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Abstract

In this thesis we discuss thoroughly a class of linear and non-linear Schrödinger
equations that arise in various physical contexts of modern relevance.

First we work in the scenario where the main linear part of the equation is a
singular perturbation of a symmetric pseudo-differential operator, which formally
amounts to add to it a potential supported on a finite set of points.

A detailed discussion on the rigorous realisations and the main properties of
such objects is given when the unperturbed pesudo-differential operator is the frac-
tional Laplacian on Rd.

We then consider the relevant special case of singular perturbations of the three-
dimensional non-fractional Laplacian: we qualify their smoothing and scattering
properties, and characterise their fractional powers and induced Sobolev norms.

As a consequence, we are able to establish local and global solution theory for
a class of singular Schrödinger equations with convolution-type non-linearity.

As a second main playground, we consider non-linear Schrödinger equations
with time-dependent, rough magnetic fields, and with local and non-local non-
linearities.

We include magnetic fields for which the corresponding Strichartz estimates are
not available. To this aim, we introduce a suitable parabolic regularisation in the
magnetic Laplacian: by exploiting the smoothing properties of the heat-Schrödinger
propagator and the mass/energy bounds, we are able to construct global solutions
for the approximated problem.

Finally, through a compactness argument, we can remove the regularisation
and deduce the existence of global, finite energy, weak solutions to the original
equation.
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Introduction and Overview

This thesis is devoted to the study of a class of Schrödinger equations, which
naturally emerge in various physical contexts, and whose investigation has led to
the development of deep tools in various mathematical fields, such as functional
analysis, spectral theory, and harmonic analysis.

A classical example is the pure-power non-linear Schrödinger equation

(0.1) i∂tu = −∆xu+ |u|γ−1u,

in the complex-valued unknown u ≡ u(t, x), where t ∈ R and x ∈ Rd are interpreted,
respectively, as time and space variables.

In three spatial dimension, (0.1) is the effective evolution equation of an inter-
acting Bose gas, and as such it can be derived in suitable scaling limits of infinitely
many particles [20, 81, 101]: in this context the |u|γ−1u term with γ = 3 (resp.,
γ = 5) arises as the self-interaction term due to a two-body (resp., three-body)
inter-particle interaction of short scale. On the other hand, (0.1) appears also in
the study of small amplitude gravity waves, dynamics of quantum plasmas, non-
linear optical fibers, and planar wave-guides.

From a purely analytical perspective, equation (0.1) has been studied exten-
sively, and nowadays its local and global well-posedness, as well its long-time be-
havior are fully understood [25, 50, 26, 27, 37].

More generally, one can consider an equation of the form

(0.2) i∂tu = Lu+N (u),

in the complex-valued unknown u ≡ u(t, x), t ∈ R, x ∈ Rd, where L is a time-
independent linear L2(Rd)-symmetric operator, and N (u) is a non-linear term.

In applications to quantum mechanics, typically L arises as the Hamilton-
ian associated to the total energy of a quantum particle. A relevant example is
L = −(∇ − iA)2 + V , where A : Rd → Rd and V : Rd → R are interpreted, re-
spectively, as external magnetic and electric potentials. Another important case
is L =

√
−∆ +m2, which describes a semi-relativistic quantum particle of mass

m. In order to provide an effective and unambiguous description of the physical
system of interest, a fundamental requirement is to realise L as a bounded below,
self-adjoint operator on L2(Rd).

Concerning the non-linear term, it naturally appears in many-body quantum
systems as a self-interaction potential. Typical examples are the pure-power non-
linearity |u|γ−1u discussed above, and the so called Hartree non-linearity (w∗|u|2)u,
for some measurable w : Rd → R, which arises as a two-body interaction of mean
field type. In general, one assumes that the non-linearity satisfies the condition
Im
(
N (u)u

)
= 0, which ensures that the mass M(u) := ‖u‖2L2(Rd) is formally

conserved in time along the solutions to (0.2).
A fundamental step in the study of equation (0.2) is to have a good control of

the linear problem.
When L is a self-adjoint operator on L2(Rd), it is the infinitesimal generator

of the strongly continuous, one-parameter, unitary group {e−itL}t∈R on L2(Rd). It

vii



viii INTRODUCTION AND OVERVIEW

is natural to investigate the local and global smoothing effect of such unitary flow.
In the case of the free Laplacian, we have the following fundamental result, known
as dispersive estimates:

(0.3)

‖eit∆f‖Lp(Rd) 6 C |t|−
d
2 (1− 2

p )‖f‖Lp′ (Rd) , t 6= 0 ,

1

p
+

1

p′
= 1, p ∈ [2,+∞].

Estimates (0.3) provide, for a fixed time t, a non trivial gain of integrability for
a solution of the free Schrödinger equation. Furthermore, the group {eit∆}t∈R
exhibits a remarkable global-in-time smoothing effect, as shown by the so called
Strichartz estimates:

(0.4)

‖eit∆f‖Lq(Rt,Lp(Rdx)) 6 C‖f‖L2(R3)

2

q
+
d

p
=
d

2
,


p ∈ [2,+∞] d = 1

p ∈ [2,+∞) d = 2

p ∈ [2, 2d
d−2 ] d > 3.

In dimension d = 1, 2, as well as in the non-endpoint case (q, p) 6= (2, 2d
d−2 ) in

dimension d > 3, (0.4) follows by the dispersive estimates (0.3) by means of a
duality argument and fractional integration [49, 110]. The proof of the endpoint
case in dimension d > 3 is more involved, and it was achieved by Keel and Tao [70]
using a suitable atomic decomposition technique. Strichartz estimates are a crucial
tool in the proof of local well-posedness of the non-linear Schrödinger equation
(0.1). It is natural to ask whether similar esimates can be proved also for the
unitary group generated by the self-adjoint operator L. There is a vast literature
on this topic, in particular for Schrödinger operators of the form L = −(∇−iA)2+V
[67, 111, 96, 52, 41, 94, 64, 51, 87, 113, 31, 32, 39, 40, 47, 104, 116], and
spectral properties of L are known to play an important role.

Aiming at investigating the non-linear equation (0.2), another fundamental
problem is to determine a class of Banach spaces which are invariant by the linear
flow e−itL. Indeed, in suitable “perturbative” regimes, one expects a local well-
posedness result to hold in such spaces also for the non-linear problem. If L is a
bounded below, self-adjoint operator on L2(Rd), with bottom m(L), a natural class
of invariant Banach spaces is provided by the following construction. For a given
s ∈ R, and λ > m(L), we consider the fractional Sobolev space Hs

L(Rd) adapted to
L:

(0.5) Hs
L(Rd) := D((L+ λ)s/2), ‖f‖HsL(Rd) := ‖(L+ λ)s/2f‖L2(Rd),

the case s = 0 reproducing L2(Rd). When L is the self-adjoint Laplacian on Rd, one
recovers the classical Sobolev spaces Hs(Rd). It follows by basic results of spectral
theory that

‖e−itLf‖HsL(Rd) = ‖f‖HsL(Rd), t ∈ R, f ∈ Hs
L(Rd).

Particularly relevant is the adapted energy space H1
L(Rd), in which one defines the

quadratic form L[f ] associated to L. Moreover, for typical non-linearities, including
the pure-power and the Hartree (for suitable choices of the parameter γ and the
convolution potential w), it is possible to define in H1

L(Rd) the energy functional
associated to the non-linear equation (0.2). More precisely, if N is continuous from
H1
L(Rd) to H−1

L (Rd), and N = P ′ for some P : H1
L(Rd) → R of class C1, then

the energy E(u) := L[u] + P(u) is well defined for u ∈ H1
L(Rd), and it is formally

conserved along the solutions of (0.2). When P(u) > 0 for every u ∈ H1
L(Rd),

the non-linearity is called defocusing. Conservation of mass and energy is a key
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tool in order to construct global solutions to (0.2) in the adapted energy space.
This is particularly clean in the case of defocusing non-linearities, as the quantity
M(u) + E(u) controls the H1

L(Rd)-norm of u.
Summarising so far, we have described a general scheme for the study of equa-

tion (0.2), which consists in the following main steps:

1. to realise L as a bounded below, self-adjoint operator on L2(Rd);
2. to characterise the adapted Sobolev space Hs

L(Rd);
3. to establish the smoothing properties of the unitary group generated by
L, and to prove local well-posedness in Hs

L(Rd);
4. to exploit the conserved quantities of the equation in order to to extend,

whenever it is possible, the solutions globally-in-time.

In this thesis we discuss in detail the case when L is a singular perturbation
of a pseudo-differential operator. In particular, we study the family of self-adjoint
realisations of the fractional Laplacian (−∆)s/2 perturbed with a ‘pseudo-potential’
virtually supported on a finite numbers of points in Rd. In the physically relevant
case of the three-dimensional Laplacian with point interactions we provide a thor-
ough analysis of the adapted Sobolev spaces and of the smoothing properties of
the associated unitary flow. As an application, we deduce local and global well-
posedness results for a singular Schrödinger equation with Hartree non-linearity,
which represents a fundamental step in order to investigate the effective dynamics
of a many-body quantum system interacting with fixed impurities.

Another case taken into account is when L is a three-dimensional Schrödinger
operator with magnetic potentials, in a regime such that the adapted energy space
is equivalent to H1(R3). In general, we deal with magnetic potentials for which the
corresponding dispersive and Strichartz estimates are not available in the literature.
To overcome this issue, we introduce in equation (0.2) a small regularisation term
and we solve the approximating problem. This is achieved by obtaining suitable
smoothing estimates for the linear dissipative evolution. The total mass and energy
bounds allow one to extend the solutions globally in time. We then infer sufficient
compactness properties in order to produce global-in-time finite energy weak solu-
tions to the original equation. Our approach allows us to also consider the case of
time-dependent magnetic potentials, which is significantly harder as one can not
appeal to typical tools from functional analysis and operator theory.

An interesting research development is to combine the two cases discussed
above, whence to study Schrödinger operators with a magnetic potential perturbed
with a singular interaction.

NLS with with singular potentials

A central topic in analysis and mathematical physics is the study of quantum
systems subject to very short-range interactions, supported around a non-zero codi-
mensional submanifold of the ambient space. A relevant situation occurs when the
singular interaction is supported on a set of points in the Euclidian space Rd. This
leds to consider, formally, operators of the form

(0.6) “ −∆ +
∑
y∈Y

µy δy(·)”,

where Y is a discrete countable subset of Rd, and µy, y ∈ Y , are real coupling
constants.

Heuristically, (0.6) is the Hamiltonian for a quantum particle moving under
the influence of a “contact potentials”, created by “point sources” of strenghts µy,
located at y.
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The first appearence of such Hamiltonians dates back to the celebrated paper of
Kronig and Penney [75], who considered the case d = 1, Y = Z and µj independent
on y as a model for a non-relativistic electron moving in a fixed crystal lattice.
Later, Bethe and Peierls [23] and Thomas [107], considered the case d = 3 and
Y = {0} as a model for a deuteron with idealized zero-range nuclear force between
the nucleons, having introduced the center of mass and relative coordinates. In
general such kind of models has found plenty of applications in nuclear, atomic,
and solid state physic.

Self-adjoint realisations.
Following the general discussion above, one needs to rigorously realise the for-

mal Hamiltonian (0.6) as a bounded below, self-adjoint operator on L2(Rd). Since
the interaction is supported at each point y ∈ Y , a natural approach is to consider
the family of self-adjoint extensions of the restriction of −∆ to smooth functions
supported away the centres of interactions. In dimension d > 4, the operator
(−∆) � C∞0 (Rd \Y ) is essentially self-adjoint [95], hence (0.6) cannot be realised
as a self-adjoint operator, except for the trivial case µy = 0, y ∈ Y , which cor-
responds to an absence of point interactions, and one recovers the free Laplacian.
In dimension d = 1, 2, 3, instead, there are infinitely many self-adjoint extension of
(−∆) � C∞0 (Rd\Y ).

These classes of Schrödinger operators with point interactions are nowadays
well known, since the first rigorous attempt [21] by Berezin and Faddeev, the semi-
nal work of Albeverio, Fenstad, and Høegh-Krohn [6], and subsequent characterisa-
tion by many other authors [6, 117, 56, 57, 29] (see the monograph of Albeverio,
Gesztesy, and Høegh-Krohn [9] and reference therein for a complete discussion).

The picture is particular clean in the case of one single point interaction, which
can be assumed without loss of generality to be centred at the origin. In dimension
d = 3, the non-negative symmetric operator (−∆) � C∞0 (R3 \ {0}) has a one-
parameter family of bounded below, self-adjoint extensions {−∆α}α∈R∪∞, having
introduced a natural parametrisations for which α = ∞ corresponds to the free
Laplacian on L2(R3). For α ∈ R, instead, an actual interaction occurs at the
origin, and −∆α is characterised by (see, e.g. [9, Chapter I.1])

D(−∆α) =
{
g ∈ L2(R3)

∣∣∣ g = Fλ+
Fλ(0)

α+
√
λ

4π

Gλ with Fλ ∈ H2(R3)
}

(−∆α + λ) g = (−∆ + λ)Fλ ,

(0.7)

where λ > 0 is an arbitrarily fixed constant and

(0.8) Gλ(x) :=
e−
√
λ |x|

4π|x|
is the Green function for the free Laplacian, that is, the distributional solution to
(−∆ + λ)Gλ = δ in D′(R3). The decomposition in (0.7) is unique and is valid for
every chosen λ > 0; it shows that a generic g ∈ D(−∆α) is the sum of a regular
function and a more singular term, which is the signature of the singular interaction.
Moreover, the two components are related by a boundary condition involving the
evalution at zero of the regular part.

In dimension d = 2 the picture is completely analogous (see, e.g. [9, Chapter
I.5]). There is a one-parameter family {−∆α}α∈R∪∞ of self-adjoint realisations of
the Hamiltonian of point interaction, among which −∆∞ is the free Laplacian. All
others extensions are non-trivial, and a generic g ∈ D(−∆α) decomposes as the sum
of an H2(R2)-function and a singular term which exhibits a logarithmic divergence
at the origin, according to the behavior of the two dimensional Green function of
the Laplacian.
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In dimension d = 1 the structure is more involved, for the symmetric operator
(−∆) � C∞0 (R\{0}) has a four-parameters family of self-adjoint extensions. Among
these one finds the sub-family {−∆α}α∈R∪∞, the analogous to those discussed in
two and three dimensions. The other extensions are still such that a generic element
of their domain decomposes as the sum of a regular and a singular term, however
profound differences emerge:

• the singular term may diverge at the origin, even though the Green func-
tion of the one dimensional Laplacian is continuous;

• the boundary condition between the two components may also involve the
evaluation at zero of the first derivative of the regular part, compatibly
with the Sobolev embedding H2(R) ↪→ C1(R).

In my recent work [85], in collaboration with A. Michelangeli and A. Ottolini,
we consider the more general setting of fractional Schrödinger operators with a
point interaction, that it, self-adjoint realisations on L2(Rd) of the formal operator
(−∆)s/2 + δ, as well of its inhomogeneus variant (1 − ∆)s/2 + δ. Among other
findings, our analysis allows us to give a rigorous interpretation to the Hamilton-
ian for a semi-relativistic quantum particle subject to a point-like impurity. We
provided a detailed discussion on the existence and the properties of non-trivial
self-adjoint extensions of the symmetric operator (−∆)s/2 � C∞0 (R\{0}), in terms
of the dimension d and of the fractional power s. In particular, we proved that
the larger the number of classical derivatives allowed by Sobolev’s embedding for
Hs(Rd)-functions, the richer and more complicated the structure of the class of
self-adjoint extensions.

In the setting of a finite number N of centres of interactions, the realisations
of (0.6) exhibit additional features. In dimension d = 2, 3, the symmetric operator
(−∆) � C∞0 (Rd\Y ) admits a N2-parameter family of self-adjoint extensions, among
which one distinguishes the N -parameter sub-family

{−∆α,Y

∣∣ α ≡ (α1, . . . , αN ) ∈ (R ∪ {∞})N}

of local extensions. In dimension d = 1, in addition to the analogous sub-family
{−∆α,Y }α∈R∪{∞}, there are a plethora of complicated self-adjoint extensions, which
can mix a non-local behavior with a more involved structure of the singularities at
the centres of interactions and of the boundary conditions relating them to the
regular component.

Alternative approaches are possible in order to realise the formal Hamiltonian
(0.6) as a self-adjoint operator on L2(Rd), including local Dirichlet forms and non-
standard analysis techniques (see [9]). One of particular interest is to obtain (0.6)
as the limit of Schrödinger operators of the form

−∆ +
∑
y∈Y

V (y)
ε (x− y),

where each potential V
(y)
ε , as ε → 0, spikes up to create a delta-like profile, the

support shrinking to the point y. This construction is nowadays well known and
fully understoood in dimension d = 1, 2, 3, that is, all the dimensions in which non-
trivial self-adjoint realisations exist (see [9, 11] for a comprehensive discussion).
In my recent work [86], in collaboration with A. Michelangeli, we prove an analo-
gous results in the more general setting of singular perturbations of the fractional
Laplacian, in arbitrary dimension.

A relevant feature of Schrödinger operators with point interactions is that their
resolvents have quite explicit and simple expressions. In particular, if |Y | = N , then
the resolvent of −∆α,Y is a rank-N perturbation of the free resolvent. In a sense,
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Schrödinger operators with point interactions provide “solvable models” which ap-
proximate more realistic and complicated phenomena, governed by very short range
interactions and whose study typically requires deep tools from perturbation theory.

Adapted Sobolev spaces.
Aiming at investigating non-linear problems of type (0.2), where the linear

term L is a singular perturbation of the Laplacian, one needs to extend the general
scheme outlined above. Despite the solvable nature of Schrödinger operators with
point interactions, the study of the corresponding adapted Sobolev spaces and of
the smoothing properties of the associated unitary groups can be quite difficult,
particularly in dimension three, even in the simplest case of a single point interaction
centred at the origin.

As already commented, in three dimensions the domain of −∆α exhibits a
fairly complicated structure, which reflects on the behavior of the singular Sobolev
spaces Hs

α(R3) := Hs
−∆α

(R3), that is, the Sobolev space adapted to −∆α. In
my recent work [46], in collaboration with V. Georgiev and A. Michelangeli, we
provide an explicit characterisations of Hs

α(R3), where we restricted for the sake of
concreteness to the case α > 0 and s ∈ [0, 2]. A considerably rich scenario emerges
from our analysis, depending on the number s of fractional derivatives.

• When s ∈ ( 3
2 , 2), Hs

α(R3) has the same structure of the operator domain
(corresponding to the case s = 2), where now the regular part Fλ belongs
to Hs(R3). The boundary value Fλ(0) still make sense, owing to the
Sobolev embedding Hs(R3) ↪→ C(R3).

• When s ∈ ( 1
2 ,

3
2 ), a generic function in Hs

α(R3) still decomposes as the

sum of a regular Hs(R3)-function and a singular part proportional to
the Green function, but the link between the two components completely
disappears.

• When s ∈ [0, 1
2 ), the Green function itself belongs to Hs(R3), which turns

out to be equivalent to the singular Sobolev space Hs
α(R3).

• When s = 1
2 or s = 3

2 , which are critical cases for the Sobolev embeddings,
a characterisation is still available but is somewhat implicit.

Smoothing and scattering properties.
Concerning the global smoothing properties of the unitary group {eit∆α}t∈R on

L2(R3), the analogous of dispersive and Strichartz estimates (0.3)-(0.4) cannot hold
for the full range of exponents, as suggested by the typical local singularity of order
|x|−1 exhibited by a generic element in the domain of −∆α. In this respect, the
reference work in the literature was the paper by D’Ancona, Pierfelice, and Teta
[33], where the authors proved weighted L1 − L∞ estimates, for a weight suitably
chosen in order to compensate the local singularity. In my recent work [61], in
collaboration with F. Iandoli, we proved that in the smaller regime p ∈ [2, 3),

namely the range of p’s for which Gλ ∈ Lp(R3), Lp
′ − Lp estimates hold without

weights. As a consequence, we deduced also a class of Strichartz estimates for
the dynamics generated by −∆α. Our proof is based on an explicit expression for
the propagator eit∆α , available in the case of a single centre of interaction [100],
combined with a generalised Hausdorff-Young inequality.

A more general framework for the investigation of the dynamics generated by
−∆α through the Schrödinger equation i∂tu = −∆αu is provided by the study of
the wave operators relative to the pair (−∆α,−∆), which are defined as the strong
limits

W±α := s-lim
t→±∞

e−it∆αeit∆.
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Since the resolvent of −∆α is a finite-rank perturbation of the free resolvent, stan-
dard arguments from scattering theory [97] guarantee that the wave operators W±α
exist in L2(R3) and are complete, meaning that

(0.9) ranW±α = L2
ac(Hα) = Pac(−∆α)L2(R3) ,

where L2
ac(−∆α) denotes the absolutely continuous spectral subspace of L2(R3) for

−∆α, and Pac(−∆α) denotes the orthogonal projection onto L2
ac(−∆α).

Wave operators are a fundamental tool for the study of the scattering governed
by a “perturbed” Hamiltonian in comparison with a free “unperturbed” Hamilton-
ian [76, 97]. Owing to their completeness, W+

α and W−α are unitary from L2(R3)
onto L2

ac(−∆α); moreover, they intertwine −∆αPac(−∆α) and −∆, viz., for any
Borel function f on R one has the identity

(0.10) f(−∆α)Pac(−∆α) = W±α f(−∆) (W±α )∗ .

Through such intertwining, the smoothing properties of f(−∆) (which, upon Fourier
transform, is the multiplication by f(ξ2)) can be lifted to analogous properties for
f(−∆α)Pac(−∆α), provided that suitable mapping estimates of W±α are known.

In my recent work [36], in collaboration with G. Dell’Antonio, A. Michelangeli,
and K. Yajima, we proved that W±α extend as bounded operators on Lp(R3), for
p ∈ (1, 3), but neither for p = 1, nor p > 3. As a consequence of our result
and of the intertwining formula (0.10), dispersive and Strichartz estimates for the
propagator eit∆α , in the regime p ∈ (2, 3], can be immediately recovered from the
corresponding ones for the free Schrödinger dynamics.

Scattering theory allows one to also consider the more general case of Schrödinger
operators with finitely many point interactions. The wave operators W±α,Y relative

to the pair (−∆α,Y ,−∆) still exist and are complete, as the resolvent of −∆α,Y

is a finite-rank perturbation of the free resolvent. However, the situation is more
involved with respect to the single centre case. Indeed, it was recently proved by
Cornean, Michelangeli, and Yajima [28], that for a sufficiently large number of
centres, arranged under particular geometric configurations, and for “exceptional”
choices of the parameter α, the operator −∆α,Y has a zero eigenvalue imbedded in
the essential spectrum, a phenomen which does not occur in the single centre case.
As is well known in the case of regular Schrödinger operators, a zero eigenvalue
can be an obstruction for the bounded-mapping properties of the corresponding
wave operators (see, e.g., Yajima [113, 114, 115], Erdoğan and Schlag [41], and
Goldberg and Schlag [52]). In the “generic” case of absence of a zero eigenvalue,
in [36] Lp-boundedness of the three-dimensional wave operators W±α,Y is proved

for p ∈ (1, 3), and dispersive and Strichartz estimates in the same regime follow as
consequence.

NLS with point interaction.
Having indentified the structure of singular Sobolev spaces and the smoothing

properties of the linear evolution generated by Schrödinger operators with point
interactions, one can finally approach non-linear problems whose linear part is a
singular perturbation of the Laplacian.

In my recent work [83], in collaboration with A. Michelangeli and A. Olgiati,
we consider the three-dimensional Schrödinger equation with a point interaction at
the origin and a Hartree non-linearity. More precisely, for a given s ∈ [0, 2] and a
real-valued convolution potential w, we consider the Cauchy problem

(0.11)

{
i∂tu = −∆αu+ (w ∗ |u|2)u

u(0) = f ∈ Hs
α(R3) .
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We provide local well-posedness results both in a regime of low (i.e., s ∈ [0, 1
2 ),

intermediate (i.e., s ∈ ( 1
2 ,

3
2 )), and high (i.e., s ∈ ( 3

2 , 2]) regularity, under suitable
integrability and regularity hypothesis for w. Then, exploiting the conservation of
the mass and the energy, a global theory is deduced both in the mass space (s = 0)
and in the energy space (s = 1).

