison between N and the sub-Riemannian dimension Q
Let us consider the case in which f1, . . . , fk satisfy the strong Hörmander condition, i.e.,
the Lie algebra doesn’t require the drift field to generate the tangent space (see (sHC)).
As explained in the Introduction, in this case it is well defined a distance function, called
the sub-Riemannian or CC-distance, and the sub-Riemannian homogeneous dimension Q.
We want to compare the dimension Q and the integer N defined by the filtration G at a
stationary point x0 of the drift field f0.

Let ∆x := span{f1, . . . , fk}x be the horizontal distribution at x ∈M and for i ≥ 2 let

∆i := ∆i−1 + [∆i−1,∆]

be the filtration defined by the distribution, where ∆1 = ∆. Let m∆ be the step of the
distribution ∆ at x0, i.e. the smallest integer j such that ∆j

x0 = Tx0M . In other words
the subspace ∆i

x ⊂ TxM is spanned by all the Lie brackets up to length i between the
fields f1, . . . , fk:

∆i = span{[fi1 , . . . , [fil−1
, fil ]] : for all 1 ≤ i1, . . . , il ≤ k and l ≤ i}.

At the same time we can built the filtration G at x0 defined in (3.18), which involves also
the drift field f0. In general it holds the inclusion

∆i
x0 ⊂ Gi(x0). (3.23)

Therefore the dimensions ki of Gi(x0) are greater or equal than the dimensions k̃i of ∆i
x0

and the step m of the filtration G is smaller or equal than the step m∆ of the distribution.
To gain an inequality between the integers N and Q notice that we can rewrite the sum

N :=
m∑

i=1

idi =
m∑

j=1

m∑

i=j

di =
m∑

j=1

(n− kj−1),

where we recall that di = ki−ki−1. The same identities can be written for the sum defining
Q. Therefore it always holds the inequality

N :=
m∑

j=1

(n− kj−1) ≤
m∑

j=1

(n− k̃j−1) ≤
m∆∑

j=1

(n− k̃j−1) = Q.

It becomes an equality if only if ∆i
x0 = Gi(x0) for every layer i.

Remark 3.15. The identities ∆i
x0 = Gi(x0) are verified in particular if f0 ∈ ∆2, because

f0 can be written equivalently as a combination of Lie brackets between the fields f1, . . . , fk
up to length 2 and then it does not play any role in the construction of the Gi(x0). This
is the case studied by Ben Arous in [15] and recalled in (3.3).

If f0 ∈ ∆i \ ∆2 for some i > 2, then the inclusion in (3.23) could be strict, because
the Lie brackets between f0 and some other fields could generate new dimensions in the
layers of the filtration G that could be reached by the filtration of ∆ only with longer
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combination of Lie brackets. For example, let us take on R
2 the fields f1 = ∂

∂x1
, f2 =

x31
6

∂
∂x2

and f0 = [f1, [f1, f2]] = x1
∂
∂x2

, and consider the two filtrations at the origin x0. We have

∆1
x0 = ∆2

x0 = ∆3
x0 = span

{
∂

∂x1

}
and ∆4

x0 = R
2,

while the filtration G at x0 as only 3 layers, namely

G1(x0) = G2(x0) = span

{
∂

∂x1

}
and G3(x0) = span{f1, [f1, f0]}x0 = R

2,

therefore Q is strictly bigger then N .
Notice that the behavior of this last example can not happen if m∆ ≤ 3, then in this

case it always holds N = Q.

3.5 Small time asymptotics on the diagonal

We come back now to the perturbative method explained in Section 3.2. Let

∂ϕ

∂t
− f0(ϕ)−

1

2

k∑

i=1

f2i (ϕ) ∀ϕ ∈ C∞(R×M)

be the differential operator (3.1) on R
+ ×M and assume that f0, f1, . . . , fk satisfy the

Hörmander condition (3.2) and are bounded with bounded derivatives of any order.
The role played by the drift field f0 and the other vector fields, {f1, . . . , fk}, in the sum

of squares, is different, and in particular the fields {f1, . . . , fk} are applied twice as many
times as the drift field is. Therefore we give to f0 weight 2 and to f1, . . . , fk weight 1.
Consequently fix the corresponding graded structure, (U, x, w), around x0, that is induced
by the filtration G introduced in Section 3.3.

The fields f0, f1, . . . , fk can be written in terms of the nilpotent approximation as

f0 = f̂0 + g0, fi = f̂i + gi 1 ≤ i ≤ k,

where g0 and gi are vector fields of order less than or equal to 1 and 0 respectively. Let

L0 := f̂0 +
1

2

k∑

i=1

f̂2i

and write ∂t − L = ∂t − L0 + (L0 − L). To apply Duhamel’s formula (3.16) to this kind
of operator, we need to prove that there exists the fundamental solution of the principal
operator ∂/∂t − L0. As we will prove now, this follows by the property of hypoellipticity
of the original operator, that are preserved by the nilpotent approximation, that defines
L0. The same statement can be found also in the paper by Bianchini and Stefani [20].

Proposition 3.16. Let f̂0, f̂1, . . . , f̂k be the nilpotent approximation of the fields f0, f1, . . . , fk
defined in Definition 3.14.
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(i) For every bracket Λ such that ||Λ|| = i, then (Λf − Λf̂ ) ∈ Gi−1(x0) and Λf̂ (x0) = 0

whenever Λf (x0) ∈ Gi−1(x0), where ||Λ|| denotes the weight of the bracket Λ defined
in Definition 3.7.

(ii) Assume Gm(x0) = Liex0{f0, f1, . . . , fk}, then

Liex0{f0, f1, . . . , fk} = Liex0{f̂0, f̂1, . . . , f̂k}.

Proof. Let us prove the first statement. Let (U, x) be coordinates around x0 adapted to
the filtration {Gi}i. Then for every i,

Gi(x0) = span

{
∂

∂x1

∣∣∣∣
x0

, . . . ,
∂

∂xki

∣∣∣∣
x0

}
. (3.24)

Let Λ be a bracket such that ||Λ|| = i, then as proved in [20] Theorem 3.1, O(Λf ) ≤ i,
where O is the graded order associated to the graded structure induced by the filtration.
Therefore there exist constants aj such that

Λf (x0) =
∑

j≤ki
aj

∂

∂xj

∣∣∣∣
x0

. (3.25)

Notice that if two vector fields h1, h2 are homogeneous of graded order respectively n1 and
n2, then their Lie bracket is either zero or homogeneous of order n1 + n2. Then the Lie
bracket Λf̂ is either zero or homogeneous of order ||Λ|| = i. Therefore by equation (3.25),
we have

Λf̂ (x0) =
∑

ki−1<j≤ki
aj

∂

∂xj

∣∣∣∣
x0

. (3.26)

By subtracting (3.26) to (3.25), we find that (Λf − Λf̂ ) ∈ Gi−1(x0), because Gi(x0) is
obtained as in (3.24).

Let us prove the second statement. Let (U, x) be as before and let

V̂ (x0) ∈ Liex0{f̂0, f̂1, . . . , f̂k}.

Then V̂ (x0) = Λf̂ (x0), for some bracket Λ with ||Λ|| = j equal to the graded order of

V̂ (x0). Then by expression (3.24), there exist αi such that V̂ (x0) =
∑

i≤kj αi
∂
∂xi

. Since

Gj(x0) ⊂ Gm(x0) = Liex0{f0, f1, . . . , fk}, we have that V̂ (x0) ∈ Liex0{f0, f1, . . . , fk}.
We prove the other inclusion by proving that Gi(x0) = span{Λf̂ (x0) : ||Λ|| ≤ i}, for

every i. We prove it by induction on i.
For i = 1, G1(x0) = span{Λf (x0) : ||Λ|| ≤ 1}. Let Λf (x0) ∈ G1(x0), then by statement

(i), (Λf − Λf̂ )(x0) ∈ G0(x0) = {0}. Then Λf (x0) = Λf̂ (x0) and the statement is true for
i = 1.

Assume that the statement is true for i− 1. Recall that

Gi(x0) = span{Λf (x0) : ||Λ|| ≤ i}
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and (Λf−Λf̂ )(x0) ∈ Gi−1(x0). By the induction hypothesis, there exists g ∈ span{Λf̂ (x0) :
||Λ|| ≤ i− 1} such that

Λf (x0) = Λf̂ (x0) + g.

And the statement is proved also for i.
We conclude, since Liex0{f0, f1, . . . , fk} = Gm(x0) ⊂ Liex0{f̂0, f̂1, . . . , f̂k}.

Corollary 3.17. Recall that x0 is a point where f0(x0) ∈ D2
x0 = spanx0{fi, [fi, fj ] : 1 ≤

i, j ≤ k}. Then the operator ∂/∂t − L0 is hypoelliptic on R
n.

Proof. By Hörmander’s condition of hypoellipticity we know that

Liex0{f0, f1, . . . , fk} = R
n.

Then the hypothesis of statement (ii) of the Proposition are fulfilled and also the nilpotent
approximation is Lie bracket generating. To guarantee the hypoellipticity of ∂/∂t − L0,
however, we need that the field f0 gives a contribution in the generating process only if it
is applied to a Lie bracket with some other vector fields. In other words, we want that f0
alone gives no contribution.

Let us suppose first that x0 is an equilibrium point for the drift. Then f0(x0) = 0 =
f̂0(x0) and the weak Hörmander’s condition is immediately satisfied, i.e.,

spanx0{
∂

∂t
− f̂0, f̂1, . . . , f̂k} = R

n+1. (3.27)

More in general, let f0(x0) ∈ D2
x0 . By point (i) in the previous proposition, f̂(x0) =

f(x0) + g1 for a vector g1 ∈ spanx0{f1, . . . , fk} = spanx0{f̂1, . . . , f̂k}. On the other hand,
by hypothesis f0(x0) = [fi, fj ]x0 for some 1 ≤ i, j ≤ k. Then the proposition implies that
there exists g2 ∈ spanx0{f̂1, . . . , f̂k} such that f0(x0) = [f̂i, f̂j ]x0 + g2. In conclusion we

have proved that f̂(x0) = [f̂i, f̂j ]x0 + g1 + g2, and then f̂0(x0) alone does not give any
contribution in the Lie bracket generating condition. So (3.27) holds again.

Using the lower semi-continuity of the rank, we can find a small neighborhood U of x0
where the Hörmander condition holds at any point.

Now by the homogeneity of the approximating system we know that

δǫ∗f̂0 = ǫ2f̂0 and δǫ∗f̂i = ǫf̂i ∀1 ≤ i ≤ k.

Therefore, since the differential operator commutes with the Lie brackets, we can extend
Hörmander condition, which holds on a neighborhood of x0, to the whole Euclidean space
R
n and the operator ∂/∂t − L0 is hypoelliptic on R

n.

Remark 3.18. In the proof of this corollary, the assumption on x0 is important, because
it permits to say that the approximating system f̂0, f̂1, . . . , f̂k satisfies not only the strong
Hörmander condition (that is always guarantied), but also the weak one (3.2). Indeed if it
fails, there are cases in which the approximating fields do not satisfy condition (3.2) and
L0 is not hypoelliptic, even if L is.

For example, on R
2 the fields

f1 =
∂

∂x1
f0 = (1 + x1)

∂

∂x2
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satisfy the Hörmander condition (3.2), but this fails for their nilpotent approximation
f̂1 = ∂

∂x1
and f̂0 = ∂

∂x2
. Indeed, even if ∂t − f0 − 1

2f
2
1 is hypoelliptic, its principal part

∂t − ∂
∂x2

− 1
2
∂2

∂x21
is not and there does not exist a heat kernel of the principal operator.

By the corollary we can conclude that the principal operator ∂t − L0 admits a well
defined heat kernel, q0(t, x, y). Indeed, even if the approximating fields are not bounded
in general, all the components f̂ ji depend only on the coordinates x1, . . . , xj−1 and not
on the subsequent coordinates (for example f1i are just constant). This implies that the
approximating system satisfies the weaker hypothesis of Remark 2.12 and then it admits
a fundamental solution. This is characterized as the density function of the solution, ξ(t),
of the stochastic differential equation in Stratonovich form

dξt = f̂0(ξt)dt+
k∑

i=1

f̂i(ξt) ◦ dwi(t)

ξ(0) = x

where wi(t) is a 1-dim Brownian motion for every 1 ≤ i ≤ k. The solution q0 satisfies the
following important homogeneity property.

Lemma 3.19. For every ǫ > 0, for every t > 0 and for all x, y ∈ R
n it holds

q0(t, x, y) = ǫN q0
(
ǫ2t, δǫx, δǫy

)
.

In particular, for ǫ = 1/
√
t we have the following identity

q0(t, x, y) =
1

tN/2
q0

(
1, δ1/

√
tx, δ1/

√
ty
)

∀t > 0, x, y ∈ R
n.

Proof. This lemma is indeed a corollary of Proposition 3.4, since by definition of f̂0, f̂1, . . . , f̂k
we have

ǫ2δ 1
ǫ
∗L0 = L0.

We can then apply the procedure introduced in Section 3.2 and we conclude by giving
the asymptotics on the diagonal in x0 of the fundamental solution p(t, x, y).

Theorem 3.20. Let x0 be a point where the drift field lies in D2
x0. Assume that q0(1, x0, x0)

is strictly positive. Then the short time asymptotics on the diagonal of the fundamental
solution, p(t, x, y), of (3.1) is given by

p(t, x0, x0) =
q0(1, x0, x0)

tN/2
(1 + o(1)), (3.29)

where N is the degree of homogeneity of the volume form dx1 ∧ . . .∧ dxn under the action
of the dilations δǫ computed in (3.21).
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Proof. Let us write L = L0 − (L0 + L). By Duhamel’s formula (3.16) the asymptotics on
the diagonal of the fundamental solution p for small time to the perturbed operator ∂t−L
is

p(t, x0, x0) = q0(t, x0, x0) + p ∗ (L0 − L)q0(t, x0, x0)

=
1

√
t
N

(
q0(1, x0, x0) +

√
t
N
p ∗ (L0 − L)q0(t, x0, x0)

)
,

(3.30)

provided that the remainder term
√
t
N
p ∗ (L0 − L)q0 is negligible for t small.

To prove this, let us study the function (L0 − L)q0(t, x, y):

|(L0 − L)q0(t, x, y)| =
1

√
t
N |(L0 − L)q0(1, δ 1√

t
x, δ 1√

t
y))|

=
1

√
t
N |δ 1√

t
∗(L0 − L)q0(1, x, y)|

≤ 1
√
t
N

∣∣∣∣
C√
t
(L0 − L)q0(1, x, y)

∣∣∣∣

for some constant C. The last inequality follows because L0 is the part of order −2 of L
and the difference L0 − L has order −1. Therefore for small t the operator δ 1√

t
∗(L0 − L)

rescales at most as 1√
t
(L0 − L). Moreover (L0 − L)q0(1, x, y) is uniformly bounded in U ,

because it is evalueted in t = 1 where the function is C∞.
Let us use this relation to prove that (p ∗ (L0 − L)q0)(t, x0, x0) = O

( √
t√
t
N

)
. Indeed

lim
tց0

t
N−1

2 (p∗(L0 − L)q0)(t, x0, x0)|

≤ lim
tց0

t
N−1

2

ˆ t

0

ˆ

U
|p(s, x0, y)(L0 − L)q0(t− s, y, x0)|dyds

≤ lim
tց0

t
N−1

2

ˆ t

0

C

(t− s)
N+1

2

ˆ

U
p(s, x0, y)dyds

≤ lim
tց0

t
N−1

2

ˆ t

0
C(t− s)−

N+1
2 ds

= C2

for a constant C2 that comes from the exact value of the limit. Moreover the third
inequality is true since p is a fundamental solution and hence has integral ≤ 1.

We have controlled the error, so we can conclude that the desired small time asymp-
totics on the diagonal is determined by the asymptotics (3.30) and we find

p(t, x0, x0) =
q0(1, x0, x0)

tN/2
(1 +O(

√
t)),

which is well defined since by hypothesis the leading term q0(1, x0, x0) doesn’t vanish.
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3.6 The principal operator and the associated control sys-

tem

In this section we are going to investigate the conditions for the positivity of the heat
kernel, q0(t, x, y), that we have introduced in the last section.

Let f0, f1, . . . , fk satisfy Hörmander condition (3.2) and consider the principal operator

∂

∂t
− f̂0 +

1

2

k∑

i=1

f̂2i =:
∂

∂t
− L0 (3.31)

defined by the approximating system of the original vector fields. As already pointed out,
it admits a smooth fundamental solution given by the probability density, q0(t, x, y), of
the process ξt to be at time t in the point y starting from the point x, where ξt is the
solution of the stochastic differential equation

dξt = f̂0(ξt)dt+
k∑

i=1

f̂i(ξt) ◦ dwi(t). (3.32)

In their famous work [47] Stroock and Varadhan characterized the support of q0(t, x, y)
and they showed that it is the set of the reachable points from x of the following associated
control problem:

ẋ = f̂0(x) +
k∑

i=1

uif̂i(x), (3.33)

where x : [0, t] → R
n is a curve in R

n and u = (u1, . . . , uk) ∈ L∞([0, t];Rk) are bounded
controls.

A short proof of Stroock and Varadhan’s theorem can be found in [37], while a recent
approach by rough paths is given in [26]. For a generalization to the Cα norm see [16].

Unfortunately, Stroock and Varadhan’s result holds only for globally bounded vector
fields, with bounded derivatives of any order. Since our vector fields are polynomial, they
don’t satisfy such assumptions and we can not directly apply the result of the support
theorem. We will see in a moment how we can adapt their procedure to our system, but
first we introduce two simple remarks that will simplify our study.

Remark 3.21. Let q0(t, x, y) be the probability density of the solution to equation (3.32).
By Lemma 3.19 we have the following equivalence

q0(1, x0, x0) > 0 ⇐⇒ q0(t, x0, x0) ∀t > 0.

Lemma 3.22. Consider the control problem (3.33) on R
n. Let y1, y2 ∈ R

n and T > 0
be fixed and assume there exists a curve y : [0, T ] → R

n that satisfies the control problem
(3.33) for some control function u ∈ L∞ and such that y(0) = y1 and y(T ) = y2.