Besides the relevance of our well-posedness results per se, they also represent
the first fundamental step towards a rigorous derivation of the singuar Hartree
equation as the effective equation for the dynamics of a Bose-Einstein condensate
subject to a fixed impurity, in a mean-field type regime of two-body interaction
between the particles.

A stricly related, yet more difficult problems is to obtain analogous results for
pure power non-linearities.

Moreover, a challenging problem is the study non-linear Schrödinger equation
with singular perturbation of the fractional Laplacian, which among the others re-
quires a deep investigation of the scattering theory and of the smoothing properties
of corresponding unitary propagator.

NLS with magnetic fields

As a second main playground, we consider a non-linear Schrödinger equation
of the form

(0.12) i∂tu = −(∇− iA)2u+N (u)

in the complex-valued unknown u ≡ u(t, x), t ∈ R, x ∈ R3, where N (u) is a non-
linear term, both of pure power and Hartree type, and A : R3 → R3 is interpreted
as a magnetic potential.

The relevance of equation (0.12) is hard to underestimate, both for the interest
it deserves per se, given the variety of techniques that have been developed for its
study, and for the applications in various contexts in physics. Among the others,
(0.12) arises as the effective evolution equation for the quantum dynamics of a
Bose-Einstein condensate subject to an external magnetic field [81, 90], and for
the dynamics of quantum plasmas [60, 12].

Functional setting.
With reference to the general scheme outlined previously, a first issue is to de-

termine whether −(∇− iA)2 can be realised as a self-adjoint operator on L2(R3). A
celebrated result by Leinfelder and Simander [77] asserts that, if A ∈ L4

loc(R3) and
divA ∈ L2

loc(R3), then the non-negative, symmetric operator −(∇− iA)2 � C∞0 (R3)
is essentially self-adjoint on L2(R3), and therefore it admits a unique bounded
below, self-adjoint extension.

A more general approach is available whenever A ∈ L2
loc(R3) [102]. Under such

assumption, for every f ∈ L2(R3) the magnetic gradient (∇− iA)f is well defined
as a distribution on R3, and one can define the Banach space

H1
A(R3) := {f ∈ L2(R3) | (∇− iA)f ∈ L2(R3)}
‖f‖2H1

A(R3) := ‖f‖2L2(R3) + ‖(∇− iA)f‖2L2(R3),

as well as the quadratic form

QA[f, g] :=

∫
R3

(∇− iA)f · (∇− iA)g dx , f, g ∈ H1
A(R3).

QA is a closed and positive form on L2(R3), and its associated self-adjoint operator,
denoted by −∆A, is a realisation of the magnetic Laplacian −(∇− iA)2. It is worth
noticing that the Banach space H1

A(R3) is equivalent to the adapted energy space
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for −∆A. In general, H1
A(R3) has an involved structure, and it can even have trivial

intersection with the classical Sobolev space H1(R3).
A fundamental tool in the context of magnetic Schrödinger operators is Kato’s

celebrated diamagnetic inequality [78]

(0.13) |(∇|f |)(x)| 6 |((∇− iA)f)(x)| for a.e. x ∈ R3 ,

valid for any A ∈ L2
loc(R3) and f ∈ H1

A(R3). When A ∈ Lp(R3), with p > 3,
it follows from the diamagnetic inequality and the Sobolev embedding that the
magnetic Sobolev space H1

A(R3) is equivalent to H1(R3).
In the same regime of p’s, global-in-time magnetic Strichartz estimates were es-

tablished by various authors under suitable spectral assumptions (absence of zero-
energy resonances) on the magnetic Laplacian A [39, 40, 31], or alternatively under
suitable smallness of the so called non-trapping component of the magnetic field
[32]. Explicit counterxamples at critical scaling |A(x)| ∼ |x|−1 were obtained by
Fanelli and Garcia [42], adapting to the magnetic case the Strichartz counterexam-
ple for eletric potential by Goldberg, Vega, and Visciglia [53].

Beyond the regime of Strichartz-controllable magnetic fields very few is known,
despite the extreme topicality of the problem in applications with potentials A that
are rough, have strong singularities locally in space, and have a very mild decay at
spatial infinity, virtually a L∞-behaviour. This generic case can be actually covered,
and global well-posedness for (0.12) was indeed established by Michelangeli [82],
by means of energy methods, as an alternative to the lack of magnetic Strichartz
estimates.

However, such an approach requires the non-linearity to be locally Lipschitz in
the energy space, and is only applicable to a suitable class of Hartree equations,
power-type non-linearities being instead way less regular and hence escaping this
method. The same feature indeed allows one to prove global well-posedness for the
Maxwell-Schrödinger system in higher regularity spaces (see Nakamura and Wada
[89]).

The parabolic regularisation approach.
In my recent work [13], in collaboration with P. Antonelli and A. Michelangeli,

we consider (0.12) with a potential A ∈ Lp(R3), p > 3, and with a non-linearity N
which is continuous from H1(R3) to H−1(R3). This way we cover quite an ample
generality, including the scenario where neither are the external magnetic fields
Strichartz-controllable, nor can the non-linearity be handled with energy methods.

Our approach consists of adding a small dissipation term in equation (0.12),
which amount to consider the approximating problem

(0.14) i∂tu = −(1− i ε)(∇− iA)2u+N (u).

Similar parabolic regularisation procedures are commonly used in PDEs, see for
example the vanishing viscosity approximation in fluid dynamics or in systems of
conservation laws, and in fact this was also exploited in a similar context by Guo,
Nakamitsu, and Strauss to study on the existence of finite energy weak solutions
to the Maxwell-Schrödinger system [59].

By exploiting the parabolic regularisation, one can regard −(1− i ε)∆u as the
main linear part and treat (1− i ε)(2 iA · ∇u+ |A|2u) +N (u) as a perturbation.

Evidently, this cannot be done in the original equation (0.12). Indeed, the term
A · ∇u is not a Kato perturbation of the free Laplacian and the whole derivative
Schrödinger equation must be considered as the principal part [104].

One can instead establish the local well-posedness in the energy space H1(R3)
for the approximated equation (0.14). The key step is to obtain suitable Strichartz-
type and smoothing estimates for the regularised magnetic semi-group. This can
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be done by exploiting the smoothing effect of the heat-Schrödinger semi-group
t 7→ e(i+ε)t∆ and by inferring the same space-time bounds also for the regularised
magnetic evolution, in a similar fashion as in Naibo and Stefanov [88], and Yajima
[116], where scalar (electric) potentials are treated as perturbations of the free
Schrödinger evolution.

In the case of a defocusing non-linearity, the a priori bounds on the mass and
the energy allow us to extend the solution of the regularised problem globally in
time. Moreover, the mass/energy bounds turn out to be uniform in the regularising
parameter ε > 0. By means of a compactness argument, it is then possible to remove
the regularisation and to show the existence of a global, finite energy weak solution
to the original problem (0.12), at the obvious price of loosing the uniqueness, as
well as its continuous dependence on the initial data.

The parabolic regularisation technique is quite an efficient tool in the context
of semi-linear PDE’s, and in [13] also time-dependent magnetic fields are taken
into account. More precisely, for a class of potentials A ∈ ACloc(R, Lp(R3)), p > 3,
and of defocusing non-linearities, global existence of finite energy, weak solutions to
equation (0.12) is proved. An interesting and challenging open question is to cover
also the endpoint case p = 3.

Structure of the thesis

In Chapter 1 we study the rigorous construction and the main properties of
singular perturbations of fractional powers of the Laplacian. We first consider
three-dimensional Schrödinger operators with finitely many point interactions, with
a particular emphasis on their spectral properties. Then we discuss the fractional
case in arbitrary dimension.

Chapter 2 is devoted to the realisation of singular perturbations of the fractional
Laplacian as limit of regular operators with regular potentials spiking up to a delta-
like profile and shrinking around the centres of interactions. After presenting the
general strategy, we treat in details the 3D and the 1D cases.

The time-dependent scattering theory for three-dimensional Schrödinger oper-
ators with point interactions is the object of Chapter 3. We provide a suitable inte-
gral representation of the singular wave operators relative to the pair (−∆α,Y ,−∆),
based on explicit resolvent formula for −∆α,Y . Then we appeal to the theory of
Calderón-Zygmund singular integrals in order to deduce the Lp-boundedness of the
singular wave operators, for p ∈ (1, 3), and we prove as well that such range is
optimal. Last, we compare the wave operators of −∆α with those relative to the
corresponding approximating Schrödinger operators.

In Chapter 4 we study the smoothing effect of the unitary evolution generated
by a Schrödinger operator with point interactions. We first discuss weighted L1 −
L∞ estimates. Then, as a consequence of the Lp-boundedness of the singular wave
operators, we prove non-weighted dispersive and Strichartz estimates in a suitable
regime of exponents. We also provide an alternative, simpler proof in the single
centre case.

Chapter 5 is devoted to the study of the singular Sobolev space Hs
α(R3), that

is, the adapted Sobolev space for −∆α. We provide an explicit characterisation for
s ∈ [0, 2], as well as the mutual control with the classical Sobolev norm. We provide
also useful formula for the action of the fractional powers on a generic element of
Hs
α(R3).

In Chapter 6 we establish a solution theory the singular Hartree equation on R3.
We provide, for every s ∈ [0, 2], local well posedness result under suitable regularity
assumption for w. Moreover, exploiting conservation of mass and energy, we also
provide a global theory in L2(R3) and in H1

α(R3).
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Last, in Chapter 7 we study the non-linear magnetic Schrödinger equation in
R3, for a wide class of magnetic potentials that are not Strichartz-controllable.
Using a parabolic regularisation technique, we are able to prove existence of global,
finite energy, weak solutions in H1(R3).





Notation

We write C for the complex plane and C+ for the open upper half plane. For
z ∈ C\ [0,+∞),

√
z is chosen in C+. By δj,` we denote the Kronecker delta, namely

the quantity 1 for j = ` and 0 otherwise. We shall write 〈λ〉 ≡ (1 +λ2)
1
2 for λ ∈ R.

For u, v ∈ L2(R3), we shall write |u〉〈v| to denote the rank-1 operator f 7→ u〈v, f〉,
where 〈·, ·〉 is the usual scalar product in L2(R3), anti-linear in the first entry and
linear in the second. Given p ∈ [1,+∞], we denote by p′ its Hölder conjugate

exponent, defined via p−1 + p′
−1

= 1. For sequences and convergence of sequences,
we write (un)n and un → u for (un)n∈N and un → u as n→ +∞.

For an operator T on a Hilbert space, D(T ) denotes its operator domain. When
T is self-adjoint, D[T ] denotes its form domain and E(T )(dλ) denotes its spectral
measure. We shall denote by 1, resp., by O, the identity and the null operator on
any of the considered Hilbert spaces.

We shall indicate the Fourier transform by φ̂ or Fφ with the convention

φ̂(p) = (2π)−
d
2

∫
Rd
e−ipxφ(x)dx.

For two positive quantities P and Q, we write P . Q to mean that P 6 CQ
for some positive constant C independent of the variables or of the parameters
which P and Q depend on, unless explicitly declared; in the latter case we write,
self-explanatorily, P .α Q, and the like. We write f 6| · | g when |f | 6 |g|.

We use the symbols div, ∇ and ∆ to denote derivations in the spatial variables
only. When referring to a vector field A : R3 → R3, conditions like A ∈ Lp(R3) are
to be understood as A ∈ Lp(R3,R3).





CHAPTER 1

Singular perturbations of the fractional Laplacian

In this Chapter we study the rigorous construction and the main properties of
singular perturbations of fractional powers of the Laplacian.

For given d ∈ N and s ∈ R, the d-dimensional fractional Laplacian (−∆)s/2

can be defined via functional calculus as a non-negative self-adjoint operator on
L2(Rd), with domain Hs(Rd). Its action is obvious in terms of the corresponding
power of the Fourier multiplier for −∆:

((−∆)s/2f)(x) = (|p|sf̂)∨(x) x, p ∈ Rd.

A singular perturbation of the fractional Laplacian heuristically amounts to
add to it a potential virtually supported at a finite numbers of points in Rd.

A rigorous realisation can be atteined using a restriction-extension argument:
first one restricts (−∆)s/2 to sufficiently smooth functions supported away from the
centres of interaction, and then one builds an operator extension of such restriction
that is self-adjoint on L2(Rd). The extension step is based upon the classical theory
of Krĕın and von Neumann, whose basic facts are introduced below (for a detailed
discussion we refer to [95, Chapter X]).

Let S be a closed, densely defined, symmetric operator on a Hilbert space H.
Assume moreover that S is bounded below, and let

m(S) := inf {〈f, Sf〉 | f ∈ D(S) , ‖f‖H = 1}

its bottom.

(i) The quantity dim ker
(
S∗ + λ1

)
is constant for λ > −m(S). It is called

the deficiency index of S, and we denote it by J (S).
(ii) If J (S) = 0, then S is self-adjoint. Otherwise, it admits infinitely many

self-adjoint extensions, which can be parametrized by α ∈ (R ∪ {∞})J 2

.

Among all the extensions, a distinguished one is the Friedrichs extension SF ,
whose bottom coincides with the one of S, which is characterised by being the only
self-adjoint extension whose domain is entirely contained in the form domain of
S, and which has the property to be the largest among all self-adjoint extensions
of S, in the sense of operator ordering for self-adjoint operators. An explicit and
convenient way to characterise all the self-adjoint extensions of S is provided by
the Krĕın-Vǐsik-Birman theory (see, e.g., [45, Section 3], and references therein).
In particular, once the Friedrichs extension SF is known, it is possible to associate,
in a canonical way, every extension to a self-adjoint operator acting on a Hilbert
subspace of ker

(
S∗ + λ1

)
, for some λ > −m(S).

In the non-fractional case, the literature on the self-adjoint realisations of sin-
gular perturbations is vast [6, 117, 56, 57, 29], see also the monograph [9] for a
comprehensive discussion.

In the fractional setting the picture is much less devoleped. In my recent work
[85], in collaboration with A. Michelangeli and A. Ottolini, we discuss in details the
case of a single point interaction centred at the origin. More precisely, we exploit

1
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the Krĕın-Vǐsik-Birman scheme in order to classify all the self-adjoint extensions of
the symmetric operator (−∆)s/2 � C∞0 (Rd\{0}).

Our discussion on the singular perturbations of the fractional Laplacian will
have two main focus:

1. to qualify the nature of the perturbation in the resolvent sense;
2. to qualify the natural decomposition of the domain of the considered oper-

ators into a regular component and a singular component, and to determine
the boundary condition constraining such two components.

The first issue is central for deducing an amount of properties from the unperturbed
to the perturbed operators. The second issue also arises naturally, as one can
see heuristically that the considered operators must act in an ordinary way on
those functions supported away from the perturbation centres, and therefore their
domains must contain a subspace of Hs-regular functions, where s is the considered
power, next to a more singular component that is the signature of the perturbation.

The Chapter is organised as follows. In Section 1 we consider singular per-
turbations of the three dimensional Laplacian. The fractional case in arbitrary
dimension is discussed in Section 2.

1.1. Non-fractional case in dimension three

In this Section we study the self-adjoint realisations of singular perturbations
of the three dimensional Laplacian. We start our analysis with the single-centre
case, which is simpler but retains most of the the main ideas, then we consider
the general multi-centre scenario. We discuss the basic features of the self-adjoint
realisations, such as the decomposition of their operator and form domains into a
regular and a singular part, and the explicit formulas for their resolvents. In the
last Subsection, we introduce a low-energy expansion for the resolvent, and the
important concept of zero energy resonance.

1.1.1. One centre case. It is not restrictive to fix the origin as the centre of
interaction. Consider

(1.1) k̊ := (−∆) � C∞0 (R3\{0})
as an operator closure with respect to the Hilbert space L2(R3). It is a densely
defined, closed, non-negative, symmetric operator on L2(R3).

Define, for z ∈ C,

(1.2) Gz(x) :=
eiz|x|

4π|x|
, x ∈ R3 .

A straightforward computation shows that (−∆ − z2)Gz = δ holds as a dis-
tributional identity in R3. As a consequence, Gz is the convolution kernel of the
resolvent of the free Laplacian, namely

(1.3) (−∆− z2
1)−1 f = Gz ∗ f, Imz > 0, f ∈ L2(R3).

Consider also, for λ > 0, the function Gλ defined by

(1.4) Gλ(x) := Gi
√
λ =

e−
√
λ |x|

4π|x|
.

For a given λ > 0, one has

(1.5) ker
(̊
k∗ + λ1

)
= span

{
Gλ
}
.

It follows that k̊ has deficiency index one, hence it admits a one-parameter
family of self-adjoint extensions (−∆α)α∈R∪{∞}. They can be characterized by the
following Theorem (see [9, I.1.1]).
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Theorem 1.1.1.

(i) The extension −∆α=∞ is the Friedrichs extension of k̊, and is precisely
the self-adjoint realization of −∆ on L2(R3) with domain H2(R3). All

other extensions are given, for arbitrary λ > 0, with
√
λ 6= −4πα, by

(1.6) D(−∆α) =
{
g ∈ L2(R3)

∣∣∣ g = Fλ +
Fλ(0)

α+
√
λ

4π

Gλ with Fλ ∈ H2(R3)
}

and

(1.7) (−∆α + λ) g = (−∆ + λ)Fλ ,

The above decomposition of a generic g ∈ D(−∆α) is unique and holds
true for every chosen λ. The same formulas are valid also for λ = −z2,
with z ∈ C, Imz > 0, z 6= −4παi.

(ii) For each α ∈ R, the quadratic form of the extension −∆α is given by

(1.8) D[−∆α] = H1(R3)u span{Gλ}
(−∆α)[Fλ + κλGλ] = ‖∇Fλ‖2L2(R3) − λ‖Fλ + κλGλ‖2L2(R3)

+ λ‖Fλ‖2L2(R3) +
(
α+

√
λ

4π

)
|κλ|2

(1.9)

for arbitrary λ > 0, with
√
λ 6= −4πα.

(iii) For each α ∈ R, the resolvent of −∆α is given by

(1.10) (−∆α + λ1)−1 = (−∆ + λ1)−1 +
1

α+
√
λ

4π

|Gλ〉〈Gλ| .

for arbitrary λ > 0,
√
λ 6= −4πα. The same formula is valid also for

λ = −z2, with z ∈ C, Imz > 0, z 6= −4παi.
(iv) Each extension is semi-bounded from below, and

σess(−∆α) = σac(−∆α) = [0,+∞) , σsc(−∆α) = ∅ ,

σdisc(−∆α) =

{
∅ if α > 0

{Eα} if α < 0 ,

(1.11)

where the eigenvalue Eα := −(4πα)2 is simple, the (non-normalised)
eigenfunction being G|Eα|.

It follows from (1.6) that a generic element g ∈ D(−∆α) decomposes as the sum
of the H2-function Fλ and a less regular term. The Sobolev embedding guarantees
the continuity of Fλ, whence the boundary condition for g reads

g(x) ≈ Fλ(0)(1 + (4πα+
√
λ)−1|x|−1) as x→ 0,

and hence also, owing to the arbitrariness of λ > 0,

(1.12) g(x) ∼
x→0

1

4π
·
( 1

|x|
− 1

a

)
, a := −(4πα)−1.

The latter condition is the short-range asymptotics typical of the low-energy bound
state of a potential with almost zero support and s-wave scattering length a, as was
first recognised by Bethe and Peierls [23], whence the name of Bethe-Peierls contact
condition.

Clear consequences of (1.6)-(1.7) above are: on H2-functions vanishing at x = 0
the operator −∆α acts precisely as −∆; moreover, the only singularity that the
elements of D(−∆α) may display at x = 0 is of the form |x|−1. This suggests that
−∆g fails to be in L2(R3) by a distributional contribution removing which yields
−∆αg. This is precisely what can be proved:

(1.13) −∆αg = −∆g −
(

lim
x→0
|x|g(x)

)
δ0 , g ∈ D(−∆α) .
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Identity (1.13) indicates that −∆αg may be thought of a suitable renormalisation
of −∆g: in fact, in the r.h.s. there is a difference of two distributions which gives
eventually a L2-function.

Another relevant form of the boundary condition for g ∈ D(−∆α) is available
in Fourier transform. The following limit is finite

(1.14) ξ = lim
R→+∞

1

4πR

∫
p∈R3

|p|<R

ĝ(p) dp

and is customarily referred to as the charge of g, in terms of which one has the
asymptotics

(1.15)

∫
p∈R3

|p|<R

ĝ(p) dp = 4πξ (R+ 2π2α) + o(1) as R→ +∞ .

The latter is the so-called Ter-Martyrosyan–Skornyakov condition, originally identi-
fied by Ter-Martyrosyan and Skornyakov [106] (see also [84] for a recent discussion),
and is in practice the Fourier counterpart of (1.12). One can show that imposing
the Ter-Martyrosyan–Skornyakov condition at given α to the functions in the do-

main of the adjoint of k̊ selects precisely D(−∆α). The action of −∆α in Fourier
transform reads

(1.16) ̂(−∆αg)(p) = p2ĝ(p)− ξ = p2ĝ(p)− lim
R→+∞

1

4πR

∫
p∈R3

|p|<R

ĝ(p) dp ,

which is the Fourier counterpart of (1.13).
Moreover, the following equivalent characterisation of −∆α has the virtue of

showing explicitly that the two operators −∆α and −∆ only differ on the subspace
of spherically symmetric functions. The canonical decomposition

(1.17) L2(R3) ∼=
∞⊕
`=0

L2(R+, r2 dr)⊗ span{Y`,−`, . . . , Y`,`} ≡
∞⊕
`=0

L2
`(R3)

(where the Y`,m’s are the spherical harmonics on S2) reduces −∆α and for each
` > 1 one has −∆α|L2

`
= −∆|L2

`
. On the sector ` = 0, namely the Hilbert space

(1.18) L2
`=0(R3) = U−1L2(R+ dr)⊗ span

{ 1

4π

}
,

where U : L2(R+, r2 dr)
∼=−→ L2(R+,dr), (Uf)(r) = rf(r), one has

(1.19) −∆α|L2
`=0

= (U−1h0,α U)⊗ 1 ,

and h0,α is self-adjoint on L2(R+ dr) with

h0,α = − d2

dr2

D(h0,α) =

g ∈ L2(0,+∞)

∣∣∣∣∣∣
g, g′ ∈ ACloc((0,+∞))
g′′ ∈ L2((0,+∞))

−4πα g(0+) + g′(0+) = 0

 .

(1.20)

Let us analyse the quadratic form associated to −∆α, characterised by (1.8)
and (1.9). Analogously to the operator domain, also for the functions in the form

domain the highest local singularity is |x|−1, since Gλ ∈ H
1
2−(R3) \H 1

2 (R3), while
Fλ ∈ H1(R3). Instead, as typical when passing from the domain of a self-adjoint op-
erator to its (larger) form domain, the characteristic boundary condition of D(−∆α)
is lost in D[−∆α] and no constraint between regular and singular component re-
mains (actually regular components of functions in D(−∆α) are not necessarily
continuous).



1.1. NON-FRACTIONAL CASE IN DIMENSION THREE 5

Last, let us comment on the spectral properties of −∆α identified in Theorem
1.1.1(iv). Identity (1.10) provides an explicit formula for the resolvent of −∆α,
which turns out to be a rank-one perturbation of the free resolvent. As a conse-
quence, the spectrum of −∆α is completely characterized. In particular, only a
simple negative eigenvalue can occur.

1.1.2. Finitely many center in three dimension. We fix a natural number
N > 1 and the set Y = {y1, . . . , yN} ⊆ R3 of centres of the singular interactions.
Consider

(1.21) k̊Y := (−∆) � C∞0 (R3\{Y })

as an operator closure with respect to the Hilbert space L2(R3). It is a densely
defined, closed, non-negative, symmetric operator on L2(R3).

For x, y ∈ R3, z ∈ C, λ > 0, we set

Gyz (x) := Gz(x− y) =
eiz|x−y|

4π|x− y|
(1.22)

Gyλ(x) := Gy
i
√
λ
(x) =

e−
√
λ|x−y|

4π|x− y|
.(1.23)

A straightforward computation shows that, for λ > 0,

(1.24) ker
(
(̊kY )∗ + λ1

)
= span

{
Gy1λ , . . .G

yN
λ

}
.

It follows that k̊Y has deficiency index N . Hence, it admits a N2-parameter family
of self-adjoint extensions. The most relevant sub-class of them is the N -parameter
family

(1.25) {−∆α,Y

∣∣ α ≡ (α1, . . . , αN ) ∈ (R ∪ {∞})N}

of so-called local extensions, namely extensions of k̊Y whose domain of self-adjointness
is only qualified by certain local boundary conditions at the singularity centres.

More precisely, we shall see that the elements of D(−∆α,Y ) satisfy, at each
centre of the point interaction, the ‘physical’ Bethe-Peierls boundary condition
introduced in (1.12) above, namely

(1.26) g(x) ∼
x→yj

qj
4π
·
( 1

|x− yj |
− 1

aj

)
, aj := −(4παj)

−1,

for suitable constants qj ∈ C.
If for some j ∈ {1, . . . , N} one has αj =∞, then no actual interaction is present

at the point yj (no boundary condition as x→ yj) and in practice things are as if
one discards the point yj . In particular, when α =∞, we recover the the Friedrichs

extension of k̊Y , namely the self-adjoint realisation of −∆ on L2(R3).
Owing to the discussion above, we may henceforth assume, without loss of

generality, that α runs over RN .
We review the basic properties of −∆α,Y , from [9, Section II.1.1] and [93] (see

also [34, 33]). We introduce first some notation.
For z ∈ C and x, y, y′ ∈ R3, set

Gyy
′

z :=


eiz|y−y′|

4π|y − y′|
if y′ 6= y

0 if y′ = y ,

(1.27)

and

(1.28) Γα,Y (z) :=
((
αj −

iz

4π

)
δj,` − Gyjy`z

)
j,`=1,...,N

.
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Thus, the function z 7→ Γα,Y (z) has values in the N ×N symmetric matrices and
is clearly entire, and z 7→ Γα,Y (z)−1 is meromorphic in z ∈ C. It is known that
Γα,Y (z)−1 has at most N poles in the open upper half-plane C+, which are all
located along the positive imaginary semi-axis. We denote by E the set of such
poles.

The following facts are known.

Theorem 1.1.2.

(i) The domain of −∆α,Y has the following representation, for any z ∈ C+\E:

(1.29) D(−∆α,Y ) =
{
g = Fz +

N∑
j,k=1

(Γα,Y (z)−1)jk Fz(yk)Gyjz
∣∣∣Fz ∈ H2(R3)

}
.

The summands in the decomposition of each g ∈ D(−∆α,Y ) depend on the
chosen z, however, D(−∆α,Y ) does not. Equivalently, for any z ∈ C+\E,

(1.30) D(−∆α,Y ) =


g = Fz +

N∑
j=1

qj Gyjz

∣∣∣∣∣∣∣∣∣∣∣

Fz ∈ H2(R3)
(q1, . . . , qN ) ∈ CNFz(y1)
...

Fz(yN )

 = Γα,Y (z)

 q1

...
qN




.

At fixed z, the decompositions above are unique.
(ii) With respect to the decompositions (1.29)-(1.30), one has

(1.31) (−∆α,Y − z2
1) g = (−∆− z2

1)Fz .

Moreover, −∆α,Y has the following locality property: if g ∈ D(−∆α,Y ) is
such that g|U ≡ 0 for some open U ⊂ R3, then (−∆α,Y g)|U ≡ 0.

(iii) For z ∈ C+\E, we have the resolvent identity

(1.32) (−∆α,Y − z2
1)−1 − (−∆− z2

1)−1 =

N∑
j,k=1

(Γα,Y (z)−1)jk |Gyjz 〉〈G
yk
z | .

Parts (i) and (ii) of Theorem 1.1.2 above originate from [57] and are discussed
in [9, Theorem II.1.1.3], in particular (1.30) is highlighted in [34]. Part (iii) was
first proved in [56, 57] – see also the discussion in [9, equation (II.1.1.33)].

By exploiting the boundary condition in (1.30) between the regular and the
singular part of a generic g ∈ D(−∆α,Y ), it is straightforward to see that

(1.33) lim
rj↓0

(∂(rjg)

∂rj
− 4παjrjg

)
= 0 , rj := |x− yj | , j ∈ {1, . . . , N} ,

whence also

(1.34) lim
x→yj

(
g(x)− qj

4π|x− yj |
− αjqj

)
= 0, j ∈ {1, . . . , N} ,

which is equivalent to the above mentioned Bethe-Peierls boundary condition (1.26).
In fact, D(−∆α,Y ) is nothing but the space of those L2-functions g such that

the distribution ∆g belongs to L2(R3 \Y ) and the boundary condition (1.34) is
satisfied.

We record a simple consequence of Theorem 1.1.2 which will turn out to be
useful in our discussion.

Lemma 1.1.3. The operator −∆α,Y is a real self-adjoint operator, that is, for
a real-valued function g ∈ D(−∆α,Y ), −∆α,Y g is also real-valued.
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Proof. Let z = iλ, λ > 0, be such that iλ 6∈ E and let g be a real-valued
function in D(−∆α,Y ). Then, with the notation of the decomposition (1.30) of
g, the asymptotics (1.34) show that the coefficients q1, . . . , qN are all real. The
entries of Γα,Y (iλ) are real too, because Re z > 0. Then (1.30) implies that Fz is
real-valued and so must be −∆α,Y g + λ2g, owing to (1.31). �

Let us discuss the spectral properties of−∆α,Y , whose resolvent is characterised
by (1.32) as an explicit rank-N perturbation of the free resolvent. Contrary to the
single centre case, the discrete spectrum of −∆α,Y may include a zero eigenvalue
imbedded in the essential spectrum.

Theorem 1.1.4. The spectrum σ(−∆α,Y ) of −∆α,Y consists of at most N
non-positive eigenvalues and the absolutely continuous part σac(−∆α,Y ) = [0,∞),
the singular continuous spectrum is absent.

(i) There is a one to one correspondence between the poles iλ ∈ E of Γα,Y (z)−1

and the negative eigenvalues −λ2 of −∆α,Y , counting the multiplicity. The
eigenfunctions associated to the eigenvalue −λ2 < 0 have the form

ψ =

N∑
j=1

cj G
yj
iλ ,

where (c1, . . . , cN ) is an eigenvector with eigenvalue zero of Γα,Y (iλ). The
ground state, if it exists, is non-degenerate.

(ii) In a neighbourhood of z = 0, the meromorphic matrix-valued function
Γα,Y (z)−1 has the expansion

(1.35) Γα,Y (z)−1 =
Θe

z2
+

Θr

z
+ Γ

(reg)
α,Y (z)

for some constant matrices Θe, Θr and some analytic matrix-valued func-

tion Γ
(reg)
α,Y (z). Moreover, Θe 6= 0 if and only if zero is an eigenvalue for

−∆α,Y .

Part (i) of Theorem (1.1.4) is an extension, proved in [9, Theorem II.1.1.4], of
some of the corresponding results established in [57]. The proof of part (ii) follows
the very same scheme identified in [28] for the two dimensional case. In the same
paper, explicit examples of the occurrence of a zero eigenvalue are provided for
the first time. It is worth noticing that such occurrence is, in a suitable sense,
“exceptional”. Indeed, following the discussion in [28], the self-adjoint operator
−∆α,Y may have a zero eigenvalue only for a sufficiently large number N of centres,
arranged in very specific geometric configurations, and for a measure-zero set of
values of the parameter α ∈ RN .

1.1.3. Low energy expansion for the resolvent. Expansion (1.35) sug-
gests that, in addition to a possible eigenvalue, another kind of obstruction can
occur at the bottom of the essential spectrum. In order to clarify the situation, we
preliminary recall a version of the celebrated Limiting Absorption Principle for the
free Laplacian [4, 76].

Given σ > 0, we consider the Banach space

(1.36) Bσ := B(L2(R3, 〈x〉1+σdx);L2(R3, 〈x〉−1−σdx))

We have the following result.

Theorem 1.1.5 (Limiting Absorption Principle). Fix σ, ε > 0 and γ < 0. The
following bound holds true:

‖(−∆ + (γ + iε)1)−1‖Bσ 6 C,
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where the constant C depends only on σ and γ. Moreover, in the norm operator
topology of Bσ, there exists the limit

lim
ε→0

(−∆ + (γ + iε)1)−1 =: (−∆ + γ1)−1,

which can be interpreted as the boundary value of the free resolvent on the negative
half-line γ < 0. The Bσ-valued map γ 7→ (−∆ + γ1)−1 is Hölder continuous.

Remark 1.1.6. By a direct inspection, it is possible to show that the Bσ-valued
map γ 7→ (−∆ + γ1)−1 can be continuously extended also at γ = 0.

Owing to the resolvent formula (1.32), it is easy to show that the Limiting
Absorption Principle holds true also for −∆α,Y . Nevertheless, unlike the case of the
free Laplacian, we cannot expect in general to continuously extend (−∆α,Y +γ1)−1

at γ = 0. In fact, it follows from (1.35) that in a neighborhood of γ = 0 we have
the expansion

(1.37) (−∆α,Y + γ1)−1 =
Ae
γ

+
Ar√
γ

+A(reg)(γ) ,

where Ae, Ar ∈ Bσ and A(reg)(γ) is a continuous Bσ-valued map. In addition,
Ae 6= 0 if and only if zero is an eigenvalue for −∆α,Y . If Ar 6= 0, or equivalently if
Θr 6= 0 in (1.35), we say that −∆α,Y is zero energy resonant.

In the single centre case we can give a clean description of the occurrences of
an obstruction at the bottom of the essential spectrum. In fact, we already saw
in Theorem 1.1.1 that −∆α cannot have a non-negative eigenvalue. Moreover, it
is easy to show that, for α 6= 0, neither −∆α is zero energy resonant. Instead, for
α = 0, we have in a neighborhood of γ = 0 the expansion

(−∆0 + γ1)−1 =
4π
√
γ
|G0〉〈G0|+A0(γ),

where

A0(γ) := (−∆ + γ1)−1 +
4π
√
γ

(|Gγ〉〈Gγ | − |G0〉〈G0|)

is continuous at γ = 0. It follows that −∆0 is zero energy resonant.
In the general multi-centre case, both obstructions can occur for −∆α,Y . As

already mentioned, a zero eigenvalue is possible only under specific geometric con-
figurations of the centres and a measure zero set of choiches of the parameter α.
For an arbitrary configurations of the centres, −∆α,Y can be zero energy resonant,
but this is an exceptional behaviour that holds only when α is chosen in a measure
zero set. The regular case, that is, when the resolvent can be extended continuously
at the origin, is the “generic” one.

Remark 1.1.7. For actual Schrödinger operators of the form −∆ + V the
Limiting Absorption Principle and the low-energy resolvent expansion analogous to
(1.37) can be proved under suitable short-range Assuption on V [4, 64]. For such a
class of operators, the zero-energy resonant condition can be equivalently phrased as
the existence of a generalized eigenfunction (a zero-energy resonance for −∆ + V ),
namely a function ψ ∈ L2(R3, 〈x〉−1−σdx) \L2(R3), for every σ > 0, which satisfies
−∆ + V = 0 as a distributional identity on R3 (we will use a similar definition in
Chapter 2, in the more general context of fractional Schrödinger operators). In a
sense, this definition could be applied also to −∆α,Y . Consider, for example, the
zero-energy resonant operator −∆0. The negative eigenvalue of −∆α, when α < 0,
vanishes as α ↑ 0 and the corresponding eigenfunction converge pointwise a.e. to
G0 ∈ L2(R3, 〈x〉−1−σdx) \ L2(R3), for every σ > 0, which can be considered as the
zero-energy resonance for −∆0.
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1.2. Fractional case in arbitrary dimension

In this Section, using the Krĕın-Vǐsik-Birman theory, we study the family
of self-adjoint realisations of singular perturbations of the fractional Laplacian
(−∆)s/2 in Rd, for arbitrary d and s. For the sake of concreteness, we restrict
our attention to the case of a single point interaction, which can be assumed to be
centred at the origin.

Consider

(1.38) k̊(s/2) := (−∆)s/2 � C∞0 (Rd\{0})

as an operator closure with respect to the Hilbert space L2(Rd). Moreover, for
chosen d ∈ N, λ > 0, and s ∈ R we set

(1.39) Gs,λ(x) :=
1

(2π)
d
2

( 1

|p|s + λ

)∨
(x) , x, p ∈ Rd ,

whence

(1.40) ((−∆)s/2 + λ)Gs,λ = δ(x)

as a distributional identity on Rd. In three dimensions, k̊(1) and G2,λ coincides,

respectively, with k̊ and Gλ introduced in Section 1.1.

The domain of k̊(s/2), as a consequence of the operator closure in (1.38), is a
space of functions with Hs-regularity and vanishing conditions at x = 0 for each
function and its partial derivatives. The amount of vanishing conditions depends
on d and s, to classify which we introduce the intervals

(1.41) I(d)
n :=

{
(0, d2 ) n = 0

(d2 + n− 1, d2 + n) n = 1, 2, . . .

For our purposes it is convenient to use momentum coordinates to express the

vanishing conditions that qualify the domain of k̊(s/2). With the notation p ≡
(p1, . . . , pd) ∈ Rd, one can prove (see [85, Appendix A])

D(̊k(s/2)) = Hs
0(Rd\{0}) = C∞0 (Rd\{0})

‖ ‖Hs

=



Hs(R3) if s ∈ I(d)
0

f ∈ Hs(R3) such that∫
Rd p

γ1
1 · · · p

γd
d f̂(p) dp = 0

γ1, . . . , γd ∈ N0 ,
∑d
j=1 γj 6 n− 1

 if s ∈ I(d)
n , n = 1, 2, . . .

(1.42)

Clearly,
∫
Rd p

γ1
1 · · · p

γd
d f̂(p) dp = 0 is the same as

(
∂γ1

∂x
γ1
1

· · · ∂
γd

∂x
γd
d

f
)
(0) = 0, with the

notation x ≡ (x1, . . . , xd) ∈ Rd.
The expression of D(̊k(s/2)) for the endpoint values s = d

2 + n requires an
amount of extra analysis: we do not discuss it here, an omission that does not
affect the conceptual structure of our presentation.

Being densely defined, closed, and non-negative, either the symmetric operator

k̊(s/2) is already self-adjoint on L2(Rd), or it admits a J (s, d)2-parameter family of
self-adjoint extensions, where

(1.43) J (s, d) := J (̊k(s/2)) = dim ker
(
(̊k(s/2))∗ + λ1

)
for one, and hence for all λ > 0. The self-adjointness of k̊(s/2) is equivalent to
J (s, d) = 0.
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We saw in Section 1 that J (2, 3) = 1. It is not difficult to compute J (s, d) for
generic values of d and s and to identify a natural basis of the J (s, d)-dimensional

space ker
(
(̊k(s/2))∗ + λ1

)
.

Lemma 1.2.1. For given d ∈ N and s > 0,

(1.44) s ∈ I(d)
n ⇒ J (s, d) =

(
d+ n− 1

d

)
.

In particular, when s ∈ I(d)
n for some n ∈ N, then

(1.45) ker
(
(̊k(s/2))∗ + λ1

)
= span

{
uλγ1,...,γd

∣∣∣ γ1, . . . , γd ∈ N0 ,

d∑
j=1

γj 6 n− 1
}
,

where

(1.46) ûλγ1,...,γd(p) :=
pγ11 · · · p

γd
d

|p|s + λ
.

It is worth noticing, comparing (1.39) and (1.46), that

(1.47) uλ0,...,0 = (2π)
d
2 Gs,λ .

In the particular case s = 2, one gets J (2, 1) = 2, J (2, 2) = J (2, 3) = 1 and
J (2, d) = 0 for d > 4. Hence, non-trivial point perturbations of the free Laplacian
exist only in dimension d = 1, 2 or 3.

Proof of Lemma 1.2.1. When s ∈ I(d)
0 , we see from (1.42) that k̊(s/2) is self-

adjoint: then ker
(
(̊k(s/2))∗+λ1

)
is trivial and J (s, d) = 0, consistently with (1.44).

When s ∈ I(d)
n , n = 1, 2, . . . , then u ∈ ker

(
(̊k(s/2))∗ + λ1

)
= ran

(̊
k(s/2) + λ1

)⊥
is

equivalent to

0 =

∫
R3

û(p)(|p|s + λ)f̂(p)dp ∀f ∈ D(̊k(s/2))

and one argues from (1.42) that k̊(s/2) is spanned by linearly independent functions
of the form uλγ1,...,γd . Such functions are as many as the linearly independent mono-
mials in d variables with degree at most equal to n− 1, and therefore their number

equals

(
d+ n− 1

d

)
. �

The knowledge of ker
(
(̊k(s/2))∗ + λ1

)
and of the inverse of the Friedrichs ex-

tension of k̊(s/2) are the two inputs for the Krĕın-Vǐsik-Birman extension theory,
by means of which we can produce the whole family of self-adjoint extensions of

k̊(s/2).
Such a construction is particularly clean in the case, relevant in applications,

of deficiency index one: the comprehension of this case is instructive to understand
the case of higher deficiency index. Moreover, as we shall see, in this case the self-

adjoint extensions of k̊(s/2) turn out to be rank-one perturbations, in the resolvent
sense: we will use the jargon J = 1 or ‘rank one’ interchangeably.

We discuss in detail the J (s, d) = 1 scenario when s ∈ I
(d)
1 , deferring to

Subsection 1.2.3 an outlook on the high-J scenario. This corresponds to analysing
the regimes s ∈ ( 1

2 ,
3
2 ) when d = 1, s ∈ (1, 2) when d = 2, s ∈ ( 3

2 ,
5
2 ) when d = 3,

etc.
The construction of the self-adjoint extensions of k̊(s/2) in any such regimes is

technically the very same, irrespectively of d, except for a noticeable peculiarity
when d = 1, as opposite to d = 2, 3, . . .
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Indeed, when s ∈ I(d)
1 and hence J (s, d) = 1, we know from Lemma 1.2.1 and

(1.47) that ker
(
(̊k(s/2))∗+λ1

)
= span{Gs,λ}, and the function Gs,λ may or may not

have a local singularity as x→ 0. As follows from the d-dimensional distributional
identity

2
s
2 Γ( s2 )

1

|p|s
= 2

d−s
2 Γ(d−s2 )

̂( 1

|x|d−s
)
, s ∈ (0, d) ,

Gs,λ has a singularity ∼ |x|−(d−s) when s < d, it has a logarithmic singularity when
s = d, and it is continuous at x = 0 when s > d. More precisely,

(1.48) Gs,λ(x)
x→0−−−−→ Gs,λ(0) =

(
2d−1π

d
2−1Γ(d2 )λ

s−d
s s sin πd

s

)−1
, s > d ,

(1.49) Gs,λ(x) =
Λ

(d)
s

|x|(d−s)
+ Js,λ(x), s ∈ (0, d),

with

Λ(d)
s :=

Γ(d−s2 )

(2π)
d
2 2s−

d
2 Γ(d2 )

,

Js,λ := − λ

(2π)
d
2

( 1

|p|s(|p|s + λ)

)∨
∈ C∞(Rd) .

(1.50)

Now, all the considered regimes s ∈ (1, 2) when d = 2, s ∈ ( 3
2 ,

5
2 ) when d = 3,

etc. lie below the transition value s = d between the local singular and the local
regular behaviour of Gs,λ, whereas the regime s ∈ ( 1

2 ,
3
2 ) when d = 1 lies across the

transition value s = 1.
The same type of distinction clearly occurs for the spanning functions (1.45)-

(1.46) of ker
(
(̊k(s/2))∗ + λ1

)
for higher deficiency index J (s, d).

In the present context, the peculiarity described above when d = 1 results in

certain different steps of the construction of the self-adjoint extensions of k̊(s/2) and
ultimately in the type of parametrisation of such extensions, as we shall see.

Therefore, we articulate our discussion on the extensions of k̊(s/2) when the
deficiency index is one discussing first the three-dimensional case (Subection 1.2.1)
and then the one-dimensional case (Subsection 1.2.2). As commented already, for
generic d > 2 the discussion and the final results are completely analogous to d = 3.

1.2.1. Rank-one singular perturbations in dimension three. In terms

of the general discussion above, we consider here the operator k̊(s/2) on L2(R3)

when s ∈ ( 3
2 ,

5
2 ). k̊(s/2) acts as the fractional Laplacian (−∆)s/2 on the domain

(1.51) D(̊k(s/2)) =
{
f ∈ Hs(R3)

∣∣∣ ∫
R3

f̂(p) dp = 0
}

and its deficiency index is 1.
We start by producing all the self-adjoint extension in the Birman scheme. We

first obtain a paramatresion which depends on the shift λ. Then, we will produce
the natural α-representation. One has the following construction.

Theorem 1.2.2. Let s ∈ ( 3
2 ,

5
2 ) and λ > 0.

(i) The self-adjoint extensions in L2(R3) of the operator k̊(s/2) form the family

(k
(s/2)
τ )τ∈R∪{∞}, where k

(s/2)
∞ is its Friedrichs extension, namely the self-

adjoint fractional Laplacian (−∆)s/2, and all other extensions are given
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by

D
(
k(s/2)
τ

)
:=

g ∈ L2(R3)

∣∣∣∣∣∣ ĝ(p) = f̂λ(p) +
τ ξ

(|p|s + λ)2
+

ξ

|p|s + λ

ξ ∈ C , fλ ∈ Hs(R3) ,
∫
R3 f̂λ(p) dp = 0


=
{
g = Fλ +

2πs2 sin( 3π
s )λ2− 3

s

τ(s−3) Fλ(0)Gs,λ

∣∣∣Fλ ∈ Hs(R3)
}
,

(1.52)

and

(1.53)
(
k(s/2)
τ + λ1

)
g :=

(
(−∆)s/2 + λ1

)
Fλ.

(ii) Each extension is semi-bounded from below and

inf σ(k(s/2)
τ + λ1) > 0 ⇔ τ > 0

inf σ(k(s/2)
τ + λ1) > 0 ⇔ τ > 0

(k(s/2)
τ + λ1) is invertible ⇔ τ 6= 0 .

(1.54)

(iii) For each τ ∈ R the quadratic form of the extension k
(s/2)
τ is given by

D[k(s/2)
τ ] = H

s
2 (R3)u span{Gs,λ}(1.55)

k(s/2)
τ [Fλ + κλGs,λ] = ‖|∇| s2Fλ‖2L2(R3) − λ‖F

λ + κλGs,λ‖2L2(R3)

+λ‖Fλ‖2L2(R3) +
τ(s− 3)

2πs2λ2− 3
s sin( 3π

s )
|κλ|2(1.56)

for any Fλ ∈ Hs/2(R3) and κλ ∈ C.
(iv) For τ 6= 0, one has the resolvent identity

(1.57) (k(s/2)
τ + λ1)−1 = ((−∆)s/2 + λ1)−1 +

2πs2 sin( 3π
s )λ2− 3

s

τ(s− 3)
|Gs,λ〉〈Gs,λ| .

Proof. The whole construction is based upon the Krĕın-Vǐsik-Birman self-

adjoint extension scheme. Since ker
(
(̊k(s/2))∗ + λ1

)
= span{Gs,λ} and the

Friedrichs extension of k̊(s/2) + λ1 is (−∆)s/2 + λ1, one has the following formula
for the adjoint (see, e.g., Ref. [45], Theorem 2.2):

D
(
(̊k(s/2))∗

)
=

g ∈ L2(R3)

∣∣∣∣∣∣ ĝ(p) = f̂λ(p) +
η

(|p|s + λ)2
+

ξ

|p|s + λ

η, ξ ∈ C , fλ ∈ Hs(R3) ,
∫
R3 f̂λ(p) dp = 0

(
(̊k(s/2))∗ + λ1

)
g = F−1

(
(|p|s + λ)

(
f̂λ +

η

(|p|s + λ)2

))
.