Then for any M > 0 the curve x(t) := δM
(
y
(

t
M2

))
is an admissible curve for the

control problem defined on [0,M2T ] with control ũ(t) := 1
M u

(
t/M2

)
, that connects x1 :=

δM (y1) with x2 := δM (y2) in time M2T .
In particular, if the control problem (3.33) is controllable in a neighborhood U of x0 in

time T , then it is controllable in δM (U) in time M2T .
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Proof. The boundary conditions are easily satisfied, since x(0) = δM (y(0)) = δM (y1) = x1
and x(M2T ) = δM (y(T )) = δM (y2) = x2. Moreover, x(t) is an admissible curve for the
control problem with control 1

M ui
(
t/M2

)
, indeed by the homogeneity of the approximating

system we have

ẋ(t) =
1

M2
δM∗

(
ẏ
(
t/M2

))

=
1

M2
δM∗

[
f̂0
(
y
(
t/M2

))
+

k∑

i=1

ui
(
t/M2

)
f̂i
(
y
(
t/M2

))
]

=
1

M2

[
M2f̂0

(
y
(
t/M2

))
+

k∑

i=1

Mui
(
t/M2

)
f̂i
(
y
(
t/M2

))
]

= f̂0 (x(t)) +
k∑

i=1

1

M
ui
(
t/M2

)
f̂i (x(t)) .

Our generalization of Stroock and Varadhan’s support theorem holds because of the
very particular structure of the approximating system. Indeed, since f̂0 has weight 2 and
f̂i has weight 1, for every 1 ≤ i ≤ k, every component of these fields depends only on the
coordinates of less weight, i.e., f̂ (j)i does not depend on xj , xj+1, . . . , xn. This structure is
enough to modify the proof of the support theorem in order to prove it in our case.

Definition 3.23. Consider the control problem (3.33) and let us call xu(t) the solution
corresponding to a control u. The reachable set of the control problem in time t from x is
the set,

At(x) :=
{
y ∈ R

n : ∃u ∈ L∞([0, t];Rk) such that xu(0) = x and xu(t) = y
}
.

Proposition 3.24. Let X0, X1, . . . , Xk be smooth vector fields on R
n, that satisfy the

Hörmander condition, and such that every j-th component X(j)
i of Xi, for 0 ≤ i ≤ k, does

not depend on the coordinates xj , . . . , xn, but only on the first coordinates x1, . . . , xj−1.
Let ξt be the solution of the stochastic differential equation in Itô form

dξt = X̃0(ξt)dt+
k∑

i=1

Xi(ξt)dwi(t)

where by the Itô expression of the equation1, the drift field X0 is changed in X̃0, which
stands for the vector field whose j-component is given by

X̃
(j)
0 = X

(j)
0 +

1

2

k∑

i=1

n∑

l=1

X
(l)
i

∂X
(j)
i

∂xl
. (3.34)

1See Section 2.1
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Let p(t, x, y) be the probability density of ξt to be in y at time t starting from the point x
and At(x) be the reachable set at time t from x of the associated control problem

ẋ = X0(x) +
k∑

i=1

ui(t)Xi(x) (3.35)

where u = (u1, . . . , uk) ∈ L∞([0, t];Rk) is a control function. Then

supp(p(t, x, ·)) = At(x).

Proof. First of all notice that also the field X̃0 has the same particular structure as the
other fields. Indeed since X(j)

i does not depend on xj , . . . , xn, then in (3.34) the sum in l

runs only from 1 to j − 1. Then also X̃(j)
0 depends only on x1, . . . , xj−1.

Stroock and Varadhan have proved this theorem under the assumption that the fields
are Lipschitz and globally bounded, together with their derivatives of first and second
order. Following their proof in [47], we have to show that for a dense set of controls u and
∀ǫ > 0

Px(||ξt − xt|| < ǫ) := P ( ||ξt − xt|| < ǫ| ξ0 = x) > 0, (3.36)

where xt is the solution of (3.35) starting at x. In particular let us take ψ ∈ C2(R+;Rk),
with ψ(0) = 0, and let xt be the solution of (3.35) starting at x with control ui(t) := ψ̇i(t).
Then for all ǫ > 0 we show that

Px ( ||ξt − xt|| < ǫ | ||wt − ψt|| < δ) → 1 (3.37)

as δ ց 0. This is enough to prove (3.36), since

Px (||ξt − xt|| < ǫ) = Px ( ||ξt − xt|| < ǫ | ||wt − ψt|| < δ) · P (||wt − ψt|| < δ)

and P (||wt − ψt|| < δ) > 0 for every δ > 0.
Stroock and Varadhan proved (3.37) under the boundedness assumption that we do

not have directly, but we will recover it by iterating a conditional probability. Indeed,
notice that by our assumption the first component of every vector field, X(1)

i , does not
depend on any coordinate, so they are actually constant and they trivially satisfy Stroock
and Varadhan’s assumptions. Then the limit in (3.37) holds for the process ||ξ(1)t − x

(1)
t ||.

Moreover let us assume, by induction, that the first j − 1 components of ξt live in a
bounded set. Then the components X(j)

i are Lipschitz and bounded, together with their
derivatives of any order, and we can apply Stroock and Varadhan’s theorem to the j-th
component of ξt, then

Px

(
||ξ(j)t − x

(j)
t || < ǫ | ||wt − ψt|| < δ, ||ξ(l)t − x

(l)
t || < ǫ ∀1 ≤ l < j

)
→ 1

as δ ց 0.
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The proof of (3.37) now follows using an iterated conditional probability, indeed in
general for every measurable sets A1, . . . , An, B, it holds

P




n⋂

j=1

Aj

∣∣∣∣∣∣
B


 = P




n⋂

j=2

Aj

∣∣∣∣∣∣
B ∩A1


P (A1|B)

= P




n⋂

j=3

Aj

∣∣∣∣∣∣
B ∩A1 ∩A2


P (A2|B ∩A1)P (A1|B)

...

=
n∏

j=1

P

(
Aj

∣∣∣∣∣B ∩
j−1⋂

l=1

Al

)
.

Then

P (||ξt − xt|| < ǫ | ||wy − ψt|| < δ) =

=
n∏

j=1

P
(
||ξ(j)t − x

(j)
t || < ǫ | ||wt − ψt|| < δ, ||ξ(l)t − x

(l)
t || < ǫ ∀1 ≤ l < j

)
→ 1

as δ ց 0 and we have proved (3.37) in our case.

We are now ready to show a condition for the positivity of the fundamental solution
of the approximating differential operator.

Theorem 3.25. Let q0(t, x, y) be the fundamental solution of (3.31). If the reachable set
At(x0) of the associated control problem (3.33) is a neighborhood of x0 for some t > 0,
then q0(1, x0, x0) > 0.

Proof. By Remark 3.21 it is enough to prove that q0(T, x0, x0) > 0 for some T > 0. We
will choose T = 2t. Moreover, by Lemma 3.22, if At(x0) is a neighborhood of x0 for some
t > 0, it is a neighborhood for every t > 0.

Assume by contradiction that q0(2t, x0, x0) = 0. By Chapman-Kolmogorov equation
we know that

0 = q0(2t, x0, x0) =

ˆ

Rn

q0(t, x0, y)q0(t, y, x0)dy =

ˆ

At(x0)
q0(t, x0, y)q0(t, y, x0)dy,

where we can restrict the space of integration, since by Lemma 3.24, supp(q0(t, x0, ·)) =
At(x0). Then for all y ∈ At(x0) we have q0(t, y, x0) = 0. As shown in Section 2.2.1, the
function q̃(t, x, y) := q0(t, y, x) is the fundamental solution of the adjoint operator to L0,
that is

L∗
0 = −f̂0 +

1

2
f̂2i .

Then q̃(t, x, y) is the probability density function of the stochastic process ξ̃t solution of
the stochastic equation

{
dξ̃t = −f̂0(ξ̃t)dt+

∑k
i=1 f̂i(ξ̃t) ◦ dwi(t)

ξ̃0 = x.
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By contradiction we have assumed that q̃(2t, x0, x0) = 0, then again by Chapman-Kolmogorov
equation we have

0 = q̃(2t, x0, x0) =

ˆ

Ãt(x0)
q̃(t, x0, y)q̃(t, y, x0)dy

where Ãt(x0) is the reachable set in time t from the point x0 of the associated control
problem

ẋ = −f̂0(x) +
k∑

i=1

ui(t)f̂i(x).

It follows that q0(t, x0, y) = q̃(t, y, x0) = 0 for all y ∈ Ãt(x0). Since the point x0 is a
stationary point for the control problem, then x0 ∈ Ãt(x0), for every t > 0. By Krener’s
theorem (see Chapter 8 in [4]), x0 is in the closure of int(Ãt(x0)), then At(x0)∩Ãt(x0) has
non zero measure and q0(t, x0, z) = 0 for all z in this intersection. This is a contradiction
to the support theorem.

We conclude that, if At(x0) is a neighborhood of x0, then q0(t, x0, x0) > 0 for all
t > 0.

Remark 3.26. In view of Theorem 3.20 and Theorem 3.25 we can conclude the following
properties about the asymptotics of the fundamental solution p of the operator (3.1).

(i) If the control problem associated with the original system:

ẋ = f0(x) +
k∑

i=1

ui(t)fi(x) (3.38)

is not controllable around x0, that is At(x0) is not a neighborhood of x0, then

p(t, x0, x0) = 0 ∀t > 0.

Indeed by the support theorem supp(p(t, x0, ·)) = At(x0), therefore x0 is on the bound-
ary of the support. Since p(t, x0, ·) is smooth, the conclusion follows.

(ii) If the control problem (3.38) is controllable in x0, then we study the controllability of
its nilpotent approximation, defined by the fields f̂0, f̂1, . . . , f̂k introduced in Section
3.4.

(ii.1) If the approximating control problem

ẋ = f̂0(x) +
k∑

i=1

ui(t)f̂i(x) (3.39)

is controllable around x0, then the asymptotics is given in Theorem 3.20, where
we see that the fundamental solution on the diagonal in x0 blows up for small
t as the rational polynomial c0

tN/2 , for a positive constant c0 depending on the
chosen volume and on the approximating system (3.39). The order N is deter-
mined by the Lie algebra generated by the fields f0, f1, . . . , fk at x0 as explained
in formula (3.21).
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(ii.2) If the approximating control problem (3.39) is not controllable, then p(t, x0, x0)
goes to infinity for small t faster than 1

tN/2 as shown in the following Propo-
sition. In [17] the authors show an example, where the asymptotics goes to
infinity even exponentially fast.

Proposition 3.27. Assume that the control problem (3.38) is controllable around x0, but
the approximating control problem (3.39) is not. If p(t, x0, x0) > 0, then p(t, x0, x0) goes
to infinity faster then c

tN , where N is defined in (3.21).

Proof. To show this we need to prove that all the coefficients in the asymptotics (3.29) are
zero. The asymptotics was found introducing the fundamental solution q0 and by using
Duhamel’s formula (3.16). By iterating it we can achieve a better approximation of the
asymptotics and find the higher coefficients. Indeed,we obtain

p = q0 +

j∑

i=1

q0 (∗X q0)i + p (∗X q0)j+1

for every j ∈ N, where X := L0 − L and (∗X q0)i means that we iterate the convolution
i times. We have to show that all the terms q0 (∗X q0)i vanish at the point (1, x0, x0) for
every i ∈ N.

By Lemma 3.24 we know that q0(t, x0, y) = 0 for every y ∈ At(x0)
c

and all t > 0. Let
us assume by induction that for an i ∈ N

q0 (∗X q0)i (t, x0, y) = 0 ∀y ∈ At(x0)
c
, ∀t > 0. (3.40)

Then for every y ∈ At(x0)
c

we have

q0 (∗X q0)i+1 (t, x0, y) =

ˆ t

0

ˆ

As(x0)
q0 (∗X q0)i (s, x0, z) X q0(t− s, z, y)dzds,

where the integral can be computed just on As(x0) by the induction hypothesis. But
q0(t−s, z, y) ≡ 0 on As(x0) by Chapman-Kolmogorov equation, then also all its derivatives
vanish there. Then the integral is zero and we have proved (3.40) for every i.

Since q0 is smooth and x0 is on the boundary of At(x0)
c
, then equation (3.40) holds

also in the point (t, x0, x0) for every t > 0, that means that all the coefficients of the
asymptotics (3.29) are zero.

3.7 Examples

We end this chapter with a study of some known examples, to understand better the
meaning of Theorem 3.20.

Example 5 (Continuation of Example 1). We complete the study of Example 1. We have
already computed the principal part of the operator ∂t − L, that is

∂

∂t
− f̂0 −

1

2
f̂21 =

∂

∂t
− x21

∂

∂x2
− 1

2

∂2

∂x21
.
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This operator is indeed hypoelliptic since f̂1 = ∂
∂x1

and [f̂1, [f̂1, f̂0]] = 2 ∂
∂x2

span the whole
tangent space in every point. Let q0(t, x, y) be the density function of the solution ξ(t) of
the stochastic equation (3.28), that in coordinates is given by

dξ1 = dw1, dξ2 = x21dt.

We can see that the second coordinate is actually deterministic and has positive derivative,
so it can only increase. Consequently, if a path starts in x0 = (0, 0) the solution ξ(t) will
almost surely never come back to x0 again, indeed x0 is on the boundary of the support
of q0(t, x0, ·). Then the hypothesis of Theorem 3.20 that requires q0(1, x0, x0) > 0 is not
fulfilled.

Since the original control problem is controllable, this is an example of type (ii.2).

Example 6 (Sub-Riemannian manifold: continuation of Example 3). The study of the
asymptotics on the diagonal of the heat kernel on 3D contact sub-Riemannian manifolds
has already been performed by Barilari in [6] and more in general by Ben Arous in [15].
The nilpotent approximation of a sub-Riemannian manifold of dimension 3 is isometric
to the Heisenberg group. Let us represent the Heisenberg group as R

3 with coordinates
(x, y, z), then the approximating system can be written as

f̂1 =
∂

∂x
+
y

2

∂

∂z
and f̂2 =

∂

∂y
− x

2

∂

∂z

As one can easily verify, the order of homogeneity of the volume form is given by N = 4,
as computed also with the general formula (3.21).

The principal part L0 of the operator is hypoelliptic and symmetric, the associated
control problem is then controllable, so there exists a well-defined symmetric heat kernel,
that is positive for every t > 0 as seen in Theorem 3.25. The hypothesis of Theorem 3.20
are then fulfilled and we find that the asymptotics on the diagonal of the original heat
kernel p(t, x, y) has the following order:

p(t, x, x) =
a0(x) + o(1)

√
t
4 for a smooth function a0(x) > 0 on the manifold.

This was the same order found by Ben Arous in [15] and by Barilari in [6].
This example is of type (ii.1).

Example 7 (Ben Arous and Léandre). We consider here an example studied by Ben Arous
and Léandre in [17]. Consider the space R

2 with coordinates (x1, x2) and let

f0 = xa1
∂

∂x2
, f1 =

∂

∂x1
, f2 = xb1

∂

∂x2
,

where a and b are positive integers. Then x0 = (0, x2) is a stationary point of the drift field
for any x2 ∈ R. The operator L = f0 +

1
2(f

2
1 + f22 ) satisfies even the strong Hörmander

condition, i.e. the fields f1, f2 alone are Lie bracket generating.
In [18], it is shown the complete behavior of the heat kernel p(t, x, y) of this operator

on the diagonal. We summarize here the most interesting properties for our study:



50 Order of the asymptotic expansion of the heat kernel on the diagonal

Theorem 3.28. 1. If b ≤ a+ 1, then there exists a constant K(a, b) > 0 such that

p(t, x0, x0) ∼
K(a, b)
√
t
b+2

. (3.41)

2. If b > a+ 1 and a is even, then the fundamental solution p(t, x0, x0) decreases with
exponential velocity.

The results found in this paper agree with the statement of the theorem. Indeed, let us
consider the filtration G given by the vector fields f0, f1, . . . , fk at a point x0 = (0, x2). Let
m := min{a+ 2; b+ 1}. It is easy to verify that the subspaces of the filtration G are

Gi(x0) =

{
R× {0} if 1 ≤ i < m
R
2 if i = m.

Accordingly the coordinate x1 has weight 1, while the coordinate x2 has weight m and the
order of homogeneity of the volume form is given by

N = 1 +m =

{
b+ 2 if b ≤ a+ 1
a+ 3 if b ≥ a+ 1.

To determine the nilpotent approximation, it is convenient to divide the study in 3 cases,
depending on the value of a w.r.t. b.

If b < a + 1, then m = b + 1. The nilpotent approximation is obtained by taking
the Taylor expansion of the field f0 of order 2 and the Taylor expansion of order 1 of f1
and f2. Then we find that f̂1 = f1, f̂2 = f2 and f̂0 = 0. The principal part L0 of the
operator L is 1

2(f̂
2
1 + f̂22 ), that is hypoelliptic. Then there exists a well-defined heat kernel,

q0(t, x, y), and, since the associated control system is controllable, q0(t, x0, x0) > 0 for
every t > 0. Then the hypothesis of Theorem 3.20 are fulfilled and we find that the small
time asymptotics of the fundamental solution of L has order N/2 = b+2

2 , that is exactly
the one given in (3.41).

If b = a + 1, then m = b + 1 and the nilpotent approximation is equal to the fields
f1, f2, f0 themselves. Since f1, f2 are Lie bracket generating the associated control system

ẋ = f0 + u1f1 + uxf2

is still controllable, then the heat kernel q0(t, x0, x0) is positive for every t > 0, and we
obtain again the statement (3.41).

If b > a+1, then f̂1 = f1, f̂0 = f0 and f̂2 = 0. The principal operator f̂0 + 1
2 f̂

2
1 is still

hypoelliptic, but if a is even, then the heat kernel q0 is zero in x0 = (0, x2) for any t > 0.
This is because a.e. path starting from x0 will never come back to x0 again, since the
drift f0 makes the first coordinate increase, if x1 becomes different from 0. Then we can
not apply Theorem 3.20 and indeed Ben Arous and Léandre have shown an exponential
decrease in this case.



Chapter 4

Curvature terms in small time

heat kernel expansion for a model

class of hypoelliptic Hörmander

operators

In this chapter, which is based on the results of [9], we perform the first step in the char-
acterization from a geometric viewpoint of the coefficients of the heat kernel asymptotics
on the diagonal. In particular we focus on the model case of linear hypoelliptic operators
on R

n of the form

L =
n∑

j=1

(Ax)j
∂

∂xj
+

1

2

n∑

j,h=1

(BB∗)jh
∂2

∂xj∂xh
,

where A = (ajh) and B = (bij) are respectively n × n and n × k constant matrices, that
satisfy Hörmander condition of hypoellipticity. In this setting it reduces to the assumption
that

rk[B,AB,A2B, . . . , Am−1B] = n. (4.1)

As explained in Section 2.4, the heat equation associated to L admits a smooth fun-
damental solution p(t, x, y) ∈ C∞(R+ × R

n × R
n) that can be computed explicitly as

follows

p(t, x, y) =
e−

1
2
(y−etAx)∗D−1

t (y−etAx)

(2π)n/2
√
detDt

,

where

Dt = etA
(
ˆ t

0
e−τABB∗e−τA

∗
dτ

)
etA

∗
.