Each element of the one-parameter family of self-adjoint extensions of k̊(s/2) is
identified (see, e.g., Ref [45], Theorem 3.4) by the Birman self-adjointness condition

η = τξ for some τ ∈ R ∪ {∞}.

This establishes the first line of (1.52). Setting F̂λ := f̂λ + (|p|s + λ)−2τξ, the
boundary condition between Fλ and ξ in Fourier transform reads

(*)

∫
R3

F̂λ(p) dp = ξ 4π2τ(s−3)

s2λ2− 3
s sin( 3π

s )
.

Then, from Fλ(0) = (2π)−
3
2

∫
R3 F̂λdp, and using (1.39) with d = 3, the second line

of (1.52) follows. Since k
(s/2)
τ is a restriction of (̊k(s/2))∗, from the above action of

the adjoint one deduces (1.53). This completes the proof of part (i).
Part (ii) lists standard facts of the Krĕın-Vǐsik-Birman theory – see Ref. [45],

Theorems 3.5 and 5.1.
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The quadratic form is characterised in the extension theory (Ref. [45], Theorem

3.6) by the formulas D[k
(s/2)
τ ] = D[k

(s/2)
F ] u ker

(
(̊k(s/2))∗ + λ1

)
(‘F ’ stands for

Friedrichs), whence (1.55), and (k
(s/2)
τ +λ1)[Fλ + κλGs,λ] = ((−∆)s/2 +λ1)[Fλ] +

τ |κλ|2‖Gs,λ‖2L2(R3), whence (1.56). The proof of part (iii) is completed.

Krĕın’s resolvent formula for deficiency index 1 (Ref. [45], Theorem 6.6) pre-
scribes

f(k(s/2)
τ + λ1)−1 = ((−∆)s/2 + λ1)−1 + βλ,τ |Gs,λ〉〈Gs,λ|

for some scalar βλ,τ to be determined, whenever (k
(s/2)
τ +λ1) is invertible, hence for

τ 6= 0. Thus, for a generic h ∈ L2(R3), the element g := (k
(s/2)
τ +λ1)−1h ∈ D(k

(s/2)
τ )

reads, in view of (1.52) and of the resolvent formula above,

ĝ(p) = F̂λ(p) +
ξλ

|p|s + λ

F̂λ(p) :=
ĥ(p)

|p|s + λ
, ξλ :=

βλ,τ
(2π)3

∫
R3

ĥ(q)

|q|s + λ
dq .

The boundary condition (*) for Fλ and ξλ then implies 1 = βλ,τ
τ(s−3)

2πs2 sin( 3π
s )λ2− 3

s
,

which determines βλ,τ and proves (1.57), thus completing also the proof of (iv). �

The τ -parametrisation of the family (k
(s/2)
τ )τ∈R∪{∞} depends on the initially

chosen shift λ > 0, meaning that with a different choice λ′ > 0 the same self-adjoint
realisation previously identified by τ with shift λ is now selected by a different exten-
sion parameter τ ′. It is more convenient to switch onto a natural parametrisation
that identifies one extension irrespectively of the infinitely many different pairs
(λ, τ) attached to it by the parametrisation of Theorem 1.2.2. We shall do it in
the next Theorem: observe that indeed, as compared to Theorem 1.2.2, here below
λ > 0 is arbitrary.

Theorem 1.2.3. Let s ∈ ( 3
2 ,

5
2 ).

(i) The self-adjoint extensions in L2(R3) of the operator k̊(s/2) form the family

(k
(s/2)
α )α∈R∪{∞}, where k

(s/2)
∞ is its Friedrichs extension, namely the self-

adjoint fractional Laplacian (−∆)s/2, and all other extensions are given,
for arbitrary λ > 0, by

D(k(s/2)
α ) =

g = Fλ +
Fλ(0)

α− λ
3
s
−1

2πs sin( 3π
s )

Gs,λ

∣∣∣∣∣∣∣Fλ ∈ Hs(R3)


(k(s/2)
α + λ) g = ((−∆)s/2 + λ)Fλ .

(1.58)

(ii) For each α ∈ R the quadratic form of the extension k
(s/2)
α is given by

D[k(s/2)
α ] = H

s
2 (R3)u span{Gs,λ}(1.59)

k(s/2)
α [Fλ + κλGs,λ] = ‖|∇| s2Fλ‖2L2(R3) − λ‖F

λ + κλGs,λ‖2L2(R3)

+λ‖Fλ‖2L2(R3) +
(
α− λ

3
s
−1

2πs sin( 3π
s )

)
|κλ|2(1.60)

for arbitrary λ > 0.

(iii) The resolvent of k
(s/2)
α is given by

(k(s/2)
α + λ1)−1 = ((−∆)s/2 + λ1)−1

+
(
α− λ

3
s
−1

2πs sin( 3π
s )

)−1 |Gs,λ〉〈Gs,λ|
(1.61)

for arbitrary λ > 0.
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(iv) Each extension is semi-bounded from below, and

σess(k
(s/2)
α ) = σac(k(s/2)

α ) = [0,+∞) , σsc(k(s/2)
α ) = ∅ ,

σdisc(k(s/2)
α ) =

{
∅ if α > 0

{E(s)
α } if α < 0 ,

(1.62)

where the eigenvalue E
(s)
α is non-degenerate and is given by

(1.63) E(s)
α = −

(
2π|α| s sin(− 3π

s )
) s

3−s ,

the (non-normalised) eigenfunction being G
s,λ=|E(s)

α |
.

Remark 1.2.4. When s = 2, Theorem 1.2.3 produce exactly the family of
self-adjoint operators −∆α introduced in Section 1.1.

Proof of Theorem 1.2.3. We seek for the relation τ = τ(λ) that ensures
that all the pairs (λ, τ(λ)), with λ > 0, preserve the decomposition (1.52)-(1.53)
and thus label the same element of the family of extensions.

For chosen λ and τ , a function g ∈ D(k
(s/2)
τ ) decomposes uniquely as

ĝ = F̂λ +
ξ

|p|s + λ
,

Fλ ∈ Hs(R3)
ξ ∈ C ,

∫
R3

F̂λdp = ξ 4π2τ(s−3)

s2λ2− 3
s sin( 3π

s )
.

Let now λ′ > 0 and τ ′ ∈ R be such that for the same function g in the domain of

the same self-adjoint realisation k
(s/2)
τ one also has

ĝ = F̂λ′ +
ξ′

|p|s + λ′
,

Fλ
′ ∈ Hs(R3)
ξ′ ∈ C ,

∫
R3

F̂λ′dp = ξ′ 4π2τ ′(s−3)

s2λ′2−
3
s sin( 3π

s )
.

The new splitting of g is equivalent to

ξ′ = ξ , Fλ
′

= Fλ +
ξ

|p|s + λ
− ξ′

|p|s + λ′
,

and the boundary condition for Fλ
′

and ξ′ is equivalent to

(*) ξ 4π2τ(s−3)

s2λ2− 3
s sin( 3π

s )
+

∫
R3

( ξ′

|p|s + λ
− ξ′

|p|s + λ′

)
dp = ξ′ 4π2τ ′(s−3)

s2λ′2−
3
s sin( 3π

s )
.

Let us analyze the integral in (*). Both summands in the integrand diverge,
with two identical divergences that cancel out. Thus, by means of the identity
r2(rs + λ)−1 = r2−s − λr2−s(rs + λ)−1, one has∫

R3

( 1

|p|s + λ
− 1

|p|s + λ′

)
dp = 4π lim

R→+∞

(∫ R

0

r2

rs + λ
dr −

∫ R

0

r2

rs + λ′
dr
)

= 4π lim
R→+∞

(∫ R

0

λ′ dr

rs−2(rs + λ′)
−
∫ R

0

λ dr

rs−2(rs + λ)

)
=

4π2

λ 1− 3
s s sin( 3π

s )
− 4π2

λ′ 1−
3
s s sin( 3π

s )
.

Plugging the result of the above computation into (*) yields

τ(3− s)− sλ
λ2− 3

s

=
τ ′(3− s)− sλ′

λ′2−
3
s

,

which shows that all pairs (λ, τ) such that

(**) − τ(3− s)− sλ
2πs2 sin( 3π

s )λ2− 3
s

=: α
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indeed label the same extension (the pre-factor −2πs2 sin( 3π
s ) having being added

for convenience). Thus, α ∈ R∪{∞} defined in (**) is the natural parametrisation
we were aiming for (and the Friedrichs case τ → +∞ corresponds to α→ +∞).

Upon replacing
2πs2 sin( 3π

s )λ2− 3
s

τ(s−3) =
(
α − 1

2πs sin( 3π
s )λ1− 3

s

)−1
in the formulas of

Theorem 1.2.2 we deduce at once all formulas of parts (i), (ii), and (iii), together
of course with the certainty, proved above, that the decompositions are now λ-
independent.

Since the deficiency index is 1, and hence all extensions are a rank-one per-
turbation, in the resolvent sense, of the self-adjoint fractional Laplacian, then all
extensions have the same essential spectrum [0,+∞) of the latter, and additionally
may have at most one negative non-degenerate eigenvalue, in any case all extensions
are semi-bounded from below – all these being general facts of the extension theory,
see, e.g., Ref. [45], Theorem 5.9 and Corollary 5.10. This proves, in particular, the
first line in (1.62).

The occurrence of a negative eigenvalue Eα = −λ of an extension k
(s/2)
α , for

some λ > 0, can be read out from the resolvent formula (1.61) as the pole of

(k
(s/2)
α + λ1)−1, that is, imposing

α− 1

2πs sin( 3π
s )λ1− 3

s
= 0 ,

i.e.,

α = −λ
3−s
s

(
2πs sin(− 3π

s )
)−1

.

The identity above can be only satisfied by some λ > 0 when α < 0, because
sin(− 3π

s ) > 0, in which case

λ =
(
2π|α| s sin(− 3π

s )
) s

3−s .

Alternatively, one can argue from (1.52)-(1.53) that the eigenvalue −λ must corre-
spond to the eigenfunction ( 1

|p|s+λ )∨, that is, an element of the domain with only

singular component, and to the parameter τ = 0, hence with fλ ≡ 0 in the notation
therein. Then, setting τ = 0 in (**) yields the same condition above on α and λ.
This proves (1.63) and the second line in (1.62) when α < 0, and it also qualifies
the eigenfunction.

When such a bound state is absent, and therefore when α > 0, for what argued

before one has σ(k
(s/2)
α ) = σess(k

(s/2)
α ) = [0,+∞). This proves the second line in

(1.62) when α > 0, and completes the proof of part (iv). �

The elements of the domain k
(s/2)
α split into a regular Hs-component plus a

singular component, whit the singularity of Gs,λ, namely |x|−(3−s) for all powers
s ∈ ( 3

2 ,
5
2 ). Moreover, a local boundary condition constrains regular and singular

components: working out the asymptotics as x → 0 in (1.58) by means of (1.49)
we find

(1.64) g(x) ∼ α+ Λ(3)
s |x|−(3−s) as x→ 0 , g ∈ D(k(s/2)

α ) , s ∈ ( 3
2 ,

5
2 ) ,

where Λ
(3)
s is defined in (1.49). Asymptotics (1.64) is the fractional version of the

Bethe-Peierls contact condition (1.12) (observe that Λ
(3)
2 = (4π)−1, consistently).

1.2.2. Rank-one singular perturbations in dimension one. We consider

here the operator k̊(s/2) on L2(R) when s ∈ ( 1
2 ,

3
2 ). The conceptual scheme is the

very same as in the 3D case, except for an amount of extra technicalities due to the
somewhat more involved structure of the Friedrichs extensions for high regularity
s ∈ (1, 3

2 ). For simplicity, we do not treat the tranistion case s = 1. Details can
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be found in [85, Section V] and we content ourselves here to only state the main
results.

We start with qualifying the Friedrichs extension k
(s/2)
F of k̊(s/2). Unlike the

three-dimensional case, the structure of k
(s/2)
F depends on whether s < 1 or s > 1.

Proposition 1.2.5. Let s ∈ ( 1
2 ,

3
2 ), s 6= 1.

(i) The quadratic form of the Friedrichs extension k
(s/2)
F of k̊(s/2) is

D[k
(s/2)
F ] =

{
Hs/2(R) if s ∈ ( 1

2 , 1)

H
s/2
0 (R\{0}) if s ∈ (1, 3

2 )

k
(s/2)
F [f, g] = 〈 |∇| s2 f,∇| s2 g〉 .

(1.65)

(ii) When s ∈ ( 1
2 , 1), one has

D(k
(s/2)
F ) = Hs(R)

k
(s/2)
F f = (−∆)

s
2 f .

(1.66)

(iii) When s ∈ (1, 3
2 ), for every λ > 0 one has

D(k
(s/2)
F ) =

{
f = φ− φ(0)

Gs,λ(0)
Gs,λ

∣∣∣φ ∈ Hs(R)

}
(k

(s/2)
F + λ1)f = ((−∆)

s
2 + λ)φ .

(1.67)

In particular, D(k
(s/2)
F ) ⊂ Hs(R) u span{Gs,λ}. In this regime of s,

(k
(s/2)
F + λ1) has an everywhere defined and bounded inverse on L2(R)

with

(1.68) (k
(s/2)
F + λ1)−1 = ((−∆)

s
2 + λ1)−1 − 1

Gs,λ(0)
|Gs,λ〉〈Gs,λ| .

We can now state the one-dimensional analogue of Theorem 1.2.3.

Theorem 1.2.6. Let s ∈ ( 1
2 ,

3
2 ), s 6= 1. We set

Θ(s, λ) :=
(
λ1− 1

s s sin (πs )
)−1

, λ > 0 ,

θs :=

{
0 if s < 1

1 if s > 1 .

(1.69)

(i) The self-adjoint extensions in L2(R) of the operator k̊(s/2) form the family

(k
(s/2)
α )α∈R∪{∞}, where for arbitrary λ > 0

D(k(s/2)
α ) =

 g = Fλ +
Fλ(0)

α−Θ(s, λ)
Gs,λ

Fλ ∈ Hs(R)


(k(s/2)
α + λ) g = ((−∆)s/2 + λ)Fλ .

(1.70)

The Friedrichs extension k
(s/2)
F , already qualified in Proposition 1.2.5, cor-

responds to α = ∞ when s ∈ ( 1
2 , 1) and to α = 0 when s ∈ (1, 3

2 ). For
generic s, the extension with α =∞ is the ordinary self-adjoint fractional
Laplacian (−∆)s/2 on L2(R).
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(ii) For each α ∈ R the quadratic form of the extension k
(s/2)
α is given by

D[k(s/2)
α ] =

{
Hs/2(R)u span{Gs,λ} if s ∈ ( 1

2 , 1)

H
s/2
0 (R\{0})u span{Gs,λ} if s ∈ (1, 3

2 ), α 6= 0
(1.71)

k(s/2)
α [Fλ + κλGs,λ] = ‖|∇| s2Fλ‖2L2(R) − λ‖F

λ + κλGs,λ‖2L2(R)

+λ‖Fλ‖2L2(R) +
( θs

Θ(s, λ)
+

1

α−Θ(s, λ)

)−1

|κλ|2(1.72)

for arbitrary λ > 0.

(iii) The resolvent of k
(s/2)
α is given by

(k(s/2)
α + λ1)−1 = ((−∆)s/2 + λ1)−1

+
(
α−Θ(s, λ)

)−1 |Gs,λ〉〈Gs,λ|
(1.73)

for arbitrary λ > 0.

(iv) For each α ∈ R the extension k
(s/2)
α is semi-bounded from below, and

(1.74) σess(k
(s/2)
α ) = σac(k(s/2)

α ) = [0,+∞) , σsc(k(s/2)
α ) = ∅ ,

(1.75) σdisc(k(s/2)
α ) =

{
∅ if (s− 1)α 6 0

{−E(s)
α } if (s− 1)α > 0

where the eigenvalue −E(s)
α is non-degenerate and is given by

(1.76) E(s)
α =

(
αs sin(πs )

) s
1−s

the (non-normalised) eigenfunction being G
s,λ=|E(s)

α |
.

In the regime s ∈ (1, 3
2 ) Theorem 1.2.6(ii) can be re-phrased in the following

even more natural formulation, which shows that k
(s/2)
α can be equivalently qualified

as a form perturbation of (−∆)
s
2 .

Proposition 1.2.7. Let s ∈ (1, 3
2 ). The self-adjoint extensions in L2(R) of

k̊(s/2) form the family (k
(s/2)
α )α∈R∪{∞}, where α = 0 labels the Friedrichs exten-

sion given by (1.65), α = ∞ labels the ordinary self-adjoint fractional Laplacian
(−∆)s/2, and for α ∈ R \ {0} one has

D[k(s/2)
α ] = H

s/2
0 (R\{0})u span{Gs,λ} = Hs/2(R)

k(s/2)
α [g] = ‖|∇| s2 g ‖2L2(R) −

1

α
|g(0)|2

(1.77)

for every λ > 0.

The quadratic form (1.77) can be also used in higher deficiency index regimes

to define a sub-family of the whole class of self-adjoint extension of k̊(s/2)

1.2.3. High deficiency index (high fractional power) scenario. Let us
outline in this Section how the previous constructions of the self-adjoint extensions

of k̊(s/2) get modified when s > d
2 + 1.

We recall from Lemma 1.2.1 that when s ∈ I(d)
n (d2 + n− 1, d2 + n), n ∈ N, one

has

(1.78) ker
(
(̊k(s/2))∗ + λ1

)
= span

{
uλγ1,...,γd

∣∣∣ γ1, . . . , γd ∈ N0 ,

d∑
j=1

γj 6 n− 1
}
,

having defined

(1.79) v̂λγ1,...,γd(p) :=
pγ11 · · · p

γd
d

(p2 + λ)
s
2
.
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The same extension scheme applied in Section 1.2.1 provides an analogous
classification of all the self-adjoint extensions in the case of generic deficiency index

J (s, d), where now each extension of k̊(s/2) is an operator k
(s/2)
T labelled by a self-

adjoint operator T in some subspace D(T ) of ker
(
(̊k(s/2))∗ + λ1

) ∼= CJ (s,d), hence
labelled by some N ×N hermitian matrix, 1 6 N 6 J (s, d).

Explicitly (see, e.g., Theorem 3.4 in Ref. [45]),

D(k
(s/2)
T ) =

g ∈ L2(Rd)

∣∣∣∣∣∣
g = f + (̊k

(s/2)
F + λ1)−1(Tu+ w) + u

where f ∈ Hs
0(Rd\{0}) , u ∈ D(T ) ,

w ∈ ker
(
(̊k(s/2))∗ + λ1

)
∩ D(T )⊥


(k

(s/2)
T + λ1)g = ((−∆)s/2 + λ)Fλ

Fλ := f + (̊k
(s/2)
F + λ1)−1(Tu+ w) ∈ Hs(Rd) ,

(1.80)

with k
(s/2)
F denoting the Friedrichs extension.

The theory provides also a counterpart classification of the the quadratic forms
of the extensions (see Ref. [45], Theorem 3.6).

The above formulas show that for high powers s the operator k̊(s/2) has a richer
variety (a J (s, d)2-parameter family) of self-adjoint extensions. The parametrising
matrix T determines a more complicated set of ‘boundary conditions’ between the
regular part of a generic element of the extension domain, which has Hs-regularity,
and the singular part, and the resulting constraint involves the evaluation at x = 0
of some number of partial derivatives of the regular part.

This construction produces finite-rank perturbations in the resolvent sense,
hence extensions that are all semi-bounded from below and may admit a (finite)
number of negative eigenvalues, up to J (s, d), counting the multiplicity.

Unlike the case of deficiency index 1, depending on the extension parameter
T the large-p vanishing behaviour in momentum space of the singular component
may be milder than that of the Green function, and therefore the local singularity
of g in position space may be more severe than the behaviour of the Green function
as x→ 0.

Let us comment on how the worst leading singularity at x = 0 of a generic

function g ∈ D(k
(s/2)
T ) depends on s and d.

As expressed by (1.80), such a singularity is due to the singular component of

g, namely to those functions of type uλγ1,...,γd that span D(T ). When s ∈ I(d)
n the

worst local singularity occurs when such functions decrease at infinity in momentum
coordinates with the slowest possible vanishing rate compatible with s and d, that
is, when γ1 + · · ·+ γd = n− 1.

Let u be any such most singular function, which then behaves as |û(p)| ≈
|p|−(s+1−n) as |p| → +∞. Then |u(x)| ≈ |x|−(d−1+n−s) as x→ 0. Since the map

I(d)
n 3 s 7→ d− 1 + n− s

is monotone decreasing and takes values in (d2 − 1, d2 ), if the extension k
(s/2)
T is

such that D(T ) 3 u, then the functions in D(k
(s/2)
T ) display a local singularity that

ranges from |x|− d2 to |x|− d−1
2 as long as s increases in I

(d)
n , precisely as (1.64) when

s increases in I
(3)
1 .

Noticeably, at the transition values s ∈ N + 1
2 the above picture undergoes a

discontinuity in s, due to the further control of one more derivative in D(̊k(s/2)), as a

consequence of Sobolev’s Lemma, and consequently to emergence in ker
(
(̊k(s/2))∗+

λ1
)

of elements that in momentum coordinates vanish more slowly at infinity.



CHAPTER 2

Approximation by means of regular Schrödinger
operators

In this Chapter we study the construction of singular perturbations of the frac-
tional Laplacian as a limit of more regular operators. For the sake of concreteness,
we consider the case of a single point interaction centred at the origin.

The extension theory approach, discussed in Chapter 1, is surely satisfactory
from the point of view of the interpretation of the output operator. However,
it obfuscates an amount of physical meaning, since it does not provide informa-
tion, as the intuition would make one expect instead, on how the actual singular
perturbation is approximatively realised as a genuine pseudo-differential operator
(−∆)s/2 + V (x) with a regular potential V centred around x = 0, with sufficiently
short range and strong magnitude.

For the non-fractional Laplacian −∆ in L2(Rd), the realisation of a singular
perturbation at the origin by means of approximating Schrödinger operators −∆ +
Vε with regular potentials Vε spiking up and shrinking around x = 0 at a spatial
scale ε−1 in the limit ε ↓ 0 is known since long for dimension d = 1 [10], d = 2 [8],
and d = 3 [7] (we also refer to [9, 11] for a comprehensive overview), that is, all
the dimensions in which non-trivial singular perturbations exist. In the fractional
setting, instead, it was a recent achievement [86], which rises up the conceptually
new issue of how a local potential Vε can be suitably re-scaled so as to produce the
desired perturbation of the non-local operator (−∆)s/2.

For concreteness of the presentation, we consider the case of deficiency index
1 only, and for simplicity we omit further the explicit discussion of the ‘endpoint’
values of s, namely the largest possible value, at given d, compatible with J (s, d) =
1. As expressed by (1.44), this amounts to analysing the regime s ∈ ( 1

2 ,
3
2 ) in

d = 1, s ∈ (1, 2) in d = 2, s ∈ ( 3
2 ,

5
2 ) in d = 3, etc. We shall refer to such

cases as the ‘J = 1 scenario’. For this scenario we then discuss how to realise
the corresponding extensions in the limit of Schrödinger operators with fractional
Laplacian and shrinking potentials, say, (−∆)s/2 + Vε as ε ↓ 0.

We distinguish two possibilities, according to the local behavior of the Green
function Gs,λ defined in (1.39).

• resonance-driven case: s < d, that is, the regime for which the Green
function has local singularity.

• resonance-independent case: s > d, that is, the regime for which the
Green function is regular.

We mention also that an analogous dichotomy occurs when the deficiency index
of (−∆)s/2|C∞0 (Rd\{0}) is larger than 1: the singular (non-Hs) component of the
elements in the domain of the considered self-adjoint extension may or may not
display a local singularity as x → 0. The ‘resonance’ jargon has to do with how
the limit of shrinking potentials must be organised in order to reach a self-adjoint
extension of (−∆)s/2|C∞0 (Rd\{0}) in one case or in the other. Extensions in the
locally regular case can be reached as ε ↓ 0 through suitably rescaled versions
Vε of a given potential V with no further prescription on V but those technical

19
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assumptions ensuring that the limit itself is well-posed. Instead, extensions in the
locally singular case can only be reached if the unscaled operator (−∆)s/2+V admits
a zero-energy resonance, a spectral behaviour at the bottom of its essential spectrum
which we shall define in due time and roughly speaking amounts to the existence of
a suitably decaying, non square-integrable, L2

loc-solution f to ((−∆)s/2 + V )f = 0.
In a sense that we shall make precise, this difference is due to the fact that a zero-
energy resonance is needed in the approximating fractional Schrödinger operator in
order to reproduce in the limit the locally singular behaviour in the domain of the
considered self-adjoint extension.

In view of the above alternative, we make the following presentational choice.
Since in all dimensions d but d = 1 the interval s ∈ (d2 ,

d
2 + 1) corresponding to

deficiency index 1 lies strictly below the transition value s = d that separates the
locally regular from the locally singular regime, as a representative of any such
value of d for concreteness we choose d = 3: the discussion on the limit of shrinking
potentials would then be immediately exportable to any other d > 2. Next to that,
we also discuss the case d = 1, where instead the interval s ∈ (1, 3

2 ) corresponding
to deficiency index 1 contains the transition value s = 1. As is evident from the
discussion of Chapter 1, the self-adjoint extensions of (−∆)s/2|C∞0 (R\{0}) exhibits
different features depending on whether s < 1 or s > 1, which reflect into the
different types of approximation. The s = 1 case, albeit technically more involved,
could be covered as well. For simplicity we will ignore it in our discussion.

The material of this Chapter is organised as follows. In Section 2.1 we present
the approximation scheme in three dimensions in terms of fractional Schrödinger
operators with regular, shrinking potentials. In Section 2.2 we present the one-
dimensional analogue, with the two distinct approximation schemes, for the reso-
nance-driven and the resonance-independent cases. Section 2.3 contains the proof
of the three-dimensional limit. Section 2.4 contains the proof of the one-dimensional
limit in the resonance-driven case. From the technical point of view, the argument
here is completely analogous to that of Section 2.3, as the 3D case too is resonance-
driven. Section 2.5 contains instead the proof of the one-dimensional limit in the
resonance-independent case.

2.1. Approximation scheme in dimension three

Our goal is to qualify each of the three-dimensional extensions k
(s/2)
α identi-

fied in Theorem 1.2.3, as suitable limits of approximating fractional Schrödinger
operators with finite range potentials.

It is convenient to introduce the class Rs,d, d ∈ N, s ∈ (d2 , d), of measurable

functions V : Rd → C such that

(2.1)

∫∫
Rd×Rd

dxdy
|V (x)| |V (y)|
|x− y|2(d−s) =: ‖V ‖2Rs,d < +∞ .

R2,3 is the well-known Rollnick class on R3. Clearly, Rs,d ⊃ C∞0 (Rd).
For each s ∈ ( 3

2 ,
5
2 ) we make the following assumption.

Assumption (Is).

(i) V : R3 → R is a measurable function in L1(R3, 〈x〉2s−3dx) ∩Rs,3.
(ii) η : R→ R+ is a continuous function satisfying η(0) = η(1) = 1 and

η(ε) = 1 + ηs ε
3−s + o(ε3−s) as ε ↓ 0

for some ηs ∈ R that we call the strength of the distortion factor η.

Lemma 2.1.1. Let V : R3 → R belong to L1(R3) ∩ Rs,3 for some s ∈ ( 3
2 , 3).

Then:
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(i) for every λ > 0, |V | 12 ((−∆)
s
2 + λ1)−1|V | 12 is a Hilbert-Schmidt operator

on L2(R3);

(ii) |V | 12 � (−∆)
s
4 in the sense of infinitesimally bounded operators;

(iii) the operator (−∆)
s
2 + V defined as a form sum is self-adjoint on L2(R3),

and σess((−∆)
s
2 + V ) = [0,+∞).

Proof. (i) |V | 12 ((−∆)
s
2 + λ1)−1|V | 12 acts as an integral operator with kernel

Ks,λ(x, y) := |V (x)| 12Gs,λ(x− y)|V (y)| 12 ,
and its Hilbert-Schmidt norm is estimated as∥∥∥|V | 12 ((−∆)

s
2 + λ1)−1|V | 12

∥∥∥2

H.S.
=

∫∫
R3×R3

dxdy |Ks,λ(x, y)|2

6 2(Λ(3)
s )2

∫∫
R3×R3

dxdy
|V (x)| |V (y)|
|x|2(3−s) + 2‖Js,λ‖2L∞

∫∫
R3×R3

dxdy |V (x)| |V (y)|

6 2(Λ(3)
s )2‖V ‖2Rs,3 + 2‖Js,λ‖2L∞‖V ‖2L1 < +∞ ,

having used (1.49)-(1.50) in the second step.

(ii) The map λ 7→ |V | 12 ((−∆)
s
2 + λ1)−1|V | 12 is continuous from (0,+∞) to the

space of Hilbert-Schmidt operators, and by dominated convergence

lim
λ→+∞

∫∫
R3×R3

dxdy |V (x)| |Gs,λ(x− y)|2 |V (y)| = 0 .

Therefore, for arbitrary ε > 0 it is possible to find λε > 0 large enough such that

ε >
∥∥∥|V | 12 ((−∆)

s
2 + λε1

)−1|V | 12
∥∥∥2

H.S.

=
∥∥∥((−∆)

s
2 + λε1

)− 1
2 |V |

(
(−∆)

s
2 + λε1

)− 1
2

∥∥∥2

H.S.

>
∥∥∥((−∆)

s
2 + λε1

)− 1
2 |V |

(
(−∆)

s
2 + λε1

)− 1
2

∥∥∥2

op
,

which implies, for some bε > 0,

|〈ϕ, V ϕ〉L2 | 6 ε 〈ϕ, (−∆)
s
2ϕ〉L2 + bε‖ϕ‖2L2 ∀ϕ ∈ D[(−∆)

s
2 ] = H

s
2 (R3) ,

and hence |V | 12 � (−∆)
s
4 .

(iii) The statement follows at once from (ii). �

For given V and η satisfying Assumption (Is), let us set

(2.2) h(s/2)
ε := (−∆)s/2 + Vε , Vε(x) :=

η(ε)

εs
V (xε ) , ε > 0 .

For every ε > 0 the operator h
(s/2)
ε , defined as a form sum, is self-adjoint on

L2(R3) and σess(h
(s/2)
ε ) = [0,+∞), as it follows from Lemma 2.1.1(iii).

The spectral properties of the unscaled operator (−∆)s/2 +V at the bottom of

the essential spectrum are crucial for the limit ε ↓ 0 in h
(s/2)
ε . In the next Theorem

we qualify the zero-energy behaviour of (−∆)s/2 + V .

Theorem 2.1.2. Let s ∈ ( 3
2 ,

5
2 ), V ∈ L1(R3, 〈x〉2s−3dx)∩Rs,3, real-valued. Let

v := |V | 12 and u := |V | 12 sign(V ).

(i) The operator u(−∆)−
s
2 v is compact on L2(R3).

Assume in addition that

(2.3) u(−∆)−
s
2 v φ = −φ for some φ ∈ L2(R3) \ {0}

and define

(2.4) ψ := (−∆)−
s
2 v φ .
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Then:

(ii) ψ ∈ L2
loc(R3) and

(
(−∆)s/2 + V

)
ψ = 0 in the sense of distributions,

(iii) 〈v, φ〉L2 = −
∫
R3

dxV (x)ψ(x),

(iv) ψ ∈ L2(R3) ⇔ 〈v, φ〉L2 = 0, in which case ψ ∈ D((−∆)s/2 + V ).

Proof. The fact that for a real-valued V ∈ L1(R3)∩Rs,3 the operator u(−∆)
s
2 v

is Hilbert-Schmidt follows from Lemma 2.1.1(i), thus part (i) is proved.
Let us split

ψ(x) = ((−∆)−
s
2 vφ)(x) =

∫
R3

dy
Λ

(3)
s

|x− y|3−s
v(y)φ(y)

=
Λ

(3)
s 〈v, φ〉L2

|x|3−s
+ Λ(3)

s

∫
R3

dy
( 1

|x− y|3−s
− 1

|x|3−s
)
v(y)φ(y)

≡ Λ
(3)
s 〈v, φ〉L2

|x|3−s
+ ψ1(x) ,

(a)

where Λs is the constant defined in (1.50). We show now that ψ1 ∈ L2(R3). To
this aim, we observe that setting ŷ := y

|y| one has∫
R3

dx
( 1

|x− y|3−s
− 1

|x|3−s
)2

= |y|2s−3

∫
R3

dx
( |x− ŷ |3−s − |x|3−s
|x− ŷ |3−s|x|3−s

)2

. |y|2s−3

∫
R3

dx
( 〈x〉2−s

|x− ŷ |3−s|x|3−s
)2

,

having used the change of variable x 7→ |y|x in the first step and the uniform bound∣∣|x − ŷ |3−s − |x|3−s∣∣ . 〈x〉2−s in the last step. Since s ∈ ( 3
2 ,

5
2 ), the last integral

above is finite, thus we deduce

(b)

∫
R3

dx
( 1

|x− y|3−s
− 1

|x|3−s
)2

. |y|2s−3 .

As a consequence,

‖ψ1‖2L2(R3) .
∫
R3

dx
∣∣∣ ∫

R3

dy
( 1

|x− y|3−s
− 1

|x|3−s
)
v(y)φ(y)

∣∣∣2
6
∫∫

R3×R3

dx dy
( 1

|x− y|3−s
− 1

|x|3−s
)2

|V (y)|

.
∫
R3

dy |V (y)| |y|2s−3 < +∞ ,

as follows from a Cauchy-Schwartz inequality in the second step, from the bound
(b) in the third step, and from the assumption V ∈ L1(R3, 〈x〉2s−3dx) in the last
step.

Since |x|−(3−s) ∈ L2
loc(R3), because s > 3

2 , then identity (a) implies that ψ ∈
L2

loc(R3). Moreover, from (2.3) and (2.4) one finds

V ψ = vu(−∆)−
s
2 vφ = −vφ = −(−∆)

s
2ψ ,

whence ((−∆)
s
2 + V )ψ = 0 distributionally. This completes the proof of part (ii).

Using (2.4) and the distributional identity proved in part (ii) one finds

〈v, φ〉L2 =

∫
R3

dx v(x)φ(x) =

∫
R3

dx ((−∆)
s
2ψ)(x) = −

∫
R3

dxV (x)ψ(x) ,

which proves part (iii).
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Last, the identity (a) also implies that ψ ∈ L2(R3) is equivalent to 〈v, φ〉L2 = 0.
When this is the case, the identity ((−∆)

s
2 +V )ψ = 0 holds in the L2-sense, implying

that ψ ∈ D((−∆)
s
2 + V ). This completes the proof of part (iv). �

When a L2-function φ exists that satisfies (2.3) and the corresponding function
ψ defined by (2.4) belongs to L2

loc(R3) \ L2(R3) we say that (−∆)s/2 + V is zero-

energy resonant and that ψ is a zero-energy resonance for (−∆)s/2 + V . If for
the zero-energy resonant operator (−∆)s/2 + V the eigenvalue −1 of u(−∆)−

s
2 v is

non-degenerate, then we say that the resonance is simple. Of course, if ψ ∈ L2(R3),
then ψ is an eigenfunction of (−∆)s/2 + V with eigenvalue zero.

In [85] a wide class of zero-energy resonant operators (−∆)s/2 +V is exhibited.
By means of a more refined discussion, in the same spirit of [73], one could also
identify the threshold coupling parameter λ ∈ R, for a given potential V in a
suitable class, for which (−∆)s/2 + λV is zero-energy resonant.

Let us now formulate our main result for dimension three. It is the control of the
approximation, in the norm resolvent sense, of the singular perturbation operator

k
(s/2)
α by means of Schrödinger operators with the s

2 -th fractional Laplacian and
shrinking potentials Vε around the origin. We shall prove it in Section 2.3.

Theorem 2.1.3. Let s ∈ ( 3
2 ,

5
2 ). Given a potential V and a distortion factor η

with strength ηs satisfying Assumption (Is), for every ε > 0 let h
(s/2)
ε = (−∆)s/2+Vε

be the corresponding self-adjoint Schrödinger operator defined in (2.2) with the s
2 -th

fractional Laplacian and the shrinking potential Vε.

(i) If (−∆)s/2 + V is not zero-energy resonant, then h
(s/2)
ε

ε↓0−−−→ (−∆)s/2 in
the norm-resolvent sense on L2(R3).

(ii) If (−∆)s/2 + V admits a simple zero-energy resonance ψ, then for

α := −ηs
∣∣∣∫

R3

dxV (x)ψ(x)
∣∣∣−2

one has h
(s/2)
ε

ε↓0−−−→ k
(s/2)
α in the norm-resolvent sense on L2(R3).

The two possible alternatives in Theorem 2.1.3 are the manifestation of the
locally singular, resonant-driven nature of the limit: the limit is well-posed for a
generic class of potentials V , but it is non-trivial only if additionally (−∆)s/2 + V
is zero-energy resonant.

By a simple scaling argument one sees that (−∆)s/2 + Vε remains zero-energy
resonant for any ε > 0 if the scaling is ‘purely geometric’, namely with trivial
distortion factor, η(ε) ≡ 1. In this case, the signature of the resonance is partic-
ularly transparent: as stated in Theorem 2.1.3(ii), the limit ε ↓ 0 with η(ε) ≡ 1
produces the extension parametrised by α = 0 and we see from Theorem 1.2.3(iv)

that the negative eigenvalue of k
(s/2)
α when α < 0 converges to 0 as α ↑ 0, with the

corresponding eigenfunction G
s,λ=|E(s)

α |
converging pointwise to Gs,0(x) =

Λ(3)
s

|x|(3−s)

(see (1.49)-(1.50) and (1.63) above). In fact, as already discussed in Remark 1.1.7
for the special case s = 2, the L2

loc \L2-function Gs,0 can be actually regarded

as a zero-energy resonance for k
(s/2)
α=0 (the local square-integrability following from

s ∈ ( 3
2 ,

5
2 )).

2.2. Approximation scheme in dimension one

In this Section we qualify each of the one-dimensional extensions k
(s/2)
α , iden-

tified in Theorem 1.2.6, as suitable limits of approximating fractional Schrödinger
operators with finite range potentials. Unlike the 3D setting, here the defect-one
regime s ∈ ( 1

2 ,
3
2 ) is separated by the transition value s = 1, below which we are in
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the locally singular case for the Green function Gs,λ, and above which we are in the
locally regular case. This will result in different assumptions on the approximating
potentials and different schemes for the resolvent limit.

We therefore proceed by splitting our discussion into the two above-mentioned
cases.

2.2.1. Locally singular, resonance-driven case.
This is the regime s ∈ ( 1

2 , 1). The Green function Gs,λ has a local singularity

(see (1.49)-(1.50)). For each s ∈ ( 1
2 , 1) we make the following assumption (the class

Rs,d was introduced in (2.1)).

Assumption (I−s ).

(i) V : R→ R is a measurable function in L1(R, 〈x〉2s−1dx) ∩Rs,1;
(ii) η : R→ R+ is a continuous function satisfying η(0) = η(1) = 1 and

η(ε) = 1 + ηs ε
1−s + o(ε1−s) as ε ↓ 0

for some ηs ∈ R that we call the strength of the distortion factor η.

For given V and η satisfying Assumption (I−s ), let us set

(2.5) h(s/2)
ε := (−∆)s/2 + Vε , Vε(x) :=

η(ε)

εs
V (xε ) , ε > 0 .

For every ε > 0 the operator h
(s/2)
ε , defined as a form sum, is self-adjoint on L2(R3)

and σess(h
(s/2)
ε ) = [0,+∞) (Lemma 2.4.2(iii)).

The zero-energy spectral behaviour of (−∆)s/2 + V , which is crucial for the

limit ε ↓ 0 in h
(s/2)
ε , is characterised by the following result, whose proof proceeds

along the same lines as in Theorem 2.1.2.

Theorem 2.2.1. Let s ∈ ( 1
2 , 1), V ∈ L1(R, 〈x〉2s−1dx) ∩ Rs,1, real-valued. Let

v := |V | 12 and u := |V | 12 sign(V ).

(i) The operator u(−∆)−
s
2 v is compact on L2(R).

Assume in addition that

(2.6) u(−∆)−
s
2 v φ = −φ for some φ ∈ L2(R) \ {0}

and define

(2.7) ψ := (−∆)−
s
2 v φ .

Then:

(ii) ψ ∈ L2
loc(R) and

(
(−∆)s/2 + V

)
ψ = 0 in the sense of distributions,

(iii) 〈v, φ〉L2 = −
∫
R

dxV (x)ψ(x),

(iv) ψ ∈ L2(R) ⇔ 〈v, φ〉L2 = 0, in which case ψ ∈ D((−∆)s/2 + V ).

With the same terminology of Section 2.1, we say that (−∆)s/2 + V is zero-
energy resonant and that ψ is a zero-energy resonance for (−∆)s/2 +V when there
exists a non-zero L2-function φ satisfying (2.6) and the corresponding function ψ
defined by (2.7) belongs to L2

loc(R)\L2(R). If, for the zero-energy resonant operator

(−∆)s/2+V , the eigenvalue −1 of u(−∆)−
s
2 v is non-degenerate, then the resonance

is simple. In [85], explicit examples of zero-energy resonant operators (−∆)s/2 +V
on L2(R) are exhibited.

Here below is our first main result in dimension one, relative to the resonance-
driven regime.
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Theorem 2.2.2. Let s ∈ ( 1
2 , 1). Given a potential V and a distortion factor η

with strength ηs satisfying Assumption (I−s ), for every ε > 0 let h
(s/2)
ε = (−∆)s/2 +

Vε be the corresponding self-adjoint Schrödinger operator defined in (2.5) with the
s
2 -th fractional Laplacian and the shrinking potential Vε.

(i) If (−∆)s/2 + V is not zero-energy resonant, then h
(s/2)
ε

ε↓0−−−→ (−∆)s/2 in
the norm-resolvent sense on L2(R).

(ii) If (−∆)s/2 + V admits a simple zero-energy resonance ψ, then for

α := −ηs
∣∣∣∫

R
dxV (x)ψ(x)

∣∣∣−2

one has h
(s/2)
ε

ε↓0−−−→ k
(s/2)
α in the norm-resolvent sense on L2(R).

We shall prove Theorem 2.2.2 in Section 2.4.
The alternative in Theorem 2.2.2 is completely analogous to that of Theorem

2.1.3, due to the the locally singular, resonant-driven nature of both limits: only
for zero-energy resonant operators (−∆)s/2 + V is the limit non-trivial.

The signature of the resonance is particularly transparent in the absence of
distortion factor: when η(ε) ≡ 1 by scaling one sees that (−∆)s/2 + Vε remains

zero-energy resonant for any ε > 0, and we may regard the limit operator k
(s/2)
α=0 too

as zero-energy resonant, for the negative eigenvalue of k
(s/2)
α when |α| 6= 0 vanishes

as |α| → 0 and the corresponding eigenfunctions becomes (proportional to) the
L2

loc\L2-function |x|−(1−s) (see (1.76) above).

2.2.2. Locally regular, resonance-independent case.
This is the regime s ∈ (1, 3

2 ). In contrast with the resonance-driven regime, no

spectral requirement is now needed on the unscaled fractional operator (−∆)s/2 +V
and the scaling in Vε is independent of s. Thus, we make the following assumption.

Assumption (I+
s ).

(i) V : R→ R is a measurable function in L1(R).
(ii) η : R+ → R+ is a smooth function satisfying η(1) = 1.

Correspondingly, we set

(2.8) h(s/2)
ε := (−∆)s/2 + Vε , Vε(x) :=

η(ε)

ε
V (xε ) , ε > 0 .

For every ε > 0 the operator h
(s/2)
ε , defined as a form sum, is self-adjoint on L2(R3)

and σess(h
(s/2)
ε ) = [0,+∞) (Lemma 2.5.1(iii)).

Here below is our second main result in dimension one, which, as opposite to
Theorem 2.2.2, takes the following form.

Theorem 2.2.3. Let s ∈ (1, 3
2 ). For every ε > 0 let h

(s/2)
ε = (−∆)s/2 + Vε

be defined according to Assumption (I+
s ) and (2.8). Then h

(s/2)
ε

ε↓0−−−→ k
(s/2)
α in the

norm-resolvent sense on L2(R), where

α := −
(
η(0)

∫
R

dxV (x)
)−1

.

We shall prove Theorem 2.2.3 in Section 2.5.
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2.3. Convergence of the 3D limit

The goal of this Section is to prove Theorem 2.1.3.
For chosen s ∈ ( 3

2 ,
5
2 ), ε > 0, and V and η satisfying Assumption (Is), let us

recall from (2.2) that Vε(x) = η(ε)
εs V (xε ) and let us define

v(x) := |V (x)| 12 , u(x) := |V (x)| 12 sign(V (x)) ,

vε(x) := |Vε(x)| 12 , uε(x) := |Vε(x)| 12 sign(Vε(x)) .
(2.9)

Thus,

(2.10) vε(x) =

√
η(ε)

εs/2
v(xε ) , uε(x) =

√
η(ε)

εs/2
u(xε ) , vεuε = Vε .

The Hamiltonian h
(s/2)
ε = (−∆)s/2 + Vε defined in (2.2) as a form sum is

self-adjoint on L2(R3), as guaranteed by Lemma 2.1.1(iii). An expression for its
resolvent that is convenient in the present context is the Konno-Kuroda identity
[74]. One has the following.

Lemma 2.3.1. Let V : R3 → R belong to L1(R3) ∩ Rs,3 for some s ∈ ( 3
2 ,

5
2 ).

Then (
h(s/2)
ε + λ1

)−1
=
(
(−∆)s/2 + λ1

)−1 −

−
(
(−∆)s/2 + λ1

)−1
vε

(
1+ uε

(
(−∆)s/2 + λ1

)−1
vε

)−1

uε
(
(−∆)s/2 + λ1

)−1
(2.11)

for every ε > 0 and every −λ < 0 in the resolvent set of h
(s/2)
ε , as an identity

between bounded operators on L2(R3).

Proof. The statement is precisely the application of the Konno-Kuroda resol-
vent identity, for which we follow the formulation presented in [9, Theorem B.1(b)],
to the operator (−∆)s/2 + vεuε. For the validity of such identity two conditions
are needed: the compactness of uε((−∆)s/2 + λ1)−1vε and the infinitesimal bound

|V | 12 � (−∆)
s
4 . Both conditions are guaranteed by Lemma 2.1.1. �

Observe that the invertibility of 1 + uε((−∆)s/2 + λ1)−1vε (with bounded
inverse) is part of the statement of the Konno-Kuroda formula (2.11).

It is convenient to manipulate the identity (2.11) further so as to isolate terms
in the r.h.s. which are easily controllable in the limit ε ↓ 0. To this aim, let
us introduce for each ε > 0 the unitary scaling operator Uε : L2(R3) → L2(R3)
defined by

(2.12) (Uεf)(x) :=
1

ε3/2
f(xε ) .