By condition (4.1), the matrix Dt is invertible for every t > 0.
These operators are the simplest class of hypoelliptic, but not elliptic, operators sat-

isfying (wHC) and are classical in the literature, starting from the pioneering work of
Hörmander [29] (see also [32] for a detailed discussion on this class of operators). As
already pointed out by Stroock and Varadhan [47] in the study of the support of the dif-

51
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fusion, the properties of ξt are strongly related with the solutions to the control problem

ẋ(t) = Ax(t) +Bu(t), x ∈ R
n, u ∈ R

k. (4.2)

The relation between the solution of the heat equation and the associated control problem
is classical, see for instance [21]. In this chapter we further investigate this relation and
we show that the study of the minimizers of the cost functional

JT (u) =
1

2

ˆ T

0
|u(s)|2ds

reveals some geometric-like properties of the heat kernel. In other words, for every fixed
x1, x2 ∈ R

n and T > 0, one is interested in computing

ST (x1, x2) := inf{JT (u) : u ∈ L∞([0, T ];Rk), xu(0) = x1, xu(T ) = x2},

where xu(·) is the solution of (4.2) associated with the control u. The condition (4.1)
(also known as Kalman condition) ensures that the control system (4.2) is controllable,
i.e., ST (x1, x2) < +∞ for all x1, x2 ∈ R

n and T > 0.
For x0 ∈ R

n fixed, let xū(t) be an optimal trajectory starting at x0, i.e., a minimizer
of the cost functional. The geodesic cost associated with xū is the family of functions

ct(x) := −St(x, xū(t)) for t > 0, x ∈ R
n.

From the asymptotics of the second derivative of ct, one can highlight some “curvature-like”
invariants of the cost, which define a family of symmetric operators

I : Rk → R
k, Q(i) : Rk → R

k, i ≥ 0.

These operators, that are in principle associated with an optimal trajectory, in the case
of a linear-quadratic optimal control problem are constant.

The operator I is connected to the flag generated by the brackets along the optimal
trajectory. The operators Q(i) play the role of curvature invariants for the optimal control
problem (see Chapter 4.3 and [2] for more details).

To state the main results let us introduce the filtration E1 ⊂ E2 ⊂ . . . ⊂ Em = R
n as

Ei = span{AjBx |x ∈ R
k, 0 ≤ j ≤ i− 1}. (4.4)

This is the linear counterpart to the filtration G of the previous chapter (see Eq. (3.5)),
indeed Ei = G2i−1(x0) = G2i(x0). In particular, the operator I is connected with the
order of the asymptotics, N , indeed

N = tr(I) =
m∑

i=1

(2i− 1)(dimEi − dimEi−1). (4.5)

We prove the following results: when x0 is an equilibrium of the drift field, we can
compute and characterize all the coefficients in the small time asymptotic expansion,
providing a characterization of the coefficients that is analogous to the one obtained on a
Riemannian manifold, see (1.1).
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Theorem 4.1. Assume that Ax0 = 0. Then

p(t, x0, x0) =
t−N/2

(2π)n/2
√
c0

(
m∑

i=0

ait
i +O(tm)

)
, for t→ 0,

where N = tr(I) is defined in (4.5) and c0 is a positive constant. Moreover there exist
universal polynomials Pi of degree i such that

ai = Pi(trA, trQ(0), . . . , trQ(i−2)).

In particular for i = 1, 2, 3, we have

a1 = −trA

2
, a2 =

(trA)2

8
+

trQ(0)

4
,

a3 = −trQ(1)

12
− trA trQ(0)

8
− (trA)3

48
.

We stress that the explicit structure of any higher order coefficient can be a priori
computed by a simple Taylor expansion, as it follows from the proof, cf. Section 4.4.

More in general, one has an expansion of p(t, x, y), at every pair of points x, y, relating
the heat kernel with the optimal cost functional and the same geometric coefficients of
Theorem 4.1.

Corollary 4.2. For any pair of points, x, y ∈ R
n,

p(t, x, y) =
t−N/2

(2π)n/2
√
c0
e−St(x,y)

(
m∑

i=0

ait
i +O(tm)

)
, for t→ 0,

where the coefficients ai are characterized as in Theorem 4.1.

This corollary is a direct consequence of the previous theorem and is proved in Section
4.4.2.

Next we consider the case when x0 is not a zero of the drift field. In this case one can
observe different behaviors depending on the smallest level of the filtration (4.4) to which
the vector Ax0 belongs. Indeed the cost of the constant trajectory x0 is strictly positive
and the asymptotics depends on the exponential term appearing in Corollary 4.2.

Theorem 4.3. Assume that Ax0 6= 0. Then

(i) if Ax0 ∈ E1, we have the polynomial decay

p(t, x0, x0) =
t−N/2

(2π)n/2
√
c0

[
1−

(
trA

2
+

|Ax0|2
2

)
t+O(t2)

]
, for t→ 0;

(ii) if Ax0 ∈ Ei \ Ei−1 for some i > 1, then p(t, x0, x0) has exponential decay to zero.
More precisely there exists C > 0 such that

p(t, x0, x0) =
t−N/2

(2π)n/2
√
c0

exp

(
−C +O(t)

t2i−3

)
, for t→ 0.
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We stress that claim (i) is the analogue of the Riemannian expansion (1.2): here no
scalar curvature appears since all brackets of horizontal fields are zero. For the same
reason, in claim (ii), the condition Ax0 /∈ E1 means that the drift field is not in D2, and
indeed we observe an exponential decay as already experienced by Ben Arous and Léandre
[17, 18] (cf. Chapter 1). The fact that the order of decay of the exponential could be faster
then 1

t in this case is not in contrast with their result, since here the strong Hörmander
condition does not hold.

4.1 Linear quadratic optimal control problems

Let us consider the optimal control problem associated with the operator L

{
ẋ = Ax+Bu

JT (u) =
1
2

´ T
0

∑k
i=1 |ui(s)|2ds→ min

(4.6)

Here u ∈ L∞([0, T ];Rk) is the control and JT is the optimal cost to be minimized. A
curve x(t) ∈ R

n is called admissible for the control problem (4.6) if there exists a control
function u ∈ L∞([0, T ];Rk) such that ẋ(t) = Ax(t) +Bu(t) for a.e. t ∈ [0, T ].

The solution of the differential equation (4.6) corresponding to the control u will be
denoted by xu : [0, T ] → R

n and for a fixed initial point x1 ∈ R
n is given by:

xu(t) = etAx1 + etA
ˆ t

0
e−τABu(τ)dτ. (4.7)

Among all trajectories xu starting at x1 and arriving in a point x2 ∈ R
n in time T we

want to minimize the cost functional JT : for every fixed x1, x2 ∈ R
n and T > 0, we define

the optimal cost

ST (x1, x2) := inf{JT (u)|u ∈ L∞([0, T ];Rk), xu(0) = x1, xu(T ) = x2}. (4.8)

A control ū that realizes the minimum in (4.8) is called an optimal control, and the
corresponding trajectory xū : [0, T ] → R

n is called an optimal trajectory of the control
problem (4.6).

It is well-known (see for example [4]) that the optimal trajectories of the control prob-
lem (4.6) can be obtained as the projection of the extremals of an Hamiltonian flow in
T ∗

R
n. Namely, let

H(p, x) = p∗Ax+
1

2
p∗BB∗p ∀ (p, x) ∈ T ∗

R
n

be the Hamiltonian function associated with the optimal control problem. All the opti-
mal trajectories are the projection x(t) of the solution (p(t), x(t)) ∈ T ∗

R
n ∼= R

2n of the
Hamiltonian system associated with H

{
ṗ = −A∗p
ẋ = Ax+BB∗p.
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Moreover, the control realizing the optimal trajectory is uniquely recovered by ū(t) =
B∗p(t). Thus the solution corresponding to the initial condition (p0, x0) ∈ T ∗

x0R
n can be

found explicitly {
p(t) = e−tA

∗
p0

x(t) = etA
(
x0 +

´ t
0 e

−τABB∗e−τA
∗
dτp0

)
.

(4.9)

Let us denote by Γt the matrix

Γt :=

ˆ t

0
e−τABB∗e−τA

∗
dτ. (4.10)

By Kalman’s condition (4.1), it follows that Γt is invertible for every t > 0.

Remark 4.4. Fix x1, x2 ∈ R
n and T > 0. By the explicit formulas (4.9) there exists a

unique initial covector p0 such that the corresponding extremal x(t) satisfies x(0) = x1 and
x(T ) = x2. It is equal to

p0 = Γ−1
T

(
e−TAx2 − x1

)
.

Since the optimal control is given by ū(t) = B∗p(t), we can also write the optimal cost to
go from x1 to x2, namely

ST (x1, x2) =
1

2
p∗0ΓT p0.

It follows that the cost function is smooth in (T, x1, x2) ∈ R
+ × R

n × R
n, where R

+ =
{T ∈ R : T > 0}.

4.2 The flag and growth vector of an admissible curve

Let xu : [0, T ] → R
n be an admissible curve such that xu(0) = x0, associated with the

control u. Let P0,t be the flow defined by u, i.e., for every y ∈ R
n

P0,t(y) := xu(t; y) s.t. xu(0; y) = y.

At any point of R
n we split the tangent space TxR

n ∼= R
n = D ⊕ D⊥, where D

is the k-dimensional subspace generated by the columns of B and D⊥ is its orthogonal
complement, and we define the following family of subspaces of Tx0R

n:

Fxu(t) := (P0,t)
−1
∗ D ⊂ Tx0R

n.

In other words, the family Fxu(t) is obtained by translating in Tx0R
n the subspace D

along the trajectory xu using the flow P0,t.

Definition 4.5. The flag of the admissible curve xu(t) is the sequence of subspaces

F i
xu(t) := span

{
dj

dtj
v(t)

∣∣∣∣ v(t) ∈ Fxu(t) smooth, j ≤ i− 1

}
⊂ Tx0R

n, i ≥ 1.

By construction, this is a filtration of Tx0R
n, i.e., F i

xu(t) ⊂ F i+1
xu (t), for all i ≥ 1.
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Definition 4.6. Denote by ki(t) := dimF i
xu(t). The growth vector of the admissible

curve xu(t) is the sequence of integers

Gxu(t) = {k1(t), k2(t), . . .} .

Remark 4.7. For any s ∈ [0, T ] we can define the family of subspace Fxu,s(t) associated
with the admissible curve xu starting at time s. Namely, let Ps,t be the flow defined by u
starting at time s < t, i.e., for every y ∈ R

n

Ps,t(y) := xu(t; y) s.t. xu(s; y) = y,

and let xu,s(t) := xu(s+ t) be the shifted curve by time s. Then we introduce the family of
subspaces Fxu,s(t) := (Ps,s+t)

−1
∗ R

k with base point xu(s).
The relation Fxu,s(t) = (P0,s)∗Fxu(s+ t) implies that the growth vector of the original

curve at time t can be equivalently computed via the growth vector at time 0 of the shifted
curve xu,t, i.e., ki(t) = dimF i

xu,t(0) and Gxu(t) = Gxu,t(0).

The growth vector of a curve xu at time 0 can be easily computed. Indeed, by the
explicit expression (4.7) of the flow of u, the flag of the curve xu starting from a point x0
is

F i
xu(0) = span{B,AB, . . . , Ai−1B}.

In particular the flag at time 0 is independent on the control u and the initial point x0.
By Remark 4.7 the growth vector of any curve xu is then independent also from the time
and is equal to Gxu(t) = {k1, k2, . . .}, where the indices ki are

ki := dim span{B,AB, . . . , Ai−1B}.

By Kalman’s condition (4.1) there exists a minimal integer 1 ≤ m ≤ n such that km = n.
We call such m the step of the control problem (independent of the admissible curves).
Moreover notice that k1 = k.

Lemma 4.8. Let di := ki − ki−1. Then d1 ≥ d2 ≥ . . . ≥ dm.

Proof. The linear map Â : F i
xu(t) → F i+1

xu (t)/F i
xu(t) defined by Âv := Av for every

v ∈ F i
xu(t) is surjective and KerÂ = F i−1

xu (t). Then

dimF i
xu(t)− dimF i−1

xu (t) ≥ dimF i+1
xu (t)− dimF i

xu(t),

which concludes the proof.

To any curve xu we associate a tableau with m columns of length di for i = 1, . . . ,m.
By the previous Lemma, the height of the columns is decreasing from left to right. We
call nj the length of the j−th row, for j = 1, . . . , k (for example n1 = m, see Figure 4.1).
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. . .

. . .
...

...

# boxes = di

Figure 4.1: Young diagram

4.3 Geodesic cost and curvature invariants

Definition 4.9. Let x0 ∈ R
n and fix an optimal trajectory xū ∈ R

n starting at x0 of
the optimal control problem (4.6). The geodesic cost associated with xū is the family of
functions {ct}t>0 defined by

ct(x) := −St(x, xū(t)) x ∈ R
n,

where St is the optimal cost function defined in (4.8).

Notice that thanks to Remark 4.4 and the smoothness of optimal trajectories, the
geodesic cost is smooth in R

+ × R
n.

Moreover, for any t > 0 and x ∈ R
n there exists a unique minimizer of the cost

functional among all the trajectories that connect x with xū(t) in time t. By the explicit
expressions of the extremals in (4.9) and of the optimal control ū, we can write the explicit
formula:

ct(x) = −1

2
p∗0Γtp0 + p∗0(x− x0)−

1

2
(x− x0)

∗Γ−1
t (x− x0),

where xū is a solution of the Hamiltonian system with initial data (p0, x0) and Γt is the
invertible matrix defined in (4.10).

Then we define the following family of quadratic forms, Q(t), on R
k:

Q(t) := B∗ (d2x0 ċt
)
B = − d

dt
B∗Γ−1

t B. (4.11)

This family of operators is the linear quadratic counterpart of the more general family of
operators introduced in [2, Chapter 4] for the wider class of non linear control systems
that are affine in the control.

Remark 4.10. Actually the family of operators Q(t) does not depend on the initial data
(p0, x0) of the optimal trajectory and is the same for any geodesic. This is saying that it
is an intrinsic object of the pair control system and cost.

Moreover, let us stress that Q(t) is an intrinsic object of the optimal control problem,
i.e., it does not depend on the chosen coordinate on R

n.
Indeed let y = Cx, with C an n×n invertible matrix, be a linear change of coordinates

on R
n. In the new coordinates the dynamical system (4.6) is rewritten as

ẏ = Ãy + B̃u
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where Ã = CAC−1 and B̃ = CB. Since the matrix C is invertible the dimensions di re-
main unchanged, and in particular rkB = rk B̃ = k. The matrix Γ̃t for the new coordinate
system can be easily recovered by definition (4.10) and we find Γ̃t = CΓtC

∗. This implies
in particular that the definition of Q(t) in (4.11) is independent on the coordinates. See
also [2] for a general discussion about the geodesic cost.

The next theorem shows the asymptotic behavior of the family Q(t) for small t > 0.
The proof of this result, in its general setting, can be found in [2, Chapter 4].

Theorem 4.11 (Theorem A in [2]). Let xū : [0, T ] → R
n be an optimal trajectory for

the problem (4.6). The function t 7→ t2Q(t) defined in (4.11) can be extended to a smooth
family of symmetric operators on R

n for all t ≥ 0. In particular, for every fixed h ∈ N,
one has the following Laurent expansion for t→ 0

Q(t) =
1

t2
I +

h∑

i=0

Q(i)ti +O
(
th+1

)
. (4.12)

Moreover, the matrices I and Q(i) for i ≥ 0 are symmetric and

tr I =
m∑

i=1

(2i− 1)(ki − ki−1), (4.13)

where ki := dim span{B,AB, . . . , Ai−1B}.

The expansion (4.12) defines a sequence of symmetric operators (or matrices) I and
Q(i), for i ∈ N. These operators are canonically associated to the optimal control problem.

4.4 Small time asymptotics at an equilibrium point

In this section we prove Theorem 4.1, concerning the small time asymptotics of the fun-
damental solution p(t, x, x) at a point x ∈ KerA. We will write this expansion in terms
only of the drift field and the invariant Q(i) introduced in Theorem 4.11.

Remark 4.12. The exponent N giving the order of the asymptotics appearing in Theorem
4.1 is computed in [43] for a wider class of hypoelliptic operators. In particular, for the
linear case the number N is determined only by the numbers ki = rk{B,AB, . . . , Ai−1B},
for every 1 ≤ i ≤ m − 1, and k0 = 0. Indeed N coincides with the trace of I and is
computed as in (4.13).

Recall now the expression of the fundamental solution p(t, x, y), that we have recovered
in Section 2.4, Eq. (2.11):

p(t, x, y) =
e−

1
2
(y−etAx)∗D−1

t (y−etAx)

(2π)n/2
√
detDt

,

where the matrix Dt is defined as

Dt = etA
ˆ t

0
e−τABB∗e−τA

∗
dτetA

∗
= etAΓte

tA∗
. (4.14)
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A change of variable in the integral defining Γt gives easily that Dt = −Γ−t.
If a point x is an equilibrium point for the drift field (i.e., x ∈ KerA), then the

asymptotics of p(t, x, x) on the diagonal is determined uniquely by the Taylor expansion
of

√
detDt

−1
, since etAx = x for every t.

Let d(t) := detDt, then d(t) satisfies

d′(t) = d(t)tr(D−1
t Ḋt) = d(t)(2tr(A) + tr(B∗D−1

t B)). (4.15)

Moreover, since d(t) has a simple pole at t = 0 of order N we can write the determinant
as d(t) = tN f(t), for some smooth function f non-vanishing at zero. Substituting this
expression in (4.15) one gets

d′(t)
d(t)

=
N
t
+
f ′(t)
f(t)

= 2tr(A) + tr(B∗D−1
t B). (4.16)

Combining (4.11) and (4.12) of Theorem 4.11, one obtains the asymptotic expansion of
− d
dttr(B

∗Γ−1
t B) in terms of the invariants I and Q(i). Its integral is

−tr(B∗Γ−1
t B) = −N

t
+ c+

h∑

i=0

tr(Q(i))
ti+1

i+ 1
+O

(
th+2

)

for some constant c, coming from the integration. Recall that Dt = −Γ−t. Thus in Eq.
(4.16) we have

f ′(t)
f(t)

= 2tr(A) + c+
h∑

i=0

(−1)i+1tr(Q(i))
ti+1

i+ 1
+O(th+2).

Then we can write the determinant of Dt in the following exponential form depending
on the invariants Q(i)

detDt = c0t
N e(c+2trA)t+

∑h
i=0(−1)i+1trQ(i) ti+2

(i+1)(i+2)
+O(th+3)

,

for some constant c0 and the constant c. In particular, one can easily find the first terms
of the Taylor expansion of detDt at t = 0. More precisely

detDt = c0t
N
[
1 + (c+ 2trA)t+

(c+ 2trA)2

2
t2 − trQ(0)

2
t2 + o(t2)

]
, (4.17)

and the asymptotic expansion is determined up to the constant c.