Its adjoint clearly acts as (U∗ε f)(x) = ε3/2f(εx). Uε induces the scaling transfor-
mations

U∗ε vεUε =

√
η(ε)

εs/2
v , U∗ε uεUε =

√
η(ε)

εs/2
u ,

U∗ε
(
(−∆)s/2 + λ1

)−1
Uε = εs

(
(−∆)s/2 + λεs1

)−1
,

(2.13)

whose proof is straightforward.
Let us also introduce, for each ε > 0 and for each µ > 0 such that −µs belongs

to the resolvent set of h
(s/2)
ε , the operators

A(s)
ε := ε−

3−s
2

(
(−∆)s/2 + µs1

)−1
(η(ε))−

1
2 vε Uε

B(s)
ε := η(ε)u

(
(−∆)s/2 + (µε)s1

)−1
v

C(s)
ε := U∗ε uε (η(ε))−

1
2

(
(−∆)s/2 + µs1

)−1
ε−

3−s
2 .

(2.14)
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We shall see in a moment (Lemma 2.3.3) that A
(s)
ε , B

(s)
ε , and C

(s)
ε are Hilbert-

Schmidt operators on L2(R3). Most importantly for our purposes, the resolvent of

h
(s/2)
ε takes the following convenient form.

Lemma 2.3.2. Under the present assumptions,

(2.15)
(
h(s/2)
ε + µs1

)−1
=
(
(−∆)s/2 + µs1

)−1 −A(s)
ε ε3−sη(ε)(1+B(s)

ε )−1C(s)
ε

for every ε > 0 and every µ > 0 such that −µs belongs to the resolvent set of h
(s/2)
ε .

Proof. In formula (2.11) we set λ = µs and we insert 1 = UεU
∗
ε in the second

summand of the r.h.s. right after ((−∆)s/2 +λ1)−1vε. We then commute U∗ε all the
way through by means of the scaling transformations (2.13): this way, we reproduce

the product A
(s)
ε ε3−sη(ε)(1+B

(s)
ε )−1C

(s)
ε . �

The limit ε ↓ 0 can be monitored explicitly for A
(s)
ε , B

(s)
ε , and C

(s)
ε .

Lemma 2.3.3. For every ε > 0, A
(s)
ε , B

(s)
ε , and C

(s)
ε are Hilbert-Schmidt oper-

ators on L2(R3) with limit

lim
ε↓0

A(s)
ε = |Gs,µs〉〈v|(2.16)

lim
ε↓0

B(s)
ε = B

(s)
0 = u (−∆)−

s
2 v(2.17)

lim
ε↓0

C(s)
ε = |u〉〈Gs,µs |(2.18)

in the Hilbert-Schmidt operator norm.

Proof. By construction, see (2.10), (2.12), and (2.14) above,

(A(s)
ε f)(x) = ε−

3−s
2 ε−

s
2 ε−

3
2

∫
R3

Gs,µs(x− y) v(yε )f(yε ) dy

=

∫
R3

Gs,µs(x− εy) v(y)f(y) dy ∀f ∈ L2(R3) ,

that is, A
(s)
ε acts as an integral operator with kernel Gs,µs(x−εy)v(y) . The latter is

clearly a function in L2(R3×R3,dx dy) uniformly in ε, and dominated convergence
implies

‖A(s)
ε ‖2H.S. =

∫∫
R3×R3

dx dy |Gs,µs(x− εy)v(y)|2 ε↓0−−−→ ‖Gs,µs‖2L2‖V ‖L1

as well as

〈g,A(s)
ε f〉L2 =

∫∫
R3×R3

dxdy g(x)Gs,µs(x− εy) v(y)f(y)

ε↓0−−−→ 〈g,Gs,µs〉L2〈v, f〉L2 ∀f, g ∈ C∞0 (R3) .

As a consequence, as ε ↓ 0, A
(s)
ε → |Gs,µs〉〈v| weakly in the operator topology,

and the Hilbert-Schmidt norm of A
(s)
ε converges to the Hilbert-Schmidt norm of

its limit. By a well-known feature of compact operators [103, Theorem 2.21], the

combination of these two properties implies that A
(s)
ε → |Gs,µs〉〈v| in the Hilbert-

Schmidt topology. This proves (2.16).

The discussion for C
(s)
ε is analogous: its integral kernel is u(x)Gs,µs(εx − y)

and (2.18) is proved by the very same type of argument.

Concerning B
(s)
ε , its integral kernel is η(ε)u(x)Gs,(µε)s(x− y)v(y) and the inte-

gral kernel of B
(s)
0 is u(x)Gs,0(x− y)v(y): owing to Lemma 2.1.1(i) both operators

are Hilbert Schmidt, and moreover by dominated convergence B
(s)
ε → B

(s)
0 weakly
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in the operator topology and ‖B(s)
ε ‖2H.S. → ‖B(s)

0 ‖2H.S. as ε ↓ 0. By the same
property [103, Theorem 2.21] the limit (2.17) then holds in the Hilbert-Schmidt
norm. �

It is evident from (2.15) that, in order for the limits (2.16)–(2.18) above to

qualify the behaviour of the resolvent of h
(s/2)
ε as ε ↓ 0, one needs additional

information on the possible failure of invertibility in L2(R3) of the operator 1+B
(s)
0 .

By the Fredholm alternative, since B
(s)
0 is compact, (1+B

(s)
0 )−1 exists everywhere

defined and bounded, in which case (2.15) implies at once
(
h

(s/2)
ε + µs1

)−1 →(
(−∆)s/2 + µs1

)−1
as ε ↓ 0, unless B

(s)
0 admits an eigenvalue −1.

Let us then assume that the latter circumstance does occurs, namely condition
(2.3) of Theorem 2.1.2. More precisely, we make the following assumption.

Assumption (IIs). Assumption (Is) holds. B
(s)
0 has eigenvalue −1, which is

non-degenerate. φ ∈ L2(R3) is a non-zero function such that B
(s)
0 φ = −φ and, in

addition, 〈φ̃, φ〉L2 = −1, where φ̃ := (signV )φ.

Since 〈φ̃, φ〉L2 = −〈(signV )φ, (signV )v(−∆)−
s
2 vφ〉L2 = −‖(−∆)−

s
4 vφ‖2L2 , the

normalisation 〈φ̃, φ〉L2 = −1 is always possible.

Under Assumption (IIs), (1+B
(s)
ε )−1 becomes singular in the limit ε ↓ 0, with

a singularity that now competes with the vanishing factor ε3−s of (2.15). To resolve

this competing effect, we need first an expansion of B
(s)
ε around ε = 0 to a further

order, than the limit (2.17). This expansion holds irrespectively of Assumption
(IIs).

Lemma 2.3.4. Let s ∈ ( 3
2 ,

5
2 ) and λ > 0.

(i) For every x ∈ R3\{0}

(2.19) lim
λ↓0

Gs,λ(x)− Gs,0(x)

(2πs sin( 3π
s ))−1λ

3
s−1

= 1 .

(ii) In the norm operator topology one has

(2.20) lim
ε↓0

1

(µε)3−s

(
B(s)
ε −B

(s)
0

)
=

ηs
µ3−s B

(s)
0 +

1

2πs sin( 3π
s )
|u〉〈v| .

Here µ > 0 is the constant chosen in the definition (2.14) of B
(s)
ε and

ηs ∈ R is the constant that is part of Assumption (Is).

Proof. (i) From (1.39) we write

Gs,λ(x)− Gs,0(x)

λ
3
s−1

=
1

λ
3
s−1(2π)

3
2

∫
R3

dp eix·p −λ
(2π)

3
2 |p|s(|p|s + λ)

= − 1

(2π)3

∫
R3

dp eiλ1/sx·p 1

|p|s(|p|s + 1)
,

whence

Gs,λ(x)− Gs,0(x)

λ
3
s−1

λ↓0−−−→ − 1

(2π)3

∫
R3

dp
1

|p|s(|p|s + 1)
=

1

2πs sin( 3π
s )

by dominated convergence, since p 7→ (|p|s(|p|s+1))−1 is integrable when s ∈ ( 3
2 , 3).

(ii) The Hilbert-Schmidt operator

1

(µε)3−s

(
B(s)
ε −B

(s)
0

)
− ηs

µ3−s B
(s)
0 − 1

2πs sin( 3π
s )
|u〉〈v|
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has integral kernel

u(x)
( η(ε)− 1

(µε)3−s −
ηs
µ3−s

)
Gs,(µε)s(x− y) v(y) +

+ u(x)
( Gs,(µε)s(x− y)− Gs,0(x− y)

(µε)3−s − 1

2πs sin( 3π
s )

)
v(y) .

(*)

The first summand in (*) vanishes as ε ↓ 0 for a.e. x, y ∈ R3 as a consequence of
Assumption (Is)(ii), and so does the second summand in (*) as a consequence of
(2.19), where we take λ = (µε)s. Moreover, each such summand belongs to L2(R3×
R3,dxdy) uniformly in ε, thanks to the assumption (Is)(i) on the potentials v and
u. Thus, by dominated convergence, the function (*) vanishes in L2(R3×R3,dxdy)
as ε ↓ 0, and this proves the limit (2.20) in the Hilbert-Schmidt norm. �

We can now monitor the competing effect in ε3−s(1+B
(s)
ε )−1 as ε ↓ 0.

Lemma 2.3.5. Under the Assumptions (Is) and (IIs) one has

(2.21) lim
ε↓0

(µε)3−s(
1+B(s)

ε

)−1
=
( ηs
µ3−s +

|〈v, φ〉L2 |2

2πs sin 3π
s

)−1

|φ〉〈φ̃|

in the operator norm topology.

Proof. We re-write (2.20) in the form of the expansion

(i) B(s)
ε = B

(s)
0 + (µε)3−sB(s) + o(ε3−s)

where, for short,

B(s) :=
ηs
µ3−s B

(s)
0 +

1

2πs sin( 3π
s )
|u〉〈v| ,

whence also

(µε)3−s(
1+B(s)

ε

)−1
=

=
(
1+ (µε)3−s(

1+ (µε)3−s +B
(s)
0

)−1(B(s) − 1+ o(1)
))−1

×

× (µε)3−s(
1+ (µε)3−s +B

(s)
0

)−1
.

(ii)

The o(εa)-remainders in (i) and (ii) above are clearly meant in the Hilbert-Schmidt
norm.

The operator (µε)3−s(1+ (µε)3−s +B
(s)
0 )−1 that appears twice in (ii) is of the

form

z(1+ T + z1)−1 , z ∈ C \ {0} ,
for a closed operator T with isolated eigenvalue −1; this is a general setting for
which a well-known expansion by Kato is available as z → 0 [68, Sec. 3.6.5], which
in the present context (in complete analogy with the argument of the proof of [9,
Lemma I.1.2.4]) reads

(iii) (µε)3−s(
1+ (µε)3−s +B

(s)
0

)−1
= −|φ〉〈φ̃|+O(ε3−s)

as ε ↓ 0 in the operator norm topology. In practice, (1+ (µε)3−s+B
(s)
0 )−1 remains

bounded also in the limit ε ↓ 0 when restricted to the orthogonal complement of

the eigenspace −1 of B
(s)
0 , whereas it becomes singular when restricted to such

eigenspace; the magnitude of the singularity is precisely (µε)−(3−s), which is can-
celled exactly by the pre-factor (µε)3−s in the l.h.s. of (iii). In fact, by assumption

of non-degeneracy, the eigenspace −1 is spanned by φ and P := −|φ〉〈φ̃| projects

onto span{φ} with Pφ = φ, as follows from the normalisation 〈φ̃, φ〉L2 = −1.
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Combining (ii) and (iii) above yields

(iv) (µε)3−s(
1+B(s)

ε

)−1
=
(
1+ P (B(s) − 1) +O(ε3−s)

)−1
(P +O(ε3−s))

as ε ↓ 0 in the operator norm topology.
Next, in order to see that the limit ε ↓ 0 in the r.h.s. of (iv) exists and is a

bounded operator, we write explicitly

1+ P (B(s) − 1) = 1− |φ〉〈φ̃|
( ηs
µ3−s u(−∆)−

s
2 v +

1

2πs sin( 3π
s )
|u〉〈v| − 1

)
= 1+

ηs
µ3−s |φ〉〈φ̃| −

〈v, φ〉L2

2πs sin( 3π
s )
|φ〉〈v|+ |φ〉〈φ̃| ,

(v)

where we used the identities 〈φ̃, u〉L2 = 〈φ, v〉L2 and〈
φ̃, u(−∆)−

s
2 vf

〉
L2 =

〈
v(−∆)−

s
2u φ̃, f

〉
L2 =

〈
(signV )u(−∆)−

s
2 vφ, f

〉
L2

= −〈φ̃, f〉L2 ∀f ∈ L2(R3) .

Setting the constants

a :=
( ηs
µ3−s + 1

)( ηs
µ3−s +

|〈v, φ〉L2 |2

2πs sin 3π
s

)−1

b := − 〈v, φ〉L2

2πs sin 3π
s

( ηs
µ3−s +

|〈v, φ〉L2 |2

2πs sin 3π
s

)−1

,

the expression (v) allows one to compute explicitly (using again 〈φ̃, φ〉L2 = −1)(
1+ P (B(s) − 1)

) (
1+ a |φ〉〈φ̃|+ b |φ〉〈v|

)
= 1

and therefore to deduce that (1+ P (B(s) − 1))−1 exists and is bounded. This fact
allows one to deduce from (iv) that

(vi) lim
ε↓0

(µε)3−s(
1+B(s)

ε

)−1
=
(
1+ P (B(s) − 1))

)−1
P

in the operator norm topology.

Last, from (v), using 〈φ̃, φ〉L2 = −1 and 〈φ̃, u〉L2 = 〈φ, v〉L2 , one finds(
1+ P (B(s) − 1)

)
φ = −

( ηs
µ3−s +

|〈v, φ〉L2 |2

2πs sin 3π
s

)
φ

and hence (
1+ P (B(s) − 1)

)−1
φ = −

( ηs
µ3−s +

|〈v, φ〉L2 |2

2πs sin 3π
s

)−1

φ .

Plugging the latter identity into (vi) yields finally (2.21) as a limit in the operator
norm. �

We are now in the condition to prove Theorem 2.1.3.

Proof of Theorem 2.1.3. Owing to (2.15) we need to determine the limit
of

−A(s)
ε ε3−sη(ε)(1+B(s)

ε )−1C(s)
ε

as ε ↓ 0. As observed already, if u(−∆)−
s
2 v has no eigenvalue −1, then the above

expression vanishes with ε and(
h(s/2)
ε + µs1

)−1 ε↓0−−−→
(
(−∆)s/2 + µs1

)−1

in the operator norm. If instead u(−∆)−
s
2 v does admit a simple eigenvalue −1,

be (−∆)
s
2 + V zero-energy resonant or not, we are under the Assumption (Is) and
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(IIs) of the present Section and we can therefore apply the limits (2.16), (2.18), and
(2.21). This yields

−A(s)
ε ε3−sη(ε)(1+B(s)

ε )−1C(s)
ε

ε↓0−−−→ − |Gs,µs〉〈v| ◦
(
ηs +

µ3−s|〈v, φ〉L2 |2

2πs sin 3π
s

)−1

|φ〉〈φ̃| ◦ |u〉〈Gs,µs |

= − |〈v, φ〉L2 |2

ηs +
µ3−s|〈v, φ〉L2 |2

2πs sin 3π
s

|Gs,µs〉〈Gs,µs |
(*)

in the operator norm, having used 〈φ̃, u〉L2 = 〈φ, v〉L2 . Now, if (−∆)
s
2 + V is

not zero-energy resonant, then 〈v, φ〉L2 = 0, owing to Theorem 2.1.2(iv), and the
conclusion is again (

h(s/2)
ε + µs1

)−1 ε↓0−−−→
(
(−∆)s/2 + µs1

)−1

in the operator norm. This proves part (i) of the present Theorem. If instead
(−∆)

s
2 + V is zero-energy resonant, then using 〈v, φ〉L2 6= 0 and plugging (*) back

into (2.15) yields(
h(s/2)
ε + µs1

)−1 ε↓0−−−→
(
(−∆)s/2 + µs1

)−1

+
1

−ηs
|〈v, φ〉L2 |2

− µ3−s

2πs sin 3π
s

|Gs,µs〉〈Gs,µs |

in the operator norm. Upon setting α := −ηs|〈v, φ〉L2 |−2 and λ = µs, and compar-
ing the resulting expression with (1.61), this means(

h(s/2)
ε + λ1

)−1 ε↓0−−−→
(
(−∆)s/2 + λ1

)−1
+
(
α− λ

3
s
−1

2πs sin( 3π
s )

)−1 |Gs,λ〉〈Gs,λ|

= (k(s/2)
α + λ1)−1 ,

which proves part (ii) of the Theorem. �

2.4. Convergence of the 1D limit: resonant-driven case

The proof of the limit h
(s/2)
ε

ε↓0−−−→ k
(s/2)
α in dimension one when s ∈ ( 1

2 , 1)
(Theorem 2.2.2) is technically analogous to that in three dimensions. Therefore,
based on the detailed discussion of the preceding Section, we only present here the
steps of the convergence scheme and a sketch of their proofs.

Prior to that, let us set up the key resolvent identity and useful scaling prop-
erties with a notation that we can use also in Section 2.5 when we will deal with
the resonant-independent limit.

We then keep s ∈ ( 1
2 , 1) ∪ (1, 3

2 ) generic for a moment and, in a unified form,
we re-write (2.5) and (2.8) as

(2.22) Vε(x) =
η(ε)

ε
s+γ
2

V (xε ) .

Taking γ = s in (2.22) yields (2.5) and taking γ = 2− s yields (2.8). Thus, setting

v(x) := |V (x)| 12 , u(x) := |V (x)| 12 sign(V (x)) ,

vε(x) := |Vε(x)| 12 , uε(x) := |Vε(x)| 12 sign(Vε(x)) ,
(2.23)

one has

(2.24) vε(x) =

√
η(ε)

ε(s+γ)/4
v(xε ) , uε(x) =

√
η(ε)

ε(s+γ)/2
u(xε ) , vεuε = Vε .
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The 1D analogue Uε : L2(R) → L2(R) of the unitary scaling operator (2.12)
acts as

(2.25) (Uεf)(x) := 1
ε1/2

f(xε ) ,

which induces the scaling transformations

U∗ε vεUε =

√
η(ε)

ε
s+γ
4

v , U∗ε uεUε =

√
η(ε)

ε
s+γ
4

u ,

U∗ε
(
(−∆)s/2 + λ1

)−1
Uε = εs

(
(−∆)s/2 + λεs1

)−1
.

(2.26)

Based on arguments that differ depending on whether s ∈ ( 1
2 , 1) or s ∈ (1, 3

2 )
and which we shall prove in due time, the Konno-Kuroda-type resolvent identity(

h(s/2)
ε + λ1

)−1
=
(
(−∆)s/2 + λ1

)−1 −

−
(
(−∆)s/2 + λ1

)−1
vε

(
1+ uε

(
(−∆)s/2 + λ1

)−1
vε

)−1

uε
(
(−∆)s/2 + λ1

)−1
(2.27)

holds as an identity between bounded operators on L2(R) for every ε > 0 and every

−λ < 0 in the resolvent set of h
(s/2)
ε . Inserting UεU

∗
ε = 1 into (2.27) and applying

(2.26) then yields

(2.28)
(
h(s/2)
ε + λ1

)−1
=
(
(−∆)s/2 + λ1

)−1 −A(s)
ε ε

2−s−γ
2 η(ε)(1+B(s)

ε )−1C(s)
ε ,

having defined

A(s)
ε := ε−

2−s−γ
2

(
(−∆)s/2 + λ1

)−1
(η(ε))−

1
2 vε Uε

B(s)
ε := η(ε) ε

s−γ
2 u

(
(−∆)s/2 + λεs1

)−1
v

C(s)
ε := U∗ε uε (η(ε))−

1
2

(
(−∆)s/2 + λ1

)−1
ε−

2−s−γ
2 .

(2.29)

We shall see in a moment (Lemma 2.4.3) that A
(s)
ε , B

(s)
ε , and C

(s)
ε are Hilbert-

Schmidt operators on L2(R).
The following scaling property too is going to be useful in both regimes s ∈

( 1
2 , 1) and s ∈ (1, 3

2 ).

Lemma 2.4.1. For any s, γ, ε > 0 and any x ∈ R\{0} one has

(2.30) ε
s−γ
2 Gs,λεs(x) = ε

2−s−γ
2 Gs,λ(εx) .

Proof. Owing to (1.39),

ε
s−γ
2 Gs,λεs(x) =

1

2π
ε
s−γ
2

∫
R

dp eipx 1

|p|s + λεs

=
1

2π
ε

2−s−γ
2

∫
R

dp eip(εx) 1

|p|s + λ
= ε

2−s−γ
2 Gs,λ(εx) ,

whence the thesis. �

We can now start the discussion for the proof of Theorem 2.2.2, thus working
in the regime s ∈ ( 1

2 , 1).
First, we have the following properties.

Lemma 2.4.2. Let V : R→ R belong to L1(R)∩Rs,1 for some s ∈ ( 1
2 , 1). Then:

(i) for every λ > 0, |V | 12 ((−∆)
s
2 + λ1)−1|V | 12 is a Hilbert-Schmidt operator

on L2(R);

(ii) |V | 12 � (−∆)
s
4 in the sense of infinitesimally bounded operators;

(iii) the operator (−∆)
s
2 + V defined as a form sum is self-adjoint on L2(R),

and σess((−∆)
s
2 + V ) = [0,+∞).
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Proof. The proof is completely analogous to that of Lemma 2.1.1 for the 3D
case, and is based on the fact that the integral kernel of |V | 12 ((−∆)

s
2 + λ1)−1|V | 12 ,

namely |V (x)| 12Gs,λ(x− y)|V (y)| 12 , belongs to L2(R× R,dxdy), as a direct conse-
quence of the assumption V ∈ L1(R) ∩Rs,1. �

Lemma 2.4.2 justifies the validity of the resolvent identity (2.27), and hence of
the rescaled identity (2.28), owing again to the general argument of [9, Theorem
B.1(b)].

Next, we monitor separately the following limits.

Lemma 2.4.3. Let V and η satisfy Assumption (I−s ) for some s ∈ ( 1
2 , 1). For

every ε > 0, the operators A
(s)
ε , B

(s)
ε , and C

(s)
ε defined by (2.22)-(2.24) and (2.29)

with γ = s are Hilbert-Schmidt operators on L2(R) with limit

lim
ε↓0

A(s)
ε = |Gs,λ〉〈v|(2.31)

lim
ε↓0

B(s)
ε = B

(s)
0 = u (−∆)−

s
2 v(2.32)

lim
ε↓0

C(s)
ε = |u〉〈Gs,λ|(2.33)

in the Hilbert-Schmidt operator norm.

Proof. Completely analogous to the proof of Lemma 2.3.3, the integral kernels
being now (with γ = s)

A(s)
ε (x, y) = Gs,λ(x− εy) v(y)

B(s)
ε (x, y) = η(ε)u(x)Gs,λεs(x− y) v(y)

C(s)
ε (x, y) = u(x)Gs,λ(εx− y) .

In particular, owing to (2.30),

B(s)
ε (x, y) = η(ε) ε1−su(x)Gs,λ(εx− εy) v(y) ,

and using (1.49)-(1.50) one finds

B(s)
ε (x, y)

ε↓0−−−→ u(x)
21−sΓ( 1−s

2 )

(2π)
1
2 Γ( s2 )

1

|x− y|1−s
v(y) = B

(s)
0 (x, y)

pointwise almost everywhere. �

Before plugging the limits found in Lemma (2.4.3) into (2.28), that now reads

(2.34)
(
h(s/2)
ε + λ1

)−1
=
(
(−∆)s/2 + λ1

)−1 −A(s)
ε ε1−sη(ε)(1+B(s)

ε )−1C(s)
ε ,

we see that, since B
(s)
0 is compact, (1 + B

(s)
0 )−1 exists everywhere defined and

bounded, in which case
(
h

(s/2)
ε + λ1

)−1 →
(
(−∆)s/2 + λ1

)−1
as ε ↓ 0, unless B

(s)
0

admits an eigenvalue −1. We then consider the following additional assumption.

Assumption (II−s ). Assumption (I−s ) holds. B
(s)
0 has eigenvalue −1, which is

non-degenerate. φ ∈ L2(R3) is a non-zero function such that B
(s)
0 φ = −φ and, in

addition, 〈φ̃, φ〉L2 = −1, where φ̃ := (signV )φ.

Since 〈φ̃, φ〉L2 = −〈(signV )φ, (signV )v(−∆)−
s
2 vφ〉L2 = −‖(−∆)−

s
4 vφ‖2L2 , the

normalisation 〈φ̃, φ〉L2 = −1 is always possible.

When Assumption (II−s ) holds, (1+B
(s)
ε )−1 becomes singular in the limit ε ↓ 0,

with a singularity that now competes with the vanishing factor ε1−s of (2.34). To

resolve this competing effect, we need first to expand B
(s)
ε around ε = 0 to a further

order, than the limit (2.32). This expansion is valid irrespectively of Assumption
(II−s ).
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Lemma 2.4.4. Let s ∈ ( 1
2 , 1) and λ > 0.

(i) For every x ∈ R\{0}

(2.35) lim
λ↓0

Gs,λ(x)− Gs,0(x)

(s sin(πs ))−1λ
1
s−1

= 1 .

(ii) In the norm operator topology one has

(2.36) lim
ε↓0

1

λ
1
s−1ε1−s

(
B(s)
ε −B

(s)
0

)
=

ηs

λ
1
s−1

B
(s)
0 +

1

s sin( 3π
s )
|u〉〈v| .

Here ηs ∈ R is the constant that is part of Assumption (I−s ).

Proof. Completely analogous to the proof of Lemma 2.3.4 for the 3D case. �

We can now monitor the competing effect in ε1−s(1+B
(s)
ε )−1 as ε ↓ 0.

Lemma 2.4.5. Under the Assumptions (I−s ) and (II−s ) one has

(2.37) lim
ε↓0

ε1−s(
1+B(s)

ε

)−1
=
(
ηs +

|〈v, φ〉L2 |2

λ
1
s−1s sin π

s

)−1

|φ〉〈φ̃|

in the operator norm topology.

Proof. Completely analogous to the proof of Lemma 2.3.5 for the 3D case. �

With these preliminaries at hand, we can prove Theorem 2.2.2.

Proof of Theorem 2.2.2. The argument is the very same as the in the proof
of Theorem 2.1.3 for the 3D case. Thus, the limit is the trivial one unless the
potential in the approximating operators satisfy Assumptions (I−s ) and (II−s ), in
which case, plugging the limits (2.31), (2.33), and (2.37) into (2.34), one has(

h(s/2)
ε + µs1

)−1 ε↓0−−−→
(
(−∆)s/2 + µs1

)−1

+
1

−ηs
|〈v, φ〉L2 |2

− 1

λ1− 1
s s sin 3π

s

|Gs,µs〉〈Gs,µs | .

The comparison of the limit resolvent above with formulas (1.69) and (1.73) shows

finally that the limit resolvent is precisely (k
(s/2)
α + λ1)−1 where the extension

parameter satisfies α = −ηs|
∫
R dxV (x)ψ(x)|−2, and this completes the proof. �

2.5. Convergence of the 1D limit: resonant-independent case

This Section contains the proof of Theorem 2.2.3. Thus, now s ∈ (1, 3
2 ) and

formulas (2.22)-(2.30) must be specialised with γ = 2− s.
First, we observe that with L1-potentials the following operator-theoretic prop-

erties hold.

Lemma 2.5.1. Let V : R→ R belong to L1(R) and let s ∈ (1, 3
2 ). Then:

(i) for every λ > 0, |V | 12 ((−∆)
s
2 + λ1)−1|V | 12 is a Hilbert-Schmidt operator

on L2(R);

(ii) |V | 12 � (−∆)
s
4 in the sense of infinitesimally bounded operators;

(iii) the operator (−∆)
s
2 + V defined as a form sum is self-adjoint on L2(R),

and σess((−∆)
s
2 + V ) = [0,+∞).

Proof. Since s > 1, (1.39) defines a function Ĝs,λ ∈ L1(R), whence Gs,λ ∈
C∞(R) (continuous and vanishing at infinity). Therefore, the integral kernel of

|V | 12 ((−∆)
s
2 + λ1)−1|V | 12 , namely |V (x)| 12Gs,λ(x − y)|V (y)| 12 , belongs to L2(R ×

R,dxdy), and this holds for any λ > 0. Based on this observation, the rest of the
reasoning of the proof of Lemma 2.1.1 can be repeated verbatim. �
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Following again the general argument of [9, Theorem B.1(b)], Lemma 2.5.1 jus-
tifies the validity of the resolvent identity (2.27), and hence of the rescaled identity
(2.28), that now reads

(2.38)
(
h(s/2)
ε + λ1

)−1
=
(
(−∆)s/2 + λ1

)−1 − η(ε)A(s)
ε (1+B(s)

ε )−1C(s)
ε

for every ε > 0 and every −λ < 0 in the resolvent set of h
(s/2)
ε .

Lemma 2.5.2. Let V and η satisfy Assumption (I+
s ) for some s ∈ (1, 3

2 ). For

every ε > 0, the operators A
(s)
ε , B

(s)
ε , and C

(s)
ε defined by (2.22)-(2.24) and (2.29)

with γ = 2− s are Hilbert-Schmidt operators on L2(R) with limit

lim
ε↓0

A(s)
ε = |Gs,λ〉〈v|(2.39)

lim
ε↓0

B(s)
ε = B

(s)
0 =

η(0)

λ1− 1
s s sin π

s

|u〉〈v|(2.40)

lim
ε↓0

C(s)
ε = |u〉〈Gs,λ|(2.41)

in the Hilbert-Schmidt operator norm.

Proof. The integral kernels are now

A(s)
ε (x, y) = Gs,λ(x− εy) v(y)

B(s)
ε (x, y) = η(ε) εs−1 u(x)Gs,λεs(x− y) v(y)

C(s)
ε (x, y) = u(x)Gs,λ(εx− y) .

For A
(s)
ε and C

(s)
ε we reason precisely as in the proof of Lemma 2.3.3. B

(s)
ε is

Hilbert-Schmidt as a consequence of Lemma 2.5.1. Re-writing

B(s)
ε (x, y) = η(ε)u(x)Gs,λ(εx− εy) v(y)

by means of (2.30), and observing that (1.39) implies

Gs,λ(εx− εy)
ε↓0−−−→ Gs,λ(0) =

1

λ1− 1
s s sin π

s

,

one deduces

B(s)
ε (x, y)

ε↓0−−−→ η(0)

λ1− 1
s s sin π

s

u(x)v(y) .

Then a dominated convergence argument, analogous to that used in the proof of
Lemma 2.3.3, proves (2.40). �

It is now convenient to observe the following (see [35, Lemma 5.1] for an anal-
ogous argument).

Lemma 2.5.3. Assume that the data s ∈ (1, 3
2 ), λ > 0 with −λ in the resolvent

set of all the h
(s/2)
ε ’s, and V and η matching Assumption (I+

s ), do not satisfy the
exceptional relation

(2.42) 1 +
η(0)

λ1− 1
s s sin π

s

∫
R
dxV (x) = 0 .

Then the operator 1 + B
(s)
0 is invertible with bounded inverse, everywhere defined

on L2(R).
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Proof. Since B
(s)
0 is compact on L2(R), based on the Fredholm alternative

we have to prove that the validity of (2.42) is equivalent to B
(s)
0 having eigenvalue

−1. In fact, B
(s)
0 φ = −φ for some non-zero φ ∈ L2(R) is the same as

φ =
η(0)

λ1− 1
s s sin π

s

〈v, φ〉L2 u ,

meaning that φ is not orthogonal to v and φ is a multiple of u. When this is

the case, u itself must be an eigenfunction of B
(s)
0 with eigenvalue −1, and this is

tantamount, owing to the identity above, as the validity of (2.42). �

For given s, η, and V , the exceptional value of −λ satisfying (2.42) is going to

correspond to the negative eigenvalue of k
(s/2)
α described in Theorem 1.2.6(iv). As

we are going to monitor the limit h
(s/2)
ε

ε↓0−−−→ k
(s/2)
α in the resolvent sense, not only

must we discard the spectral points −λ not belonging to the resolvent set of all the

h
(s/2)
ε ’s, but also the point −λ given by (2.42). Thus, for our purposes the operator

1+B
(s)
0 is always invertible with everywhere defined bounded inverse.

In particular, (2.40) implies

(2.43) (1+B(s)
ε )−1 ε↓0−−−→ (1+B

(s)
0 )−1

in the operator norm.
Based on the preceding preparatory materials, we can now prove Theorem 2.2.3.

Proof of Theorem 2.2.3. Since (2.42) is excluded and therefore

(1+B
(s)
0 )−1u =

(
1 +

η(0)
∫
R dxV (x)

λ1− 1
s s sin π

s

)−1

u ,

then plugging the limits (2.39), (2.41), and (2.43) into (2.38) yields(
h(s/2)
ε + λ1

)−1 ε↓0−−−→
(
(−∆)s/2 + λ1

)−1 −
η(0)

∫
R dxV (x)

1 +
η(0)

∫
R dxV (x)

λ1− 1
s s sin π

s

|Gs,λ〉〈Gs,λ|

in the operator norm. Upon setting

α := −
(
η(0)

∫
R

dxV (x)
)−1

and comparing the resulting expression with (1.69) and (1.73), one finds(
h(s/2)
ε + λ1

)−1 ε↓0−−−→
(
(−∆)s/2 + λ1

)−1
+

1

α− 1

λ1− 1
s s sin π

s

|Gs,λ〉〈Gs,λ|

= (k(s/2)
α + λ1)−1 ,

which completes the proof. �



CHAPTER 3

Time-dependent scattering theory

In this Chapter we discuss the time-dependent scattering theory of three-
dimensional Schrödinger operators with point interactions. We begin by introducing
some basic facts of scattering theory (see [76, 97] for a comprehensive discussion).

Consider a pair (H,H0) of self-adjoint operators on an Hilbert spaceH. Assume
moreover that the spectrum of H0 is purely absolutely continuous (a typical choice
is H0 = −∆, the free negative Laplacian on H = L2(Rd)). The wave operators
W± := W±(H,H0) relative to the pair (H,H0) are defined by

W± := s-lim
t→±∞

eitHe−itH0 ,

whenever the strong limit exists.
Wave operators are of paramount importance for the study of the scattering

governed by the interaction Hamiltonian H in comparison with the free (reference)
Hamiltonian H0. Suppose, e.g., that g ∈ ranW+, viz. g = W+f for some f ∈
D(W+). It follows by the definition of wave operators that

(3.1) ‖e−itHg − e−itH0f‖H → 0 as t→ +∞.
Hence, the perturbed unitary evolution e−itHg looks asymptotically free as t →
+∞. Analogously, if g ∈ ranW− then e−itHg looks asymptotically free as t→ −∞.
When g ∈ ranW+∩ranW−, we say that g is a scattering state. A relevant situation
occurs when every state in L2

ac(H) (the absolutely continuous spectral subspace of
H for H) is a scattering state. This motivates the following definition.

Definition 3.0.1. The wave operators W± relative to the pair (H,H0) are
said to be complete if ranW± = L2

ac(H).

Let us denote by Pac(H) the orthogonal projection onto L2
ac(H). Completeness

of wave operators has a number of important consequences.

Proposition 3.0.2. Assume that the wave operators W± relative to the pair
(H,H0) are complete. Then

(i) the absolutely continuous part of H, namely the operator HPac(H), is
unitarily equivalent to H0.

(ii) W+ and W− are unitary from L2(R3) onto L2
ac(H).

(iii) W+ and W− intertwine HPac(H) and H0, namely, for any Borel function
f on R one has the identity

(3.2) f(H)Pac(H) = W± f(H0) (W±)∗ .

Through the intertwining formula (3.2), mapping properties of f(H)Pac(H) can
be deduced from those of f(H0), provided that the corresponding ones of W± are

known. Thus, the Lp
′ → Lp boundedness of f(H)Pac(H) follows from the Lp

′ → Lp

boundedness of f(H0) and the Lp → Lp boundedness of W±: more precisely, if

W± ∈ B(Lp(Rd)) for some p ∈ [1,∞], then (W±)∗ ∈ B(Lp
′
(Rd)) and hence

(3.3) ‖f(H)Pac)‖B(Lp′ ,Lp) 6 Cp ‖f(H0)‖B(Lp′ ,Lp) ,

the constant Cp being independent of f .

37
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The literature on the Lp-boundedness of wave operators relative to actual
Schrödinger operators of the form −∆ + V , for sufficiently regular V : Rd → R
vanishing at spatial infinity, is vast [111, 112, 15, 108, 65, 30, 43, 66, 17, 114,
115, 18, 19] and the problem is well known to depend crucially on the spectral
properties of −∆ + V at the bottom of the absolutely continuous spectrum, that
is, at energy zero.

For singular perturbations of the Schrödinger operators, the picture is much
less developed and is essentially limited to the one-dimensional case [38]. In my
recent work [36], in collaboration with G. Dell’Antonio, A. Michelangeli, and K.
Yajima, we study Lp-bounds for the wave operators of the three-dimensional multi-
centre point interaction Hamiltonian. For given Y ⊆ R3 and α ∈ RN , let us set
Hα,Y := −∆α,Y , H0 = −∆, and

(3.4) W±α,Y := W±(Hα,Y , H0) = s-lim
t→±∞

eitHα,Y e−itH0 .

We set also

(3.5)
R0(z) := (H0 − z1)−1 z ∈ C \[0,+∞) ,

Rα,Y (z) := (Hα,Y − z1)−1 ζ ∈ C \ σ(Hα,Y ) ,

that is, the resolvents of the operators H0 and Hα,Y .
Since the resolvent difference Rα,Y (µ) − R0(µ) is of finite rank (Theorem

1.1.2(iii)), standard arguments from scattering theory [97] guarantee that the wave
operatorsW±α,Y exist and are complete in L2(R3). We provide a manageable formula

for (the integral kernel of) W±α,Y , which we obtain by manipulating the resolvent

difference (Hα,Y − z21)−1 − (H0 − z21)−1: since this difference is an explicitly
known finite rank operator for any dimensions d = 1, 2, 3, our derivation can be
naturally exported also to lower dimensions.

Based on our representation of W±α,Y , we then establish our main result:

Theorem 3.0.3. For any Y ≡ {y1, . . . , yN} ⊆ R3 and α ≡ (α1, . . . , αN ) ∈ RN ,
the wave operators W±α,Y exist and are complete in L2(R3). Assume moreover that

zero is not an eigenvalue for Hα,Y , and that the matrix Γα,Y (z) is invertible for
z ∈ R \ {0}. Then W±α,Y are bounded in Lp(R3) for 1 < p < 3, and unbounded
for p = 1 and for p > 3.

Remark 3.0.4. We conjecture that the hypothesis of absence of poles z ∈
R\{0} for Γα,Y (z)−1 is always satisfied, in analogy with the well-known picture for
regular Schrödinger operators with short range potentials (see [48] and references
therein). The conjecture can be proved by a direct computation in the case of few
centres of interactions. Moreover, possible counterxamples could only occur for
particular configurations of the centres and for a measure zero set of choices of α.

Remark 3.0.5. The fact that Lp-boundedness holds only for p ∈ (1, 3) is
consistent with the analogous result for actual Schrödinger operators. Indeed it is
well known [114, 115] that the wave operators for three-dimensional Schrödinger
operators −∆ + V admitting a zero-energy resonance are Lp-bounded if and only
if p ∈ (1, 3), and moreover, in complete analogy with the disussion of Chapter 2 in
the single centre case, it can be proved [9, Theorem II.1.2.1] that Hα,Y is actually
the strong resolvent limit in L2(R3), as ε ↓ 0, of Schrödinger operators of the form

(3.6) H(ε) = −∆ + ε−2
N∑
j=1

λj(ε)Vj

(x− yj
ε

)
for suitable real-analytic λj(ε)’s with λ(0) = 1 and real potentials Vj of finite Rollnik
norm such that −∆ + Vj has a zero-energy resonance for each j ∈ {1, . . . , N}.
To fully substantiate such a parallelism between singular and regular Schrödinger
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operators, it would be of great interest to monitor the convergence, as bounded
operators in Lp(R3) for p ∈ (1, 3), of the wave operators for the pair (Hε, H0) to
the wave operator W±α,Y . Along this line, in Section 3.5 we present the proof of this
result in the special case N = 1, α = 0.

Observe that, by virtue of Lemma 1.1.3, the complex conjugation u 7→ Cu := u
reverses the direction of time, i.e.,

(3.7) C−1e−itHα,Y C = eitHα,Y , C−1e−itH0C = eitH0 ,

whence

(3.8) W−α,Y = C−1W+
α,Y C .

Thus, once the Lp-boundedness is proved for W+
α,Y and all p ∈ (1, 3), the same result

follows for W−α,Y via (3.8). Analogously, it suffices to prove the Lp-unboundedness

of W+
α,Y , for p = 1 and p ∈ [3,∞), in order to have same result for W−α,Y .

The first key ingredient of our analysis in an explicit representation of the
(integral kernel of) wave operators W+

α,Y , based on the explicit resolvent difference

(Hα,Y −z21)−1− (H0−z21)−1. Then, as a second key ingredient, for the Lp → Lp

estimate of W±α,Y we appeal to a large extent to some tools from harmonic analysis,
the Calderón-Zygmund operators and the Muckenhaupt weighted inequalities.

We organise the material as follows. In Section 3.1 we produce the explicit
stationary representation of the wave operators W±α,Y which the proof of Theorem
3.0.3 is based on. The Lp-boundedness part of Theorem 3.0.3 is proved in Section
3.2 for the single centre case, and in Section 3.3 for the multi-centre case. The
Lp-unboundedness part is proved in Section 3.4. Last, in Section 3.5 we discuss the
convergence of the wave operators relative to the family of Hamiltonians (3.6) to
the wave operators W±α,Y (limit of shrinking potentials).

3.1. Stationary representation of wave operators

Following a standard procedure [76], in order to prove the Lp-boundedness of
W+
α,Y we want to represent W+

α,Y by means of the boundary values attained by the
resolvents of Hα,Y and H0 on the reals.

To this aim, we introduce the operators Ωjk, j, k ∈ {1, . . . , N}, acting on
L2(R3), defined by

(Ωjkf)(x) := lim
δ↓0

1

πi

∫ +∞

0

dλλ e−δλ

×
(∫

R3

(Γα,Y (−λ)−1)jk G−λ(x)
(
Gλ(y)− G−λ(y)

)
f(y)dy

)
,

(3.9)

and we also introduce the translation operators Tx0
: L2(R3) → L2(R3), x0 ∈ R3,

defined by

(3.10) (Tx0
f)(x) := f(x− x0) .

First of all, we show that the Ωij ’s are well-defined. It is convenient to re-write
Ωjk by using the spherical mean Mu of a given function u, namely

(3.11) Mu(r) :=
1

4π

∫
S2
u(rω) dω , r ∈ R .

Observe that R 3 r 7→ Mu(r) is even. It is also convenient to define the matrix-
valued function λ 7→ F (λ) := (Fjk(λ))jk by

(3.12) Fjk(λ) := 1(0,+∞)(λ)λ (Γα,Y (−λ)−1)jk , j, k ∈ {1, . . . , N} ,
where 1Λ denotes the characteristic function of the set Λ.
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Lemma 3.1.1. Assume that zero is not an eigenvalue for Hα,Y , and that the
matrix Γα,Y (z) is invertible for z ∈ R \ {0}.

(i) The function λ 7→ F (λ) is smooth and uniformly bounded on R, and

(3.13) lim
λ→+∞

F (λ) = −4πi1 .

(ii) The limit (3.9) exists in L2(R3) and Ωjk may be written in the form

(3.14) (Ωjku)(x) =
1

i(2π)
3
2 |x|

∫
R
e−iλ|x| Fjk(λ)(̂rMu)(−λ) dλ .

If we introduce the distributional Fourier transform of Fjk(λ) as

(3.15) Ljk(ρ) :=
1√
2π

lim
δ↓0

∫ +∞

0

dλ e−δλe−iλρFjk(λ) ,

it follows from (3.14) that

(3.16) (Ωjku)(x) =
1

i(2π)
3
2 |x|

(Ljk ∗ rMu)(|x|) .

Proof of Lemma 3.1.1. (i) Owing to our assumption and Theorem 1.1.4(ii),
the only pole of Γα,Y (z)−1 on the real line can be z = 0, in which case it is a
pole of order one. It follows that λ 7→ λΓα,Y (−λ)−1 is smooth and bounded on
compact sets of (0,+∞), and so is λ 7→ F (λ) on compact sets of R. Concerning
the behaviour as λ→ +∞, we see from (1.28) that

Γα,Y (−λ) = −(4πi)−1λ1+R(λ)

for some symmetric matrix R(λ) that is uniformly bounded for λ ∈ (0,∞). Thus,
as λ→ +∞,

Γα,Y (−λ)

λ
= −(4πi)−1

1+
R(λ)

λ
→ −(4πi)−1

1 ,

which proves (3.13).
(ii) Let u ∈ C∞0 (R3). Then, for λ ∈ R,∫

R3

Gλ(y)u(y) dy =

∫
R3

eiλ|y|

4π|y|
u(y) dy =

∫ +∞

0

eiλrrMu(r) dr .

Since R 3 r 7→Mu(r) is even, the identity above yields∫
R3

(
Gλ(y)− G−λ(y)

)
u(y) dy =

∫
R
eiλr rMu(r) dr

=
√

2π (̂rMu)(−λ)

(3.17)

and (3.9) may be rewritten as

(3.18) (Ωjku)(x) = lim
δ↓0

1

(2π)
3
2 i|x|

∫ +∞

0

e−δλ Fjk(λ)e−iλ|x| (̂rMu)(−λ)dλ .

Here (̂rMu)(−λ) is a square integrable function of λ ∈ R because Parseval’s identity
and Hölder’s inequality yield

‖(r̂Mu)(−λ)‖L2(R) = ‖rMu‖L2(R) 6 (
√
π)−1‖u‖L2(R3).

Since Fjk(λ) is bounded, the Fourier inversion formula implies that the limit δ ↓ 0
in (3.18) exists in L2(R3

x) and (3.14) follows. �

The main result of this Section is the following representation formula for the
wave operator.
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Proposition 3.1.2. Assume that zero is not an eigenvalue for Hα,Y , and that
the matrix Γα,Y (z) is invertible for z ∈ R \ {0}. For any u, v ∈ L2(R3) we have

(3.19) 〈W+
α,Y u, v〉 = 〈u, v〉+

N∑
j,k=1

〈TyjΩjkT ∗yku, v〉 .

Proof. It suffices to prove (3.19) for u, v ∈ C∞0 (R3).
The limit (3.4) when t→ +∞ equals its Abel limit, thus we re-write

(3.20) 〈W+
α,Y u, v〉 = lim

ε↓0
2ε

∫ +∞

0

〈e−it(H0−iε1)u, e−it(Hα,Y −iε1)v〉dt .

Let now µ ∈ R. Exploiting the Fourier transform

(H0 − (µ+ iε)1)−1 = i

∫ +∞

0

eiµt e−it(H0−iε1) dt (ε > 0)

(and the analogue for Hα,Y ), Parseval’s formula in the r.h.s. of (3.20) yields

(3.21) 〈W+
α,Y u, v〉 = lim

ε↓0

ε

π

∫
R
〈R0(λ+ iε)u,Rα,Y (λ+ iε)v〉dλ .

Substituting Rα,Y (λ+ iε) in the r.h.s. of (3.21) with the resolvent identity (1.32),
one obtains

〈W+
α,Y u, v〉 = lim

ε↓0

ε

π

∫
R
〈R0(λ+ iε)u,R0(λ+ iε)v〉dλ

+ lim
ε↓0

ε

π

N∑
j,k=1

∫
R
(Γα,Y (

√
λ+ iε)−1)jk ×

× 〈R0(λ+ iε)u,Gyj√
λ+iε
〉 〈Gyk√

λ+iε
, v 〉dλ .