Remark 4.13. Notice that, in the above argument, it is crucial that the order N of detDt

coincides with the first coefficient in the asymptotics of trQ(t).

4.4.1 The first term in the expansion

To find the constant c in Eq. (4.17) let us compute the first terms of the expansion of
detDt. The derivative matrix Γ̇t = e−tABB∗e−tA

∗
is positive semi-definite and can be

written as
Γ̇t = V (t)V (t)∗,
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for V (t) = e−tAB. Let vi(t) denote the columns of V (t) and define the filtration E1 ⊂
E2 ⊂ . . . ⊂ Em = R

n as

Ei = span{v(l)j (0), 1 ≤ j ≤ k, 0,≤ l ≤ i− 1}. (4.18)

Therefore Ei is the subspace of Rn defined by the columns of the matrices AjB for 0 ≤
j ≤ i − 1 and has dimension ki. Choose coordinates on R

n adapted to this filtration,
i.e., associated with a basis {e1, . . . , en} of Rn such that span{e1, . . . , eki} = Ei. In these
coordinates V (t) has a peculiar structure, namely

V (t) =




v̂1
tv̂2
...

tm−1v̂1


+




tŵ1

t2ŵ2
...

tmŵ1


+




O(t2)
O(t3)

...
O(tm+1)


 , (4.19)

where v̂i and ŵi are (ki− ki−1)× k constant matrices and every v̂i has maximal rank. Let
V̂ (t) and Ŵ (t) be the first and second principal parts of V (t), then the Taylor series of
the matrix Γt can be found as

Γt =

ˆ t

0
V (τ)V (τ)∗dτ =

ˆ t

0
V̂ (τ)V̂ (τ)∗ +

(
V̂ (τ)Ŵ (τ)∗ + Ŵ (τ)V̂ (τ)∗

)
dτ + r(t),

where r(t) is a remainder term. In components we write Γt as a m × m block matrix,
whose block Γij(t) is the (ki − ki−1)× (kj − kj−1) matrix with Taylor expansion

Γij(t) =

(
v̂iv̂

∗
j

i+ j − 1

)
ti+j−1 +

(
v̂iŵ

∗
j + ŵiv̂

∗
j

i+ j

)
ti+j +O

(
ti+j+1

)

= Xijti+j−1 + Yijti+j +O
(
ti+j+1

)
,

where X and Y are m×m block matrices implicitly defined by this formula. Moreover X
is invertible. Let J√t be the n× n diagonal matrix whose j-th element is equal to

√
t
2i−1

for ki−1 < j ≤ ki, then
Γt = J√t

(
X + tY +O(t2)

)
J√t. (4.20)

The Taylor expansion of the determinant of Γt is computed in terms of X and Y as follows

det Γt = tN det(X )(1 + tr(X−1Y)t+ o(t)).

Now we are ready to find the determinant of Dt. This follows from the two identities
Dt = etAΓte

tA∗
= −Γ−t. On one hand we have

detDt = det(etAΓte
tA∗

) = det(e2tA) det Γt

= det(X )tN
[
1 +

(
2trA+ tr(X−1Y)

)
t+ o(t)

]
.

(4.21)

On the other hand

detDt = det(−Γ−t) = (−1)n(−t)N det(X )[1− t tr(X−1Y) + o(t)]

= det(X )tN
[
1− tr

(
X−1Y

)
t+ o(t)

]
,

(4.22)
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where in the last identity we used that n and N have the same parity, since

N =
m∑

i=1

(2i− 1)ki = 2M − n,

where M =
∑m

i=1 iki.

N =
m∑

i=1

(2i− 1)ki = 2M − n,

where M =
∑m

i=1 iki. Comparing equations (4.21) and (4.22) we find tr(X−1Y) = −trA,
that means

detDt = det(X )tN (1 + (trA)t+ o(t)).

It follows that in formula (4.17) we have c = −trA and c0 = det(X ) > 0. This allows us
to conclude that the asymptotics of the fundamental solution in x = y ∈ kerA for small
time is

p(t, x, x) =
1

(2π)n/2
√
detDt

=
t−N/2

(2π)n/2
√
c0
e−

trA
2
te

1
2

∑h
i=0(−1)itrQ(i) ti+2

(i+1)(i+2)
+O(th+3)

=
t−N/2

(2π)n/2
√
c0

(
1 +

h∑

i=1

ait
i +O(th+1)

)
,

(4.23)

where the coefficients ai can be explicitly computed from the expansion of the exponential.
It follows from (4.23) that every ai is a polynomial in the components of trA and trQ(j)

for j ≤ i − 2 of order i and does not depend on x. In particular the first coefficients are
computed as follows

a1 = −trA

2
, a2 =

(trA)2

8
+

trQ(0)

4
,

a3 = −trQ(1)

12
− trA trQ(0)

8
− 1

48
(trA)3.

4.4.2 Proof of Corollary 4.2

The proof of Corollary 4.2 is now an easy consequence of the previous analysis.
Indeed by Remark 4.4, the minimizer that connects x to y in time t has initial covector

p0 = Γ−1
t

(
e−tAy − x

)
, therefore

St(x, y) =
1

2

(
e−tAy − x

)∗
Γ−1
t

(
e−tAy − x

)
=

1

2
(y − etAx)∗D−1

t (y − etAx).

This is exactly the quantity appearing at the exponential of the heat kernel, that therefore
can be written in terms of the optimal cost as

p(t, x, y) =
e−St(x,y)

(2π)n/2
√
detDt

.

The statement is then a consequence of the Taylor expansion of
√
detDt

−1
, given in (4.23).
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4.5 Small time asymptotics out of the equilibrium

In this section we prove Theorem 4.3, concerning the small time asymptotics of the fun-
damental solution at a point, x0, where the drift field is not zero.

By a translation of the origin, we can assume that x0 = 0. This produces a no more
linear, but affine drift field, i.e., X0(x) = Ax+α, where α := Ax0 is a column vector equal
to the value of the drift at x0. Then we can study the original asymptotics at x0, through
the asymptotics at the origin of the heat kernel of the linear pde, where to the drift field
we add the constant value α. As shown in Section 2.4 its fundamental solution is

p(t, x, y) =
eϕ(t,x,y)

(2π)n/2
√
detDt

,

where

ϕ(t, x, y) = −1

2

(
y − etA

(
x+

ˆ t

0
e−sAdsα

))∗
D−1
t

(
y − etA

(
x+

ˆ t

0
e−sAdsα

))

and Dt = etAΓte
tA∗

is the same covariance matrix as in (4.14). The original asymptotics
of the fundamental solution at x0 is given by the asymptotics of (detDt)

−1/2, found in the
previous section, and the asymptotics of ϕ in x = y = 0, i.e.,

ϕ(t, 0, 0) = −1

2
α∗
(
ˆ t

0
e−sAds

)∗
Γ−1
t

(
ˆ t

0
e−sAds

)
α.

Let Ei be the subspaces defined in (4.18). If α = Ax0 ∈ Ei \ Ei−1, then Ajα ∈ Ei+j
(actually it could possibly live in the previous subspaces, but not in a bigger one). Moreover
´ t
0 e

−sAds =
∑m

i=1−
(−t)i
i! Ai−1+O(tm+1). Therefore in coordinates adapted to the filtration

{Ej}j , the column vector
´ t
0 e

−sAdsα can be written in m blocks of height dj , as

ˆ t

0
e−sAdsα =




tα1

tα2
...
tαi

t2αi+1
...

tm−i+1αm




+




O(t2)
O(t2)

...
O(t2)
O(t3)

...
O(tm−i+2)




,

where αj is a vector of length dj for every 1 ≤ j ≤ m and αi is not zero. The matrix Γ−1
t

can be written as a product

Γ−1
t = J1/

√
t(X−1 +O(t))J1/

√
t,
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where J1/
√
t and X are the matrices introduced in (4.20). Notice that

J1/
√
t

ˆ t

0
e−sAdsα =




√
tα1

1√
t
α2

...
1√
t
2i−3αi

1√
t
2i−3αi+1

...
1√
t
2i−3αm




+




O(t
√
t)

O(
√
t)

...
O( 1√

t
2i−1 )

O( 1√
t
2i−1 )

...
O( 1√

t
2i−1 )




.

From the last identity we see immediately that, since X−1 has maximal rank and is positive
definite, the scalar product

(
J1/

√
t

ˆ t

0
e−sAdsα

)∗
X−1

(
J1/

√
t

ˆ t

0
e−sAdsα

)

has a simple pole of order −(2i− 3) at 0. Thus, if α ∈ Ei \Ei−1 with i > 1, then ϕ(t, 0, 0)
blows up as t−(2i−3) for t→ 0, i.e., the heat kernel decreases with exponential rate precisely
as

p(t, x0, x0) =
t−N/2

(2π)n/2
√
c0

exp

(
−C1 +O(t)

t2i−3

)
for t→ 0, Ax0 ∈ Ei \ Ei−1,

for a positive constant C1. This proves the second part of Theorem 4.3. .
Let us consider now the case α ∈ spanB. With this assumption the function ϕ(t, 0, 0)

is smooth in t = 0 and we want to find its exact value at the first order.
With a change of variables we can assume that the matrix B is the identity matrix

in the first k rows and zero on the last n − k rows. Moreover let y ∈ R
k be such that

Ax0 = By. We claim that

ϕ(t, 0, 0) = −t |y|
2

2
+ o(t) = −t |Ax0|

2

2
+ o(t).

We can write the function ϕ as

ϕ(t, 0, 0) = −1

2
y∗
(
ˆ t

0
e−sABds

)∗
Γ−1
t

(
ˆ t

0
e−sABds

)
y

and we need to characterize e−sAB. Using the results of the previous section, in coordinates
adapted to the filtration we can write

ˆ t

0
e−sABds =




tv̂1
t2 v̂22

...
tm v̂m

m


+




O(t2)
O(t3)

...
O(tm+1)


 ,

where the v̂i are defined in (4.19). They are di× k matrices of maximal rank and v̂1 is the
k × k identity matrix. We can highlight the dependence on t by multiplying on the left
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by the diagonal matrix Kt with j-th entry equal to ti, for ki−1 < j ≤ ki. Also the matrix
Γ−1
t can be written as a product (see (4.20)), then

ˆ t

0
e−sABds = Kt

((
Ik

C

)
+O(t)

)
and Γ−1

t = J1/
√
t

(
X−1 +O(t)

)
J1/

√
t,

where C is the (n− k)× k matrix composed by the last n− k rows of the principal part
of
´ t
0 e

−sABds. Since Kt · J1/√t =
√
t In, then

ϕ(t, 0, 0) = − t

2
y∗
(

Ik

C

)∗
X−1

(
Ik

C

)
y +O(t2). (4.24)

Notice that [X ]11 = Ik and [X ]i1 = v̂i
i = [X ]∗1i, for every 2 ≤ i ≤ m, hence X can be

written as a block matrix

X =

(
Ik C∗

C E

)
,

where E is a (n− k)× (n− k) matrix.

Lemma 4.14. The inverse matrix X−1 is the block matrix

X−1 =

(
[X−1]11 [X−1]12
[X−1]∗12 [X−1]22

)
,

where

[X−1]11 = Ik + C∗(E − CC∗)−1C,

[X−1]12 = −C∗(E − CC∗)−1, [X−1]22 = (E − CC∗)−1.

Proof. This is the general expression of the inverse of a block matrix, provided [X ]11 and
E − CC∗ are not singular. [X ]11 is the identity matrix. Let us show that E − CC∗ is
not singular. Assume x ∈ R

n−k satisfies (E − CC∗)x = 0. Then the column vector (of
dimension n) equal to (−(C∗x)∗, x∗)∗ is in the kernel of X . Therefore x = 0, since X is
not singular.

Applying the Lemma to Eq. (4.24) we find that

ϕ(t, 0, 0) = − t

2
y∗
(
[X−1]11 + ([X−1]12C)

∗ + [X−1]12C + C∗[X−1]22C
)
y +O(t2)

= − t

2
y∗ Ik y +O(t2) = −|Ax0|2

2
t+O(t2).

Taking into account the asymptotics of (detDt)
−1/2 found in the previous section, this

completes the proof of Theorem 4.3.



Chapter 5

Volume geodesic distorsion and

Ricci curvature for Hamiltonian

dynamics

In this chapter, based on the results of [1], we study the variation of a smooth volume
under the flow associated to a quadratic Hamiltonian. We introduce a main invariant
describing the interaction of the measure and the dynamics and we show how this invariant,
together with curvature-like invariants of the dynamics introduced in [3], appear in this
expansion. This generalizes the well-known result in Riemannian geometry and includes
all sub-Riemannian manifolds.

5.1 Introduction

One of the possible ways of introducing curvature in Riemannian geometry is by looking
for the variation of a smooth volume under the geodesic flow. Indeed, given a point x on
a Riemannian manifold (M, g) and a tangent unit vector v ∈ TxM , it is well-known that
the asymptotic expansion of the Riemannian volume volg in the direction of v depends on
the Ricci curvature at x.

More precisely, let us consider a geodesic γ(t) = expx(tv) with initial tangent vector v
starting at x. For a fixed orthonormal basis e1, . . . , en in TxM let

∂i|γ(t) := (dtv expx)(ei), 1 ≤ i ≤ n.

be the image of ei through the differential at tv of the Riemannian exponential map
expx : TxM → M . Once we take a set of normal coordinates centered in x, the vector
fields ∂i are the coordinate vector fields at γ(t) and the volume element, that is written
as volg =

√
det gijdx1 . . . dxn, satisfies the expansion for t→ 0

√
det gij(expx(tv)) = 1− 1

6
Ricg(v, v)t

2 +O(t3), (5.1)

where Ricg is the Ricci curvature tensor associated with g.

65
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b
x e1 = v

e2
e3

Qt

t∂1 = (dv expx(t, ·))(e1)

t∂3

t∂2

γ(t)

µ(Qt) = tneψ(γ(t))
(
1− Ric(v)

6 t2 +O(t3)
)

b

Figure 5.1: Volume distortion on a Riemannian manifold with volume µ = eψvolg

In particular, the left hand side of (5.1) measures the Riemannian volume of the par-
allelotope in γ(t) with edges ∂i, more explicitly

Volg

(
n∧

i=1

∂i|γ(t)

)
=
√
det gij(γ(t)).

In the sub-Riemannian setting this construction cannot be directly generalized. Indeed,
the sub-Riemannian exponential map is not a local diffeomorphism at zero and to compute
the volume of small balls one should have a precise knowledge of the structure of the cut
locus, which is not easy. Nevertheless the geodesic flow on the Riemannian manifold can
be seen as the projection of a Hamiltonian flow on the cotangent bundle, associated to
a non-degenerate quadratic Hamiltonian. On a sub-Riemannian manifold, and more in
general even for structures deriving from an affine control system, this approach can be
developed. Indeed the Hamiltonian flow is defined in a similar way and in particular, if the
structure is sub-Riemannian, the restriction of the Hamiltonian to any fiber is a degenerate
non-negative quadratic form. The projection on the manifold, M , of its integral curves
are geodesics, but, contrary to the Riemannian case, in general not all the geodesics can
be obtained in this way. These projected geodesics are then parametrized by the initial
covector in the cotangent bundle and if they are sufficiently regular (ample and equiregular
geodesics), it is possible to compute the variation of the volume in a “smooth” way by
looking at the measure as an n-form in the cotangent space T ∗M , which has dimension
2n, restricted to the fiber T ∗

xM .
To generalize this analysis to a sub-Riemannian structure, let us consider again the

Riemannian case.
Let (M, g) be a Riemannian manifold, endowed with a smooth volume µ and let ψ be

the smooth function such that µ = eψvolg. It is convenient to express the exponential map
on M in terms of the Hamiltonian flow. Indeed, let expx(t, v) denote the point reached by
a curve at time t starting from x with velocity v, i.e., expx(t, v) = expx(tv). The metric
g induces a canonical identification between TxM and the cotangent space T ∗

xM . So the
exponential map can be seen as a Hamiltonian flow, indeed

expx(tv) = expx(t, v) = π
(
et
~HV
)
, (5.2)
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where in the last expression V denotes the element in T ∗
xM corresponding to v. Then

(dv expx(t, ·)) (ei) =
∂

∂s

∣∣∣∣
s=0

expx(tv + tsei) = t ∂i|γ(t) . (5.3)

As pictorically expressed in Fig. 5.1, for t ց 0 the volume of the parallelotope, Qt, with
edges t∂i has the following expansion deriving from (5.1) and depending on the choice of
µ

µ

(
n∧

i=1

t∂i|γ(t)

)
= tneψ(γ(t))

(
1− 1

6
Ric(v, v)t2 +O(t3)

)
. (5.4)

We can interpret the last identity from the Hamiltonian point of view, see Fig. 5.2.
Indeed, let λ be the initial cotangent vector of γ. In other words, λ is the element of T ∗

xM
associated to γ̇(0). For every ei let Ei denote the associated cotangent vector in T ∗

xM .

Then by (5.3) and (5.2) t∂i = (π ◦ et ~H)∗Ei. So the left hand side of (5.4) can be written
as

µ(Qt) = 〈µγ(t), (t∂1, . . . , t∂n)〉
= 〈µ

π(et ~H(V ))
,
(
(π ◦ et ~H)∗E1, . . . , (π ◦ et ~H)∗En

)
〉

= 〈(π ◦ et ~H)∗µ, (E1, . . . , En)〉λ.

b

Tλ(T
∗
xM)

E1

E2

E3

π ◦ et ~H

(π ◦ et ~H)∗Ei

b

γ(t) = πet
~Hλ

x
b

Figure 5.2: Equivalent volume distortion as variation under the Hamiltonian flow

Observe that the pull-back (π◦et ~H)∗µ defines an n-form on the cotangent bundle T ∗M ,
that has dimension 2n. The quantity that we compute is the restriction of this form to the
n-dimensional fiber T ∗

xM . Moreover, the volume µx defines naturally a volume µλ on the
fiber T ∗

xM . With this Hamiltonian interpretation, the classical Riemannian asymptotics

(5.4) determines the variation of (π ◦ et ~H)∗µ restricted to the fiber T ∗
xM , with respect to

the volume µλ, i.e.,

(π ◦ et ~H)∗µ
∣∣∣
T ∗
xM

= tn e
´ t
0 ψ

′(γ(τ))dτ
(
1− 1

6
Ricg(v, v)t

2 +O(t3)

)
µλ. (5.5)
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Eq. (5.5) underlines geometric properties of the variation of the volume, as well as
its measure properties, separated in distinct parts. Indeed, we see that the order term tn

depends only on the dimension of the manifold. The asymptotics in the brackets contains
only geometric information, that depend on the metric g on M . The constant term eψ(x)

depending on µ at the initial point is contained in the associated volume µλ. Finally, the
measure information is encoded in the exponential term. Indeed it represents the variation
of µ along the geodesic and is equal to the exponential of

´ t
0 ψ

′(τ)dτ =
´ t
0 〈gradψ, γ̇(τ)〉dτ .

In particular, it defines a measure invariant function ρ at every initial cotangent vector λ:

ρ(λ)µλ :=
d

dt

∣∣∣∣
t=0

(
t−n (π ◦ et ~H)∗µ|λ

∣∣∣
T ∗
xM

)
, λ ∈ T ∗

xM. (5.6)

This function depends on the particular volume µ and on the underlying geometry g of
M . More explicitly, let γ(t) = π(et

~H(λ)) for λ ∈ T ∗
xM and let T denote a vector field on

M that extends γ̇(t) along the curve, then

ρ(λ) = divµTx,

where divµ denotes the divergence with respect to the volume µ.
Figure 5.3 illustrates the variation of the volume from the metric measure viewpoint.

Indeed let Ω ⊂ T ∗
xM be a small neighborhood of λ and let Ωx,t := π ◦ et ~H(Ω) be its image

on M with respect to the Hamiltonian flow. For every t it is a neighborhood of γ(t). Then

µ(Ωx,t) =

ˆ

Ω
(π ◦ et ~H)∗µ,

and (5.5) represents the variation of the volume element along γ.

b

λ

x

γ(t)

M

T ∗
xM

bb
b

π ◦ et ~H

γ

b

Ω

Ωx,t

Figure 5.3: Variation of volume
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In this chapter we generalize the asymptotics (5.5) to a sub-Riemannian structure,
and more in general to any structure arising from a quadratic Hamiltonian. Let M be
a smooth manifold and let ~H denote a quadratic, possibly degenerate, Hamiltonian. A
special class of dynamics is given by the Hamiltonian, whose restriction to a fiber T ∗

xM is
a degenerate homogeneous quadratic form (i.e., without linear or constant terms). Then
this case recovers the sub-Riemannian structures on the manifold M .

Fix λ ∈ T ∗
xM and let γ(t) = π(et

~Hλ) be the associated geodesic onM . The asymptotics
that we obtain is expressed as in (5.5) and we interpret every component as a generalization
of the corresponding Riemannian element. In particular, the Hamiltonian at λ generates
a constant leading term c0 and influences the order of the asymptotic. Indeed, we observe
that the order of the asymptotics is not constant, but depends on the particular geodesic.
Indeed it is equal to the geodesic dimension, N (λ), of γ (cf. Definition 5.6), which for an
n-dimensional Riemannian manifold, is independent on the curve and is always equal to
n.

Moreover, the asymptotics depends on two geometric invariants, that are rational
functions in the initial covector λ. The first one is a modification of the Ricci tensor,
that is substituted now by the trace of a curvature operator in the direction of λ. This
curvature operator, Rλ, is a generalization of the sectional curvature and is defined in [3]
for the wide class of geometric structures arising from affine control systems. The second
invariant is the generalization of the measure invariant, ρ(λ), introduced in (5.6). Indeed
it is defined as

ρ(λ)µλ :=
d

dt

∣∣∣∣
t=0

(
t−N (λ) (π ◦ et ~H)∗µ|λ

∣∣∣
T ∗
xM

)
,

where N is the geoedesic dimension of γ(t) = π(et
~H(λ)). It is a measure metric invariant

and represents how the volume changes along the curve with respect to a reference n-
dimensional form given by the Hamiltonian. It depends, obviously on the fixed volume
µ, as in the Riemannian case, but also on the symbol of the geodesic (cf. Definition 5.7),
that represents the microlocal nilpotent approximation of γ(t) with zero curvature. The
symbol of any curve in a Riemannian manifold is trivial, so this behaviour was not evident
in (5.5). If the structure in strictly non-Riemannian, we show an explicit formula to
determine ρ, which involves the symbol of the curve and the variation of µ along the
curve. In particular, we compute it for the special case of contact manifolds endowed with
Popp’s volume.

The precise statement of our theorem is as follows.

Theorem 5.1. Let µ be a smooth volume on M and γ an equiregular ample geodesic,
with initial covector λ ∈ T ∗

xM . Let µλ be the dual volume on T ∗
xM . Then the pull back

of µ with respect to the projection of the Hamiltonian flow, and restricted to T ∗
xM has the

following asymptotic expansion

(π ◦ et ~H)∗µλ
∣∣∣
T ∗
xM

= c0t
N e

´ t
0 ρ(λ(τ))dτ

(
1− t2

trRλ

6
+ o(t2)

)
µ∗λ

where N is the geodesic dimension associated to γ (cf. Definition 5.6), Rλ is the k × k
curvature matrix associated to λ and ρ(λ(t)) is a rational operator in λ(t) depending on µ
and the symbol of the curve γ.
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5.2 The general setting

Let M be an n-dimensional connected manifold and f0, f1 . . . , fk ∈ Vec(M) smooth vector
fields, with k ≤ n. We consider the following affine control system on M

ẋ(t) = f0(x(t)) +
k∑

i=1

ui(t)fi(x(t)), x ∈M,u ∈ L∞(R;Rk). (5.9)

The essentially bounded function u is called control function. A Lipschitz curve γ : [0, T ] →
M is said to be admissible for the system if there exists a control u ∈ L∞([0, T ],U) such
that γ satisfies (5.9) for a.e. t ∈ [0, T ]. The pair (γ, u) of an admissible curve γ and its
control u is called admissible pair.

Remark 5.2. The affine control system can be generalized to not globally trivializable
vector bundles. Indeed it can be defined more generally as a pair (U, f) such that U is a
smooth rank k vector bundle with base M and fiber Ux, and f : U → TM is a smooth
affine morphism of vector bundles such that π ◦ f(u) = x, for every u ∈ Ux. Locally this
system can be written as in (5.9), by taking a local traivialization of U, a basis in the fibers
and define the map f as f(u) = f0 +

∑k
i=1 uifi for u ∈ R

k.

We denote by D ⊂ TM the family of subspaces, Dx, of TxM spanned by the linear
part of the control problem at x ∈M , i.e.

D = {Dx}x∈M , where Dx := span{f1, . . . , fk}x.

A vector field X is called horizontal if Xx ∈ Dx for every x and we denote by D the set of
sections of D. In the following we will assume that the distribution D has constant rank,
k.

Among all admissible trajectories (γ, u) that join two fixed points in time T , we want
to minimize the cost functional

JT (u) :=
1

2

ˆ T

0
|u(τ)|2 +Q(x(τ))dτ,

where Q is a smooth function on M .
Since the distribution has constant rank, we endow D with a scalar product such that

the fields f1, . . . , fk are orthonormal. Then, if f0 and Q are zero, the cost functional
reduces to the definition of length of curves.

Definition 5.3. For all fixed points x1, x2 ∈ M and time T > 0, we define the value
function

ST (x1, x2) := inf {JT (u)|(γ, u) admissible pair, γ(0) = x1, γ(xT ) = x2} . (5.10)

In the following we will assume that the system is controllable, i.e. for every fixed
point x1, x2 ∈ M and time T > 0 there exists an admissible curve joining x1 and x2 in
time T . With this assumption the value function in always finite.

Important examples of affine control problems are sub-Riemannian structures. These
are a triple (M,D, g), where M is a smooth manifold, D is a smooth, completely non-
integrable vector sub-bundle of TM and g is a smooth scalar product on D. The value
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function is now the sub-Riemannian distance, i.e. the infimum of the length of absolutely
continuous admissible curves joining two points. Since its tangent vector is almost ev-
erywhere in the distribution, the length can be computed via the scalar product g. The
totally non-holonomic assumption on D implies, by the Rashevskii-Chow theorem, the
controllability of the system and that the distance is finite on every connected compo-
nent of M . Moreover the metric topology coincides with the one of M . A more detailed
introduction on sub-Riemannian geometry can be found in [40, 5].

In Riemannian geometry, it is well-known that the geodesic flow can be seen as a
Hamiltonian flow on the cotangent bundle T ∗M , associated with the Hamiltonian

H(p, x) =
1

2

n∑

i=1

〈p, fi(x)〉2, (p, x) ∈ T ∗M,

where X1, . . . , Xn is any local orthonormal frame for the Riemannian structure.
For an affine control system, the Hamiltonian is still defined and is a generalization of

the previous one. Namely, for a local frame f1, . . . , fk for D we set

H(p, x) =
1

2

k∑

i=1

〈p, fi(x)〉2 + 〈p, f0(x)〉 −
1

2
Q(x), (p, x) ∈ T ∗M.

Hamilton’s equations are written as a flow on T ∗M

λ̇ = ~H(λ), λ ∈ T ∗M,

where ~H is the Hamiltonian vector field associated with H. The projection π : T ∗M →M
of its integral curves are geodesics, i.e. locally minimizing curves. In the general case,
some geodesics may not be recovered in this way. These are the so-called strictly abnormal
geodesics [39], and they are related with hard open problems in sub-Riemannian geometry.

In what follows, with a slight abuse of notation, the term “geodesic” refers to the not
strictly abnormal ones.

An integral line of the Hamiltonian vector field λ(t) = et
~H(λ) ∈ T ∗M , with initial

covector λ is called extremal. Notice that the same geodesic may be the projection of two
different extremals.

5.3 Geodesic flag and symbol

In this section we define the flag and symbol of a geodesic, that are elements carrying
information about the germ of the distribution

Let γ : [0, T ] → M be a geodesic and consider a smooth admissible extension of the
tangent vector, namely a vector field T = f0 +X, with X ∈ D, such that T(γ(t)) = γ̇(t)
for every t ∈ [0, T ].

Definition 5.4. The flag of the geodesic γ : [0, T ] →M is the sequence of subspaces

F i
γ(t) := span{Lj

T
(X)|γ(t) | X ∈ D, j ≤ i− 1} ⊆ Tγ(t)M, ∀ i ≥ 1,

for any fixed t ∈ [0, T ], where LT denotes the Lie derivative in the direction of T.
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Definition 5.4 is well posed, namely does not depend on the choice of the admissible
extension T (see [3, Sec. 3.4]). By definition, the flag is a filtration of Tγ(t)M , i.e. F i

γ(t) ⊆
F i+1
γ(t), for all i ≥ 1. Moreover, F1

γ(t) = Dγ(t). The growth vector of the geodesic γ(t) is the
sequence of integer numbers

Gγ(t) := {dimF1
γ(t), dimF2

γ(t), . . .}.

A geodesic γ(t), with growth vector Gγ(t), is said

• equiregular if dimF i
γ(t) does not depend on t for all i ≥ 1,

• ample if for all t there exists m ≥ 1 such that dimFm
γ(t) = dimTγ(t)M .

Equiregular (resp. ample) geodesics are the microlocal counterpart of equiregular (resp.
bracket-generating) distributions. Let di := dimF i

γ−dimF i−1
γ , for i ≥ 1, be the increment

of dimension of the flag of the geodesic at each step (with the convention dimF0 = 0).

Lemma 5.5 ([3]). For an equiregular, ample geodesic, d1 ≥ d2 ≥ . . . ≥ dm.

Definition 5.6. The geodesic dimension of an ample, equiregular geodesic is

N :=

m∑

i=1

(2i− 1)di.

The generic geodesic is ample and equiregular. More precisely, the set of points x ∈M
such that there exists a non-empty Zariski open set Ax ⊆ T ∗

xM of initial covectors for
which the associated geodesic is ample and equiregular, is open and dense in M . See
[3, 49] for more details.

Fix an ample equiregular geodesic γ : [0, T ] →M and let T be an admissible extension
of its tangent vector. For X ∈ F i

γ(t), consider a smooth extension of X along γ such that

Xγ(s) ∈ F i
γ(s) for every s ∈ [0, T ] and define

LT(X) := [T, X]γ(t) modF i
γ(t).

It is easy to see that this definition does not depend on the admissible extension T and on
the extension X under the regularity assumption. So the maps

LT : F i
γ(t)/F i−1

γ(t) → F i+1
γ(t)/F

i
γ(t), i ≥ 1

are well-defined and surjective. In particular Li
T
: Fγ(t) → F i+1

γ(t)/F i
γ(t) are surjective linear

maps from the distribution Dγ(t) = Fγ(t).

Definition 5.7. Given a curve γ which is ample and equiregular we define its symbol at
γ(t), denoted by Sγ(t), as follows

• grγ(t)(F) = ⊕m−1
i=0 F i+1

γ(t)/F i
γ(t)

• the operator Li
T
: Dγ(t) → F i+1

γ(t)/F i
γ(t) for i ≥ 1

where T is an horizontal extension of γ̇.
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Definition 5.8. Two different symbols Sγ(t) and Sγ′(t′) of γ : [0, T ] →M and γ′ : [0, T ′] →
M resp. are said to be equivalent if there exist a reparametrization σ : [0, T ] → [0, T ′]
such that σ(t) = t′ and a diffeomorphism φ ∈ C∞(M) such that

• φ(γ(s)) = γ′(σ(s)) for every s in a neighborhood of t

• φ∗ : D → D′ is an isometry in a neighborhood of γ(t) and γ′(t′) and LT′◦φ∗ = φ∗◦LT.

Remark 5.9. In Definition 5.8 the time in which the symbols are considered is not mean-
ingful, while it is important that φ is a diffeomorphisms between the two curves. In par-
ticular, by a reparametrization of the curve γ′ we can assume that the two curves, γ and
γ′, are defined on the same interval [0, T ] and that the reparametrization σ is the identity.
So in the following we will avoid the choice of σ in Definition 5.8 and consider the two
symbols evaluated at the same time Sγ(t) and Sγ′(t).

Through the surjective maps Li
T
: Dγ(t) → F i+1

γ(t)/F i
γ(t) the inner product on D naturally

induces an inner product on grγ(t)(F) such that the norm of Y ∈ F i+1
γ(t)/F i

γ(t) is

‖Y ‖F i+1
γ(t)

/F i
γ(t)

:= min
{
‖X‖D s.t. Li

T
X = YmodF i

γ(t)

}
.

Lemma 5.10. If two symbols Sγ(t) and Sγ′(t) are equivalent then they are isometric as
inner product spaces.

Proof. Let F i
γ(t) and F i

γ′(t) be the subspaces that define the symbols Sγ(t) and Sγ′(t) re-
spectively and φ be the diffeomorphism of Definition 5.8. Let X ′ ∈ D′ and X ∈ D such
that X ′ = φ∗X. By the commutation property of φ∗ with LT it holds

Li
T′X ′ = Li

T′ (φ∗X) = φ∗
(
Li
T
X
)
,

therefore F i
γ′ = φ∗F i

γ for every i and the curves have the same growth vectors and the
same step m. Therefore φ∗ descends to maps between every layer of the stratification in
the following way. For Y ∈ F i

γ(t)/F i−1
γ(t) let X ∈ Dγ(t) such that Y = Li−1

T
XmodF i−1

γ(t).

Then we define φi∗(Y ) := Li−1
T′ (φ∗(X)) ∈ F i

γ′(t)/F i−1
γ′(t). Since φ∗ is an isometry on the

distribution and commutes with T, φi∗ is an isometry on the quotient spaces.

5.4 Young diagram, canonical frame and Jacobi fields

For an ample, equiregular geodesic we can build a tableau D with m columns of length
di, for i = 1, . . . ,m, as follows:

. . .

. . .
...

...

# boxes = di
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The total number of boxes in D is n = dimM =
∑m

i=1 di.
Consider an ample, equiregular geodesic, with Young diagram D, with k rows, of

length n1, . . . , nk. Indeed n1 + . . . + nk = n. We are going to introduce a moving frame
on Tλ(t)(T

∗M) indexed by the boxes of the Young diagram. The notation ai ∈ D denotes
the generic box of the diagram, where a = 1, . . . , k is the row index, and i = 1, . . . , na is
the progressive box number, starting from the left, in the specified row. We employ letters
a, b, c, . . . for rows, and i, j, h, . . . for the position of the box in the row.

level 1

level 1

level 2

level 1

level 2

level 3

(b) (c)(a)

Figure 5.4: Levels (shaded regions) and superboxes (delimited by bold lines) for the Young
diagram of (a) Riemannian, (b) contact, (c) a more general structure. The Young diagram
for any Riemannian geodesic has a single level and a single superbox.

We collect the rows with the same length in D, and we call them levels of the Young
diagram. In particular, a level is the union of r rows D1, . . . , Dr, and r is called the size
of the level. The set of all the boxes ai ∈ D that belong to the same column and the same
level of D is called superbox. We use Greek letters α, β, . . . to denote superboxes. Notice
that two boxes ai, bj are in the same superbox if and only if ai and bj are in the same
column of D and in possibly distinct rows but with same length, i.e. if and only if i = j
and na = nb (see Fig. 5.4).

The following theorem is proved in [49].

Theorem 5.11. Assume λ(t) is the lift of an ample and equiregular geodesic γ(t) with
Young diagram D. Then there exists a smooth moving frame {Eai, Fai}ai∈D along λ(t)
such that

(i) π∗Eai|λ(t) = 0.

(ii) It is a Darboux basis, namely

σ(Eai, Ebj) = σ(Fai, Fbj) = σ(Eai, Fbj) = δabδij , ai, bj ∈ D.

(iii) The frame satisfies structural equations





Ėai = Ea(i−1) a = 1, . . . , k, i = 2, . . . , na,

Ėa1 = −Fa1 a = 1, . . . , k,

Ḟai =
∑

bj∈D Rai,bj(t)Ebj − Fa(i+1) a = 1, . . . , k, i = 1, . . . , na − 1,

Ḟana =
∑

bj∈D Rana,bj(t)Ebj a = 1, . . . , k,

(5.11)

for some smooth family of n×n symmetric matrices R(t), with components Rai,bj(t) =
Rbj,ai(t), indexed by the boxes of the Young diagram D. The matrix R(t) is normal
in the sense of [49].
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If {Ẽai, F̃ai}ai∈D is another smooth moving frame along λ(t) satisfying (i)-(iii), with some
normal matrix R̃(t), then for any superbox α of size r there exists an orthogonal constant
r × r matrix Oα such that

Ẽai =
∑

bj∈α
Oαai,bjEbj , F̃ai =

∑

bj∈α
Oαai,bjFbj , ai ∈ α.

Remark 5.12. For a = 1, . . . , k, we denote by Ea the na-dimensional column vector
Ea = (Ea1, Ea2, . . . , Eana)

∗, with analogous notation for Fa. Similarly, E denotes the n-
dimensional column vector E = (E1, . . . , Ek)

∗, and similarly for F . Then, we rewrite the
system (5.11) as follows (

Ė

Ḟ

)
=

(
C∗
1 −C2

R(t) −C1

)(
E
F

)
,

where C1 = C1(D), C2 = C2(D) are n× n matrices, depending on the Young diagram D,
defined as follows: for a, b = 1, . . . , k, i = 1, . . . , na, j = 1, . . . , nb:

[C1]ai,bj := δabδi,j−1, , [C2]ai,bj := δabδi1δj1.

It is convenient to see C1 and C2 as block diagonal matrices:

Ci(D) :=



Ci(D1)

. . .
Ci(Dk)


 , i = 1, 2,

the a-th block being the na × na matrices

C1(Da) :=

(
0 Ina−1

0 0

)
, C2(Da) :=

(
1 0
0 0na−1

)
,

where Im is the m×m identity matrix and 0m is the m×m zero matrix. Notice that the
matrices C1, C2 satisfy the Kalman rank condition

rank{C2, C1C2, . . . , C
n−1
1 C2} = n. (5.12)

Analogously, the matrices Ci(Da) satisfy (5.12) with n = na.

5.4.1 The Jacobi equations

For any vector field V (t) along an extremal λ(t) of the Hamiltonian flow, a dot denotes
the Lie derivative in the direction of ~H:

V̇ (t) :=
d

dε

∣∣∣∣
ε=0

e−ε
~H

∗ V (t+ ε).

A vector field J (t) along λ(t) is called a Jacobi field if it satisfies

J̇ = 0. (5.13)

The space of solutions of (5.13) is a 2n-dimensional vector space. The projections J = π∗J
are vector fields onM corresponding to one-parameter variations of γ(t) = π(λ(t)) through
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geodesics; in the Riemannian case (without drift field) they coincide with the classical
Jacobi fields.

We intend to write (5.13) using the natural symplectic structure σ of T ∗M and the
canonical frame. First, observe that on T ∗M there is a natural smooth sub-bundle of
Lagrangian1 spaces:

Vλ := kerπ∗|λ = Tλ(T
∗
π(λ)M).

We call this the vertical subspace. Then, let {Ei(t), Fi(t)}ni=1 be a canonical frame along
λ(t). The fields E1, . . . , En belong to the vertical subspace. In terms of this frame, J (t)
has components (p(t), x(t)) ∈ R

2n:

J (t) =
n∑

i=1

pi(t)Ei(t) + xi(t)Fi(t).

In turn, the Jacobi equation, written in terms of the components (p(t), x(t)), becomes
(
ṗ
ẋ

)
=

(
−C1(t) −R(t)
C2(t) C1(t)

∗

)(
p
x

)
. (5.14)

This is a generalization of the classical Jacobi equation seen as first-order equation for
fields on the cotangent bundle. Its structure depends on the Young diagram of the geodesic
through the matrices Ci(D), while the remaining invariants are contained in the curvature
matrix R(t). Notice that this includes the Riemannian case, where D is the same for every
geodesic, with C1 = 0 and C2 = I.

5.4.2 Geodesic cost and curvature operator

In this section we define the geodesic cost and the curvature operator associated to a
geodesic γ. This operator generalizes the idea of sectional curvature.

Definition 5.13. Let x0 ∈M and consider a ample geodesic γ such that γ(0) = x0. The
geodesic cost associated to γ is the family of functions

ct(x) := −St(x, γ(t)), x ∈M, t > 0,

where S is the value function defined in (5.10).

Given an ample curve γ(t) = π(et
~H(λ)), the geodesic cost function is smooth in a

neighborhood of x0 and for t > 0 sufficiently small. Moreover the differential dx0ct = λ
for every t small, see [3]. Let ċt denote the derivative in t of the geodesic cost. Then ċt
has a critical point in x0 and its second differential d2x0 ċt : Tx0M → R is defined as

d2x0 ċt(v) =
d2

dt2

∣∣∣∣
t=0

ċt(γ(t)), γ(0) = x0, γ̇(0) = v.

We restrict the second differential of ċt to the distribution Dx0 and we define the following
family of symmetric operators Qλ(t) : Dx0 → Dx0 , for t small, associated to d2x0 ċt through
the scalar product defined on Dx:

d2x0 ċt(v) := 〈Qλ(t)v|v〉x0 , t > 0, v ∈ Dx0 . (5.15)

1A Lagrangian subspace L ⊂ Σ of a symplectic vector space (Σ, σ) is a subspace with dimL = dimΣ/2
and σ|L = 0.
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b

b

b

x0

γ(t)

x

x 7→ −St(x, γ(t))

Figure 5.5: The geodesic cost function

The operators Qλ(t) are smooth for small t. In Theorem A of [3] it is proved their small
time asymptotic behavior, which

Theorem 5.14. Let γ : [0, T ] → M be an ample geodesic with initial covector λ ∈ T ∗
x0M

and let Qλ(t) : Dx0 → Dx0 be defined by (5.15). Then t 7→ t2Qλ(t) can be extended to a
smooth family of symmetric operators on Dx0 for small t > 0. Moreover

Iλ := lim
tց0

t2Qλ(t) ≥ I > 0,
d

dt

∣∣∣∣
t=0

t2Qλ(t) = 0,

where I is the k-dimensional identity matrix. In particular, there exists a symmetric
operator Rλ : Dx0 → Dx0 such that

Qλ(t) =
1

t2
Iλ +

1

3
Rλ +O(t), t > 0. (5.16)

Definition 5.15. We call the symmetric operator Rλ : Dx0 → Dx0 in (5.16) the curvature
at λ.

Let γ be ample and equiregular and let E(t), F (t) be a canonical frame along the lift
λ(t). Then the curvature operator Rλ can be written in terms of the smooth n-dimensional
symmetric matrix R(t), introduced in the canonical equations (5.11). Indeed, for i, j ∈ N

let

Ω(i, j) =





0 |i− j| ≥ 2,
1

4(i+j) |i− j| = 1,
i

4i2−1
i = j,

then in [3] it is proved that Rλ depends only on the elements of Ra1,b1(0) corresponding
to the first column of the associated Young diagram, namely

(Rλ)ab = 3Ω(na, nb)Ra1,b1(0), a, b ∈ {1, . . . , k}. (5.17)

5.5 The metric measure invariant ρ

Let γ(t) = πet
~Hλ be ample and equiregular, and let Jλ(t) be the associated Jacobi curve.

Lemma 5.16 ([3], Lemma 8.3). Let {Eai(t), Fai(t)}ai∈D be a canonical frame along the
curve Jλ(t). Then the set of vector fields along γ(t)

Xai(t) := π∗Fai(t), ai ∈ D

is a basis for Tγ(t)M adapted to the flag {F i
γ(t)}mi=1 and {Xa1(t)}ka=1 is an orthonormal

basis for Dγ(t) along the geodesic.
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Lemma 5.17 ([3], Lemma 8.5). For t ∈ [0, T ], the projections Xai(t) can be recovered as

Xai(t) = (−1)i−1Li−1
T

(Xa1(t)) modF i−1
γ(t), a = 1, . . . , k, i = 1, . . . , na.

Let {θai(t)}ai∈D ∈ T ∗
γ(t)M be the coframe dual to Xai(t) and define a volume form ω

along γ as
ωγ(t) := θ1,1(t) ∧ θ1,2(t) ∧ . . . ∧ θknk

(t). (5.18)

Given a fixed volume µ on M , let gλ : [0, T ] → R be the smooth function such that

µγ(t) = egλ(t)ωγ(t). (5.19)

Lemma 5.18. Let γ(t) = πet
~Hλ be an ample and equiregular geodesic. Then at the point

γ(t) it holds
ġλ(t) = ġλ(t)(0), ∀t ∈ [0, T ].

Proof. Let λ(t) = et
~Hλ ∈ T ∗M be the lifted extremal and denote by γt(s) := γ(t+ s) the

rescaled curve. Then γt(s) = πes
~Hλ(t). Moreover, if (Eλ(t+s), Fλ(t+s)) is a canonical frame

along λ(t + s), it is a canonical frame also for es ~Hλ(t). Then the form ωγ(t+s), defined
by wedging the dual forms to π(Fλ(t+s)) is equal to ωγt(s) for every s where the frame is
defined. By the sequence of identities

egλ(t+s)ωγ(t+s) = µγ(t+s) = µγt(s) = egλ(t)(s)ωγt(s)

it follows that gλ(t+ s) = gλ(t)(s) for every s.

Definition 5.19. Let A ⊂ T ∗M be the set of covectors such that the corresponding geodesic
is ample and equiregular. We define the function ρ : A → R as

ρ(λ) := ġλ(0).

Lemma 5.18 allows to write g as a function of ρ, namely

gλ(t) = gλ(0) +

ˆ t

0
ġλ(s)ds = g(0) +

ˆ t

0
ρ̇(λ(s))ds. (5.20)

Let T be any admissible extension of γ̇. By the classical identity divfµX = divµX +
X(log f) for a volume µ, a smooth function f and a vector field X, we have

ρ(λ) = divµTx − divωTx for λ ∈ T ∗
xM. (5.21)

Proposition 5.20. The quantity ρ(λ) depends only on the symbol and µ along γ(t) in the
following sense: if two symbols Sγ(0) and Sγ′(0) are equivalent, i.e.

• φ(γ(t)) = γ′(t) for t ≥ 0

• φ∗ : D → D′ is an isometry in a neighborhood of γ(0) and γ′(0) and LT′◦φ∗ = φ∗◦LT.

and µ is invariant under φ, i.e.

• φ∗µγ′(t) = µγ(t), for t ≥ 0,
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then ρ(λ) = ρ(λ′), where λ and λ′ are the initial covectors associated to γ and γ′ respec-
tively.

Proof. Let (E,F ) and (E′, F ′) be canonical basis with respect to λ and λ′ resp., and
Xai(t) = π∗(Fai(t)), X ′

ai(t) = π∗(F ′
ai(t)) be the associated basis of Tγ(t)M and Tγ′(t)M .

Then

egλ(t) = |µγ(t)(X1,1(t), . . . , Xknk
(t))| and egλ′ (t) = |µγ′(t)(X ′

1,1(t), . . . , X
′
knk

(t)).

Recall that {Xa1}ka=1 is an orthonormal basis for Dγ(t) and the same for X ′
a1(t) at γ′(t).

Since φ∗ is an isometry, there exists a family of orthonormal k×k matrices O(t) such that

X ′
a1(t) =

k∑

b=1

Oab(t)φ∗(Xb1), for a = 1, . . . , k.

Moreover for the other vector fields we know that

X ′
ai(t) =(−1)i−1L(i−1)

T′ (X ′
a1(t))modF i−1

γ′(t)

=(−1)i−1L(i−1)
T′

(
k∑

b=1

O(t)abφ∗(Xb1(t))

)
modF i−1

γ′(t)

=(−1)i−1
k∑

b=1

O(t)abL(i−1)
T′ (φ∗(Xb1(t)))modF i−1

γ′(t),

where the last identity follows by the chain rule. Indeed when we derive the matrix O(t),
we obtain elements of F i−1

γ′(t). Then

X ′
ai(t) =(−1)i−1

k∑

b=1

O(t)abφ∗L(i−1)
T

(Xb1(t))modF i−1
γ′(t)

=

di∑

b=1

O(t)abφ∗Xbi(t)modF i−1
γ′(t),

where in the sum we consider only the indices b such that bi ∈ D. Therefore there exists
an orthogonal transformation that sends φ∗Xai in X ′

ai. Therefore

egλ′ (t) =
∣∣µγ′(t)

(
X ′

1,1(t), . . . , X
′
knk

)∣∣ =
∣∣µγ′(t) (φ∗X1,1(t), . . . , φ∗Xknk

)
∣∣

=
∣∣(φ∗µ)γ(t) (X1,1(t), . . . , Xknk

)
∣∣

=egλ(t)

and the proof is complete.

Corollary 5.21. If the symbol is constant through a diffeomorphism φ and µ is preserved
by φ, then ρ(λ(t)) = 0.

Eq. (5.20) and the last Proposition say that indeed the whole function gλ(t) depends
only on the symbol along the curve (and µ).
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Lemma 5.22. Let γ(t) = π ◦ λ(t) be an ample equiregular geodesic. If etT is an isometry
of the distribution along γ(t), then divωTγ(t) = 0 and ρ(λ(t)) = divµT.

Proof. If we show that divωTγ(t) = 0, then from Eq. (5.21) it immediately follows that
ρ(λ(t)) = divµT and ρ depends only on the variation of the volume µ along the curve.

Let Xai(t) be the basis of Dγ(t) induced by the canonical frame along the curve λ(t).
The divergence is computed as

divωTγ(t)ωγ(t)(X11(t), . . . , Xknk
(t)) =LTω(X11, . . . , Xknk

)γ(t)

=
d

dǫ

∣∣∣∣
ǫ=0

ωγ(ǫ)(e
ǫT
∗ X11, . . . , e

ǫT
∗ Xknk

).

Since the flow of T is an isometry of the graded structure that defines the symbol, the last
quantity is equal to 0, which proves that divωT = 0 along the curve.

Lemma 5.23. The function ρ is rational in λ.

Proof. The Hamiltonian ~H is fiber-wise polynomial, therefore for any vector field V (t) ∈
Tλ(t)(T

∗M), V̇ = [ ~H, V ] is a rational function of the initial covector λ. Then both E and
F are rational in λ, and so are also the projections X(t) = π∗F (t). We conclude that

egλ(t) =
∣∣µγ(t)(Xa1(t), . . . , Xknk

(t))
∣∣

is rational in λ. Then all the coefficients of its Taylor expansion are rational in λ.

5.6 A formula for ρ

In this section we give a formula for ρ in terms only on the volume µ and the maps Li
T
. It

is then once more clear that ρ(λ(t)) depends only on the symbol of γ(t) = πλ(t) and on µ
along the geodesic.

Fix a smooth volume µ onM and let Y1, . . . , Yk be an orthonormal basis of D in a neigh-
borhood of x0. We complete it to a basis of the tangent space by choosing Yk+1, . . . , Yn
such that µ(Y1, . . . , Yn) = 1. We define a scalar product on the whole tangent space, by
establishing that this basis is orthonormal. Of curse this scalar product depends on the
chosen basis, but this choice does not affect our construction.

Let γ(t) = π ◦ et ~Hλ be an ample equiregual curve, with initial covector λ ∈ T ∗
x0M .

Recall that, according to the definition of gλ(t), it holds

gλ(t) = log |µ(Pt)|, (5.22)

where Pt is the parallelotope whose edges are the projections {Xai(t)}ai∈D of the horizontal

part of the canonical frame Xai = π∗ ◦ et ~H∗ Fai(t) ∈ Tγ(t)M , namely

Pt =
∧

ai∈D
Xai(t).

By Lemma 5.17 we can write the adapted frame {Xai}ai∈D in terms of the smooth linear
maps LT, and we obtain the following formula for the parallelotope

Pt =
m∧

i=1

di∧

ai=1

Xaii(t) =
m∧

i=1

di∧

ai=1

Li−1
T

(Xai1(t)). (5.23)
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Consider the flag {F i
γ(t)}mi=1 and define the following sequence of subspaces of Tγ(t)M :

we denote by V1 = F1
γ(t) the first layer of the flag. By the scalar product on Tγ(t)M it is

well-defined the space (F1
γ(t))

⊥, perpendicular to the first layer. Let V2 := F2
γ(t)∩ (F1

γ(t))
⊥.

This subspace has dimension dimF2
γ(t) − dimF1

γ(t). Going on in this way, for 1 < i ≤ m

let Vi := F i
γ(t) ∩ (F i−1

γ(t))
⊥. It has dimension dimF i

γ(t) − dimF i−1
γ(t). Therefore there exists

a natural isomorphism between F i
γ(t)/F i−1

γ(t) and Vi, such that every Y ∈ F i
γ(t)/F i−1

γ(t) is
associated with the equivalent element of its class that lies in Vi. In conclusion, for the
computation of gλ(t) in (5.22), it is equivalent to substitute the elements Li−1

T
(Xai1(t)) of

the parallelotope in (5.23) with the corresponding equivalent element in Vi.
Now recall the map Li−1

T
: Dγ(t) → F i

γ(t)/F i−1
γ(t). For every i = 1, . . . ,m they descend to

an isomorphism Li−1
T

: Dγ(t)/kerLi−1
T

→ F i
γ(t)/F i−1

γ(t) ≃ Vi. Then, thanks to the inner prod-

uct structure, we can consider the map (Li−1
T

)∗ ◦ Li−1
T

: Dγ(t)/kerLi−1
T

→ Dγ(t)/kerLi−1
T

obtained by composing Li−1
T

with its adjoint (Li−1
T

)∗. This composition is a symmetric
invertible operator and we define the smooth families of symmetric operators

Mi(t)
.
= (Li−1

T
)∗ ◦ Li−1

T
: Dγ(t)/ kerLi−1

T
→ Dγ(t)/ kerLi−1

T
, i = 1, . . . ,m.

Recall in particular that for every v1, v2 ∈ Dγ(t)/ kerLi−1
T

it holds the identity

〈(Li−1
T

)∗ ◦ Li−1
T
v1, v2〉Dγ(t)

= 〈Li−1
T

v1,Li−1
T
v2〉Vi .

By the expression of the parallelotope Pt with elements of the subspaces Vi and the
definition of µ as the dual of an orthonormal basis of Tγ(t)M , we have

|µ(Pt)| = |µ
(

m∧

i=1

di∧

ai=1

Li−1
T

(Xai1(t))

)
| =

√√√√
m∏

i=1

detMi(t).

Clearly this formula does not depend on the chosen extension Yk+1, . . . , Yn of the
orthonormal basis of D, since the only important point is that the volume µ evaluated at
this basis is 1.

Finally to determine ρ(λ), recall that it is d
dt

∣∣
t=0

gλ(t) = d
dt

∣∣
t=0

log |µ(Pt)|. Then a
simple computation shows that

ρ(λ) =
1

2

m∑

i=1

tr
(
Mi(0)

−1Ṁi(0)
)
.

We stress once more, that this last formula is expressed uniquely in terms of the volume
µ along the curve and the symbol of γ(t).

5.7 Sub-Riemannian manifolds

In this section we consider a sub-Riemannian manifold and we investigate the further
properties of the invariant ρ.
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The problem of finding the geodesics in a sub-Riemannian manifold, corresponds locally
to the optimal control problem

{
ẋ =

∑k
i=1 ui(t)fi(t)

JT (u) =
1
2

´ T
0 |u(τ)|2dτ ❀ min,

that is an affine control problem, where the drift field is zero. Moreover the fields f1, . . . , fk
are orthonormal and span a completely non-holonomic distribution. The Hamoltonian
function is fiber-wise quadratic in λ and in coordinates it is

H(λ) =
1

2

k∑

i=1

〈λ, fi〉2.

5.7.1 Homogeneity properties

For all c > 0, let Hc := H−1(c/2) be the Hamiltonian level set. In particular H1 is the
unit cotangent bundle: the set of initial covectors associated with unit-speed geodesics.
Since the Hamiltonian function is fiber-wise quadratic, we have the following property for
any c > 0

et
~H(cλ) = cect

~H(λ). (5.24)

Let Pc : T ∗M → T ∗M be the dilation along the fibers Pc(λ) = cλ. Indeed α 7→ Peα is a
one-parameter group of diffeomorphisms. Its generator is the Euler vector field e ∈ Γ(V),
and is characterized by Pc = e(ln c)e. We can rewrite (5.24) as the following commutation
rule for the flows of ~H and e:

et
~H ◦ Pc = Pc ◦ ect ~H .

Observe that Pc maps H1 diffeomorphically on Hc. Let λ ∈ H1 be associated with an
ample, equiregular geodesic with Young diagram D. Clearly also the geodesic associated
with λc := cλ ∈ Hc is ample and equiregular, with the same Young diagram. This
corresponds to a reparametrization of the same curve: in fact λc(t) = et

~H(cλ) = c(λ(ct)),
hence γc(t) = π(λc(t)) = γ(ct). The canonical frame associated to λc(t) can be recovered
by the one associated to λ(t) as shown in the following Proposition. Its proof can be found
in [10].

Proposition 5.24. Let λ ∈ H1 and {Eai, Fai}ai∈D be the associated canonical frame along
the extremal λ(t). Let c > 0 and define, for ai ∈ D

Ecai(t) :=
1

ci
(dλ(ct)Pc)Eai(ct), F cai(t) := ci−1(dλ(ct)Pc)Fai(ct).

The moving frame {Ecai(t), F cai(t)}ai∈D ∈ Tλc(t)(T
∗M) is a canonical frame associated with

the initial covector λc = cλ ∈ Hc, with matrix

Rλ
c

ai,bj(t) = ci+jRλai,bj(ct).

By this Proposition, it follows an homogeneity property of the function ρ.
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Corollary 5.25. For every c > 0 it holds

egcλ(t) = cQ−negλ(ct),

where Q and n are respectively the homogeneous and topological dimension of the sub-
Riemannian manifold. In particular

ρ(cλ) = cρ(λ) ∀λA.

Proof. Let Xc
ai(t) and Xai(ct) be the basis of Tγc(t)M = Tγ(ct)M induced by the canonical

frame. Then by Proposition 5.24 it holds the identity Xc
ai(t) = ci−1Xai(ct). Therefore by

the definition of gλ and gcλ we have

egcλ(t) =|µγ(ct)(Xc
11(t), . . . , X

c
knk

(t))|

=
m∏

i=1

di∏

j=1

ci−1|µγ(ct)(X11(ct), . . . , Xknk
(ct))|

=cQ−negλ(ct).

In particular gcλ(t) = gλ(ct) + (Q− n) log(c) and with a derivation in t = 0 we obtain the
rescaling property

ρ(cλ) = cρ(λ) ∀c > 0.

5.7.2 Contact manifolds

In this section we focus on the special case of a contact sub-Riemannian manifold. For
this type of manifolds, given a geodesic γ(t) = πet

~Hλ, it is possible to compute explicitly
the value of the associated smooth function gλ(t) and the constant c0 of Theorem 5.1.

Definition 5.26. A sub-Riemannian manifold (M,D, g) of odd dimension 2n+1 is contact
if there exists a non degenerate 1-form ω ∈ Λ1(M), such that Dx = kerωx for every x ∈M
and dω|D is non degenerate. In this case D is called contact distribution.

Since dω|D is not degenerate, the distribution is equiregular of step 2.
Notice moreover that, given a sub-Riemannian contact manifold, the contact form ω

is not unique, indeed also αω is a contact form for any 0 6= α ∈ R. Once a contact form
ω is fixed we can associate the Reeb vector field, X0, which is the unique vector field such
that ω(X0) = 1 and dω(X0, ·) = 0. Since the Reeb vector field X0 is transversal to D, we
normalize ω so that ||X0||D2/D = 1.

The contact form ω induces a fiber-wise linear map J : D → D, defined by

〈JX, Y 〉 = dω(X,Y ) ∀X,Y ∈ D.

Observe that the restriction Jq of J to the fibers of D is a linear skew-simmetric operator
on (Dq, 〈·, ·〉q).

Let X1, . . . , X2n be a local orthonormal frame of D, then X1, . . . , X2n, X0 is a local
adapted frame to the flag of the distribution. Let ν1, . . . , ν2n, ν0 be the associated dual
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frame. The Popp volume µ on M is then the volume obtained by wedging the forms νi,
i.e.,

µ = ν1 ∧ . . . ∧ ν2n ∧ ν0. (5.25)

We compute now the value of the function gλ(t) with respect to the Popp’s volume and

a given geodesic γ = πet
~Hλ. Recall the definition of gλ in Eq. (5.19). It can be computed

as
gλ(t) = log |µ(Pt)|, (5.26)

where Pt is the parallelotope, whose edges are given by the projections on Tγ(t)M of the
fields Fai(t) of a canonical basis along λ(t).

Let T be an horizontal extension of the tangent vector field γ̇(t) and consider the map
LT : Dγ(t) → D2

γ(t)/Dγ(t). Since the manifold is contact, this map is surjective. Its kernel
is a subspace of Dγ(t) of dimension 2n − 1. So let X1, . . . , X2n be an orthonormal basis
of Dγ(t) such that X1 ∈ (kerLT)

⊥. Then the other vector fields X2, . . . , X2n ∈ kerLT.
Since they are an adapted frame to the flag of the distribution, there exists an orthogonal
map that transforms the first 2n vectors projections of the canonical basis, in this basis.
Then the definition (5.26) of gλ(t) does not change if we take the first 2n edges of the
parallelotope equal to X1, . . . , X2n. Moreover, by Lemma 5.17, the last projected vector
Xai = X1,2 can be written as

X1,2(t) = −LTX1(t)modD.
Notice that since X1 is the only vector of the orthonormal basis, which is not in the kernel
of LT, this basis is indeed adapted to the Young diagram of γ. Since the Popp’s volume
can be written as in (5.25) we find that the volume of the parallelotope is equal to the
length of the component of LTX1(t) with respect to X0, i.e.,

|µ(Pt)| = |〈[T, X1(t)], X0〉γ(t)|.
This quantity can be written equivalently in terms of the map J . Indeed

|µ(Pt)| = |〈[T, X1], X0〉γ(t)| = |ωγ(t)([T, X1])| = |dωγ(t)(T, X1)|
= |〈Jγ(t)T, X1〉γ(t)|.

Since 〈JT, Y 〉 = −ω(LTY ) for every horizontal field Y , then kerLT = JT⊥. This implies
that JT is a multiple of X1, i.e., JT = ||JT||X1. Then we simplify the formula for |µ(Pt)|
as

|µ(Pt)| = |〈Jγ(t)T, X1〉γ(t)| = ||JTγ(t)||.
In particular, if the manifold has dimension 3, then kerLT has dimension 1 and

T = ||T||X2. Moreover, if we denote by ckij the structure constants such that [Xi, Xj ] =∑2
k=0 c

k
ijXk, then the normalization of ω implies c012 = −1 and

|µ(Pt)| = |〈[T, X1], X0〉| = ||Tγ(t)|| |〈[X2, X1], X0〉|
= ||Tγ(t)|| if 2n+ 1 = 3.

The norm of the tangent vector ġ(t) is constant. This implies that g(t) itself is a constant
function and ρ(λ(t)) = 0 for every t.

For the leading constant c0 of Theorem 5.1, the computation of its exact value is an
easy consequence of formula (5.29). Since the Young diagram is made of 2n rows of length
1, except the first one of length 2, the leading constant is c0 = 1

12 .
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5.8 Proof of Theorem 5.1

In this section we prove the following version of Theorem 5.1. Together with the discussion
about the function ρ given in the previous sections, the statement follows.

Proposition 5.27. Let γ(t) = π(et
~Hλ) be an ample equiregular geodesic and let ωγ(t)

be the n-form defined in (5.18). Given a volume µ on M , define implicitly the smooth
function g : [0, T ] → R by µγ(t) = eg(t)ωγ(t). Then we have the following Taylor expansion

〈(
π ◦ et ~H

)∗
µ,E(0)

〉∣∣∣
λ
= c0t

N eg(t)
(
1− t2

trRλ

6
+ o(t2)

)
(5.27)

where E is the n-dimensional row vector introduced in Remark 5.12 and c0 is a constant
depending only on the structure of the Young diagram. Its value can be found in (5.29).

Proof. The left hand side of the equation can be computed as
〈(
πet

~H
)∗
µ,E(0)

〉∣∣∣
λ
=
〈
eg(t)ω,

(
πet

~H
)
∗
E(0)

〉∣∣∣
γ(t)

.

For every ai ∈ D, the field et
~H

∗ Eai(0) is a Jacobi field, so in coordinates with respect
to the canonical frame we can write

et
~H

∗ E(0) = E(t)M(t) + F (t)N(t)

for n× n matrices M and N , that satisfy the Jacobi equations (5.14). More explicitly we
have the system





Ṅai,bj = Nai−1,bj if i 6= 1

Ṅa1,bj =Ma1,bj

Ṁai,bj = −R(t)ai,chNch,bj −Mai+1,bj if i 6= na
Ṁana,bj = −R(t)ana,chNch,bj .

(5.28)

Moreover M(0) = Id and N(0) = 0. Clearly the left hand side of (5.27) is equal to
eg(t) detN(t).

In the following we find the Taylor expansion of the matrix N(t) in 0.
Let us begin with the case of a Young diagram made of a single row. For clarity we will

avoid the index a in the notation for N and M . Fix integers 1 ≤ i, j ≤ n. The elements
Nij are successive integrals of M1j . So it is enough to find the asymptotics expansion of
M1j . Notice that

M1j(0) = δ1j

Ṁ1j = −R1hNhj −M2j(1− δ1n)

M
(2)
1j = −Ṙ1hNhj −

∑

h 6=1

R1hNh−1j −R11M1j + (1− δ1n) (R2hNhj +M3j(1− δ2n))

In these equations the only non-vanishing component at t = 0 is Mjj(0) = 1, that can be
obtained only by deriving the elements Mij with i < j. So, in the expansion of M1j(t), the
element Mjj is obtained for the first time with the (j−1)-th derivative. It appears for the
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second time multiplied by R11(0) at the (j +1)-th derivative, since in M (2)
1j we have again

a component depending on M1j , while all the other components need more derivatives to
generate a non vanishing term. We can conclude that the asymptotics of M1j at t = 0 is

M1j(t) = (−1)j−1 tj−1

(j − 1)!
− (−1)j−1R11

tj+1

(j + 1)!
+ o(tj+1).

Since M1j is the i-th derivative of Nij we have also the expansion for N :

Nij(t) = (−1)j−1 ti+j−1

(i+ j − 1)!
− (−1)j−1R11

ti+j+1

(i+ j + 1)!
+ o(ti+j+1).

Let us now consider a general distribution of dimension k > 1. Now we have to study
the whole system in (5.28). Fix indeces ai, bj ∈ D. Again, to find N it’s enough to
determine the expansion of Ma1,bj , since this is the i-th derivative of Nai,bj . To find this
expansion, notice that

Ma1,bj(0) = δabδ1j

Ṁa1,bj = −Ra1,chNch,bj −Ma2,bj(1− δ1na)

M
(2)
a1,bj = −Ṙa1,chNch,bj −

∑

h 6=1

Ra1,chNch−1,bj −Ra1,c1Mc1,bj

+ (1− δ1na) (Ra2,chNch,bj +Ma3,bj(1− δ2na))

If a = b the argument is similar to the one with k = 1, but this time with every derivative
we generate also terms like Mch,aj , that for c 6= a need even more derivatives to give a
term different from zero. So we have an expansion as before:

Ma1,aj(t) = (−1)j−1 tj−1

(j − 1)!
− (−1)j−1Ra1,a1

tj+1

(j + 1)!
+ o(tj+1),

Nai,aj(t) = (−1)j−1 ti+j−1

(i+ j − 1)!
− (−1)j−1Ra1,a1

ti+j+1

(i+ j + 1)!
+ o(ti+j+1).

On the other hand, if a 6= b, then the first term different from zero of Ma1,bj appears at the
j−1+2 derivative, multiplied by Ra1,b1, since we need first to generate the element Mb1,bj ,
that appears only at the second derivative of Ma1,bj . Therefore the Taylor expansions of
Mai,bj and of a generic element of the matrix N can be derived as

Ma1,bj(t) = δab(−1)j−1 tj−1

(j − 1)!
− (−1)j−1Ra1,b1

tj+1

(j + 1)!
+ o(tj+1),

Nai,bj(t) = Ñai,bjt
i+j−1 −Gai,bjt

i+j+1 + o(ti+j+1).

where the matrices Ñ and G are

Ñai,bj := (−1)j−1 δab
(i+ j − 1)!

and Gai,bj := (−1)j−1 Ra1,b1
(i+ j + 1)!

.

Let us come back to equation (5.27). To find the asymptotics of the left hand side, we
need only to determine the asymptotic of detN(t). Let I√t be a diagonal matrix, whose
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jj-th element is equal to
√
t
2i−1

, for ki−1 < j ≤ i. Then the Taylor expansion of N can

be written as N(t) = I√t

(
Ñ − t2G+O(t3)

)
I√t and its determinant is

detN(t) = det Ñ tN
(
1− tr

(
Ñ−1G

)
t2 + o(t2)

)
,

where N is the geodesic dimension given in Definition 5.6. Notice that since the matrix
Ñ is block-wise diagonal, to find the trace of Ñ−1G we just need the elements of G with
a = b. Recall Eq. (5.17) that relates the curvature operator Rλ with the elements of the
matrix Ra1,b1. In particular for the diagonal elements it holds

Raa = 3
na

4n2a − 1
Ra1,a1(0).

So to find the coefficient of order t of the Lemma, it will be enough to show that

tr
(
Ñ−1G

)
=

k∑

a=1




na∑

i,j=1

[Ñ ]−1
ai,aj

(−1)j−1

(i+ j + 1)!


Ra1,a1(0)

=
k∑

a=1

1

2

na
4n2a − 1

Ra1,a1(0).

Then the proof will be completed by the following Lemma.

Lemma 5.28. The determinat of Ñ is

c0 := det Ñ =

k∏

a=1

∏na−1
j=1 j!

∏2na−1
j=na

j!
. (5.29)

Moreover, let N̂ and Ĝ be n × n matrices, whose elements are N̂ij =
(−1)j−1

(i+j−1)! and Ĝij =
(−1)j−1

(i+j+1)! . Then

tr
(
N̂−1Ĝ

)
=

1

2

n

4n2 − 1
. (5.30)

The proof of this Lemma requires only computational discussions and is given in Ap-
pendix 5.9.

5.9 Appendix: Proof of Lemma 5.28

In this Section we provide the proof of Lemma 5.28, which will conclude the proof of the
main Theorem.

We have to show the value of the leading constant c0 and the trace of N̂−1Ĝ for N̂
and Ĝ defined in Lemma 5.28.

The matrix N̂ has already been studied in [3], Section 7.3 and Appendix G, and its

inverse can be expressed as a product of two matrices N̂−1
ij =

(
Ŝ−1Â−1

)
ij
, where

Â−1
ij :=

(−1)i−j

(i− j)!
i ≥ j,

Ŝ−1
ij :=

1

i+ j − 1

(
n+ i− 1

i− 1

)(
n+ j − 1

j − 1

)
(n!)2

(n− i)!(n− j)!
.
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Therefore the inverse of N̂ is

N̂−1
ij =

n∑

h=j

(−1)h−j

(i+ h− 1)(h− j)!

(
n+ i− 1

i− 1

)(
n+ h− 1

h− 1

)
(n!)2

(n− i)!(n− h)!
. (5.31)

The trace in (5.30) is given by the following sum

tr
(
N̂−1Ĝ

)
=

n∑

i,j=1

N̂−1
ij Ĝji =

n∑

i,j=1

n∑

h=j

(−1)h−j

(i+ h− 1)(h− j)!

(
n+ i− 1

i− 1

)(
n+ h− 1

h− 1

)
(n!)2

(n− i)!(n− h)!

(−1)i

(i+ j + 1)!
.

Notice that for i = 1, . . . , n − 2 the element Ĉji = N̂j(i+2) therefore this sum reduces to
the sum of the components with i = n− 1 and i = n. In particular we prove our claim if
we show that for i = n− 1 it holds

n∑

j=1

n∑

k=j

(−1)k−j+n

(n+ k − 2)(k − j)!

(
2n− 2

n− 2

)(
n+ k − 1

k − 1

)
(n!)2

(n− k)!(n+ j)!
= − n− 1

4(2n− 1)
(5.32)

while for i = n

n∑

j=1

n∑

k=j

(−1)k−j+n+1

(n+ k − 1)(k − j)!

(
2n− 1

n− 1

)(
n+ k − 1

k − 1

)
(n!)2

(n− k)!(n+ j + 1)!
=

n+ 1

4(2n+ 1)
.

(5.33)
Let us study equation (5.32). By reordering the factors, equation (5.32) is equivalent

to show that

n∑

j=1

n∑

k=j

(−1)n+k+j

n+ k − 2

(
2n

n+ k

)(
n+ k

n+ j

)(
n+ k − 1

k − 1

)
=

=
n∑

k=1




k∑

j=1

(−1)j
(
n+ k

n+ j

)
 (−1)n+k

n+ k − 2

(
2n

n+ k

)(
n+ k − 1

k − 1

)
= −1

2

We can solve the sum in the square brackets by a change of index j′ = n+ j and by using
the general identity 0 = (−1 + 1)N =

∑N
j=0(−1)j

(
N
j

)
, then

k∑

j=1

(−1)j
(
n+ k

n+ j

)
= (−1)n

n+k∑

j=n+1

(−1)j
(
n+ k

j

)
= −(−1)n

n∑

j=0

(−1)j
(
n+ k

j

)

= −
(
n+ k − 1

n

)
,

where the last equality is justified by the following identity, that can be easily proved by
induction on n:

n∑

j=0

(−1)j
(
n+ k

j

)
= (−1)n

(
n+ k − 1

n

)
.
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To prove equation (5.32) it remains to show that
n∑

k=1

(−1)n+k

n+ k − 2

(
2n

n− k

)(
n+ k − 1

k − 1

)2

=
1

2
. (5.34)

Performing the same kind of transformations, we find that equation (5.33) is equivalent to
n∑

k=1

(−1)n+k

(n+ k)(n+ k − 1)

(
2n+ 1

n− k

)(
n+ k

k − 1

)2

=
1

2
. (5.35)

Let us study Eq. (5.34). Schechter studied in [45] the n× n matrices of the form

Hij :=
1

ai − bj
(5.36)

where a1, . . . , an, b1, . . . , bn are 2n distinct reals. In particular he performs formulas for
the inverse of H and for the sum of the coefficients on the i-th row, namely

(H−1)ij =
1

bi − aj

n∏

k=1

(bi − ak)(aj − bk)

∏

k 6=j
(aj − ak)

∏

l 6=i
(bi − bl)

n∑

j=1

(H−1)ij = −

n∏

k=1

(bi − ak)

∏

k 6=i
(bi − bk)

(5.37)

We apply these two formulas to two different matrices: the Hilbert matrix and a modifi-
cation of it.

Let H1 :=
[

1
i+j−1

]
be the Hilbert matrix. It has the form given in (5.36) by choosing

ai := i and bj := −j + 1. We compute the coefficients of the n− 1-th row of H−1
1 :

(H−1
1 )n−1,j =

1

−n+ 2− j

∏
k(−n+ 2− k)(j + k − 1)∏

k 6=j(j − k)
∏
l 6=n−1(−n+ 2 + l − 1)

=
n(n− 1)2

2(2n− 1)
(n+ j)

(−1)n+j+1

n+ j − 2

(
2n

n− j

)(
n+ j − 1

j − 1

)2

= −n(n− 1)2

2(2n− 1)
(n+ j) βj,n

(5.38)

where we denote by βj,n the coefficients in the sum in (5.34).

The second matrix is H2 :=
[

1
ai−bj

]
, with ai = i for i < n and an = −n, while

bj = −j + 1. We compute the coefficients of the n− 1-th row of H−1
2 . For j < n we have

(H−1
2 )n−1,j =

1

−n+ 2− j

∏
k 6=n(−n+ 2− k)(−n+ 2 + n)

∏
k(j + k − 1)∏

k 6=j,k 6=n(j − k) (n+ j)
∏
l 6=n−1(−n+ 2 + l − 1)

=
n(n− 1)

2(2n− 1)
(n− j)

(−1)n+j+1

n+ j − 2

(
2n

n− j

)(
n+ j − 1

j − 1

)2

= − n(n− 1)

2(2n− 1)
(n− j) βj,n.

(5.39)
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For j = n we get

(H−1
2 )n−1,n =

1

−n+ 2 + n

∏
k 6=n(−n+ 2− k)(−n+ 2 + n)

∏
k(−n+ k − 1)∏

k 6=n(−n− k) (n+ j)
∏
l 6=n−1(−n+ 2 + l − 1)

=
n2(n− 1)

2(2n− 1)
.

Now, our goal is to compute the sum of βj,n. However, from equations (5.38) and
(5.39) we can determinate the sum of (n+ j)βj,n and (n− j)βj,n. So by summing together
these two quantities we get the desired one.

Let α1 :=
∑n

j=1(H
−1
1 )n−1,j and α2 :=

∑n
j=1(H

−1
2 )n−1,j , then we find

n∑

j=1

βjn = − 1

2n

[
2(2n− 1)

n(n− 1)2
α1 +

2(2n− 1)

n(n− 1)

(
α2 −

n2(n− 1)

2(2n− 1)

)]
.

Now the proof of equation (5.34) is completed once we use formula (5.37) to find α1 =

− (2n−2)!
(n−2)!2

and α2 =
2(2n−3)!
(n−2)!2

.

Equation (5.35) can be solved with the same method. More precisely, let γj,n be the
coefficients in the sum (5.35), and consider the same matrix H1, while H2 is obtained by
fixing aj = j if j < n and an = −n− 1, and bj = −j + 1. Then

(H−1
1 )nj = (n+ j + 1)

n(n+ 1)2

2(2n+ 1)
γj,n

while for j < n

(H−1
2 )nj = (n− j)

n(n+ 1)2

(2n+ 1)(2n− 1)
γj,n

and (H−1
2 )nn = −n(n+1)2

2(2n−1) .

Let us denote by η1 :=
∑n

j=1(H
−1
1 )n,j =

(2n−1)!
(n−1)!2

and η2 :=
∑n

j=1(H
−1
2 )n,j = −2(2n−2)!

(n−1)!2
,

then the sum in (5.35) is given by

n∑

j=1

γj,n =
1

2n+ 1

[
2(2n+ 1)

n(n+ 1)2
η1 +

(2n+ 1)(2n− 1)

n(n+ 1)2

(
η2 +

n(n+ 1)2

2(2n− 1)

)]
=

1

2
.

Finally we have completed the proof of the second statement in the Lemma.
Next we find the value of the leading constant c0 := det Ñ . This is a block matrix,

whose only non vanishing blocks are the one on the diagonal. Moreover, every aa-block
of the diagonal is the matrix N̂ of dimension na. So to find the determinant of Ñ , it is
sufficient to evaluate the determinant of the generic matrix N̂ of dimension n. To this
end, let us recall Cramer’s rule for the evaluation of an inverse matrix N̂ :

N̂−1
ij = (−1)i+j

det N̂0
ji

det N̂
,

where N̂0
ji is the matrix N̂ without the j-th row and the i-th column. So we can compute

the determinant of the matrix N̂(n) of dimension n through the (n, n)-entry of the matrix
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N̂−1 and the value of the determinant of the same matrix N̂(n−1) of dimension n − 1,
namely we get the recursive formula:

det N̂(n) =
det N̂(n−1)

N̂−1
nn

= det N̂(n−1)
(n− 1)!2

(2n− 2)!(2n− 1)!
,

where the last equality follows from equation (5.31). When n = 1 the determinant is equal
to 1, then we can explicitly find

det N̂(n) =

∏n−1
j=1 j!∏2n−1
j=n j!

.

Finally the value of the constant c0 is then the product

c0 =
k∏

a=1

det N̂(na) =
k∏

a=1

∏na−1
j=1 j!

∏2na−1
j=na

j!
.

This concludes the proof of Lemma 5.28.





Appendix A

Kolmogorov hypoelliptic operator

in dimension 2

In Chapter 4 we have shown a good behavior of the small time asymptotics of the heat
kernel on the diagonal, for the class of hypoelliptic operators with constant second order
part and linear drift field. An interesting question is whether this expansion can be found
also in non-linear operators. To achieve more information on this topic, we show the
first terms in the asymptotic expansion for a slightly more general operator, that is the
Kolmogorov operator in dimension 2, and we compare it with the curvature operator
defined in [2] for the associated affine control system.

A.1 Heat equation in dimension 2 with one controlled vec-

tor field

Let f0 and f1 be two smooth vector fields on the two dimensional Euclidean space R
2 and

consider the following generalization of the heat equation in R
2

∂ϕ

∂t
− f0ϕ− 1

2
f21ϕ ∀ϕ ∈ C2

0 (R× R
2). (A.1)

We denote by L the operator f0 + 1
2f

2
1 and we call f0 the drift field. If we assume that

the fields f0, f1 are bounded with bounded derivatives of any order and that they satisfy
the condition

span{f1, [f0, f1]} = R
2, (A.2)

then the operator (A.1) satisfies the Hörmander condition and admits a fundamental
solution p(t, x, y).

Let x0 be an equilibrium point for the drift field. In this section we compute the small
time asymptotic expansion of p at x0.

Let (x1, x2) be coordinates on R
2, centered in x0, such that f1 is equal to ∂

∂x1
. The

drift field f0 can be written in these coordinates as

f0 = α1(x1, x2)
∂

∂x1
+ α2(x1, x2)

∂

∂x2
,

for smooth functions α1, α2, which vanish at the origin.
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Condition (A.2) implies that the derivative of α2 at x0 doesn’t vanish. Indeed, since
in x0 the drift vector field is zero, the bracket [f0, f1] in x0 is just

[f0, f1]|x0 = − ∂α1

∂x1

∣∣∣∣
x0

∂

∂x1
− ∂α2

∂x1

∣∣∣∣
x0

∂

∂x2
,

then condition (A.2) implies that
∂α2

∂x1

∣∣∣∣
x0

6= 0. (A.3)

In the same spirit of Chapter 3 we define the following dilation of factor ǫ > 0 around
x0 = 0: for x = (x1, x2) let

δǫ(x1, x2) := (ǫx1, ǫ
3x2).

Notice that x0 is a fixed point of δǫ. Under the action of the dilations the vector fields f0
and f1 are modified as

(
δ 1

ǫ
∗
)
f1(x) =

1

ǫ

∂

∂x1(
δ 1

ǫ
∗
)
f0(x) =

1

ǫ2
∂α2

∂x1

∣∣∣∣
0

x1
∂

∂x2
+

1

ǫ
· 1
2

∂2α2

∂x21

∣∣∣∣
0

x21
∂

∂x2

+
∂α1

∂x1

∣∣∣∣
0

x1
∂

∂x1
+
∂α2

∂x2

∣∣∣∣
0

x2
∂

∂x2
+

1

6

∂3α2

∂x31

∣∣∣∣
0

x31
∂

∂x2
+ o(1)

If we perform these dilations to the Kolmogorov operator in (A.1), we can write it in the
following series with respect to ǫ:

∂

∂t
− ǫ2δ 1

ǫ∗
L =

∂

∂t
−
(
1

2

∂2

∂x21
+
∂α2

∂x1
x1

∂

∂x2

)
− ǫ

(
1

2

∂2α2

∂x21
x21

∂

∂x2

)

− ǫ2
(
∂α1

∂x1
x1

∂

∂x1
+
∂α2

∂x2
x2

∂

∂x2
+

1

6

∂3α2

∂x31
x31

∂

∂x2

)
+ o(ǫ2)Z

=
∂

∂t
− L0 − ǫX − ǫ2Y + o(ǫ2)Z

(A.4)

where ∂
∂t − L0 is the principal part of the operator, that is obtained by taking ǫ = 0, X

and Y denote the operators in the backets at order ǫ and ǫ2 respectively, while Z is a
remainder term. As shown in Proposition 3.4 the fundamental solution, qǫ(s, x, y), of this
dilated operator can be found as a function of p, namely

qǫ(s, x, y) = ǫ4p(ǫ2s, δǫx, δǫy).

Notice that if we find the asymptotic expansion of qǫ at the diagonal for ǫ that goes
to zero, then we obtain the desired small time asymptotics of p. Indeed let us fix in the
previous equation s = 1, x = y = 0 and let ǫ go to zero as

√
t. Then

p(t, x0, x0) = p(ǫ2, δǫx0, δǫx0)
∣∣
ǫ=

√
t
=

1

t2
q
√
t(1, x0, x0).

Since we have written the dilated operator as a perturbation of a principal part, the
asymptotic of qǫ with respect to ǫ can be found using Duhamel’s formula (3.16), by means
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of the fundamental solution of L0. The principal opeartor ∂
∂t−L0 is linear and hypoelliptic,

thanks to condition (A.3), with drift matrix A and a constant matrix B of the second order
term equal to

A :=

(
0 0

∂α2
∂x1

∣∣∣
0

0

)
B :=

(
1
0

)
.

Its fundamental solution was computed in Section 2.4 and it is the Gaussian density

q0(t, x, y) =
e−

1
2
(y−eAtx)∗D−1

t (y−eAtx)

2π
√
detDt

with covariant matrix Dt = etA
´ t
0 e

−τABB∗e−τA
∗
dτetA

∗
.

An iteration of Duhamel’s formula for three times, leads to an approximation of qǫ in
terms of q0 and the perturbative operators X ,Y, namely

qǫ = q0 + ǫq0 ∗ X q0 + ǫ2(q0 ∗ X q0 ∗ X q0 + q0 ∗ Yq0) + o(ǫ2),

where the remainder term is a small o of ǫ2 as explained in the proof of Theorem 3.20.
Here we recall that a∗b denotes a convolution in time and space variables of two functions
a(t, x, y) and b(t, x, y), more precisely

a ∗ b(t, x, y) :=
ˆ t

0

ˆ

Rn

a(s, x, z)b(t− s, z, y)dz.

To arrive to the asymptotic expansion of p(t, x0, x0) we have to find the necessary convo-
lutions of q0 with its derivatives at the point (1, 0, 0), namely

p(t, x0, x0) =
1

t2

[
q0(1, 0, 0) +

√
tq0 ∗ X q0(1, 0, 0)

+t (q0 ∗ X q0 ∗ X q0 + ∗Yq0) (1, 0, 0) + o(t)] .
(A.5)

For the leading term q0(1, 0, 0) we just have to evaluate the determinant of Dt in t = 1,
i.e.,

det

(
t a t

2

2

a t
2

2 a2 t
2

3

)∣∣∣∣∣
t=0

=
a2

12
,

where a := ∂α2
∂x1

∣∣∣
0
. For the convolutions, one has to make a careful study of the integrals,

and take advantage of the classical moments of an n-dimensional Gaussian function. These
computations lead to the following results:

• q0 ∗ X q0(t, 0, 0) = q0 ∗ x21 ∂q0∂x2
(t, 0, 0) = 0;

• q0 ∗ x21 ∂q0∂x2
∗ x21 ∂q0∂x2

(t, 0, 0) = 1
2π

√
detDt

9
70

(
∂α2
∂x1

∣∣∣
0

)−2
t;

• q0 ∗ x1 ∂q0∂x1
(t, 0, 0) = q0 ∗ x2 ∂q0∂x2

(t, 0, 0) = − 1
2π

√
detDt

t
2 ;

• q0 ∗ x31 ∂q0∂x2
(t, 0, 0) = − 1

2π
√
detDt

3
14

(
∂α2
∂x1

∣∣∣
0

)−1
t.
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We have then proved the following Theorem:

Theorem A.1. Let p(t, x, y) be the fundamental solution of the operator in (A.1) and let
x0 be an equilibrium point of the drift field f0. Then for t going to 0 we have the following
asymptotic expansion of p:

p(t, 0, 0) =

√
12

2π
∣∣∣ ∂α2
∂x1

∣∣∣
0

∣∣∣
1

t2

[
1 + t

(
−divf0

2
+

9

280

(
∂α2

∂x1

∣∣∣∣
0

)−2( ∂2α2

∂x21

∣∣∣∣
0

)2

− 1

28

(
∂α2

∂x1

∣∣∣∣
0

)−1 ∂3α2

∂x31

∣∣∣∣
0

)
+ o(t)

]
.

(A.6)

A.2 Relation with geodesic curvature

In this section we want to investigate the geometry behind the asymptotic expansion of
the heat kernel for the Kolmogorov operator (A.1). Indeed, let

p(t, x0, x0) =
c0
t2

(
1 +

m∑

i=1

ai(x0)t
i +O(tm+1)

)
.

In the Riemannian case and in the model class of linear operators studied in Chapter 4,
we have seen that the coefficients ai(x0) depend on geometric invariants. Let

ẋ = f0 + u(t)f1 Ju(t) =
1

2

ˆ t

0
u1(τ)

2dτ

be the control problem associated to (A.1), with cost function Ju(t) and control u ∈ R.
Here we compute the geodesic curvature R0 = 2

5R11 defined in Chapter 5, for the fixed
geodesic γ(t) = x0, and we compare it with the coefficients of the asymptotic expansion.
We find that terms depending on R0 in the asymtptotics can appear only in ai(x0) for
i ≥ 2. In other words, the first coefficient a1(x0) does not derive from R0.

Let λ(t) be the extremal in T ∗M such that γ(t) = π(λ(t)) and fix a canonical basis
{Ei(t), Fi(t)}2i=1 of Tλ(t)(T

∗M) (see Chapter 5). Recall by Eq. (5.11) that R11 = σ(Ḟ1, F1),
so if we determine the canonical basis, we find the curvature operator.

In the coordinates (x1, x2) ∈ R
2 adopted in the previous section, let hi(λ) = 〈λ, ∂

∂xi
〉

for i = 1, 2 be coordinates on T ∗M and let ∂
∂hi

be the associated coordinate vector fields
in T ∗

xM . Then the Hamiltonian vector field is

~h =
2∑

i=1

(αi~hi + hi~αi) + h1~h1

where

~hi =
∂

∂xi
~αi = −

2∑

j=1

∂αi
∂xj

∂

∂hj
i = 1, 2.

Moreover, by the hamiltonian equations, it follows immediately that the extremal λ(t)
associated to γ(t) = x0 is identically zero, since the drift field is zero in x0 and the curve
doesn’t move. So h1(λ(t)) = h2(λ(t)) = 0.
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The vector fields E1(t), E2(t) lie in T0(T
∗
x0M) for every t, so there exist coefficients

v1(t), v2(t) such that E2(t) = v1(t)
∂
∂h1

+ v2(t)
∂
∂h2

. By the canonical relations (5.11), E1 is
the derivative of E2, so we find

E1(t) = [~h,E2(t)] =

[
αi~hi + hi~αi + h1~h1, vj(t)

∂

∂hj

]
= vj

∂αi
∂xj

∂

∂hi
− v1

∂

∂x1
,

where we use Einstein summation convention on repeated indices. Since π∗(E1) = 0 we
find that v1(t) = 0 for every t. Then

E2(t) = v2(t)
∂

∂h2
, E1(t) = v2(t)

∂α2

∂xi

∂

∂hi
.

The value of v2 is found by the normalization condition 1 = σ(E1, F1) = σ(Ė1, E1). In
particular

Ė1 = −F1 = [~h, v2(t)
∂α2

∂xi

∂

∂hi
]

= αiv2
∂2α2

∂xi∂xj

∂

∂hj
+ h1v2

∂2α2

∂x1∂xj

∂

∂hj
+ v2

∂α2

∂xj

∂αj
∂xi

∂

∂hi
− v2

∂α2

∂x1

∂

∂x1
.

By evaluating the normalization condition at λ(t) = 0, we find

v2(t) =

∣∣∣∣∣
∂α2

∂x1

∣∣∣∣
x0

∣∣∣∣∣

−1

.

In the same way as in the previous computations, one can determine the derivative of F1

and find, by the relation R11 = σ(Ḟ1, F1), that

R0 =
2

5
R11 = −2

5

((
∂α1

∂x1

)2

+ 2
∂α1

∂x2

∂α2

∂x1
+

(
∂α2

∂x2

)2
)
.

Remark A.2. The coefficients that determine the curvature operator can appear in the
asymptotic expansion of the heat kernel (A.6) only at order t2 or greater. Indeed, let us
consider again Eq. (A.4) and (A.5). If we improve the approximation of ǫ2δ 1

ǫ
∗L up to

order 4, we see that the coefficient ∂α1
∂x2

∂α2
∂x1

in R0 derives from the part of order ǫ4 of the
dilated operator, while the other coefficients of the curvature appear from a multiplication
of Y with itself. Therefore in the asymptotics (A.5), coefficients depending on R0 can be

found only at order
√
t
4
= t2 or greater.
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