(3.22)

The first summand in the r.h.s. of (3.22) gives

ε

π

∫
R
〈R0(λ+ iε)u,R0(λ+ iε)v〉dλ =

ε

π

∫
R
〈u,R0(λ+ iε)R0(λ+ iε)v〉dλ

=
ε

π

∫
R

dλ

∫
σ(H0)

〈u,E(H0)(dh)v〉 1

(h− λ)2 + ε2

=

∫
σ(H0)

〈u,E(H0)(dh)v〉 1

π

∫
R

dλ
ε

(h− λ)2 + ε2
= 〈u, v〉 ,

thus (3.22) reads

〈W+
α,Y u, v〉 = 〈u, v〉+ lim

ε↓0

ε

π

N∑
j,k=1

∫
R

(Γα,Y (
√
λ+ iε)−1)jk ×

× 〈u,R0(λ+ iε)Gyj√
λ+iε
〉 〈Gyk√

λ+iε
, v 〉dλ .

(3.23)

We recall that
√
z is chosen in the upper complex half plane and, for z ∈

C \ [0,∞),

(3.24) Gyj√
z
(x) =

1

(2π)3

∫
R3

eip(x−yj)

p2 − z
dp

(
≡ lim
L→∞

1

(2π)3

∫
|p|<L

eip(x−yj)

p2 − z
dp

)
.
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Thus, for z ≡ λ+ iε, both
√
λ+ iε and

√
λ− iε belong to C+, and we compute

ε

π
R0(λ− iε)Gyj√

λ+iε
(x) =

1

(2π)3

ε

π

∫
R3

eip(x−yj)

(p2 − λ+ iε)(p2 − λ− iε)
dp

=
1

(2π)3

1

2πi

∫
R3

eip(x−yj)
( 1

(p2 − λ− iε)
− 1

(p2 − λ+ iε)

)
dp

=
1

2πi

(
Gyj√

λ+iε
(x)− Gyj√

λ−iε
(x)
)
.

(3.25)

The second summand in the r.h.s. of (3.23) can be then written as

lim
ε↓0

N∑
j,k=1

1

2πi

∫
R

dλ
(∫

R3

dy u(y)
(
Gyj√

λ+iε
(y)− Gyj√

λ−iε
(y)
)

× (Γα,Y (
√
λ+ iε)−1)jk

(∫
R3

dxGyk√
λ+iε

(x) v(x)
)
.

(3.26)

Because u and v are smooth and with compact support, an integration by parts
shows that both the dx-integral and the dy-integral in (3.26) above are bounded

by C〈λ〉− 1
2 uniformly in ε. Moreover, since we are assuming that zero is not

an eigenvalue for Hα,Y , it follows from Theorem 1.1.4(ii) that either the matrix

Γα,Y (
√
λ+ iε)−1 has the singularity (

√
λ+ iε)−1 near λ = 0 (in the limit ε ↓ 0),

or it is bounded, with ‖Γα,Y (
√
λ+ iε)−1‖ 6 C〈λ〉− 1

2 . Therefore the λ-integrand is

uniformly bounded by Cλ−
1
2 〈λ〉−1, dominated convergence is applicable in (3.26)

above, the dλ-integration and the ε ↓ 0-limit can be exchanged, and (3.26) becomes

N∑
j,k=1

1

2πi

∫
R

dλ
(∫

R3

dy u(y)
(
Gyj√

λ+i0
(y)− Gyj√

λ−i0
(y)
)

× (Γα,Y (
√
λ+ i0)−1)jk

(∫
R3

dxGyk√
λ+i0

(x) v(x)
)
.

(3.27)

Owing to the difference Gyj√
λ+i0

− Gyj√
λ−i0

, we see that the λ-integration in

(3.27) is only effective when λ > 0. Indeed, if λ < 0, then
√
λ± i0 = i

√
|λ| and the

integrand vanishes. We then consider (3.27) only with λ ∈ [0,+∞) and with the
change of variable λ 7→ λ2 we obtain

second summand in the r.h.s. of (3.23) =

=

N∑
j,k=1

1

πi

∫ +∞

0

dλλ
(∫

R3

dy u(y)
(
Gyjλ (y)− Gyj−λ(y)

)
× (Γα,Y (λ)−1)jk

(∫
R3

dxGykλ (x) v(x)
)

= lim
δ↓0

N∑
j,k=1

1

πi

∫ +∞

0

dλλ e−δλ
(∫

R3

dy u(y + yk)
(
Gλ(y)− G−λ(y)

)
× (Γα,Y (λ)−1)jk

(∫
R3

dxGyjλ (x) v(x)
)

= lim
δ↓0

∫
R3

dx v(x)

N∑
j,k=1

∫ +∞

0

dλλ e−δλ
∫
R3

dy

×
( 1

πi
(Γα,Y (−λ)−1)jk G

yj
−λ(x)

(
Gλ(y)− G−λ(y)

)
u(y + yk)

)
.

(3.28)

In the first step of (3.28) above we used the fact that
√
λ2 ± i0 = ±λ for λ > 0.

In the second step, the insertion of the exponential cut-off e−δλ is justified by the
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fact that the λ-integrand is uniformly bounded by C〈λ〉− 5
2 , as discussed above; we

also exchanged j ↔ k, using the fact that Γα,Y (λ)−1 is symmetric, and made the
change of variable y 7→ y+yk, using (1.27). In the third step we used the properties

Gλ(x) = G−λ(x) and Γα,Y (λ)−1 = Γα,Y (−λ)−1 that follow, respectively, from (1.27)
and (1.28). The identity (3.19) then follows immediately from (3.28). �

Summarising so far, we produced the representation (3.9)-(3.19) of the kernel
of the wave operator W+

α,Y . Because of the obvious Lp-boundedness of Tx0 , in order
to prove Theorem 3.0.3 it suffices to study the Lp-boundedness or unboundedness
of each Ωjk, that is, to consider the quantities

(3.29) ‖Ωjku‖pLp(R3) =
4π

(2π)3p/2

∫ +∞

0

|(Ljk ∗ ρMu)(ρ)|p ρ2−p dρ ,

whose expression follows from (3.16).
For a more compact notation, it is convenient to introduce the matrix functions

(3.30) L(ρ) := (Ljk(ρ))jk , Ω(ρ) := (Ωjk(ρ))jk ,

in terms of which

(3.31) (Ωu)(x) =
1

i(2π)
3
2 |x|

∫ +∞

0

e−iλ|x| F (λ)(̂rMu)(−λ) dλ

and

(3.32) (Ωu)(x) =
1

i(2π)
3
2 |x|

(L ∗ rMu)(|x|) .

The additional formulas (3.31)/(3.32) have the virtue of reducing the problem to the
estimate of singular integral operators in one dimension and will play an important
role in our next arguments – although in certain steps we need to go back to the
more complicated, but more flexible expression (3.9).

3.2. Lp-bounds for the single centre case

In this Section and in the two following ones we present the proof of Theorem
3.0.3. In fact, only the statements concerning the boundedness and the unbound-
edness of W±α,Y need be proved, because the existence of W±α,Y in L2(R3) and

their completeness follow at once from the Birman-Kato-Pearson Theorem [97],
due to the fact (Theorem 1.1.2(i), identity (1.32)) that the resolvent difference
Rα,Y (z)−R0(z) is a rank-N operator.

We first introduce some fundamental result from harmonic analysis, in partic-
ular in the theory of Calderón-Zygmund singular operators. For the definition of
Calderón-Zygmund operators we refer to [54, Definitions 7.4.1, 7.4.2] and to [55,
Definitions 4.1.2 and 4.1.8], whereas for the definition of Ap Muckenhaupt weights
we refer to [54, Definitions 7.1.3]. We shall use interchangeably the same symbol
for a Calderón-Zygmund operator and for its integral kernel.

The following properties are known.

Theorem 3.2.1.

(i) The convolution operator on R with a function L(x) is a Calderón-Zygmund

operator if L̂(ξ) is bounded and, for a constant C > 0, one has

|L(x)| 6 C |x|−1 and
∣∣∣dL
dx

(x)
∣∣∣ 6 C |x|−2 for x 6= 0 .

(ii) If L is a Calderón-Zygmund operator and w is an Ap-weight for some
p ∈ (1,∞), then L is bounded in Lp(R, w(x)dx) in the sense that

(3.33)

∫
R
|(Lu)(x)|p w(x) dx 6

∫
R
|u(x)|p w(x) dx ∀u ∈ C∞0 (R) .
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(iii) If w is an Ap-weight for some p ∈ (1,∞) and

(3.34) (M(u))(x) := sup
r>0

1

2r

∫
|x−y|<r

|u(y)|dy

is the Hardy-Littlewood maximal function of some u ∈ C∞0 (R), then

(3.35)

∫
R
|(M(u))(x)|p w(x) dx 6

∫
R
|u(x)|p w(x) dx .

If, for some function L(x) one has |L(x)| 6 A(x) in R for some A ∈ L1(R)
which is bounded, non-negative, even, and non-increasing on (0,+∞),
then |(L ∗ u)(x)| 6 C(M(u))(x), hence the convolution operator on R
with the function L(x) is bounded in Lp(R, w(x)dx).

(iv) The function |x|a is an Ap-weight on R if and only if a ∈ (−1, p− 1).

Concerning part (i) we refer to [55, Remark 4.1.1]. Part (ii) is a corollary of
[54, Theorem 7.4.6]. The first and second statement of part (iii) are respectively
[105, Theorem 1, Section V.3] and the Proposition in page 57 of [105, Section
II.2.1]. For part (iv) we refer to [54, Example 7.1.7].

We start with the proof of the boundedness part of Theorem 3.0.3 in the special
case of N = 1 centre. This case is simpler, for the oscillating terms Gyj ,ykλ are now
absent, nevertheless it retains most of the essential ideas needed in the proof of the
general case, which is the object of the following Section 3.3.

We shall control the two regimes p ∈ (1, 3
2 ) and p ∈ ( 3

2 , 3) separately. Then the
overall Lp-boundedness for p ∈ (1, 3) follows by interpolation.

3.2.1. Lp-boundedness of W+
α,Y for N = 1 and p ∈ ( 3

2 , 3). In this regime
the proof is based on Theorem 3.2.1 and on the following fact.

Lemma 3.2.2. Suppose that [0,+∞) 3 λ 7→ W (λ) is a smooth and bounded
function such that λ 7→ W ′(λ) and λ 7→ λW ′′(λ) are both integrable. Let Z(ρ),
ρ ∈ R, be the Fourier transform of W (λ), in the sense of distributions, defined by

Z(ρ) =
1√
2π

∫ +∞

0

dλ e−iλρW (λ) .

Then, the convolution operator with Z(ρ) is a Calderón-Zygmund operator on R.
In particular, the operator u 7→ L ∗ u, where L is defined in (3.15) for the case
N = 1, is of Calderón-Zygmund type.

Proof. The operator of convolution with Z is bounded in L2(R) because Z
is the Fourier transform of a bounded function W . Integration by parts, using
e−iλρ = iρ−1∂λe

−iλρ, yields

Z(ρ) =
i

ρ
√

2π
W (0)− i

ρ
√

2π

∫ +∞

0

dλ e−iλρW ′(λ) 6| · |
C

|ρ|
, ρ 6= 0 ,

and differentiating further in ρ yields

Z ′(ρ) = − iW (0)

ρ2
√

2π
+

i

ρ2
√

2π

∫ +∞

0

dλ e−iλρW ′(λ)

− 1

ρ
√

2π

∫ +∞

0

dλ e−iλρ λW ′(λ) .

The first two summands in the r.h.s. above are obviously bounded in absolute value
by C|ρ|−2 for ρ 6= 0; so too is the third summand, as follows from integration by
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parts:

−1

ρ
√

2π

∫ +∞

0

dλ e−iλρ λW ′(λ) =
i

ρ2
√

2π

∫ +∞

0

dλ e−iλρ(W ′(λ) + λW ′′(λ))

6| · |
C

ρ2
, ρ 6= 0 .

Thus, we conclude from Theorem 3.2.1(i) that u 7→ Z ∗ u is a Calderón-Zygmund
operator on R. Concerning the second statement of the thesis, we see that in the
case N = 1 (3.12) reads

(3.36) F (λ) = λ
(
α+

iλ

4π

)−1

.

F is therefore bounded and smooth on [0,+∞) and both F ′(λ) and λF ′′(λ) are
integrable, whence the conclusion for the operator of convolution by L defined in
(3.15). �

The proof of the Lp-boundedness of W+
α,Y for N = 1 and p ∈ ( 3

2 , 3) then

becomes particularly simple. First, we recall from (3.29) that

‖Ωu‖pLp(R3) =
4π

(2π)3p/2

∫ +∞

0

|(L ∗ ρMu)(ρ)|p ρ2−p dρ ,

where ρ2−p is an Ap-weight for p ∈ ( 3
2 , 3) (Theorem 3.2.1(iv)) and the convolution

with L is a Calderón-Zygmund operator on R (Lemma 3.2.2). Then it follows from
Theorem 3.2.1(ii) that

‖Ωu‖pLp(R3) 6
∫ +∞

0

|(ρMu)(ρ)|p ρ2−p dρ =

∫ +∞

0

|Mu(ρ)|p ρ2 dρ

6 Cp ‖u‖pLp(R3)

(3.37)

for some constant Cp > 0, whence the conclusion.

3.2.2. Lp-boundedness of W+
α,Y for N = 1 and p ∈ (1, 3

2 ). In the regime

p ∈ (1, 3
2 ) the general harmonic analysis treatment provided by Theorem 3.2.1 only

allows us to find an Lp-bound to part of the function (see (3.14) above)

(Ωu)(x) =
1

i(2π)
3
2 |x|

∫ +∞

0

e−iλ|x| F (λ)(̂rMu)(−λ) dλ ,

whereas for the remaining part we need to produce further analysis.
Integrating by parts the above expression of Ωu, using e−iλρ = iρ−1∂λe

−iλρ,
yields

(3.38) Ωu = Ω1u+ Ω2u ,

where

(Ω1u)(x) :=
−i

(2π)
3
2 |x|2

∫ +∞

0

e−iλ|x| F (λ) ̂(r2Mu)(−λ) dλ ,

(Ω2u)(x) :=
−1

(2π)
3
2 |x|2

∫ +∞

0

e−iλ|x| F ′(λ)(̂rMu)(−λ) dλ .

(3.39)

Now, concerning Ω1u, we re-write

(3.40) (Ω1u)(x) =
−i

(2π)
3
2 |x|2

(L ∗ r2Mu)(|x|)
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with L given by (3.15). Owing to Lemma 3.2.2, u 7→ L ∗ u is a Calderón-Zygmund
operator, and owing to Theorem 3.2.1(iv), |x|2−2p is an Ap-weight on R for p ∈
(1, 3

2 ). Therefore,

‖Ω1u‖pLp(R3) =
4π

(2π)3p/2

∫ +∞

0

|(L ∗ ρ2Mu)(ρ)|p ρ2−2p dρ

6
∫ +∞

0

|ρ2Mu(ρ)|p ρ2−2p dρ =

∫ +∞

0

|Mu(ρ)|p ρ2 dρ

6 Cp ‖u‖pLp(R3)

(3.41)

for some constant Cp > 0, where in the second step we applied Theorem 3.2.1(ii).
This proves the Lp-boundedness of Ω1.

Concerning Ω2u, instead, we re-write

(3.42) (Ω2u)(x) =
−1

(2π)
3
2 ρ2

(L ∗ rMu)(ρ) ,

where L is the Fourier transform of the function 1(0,∞)F
′(λ), and

(3.43) F ′(λ) = α
(
α+

iλ

4π

)−2

.

Thus, in the non-trivial case α 6= 0 F ′ is smooth and bounded, and correspondingly
both F ′′ and λF ′′′ are integrable. This implies, through Lemma 3.2.2, that u 7→ L∗u
is a Calderón-Zygmund operator on R. Since |x|2−2p is an Ap-weight on R for
p ∈ (1, 3

2 ) (Theorem 3.2.1(iv)), then Theorem 3.2.1(ii) yields

‖Ω2u‖pLp(R3) =
4π

(2π)3p/2

∫ +∞

0

|(L ∗ ρMu)(ρ)|p ρ2−2p dρ

6
∫ +∞

0

|ρMu(ρ)|p ρ2−2p dρ 6 C

∫
R3

|u(x)|p

|x|p
dx

(3.44)

for some constant C > 0. This shows that

(3.45) ‖Ω21{|x|>1}u‖pLp(R3) 6 C ‖1{|x|>1}u‖pLp(R3) .

For Lp-functions supported on |x| 6 1 a further argument is needed. In other
words, so far from (3.41) and (3.45) we have

‖Ωu‖pLp(R3)

6 2‖Ω1u‖pLp(R3) + 2‖Ω21{|x|>1}u‖pLp(R3) + 2‖Ω21{|x|61}u‖pLp(R3)

6 Cp‖u‖pLp(R3) + C‖1{|x|>1}u‖pLp(R3) + 2‖Ω21{|x|61}u‖pLp(R3) ,

(3.46)

and we are left with producing the estimate

(3.47) ‖Ω21{|x|61}u‖Lp(R3) 6 Cp‖1{|x|61}u‖pLp(R3) .

To this aim, let us establish first the following result.

Lemma 3.2.3. Suppose that [0,+∞) 3 y 7→ Y (y) is a bounded C1-function such
that λ 7→ λθY (λ) and λ 7→ (1 + λ)θY ′(λ) are both integrable for all θ ∈ (0, 1), and
let

(3.48) T (x, y) :=
1

|x|2

∫ +∞

0

(e−iλ(|x|−|y|) − e−iλ(|x|+|y|)

4π|y|

)
Y (λ) dλ

for x, y ∈ R3. Then, for any R > 0 and p ∈ (1, 3
2 ), the integral operator T on R3

with the integral kernel T (x, y) is Lp(ΛR) → Lp(R3) bounded, with ΛR := {x ∈
R3 | |x| 6 R}.
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Proof. We only consider the case R = 1, the proof for generic R is similar. Let
us deal with the region |x| 6 10 first. Since |e−iλ(|x|−|y|)−e−iλ(|x|+|y|)| 6 2(λ|y|)1−θ

for any θ ∈ (0, 1), and since λ1−θY ∈ L1(0,+∞), then

|T (x, y)| 6 1

2π|x|2|y|θ

∫ +∞

0

|Y (λ)|λ1−θ dλ 6
Cθ
|x|2|y|θ

, |x| 6 10 ,

for some constant Cθ > 0. For fixed p in (1, 3
2 ), we take θ ∈ (0, 1) such that p′θ < 3,

where p′ = p
p−1 as usual. With this choice, |y|−θ ∈ Lp′(Λ1) and |x|−2 ∈ Lp(Λ10),

with ΛR = {x ∈ R3 | |x| 6 R} as in the statement of the Lemma. For each
f ∈ Lp(Λ1), Hölder’s inequality and the above bound for |T (x, y)| then imply

‖Tf‖Lp(Λ10) 6 Cθ ‖|x|−2‖Lp(Λ10) · ‖f‖Lp(Λ1) · ‖|y|−θ‖Lp′ (Λ1) = κ−p ‖f‖Lp(Λ1)

for some constant κ−p > 0. Next, let us consider the region |x| > 10. Integration
by parts gives

T (x, y) =
1

4π|x|2|y|

∫ +∞

0

∂λ

( e−iλ(|x|−|y|)

−i(|x| − |y|)
− e−iλ(|x|+|y|)

−i(|x|+ |y|)

)
Y (λ) dλ

=
1

4π i |x|2|y|

( 1

|x| − |y|
− 1

|x|+ |y|

)
Y (0)(I)

+
1

4π i |x|2|y|

∫ +∞

0

(e−iλ(|x|−|y|)

|x| − |y|
− e−iλ(|x|+|y|)

|x|+ |y|

)
Y ′(λ) dλ .(II)

Since |x| ± |y| > 9
10 |x| > 9 whenever |x| > 10 and |y| 6 1, and since Y is bounded,

then clearly

|(I)| 6 C

|x|4
6

C

|x|3 |y|θ
for some constant C > 0 and any θ ∈ (0, 1). As for the summand (II), since

e−iλ(|x|−|y|)

|x| − |y|
− e−iλ(|x|+|y|)

|x|+ |y|
6| · |

2 |y|
|x|2 − |y|2

+
(2λ|y|)1−θ

|x|+ |y|

6 C
( |y|
|x|2

+
(λ|y|)1−θ

|x|

)
for some constant C > 0 and any θ ∈ (0, 1), and since (1 + λ)1−θ Y ′ ∈ L1(0,+∞),
then

|(II)| 6 C

|x|2|y|

( |y|
|x|2

+
|y|1−θ

|x|

)
= C

( 1

|x|4
+

1

|x|3|y|θ
)
6

2C

|x|3 |y|θ

and hence also

|T (x, y)| 6 C

|x|3 |y|θ
, |x| > 10 ,

for some constant C > 0 and any θ ∈ (0, 1). For fixed p ∈ (1, 3
2 ), we take θ ∈ (0, 1)

such that p′θ < 3 and f ∈ Lp(Λ1): with this choice, Hölder’s inequality yields

‖Tf‖Lp(R3\Λ10) 6 Cθ ‖|x|−3‖Lp(R3\Λ10) · ‖f‖Lp(Λ1) · ‖|y|−θ‖Lp′ (Λ1)

= κ+
p ‖f‖Lp(Λ1)

for some constant κ+
p > 0. Combining the above bounds yields the boundedness of

T as a map from Lp(Λ1) to Lp(R3). �

Let us now complete the proof of the Lp-boundedness of W+
α,Y for N = 1 and

p ∈ (1, 3
2 ). We only need to show (3.47). Upon re-writing the second equation in

(3.39) by means of (3.17), that is,

(3.49) (Ω2u)(x) =
−1

(2π)2|x|2

∫ +∞

0

e−iλ|x|F ′(λ)
(∫

R3

eiλ|y| − e−iλ|y|

4π|y|
u(y) dy

)
dλ ,
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it is immediate to recognise that

(3.50) Ω2u = −(2π)−2 Tu ,

where T is the integral operator given by (3.48) with Y ≡ F ′, and F ′ does satisfy
the assumptions of Lemma 3.2.3. From this, we conclude (3.47) at once.

3.3. Lp-bounds for the general multi-centre case

The additional complication in the case N > 2 is due to the presence, in the
function F defined in (3.12) and (3.30), of the terms Gyjykλ (definitions (1.27)-(1.28)),
which are oscillatory in λ.

Let us start the discussion by re-writing

(3.51) F (λ) = λΓα,Y (−λ)−1 = λ
(
A+

iλ

4π
1− G̃(−λ)

)−1

, λ > 0 ,

with

A := diag(α1, . . . , αN ) ,(3.52)

G̃(λ) := (Gyjykλ )j,k=1,...,N .(3.53)

We decompose F (λ) into a small-λ and a large-λ contribution by means of two
cut-off functions ω< and ω> such that

ω< ∈ C∞0 (R) , ω>(λ) := 1− ω<(λ) ,

ω<(λ) =

{
1 if |λ| 6 γ

0 if |λ| > 2γ ,

(3.54)

where γ > 0 is a sufficiently large number so that,

(3.55) ‖A − G̃(−λ)‖ < |λ|(16π)−1 , |λ| > γ

(‖E‖ being the operator norm of the matrix E as an operator on CN ), and the
r.h.s. of (3.51) is invertible. Explicitly,

(3.56) F = F< + F> , F< := ω<F , F> := ω>F .

From (3.51) and (3.55) we expand

F>(λ) = −4πiω>(λ)
{
1− 4πi

λ

(
A− G̃(−λ)

)
+
(4πi

λ

(
A− G̃(−λ)

))2}
− 4πiω>(λ)

(4πi

λ

(
A− G̃(−λ)

))3(
1− 4πi

λ

(
A− G̃(−λ)

))−1

.

(3.57)

We collect all terms that do not contain G̃(−λ) or for which the oscillation of G̃(−λ)
is harmless into the quantity

F (0)(λ) := F<(λ)− 4πiω>(λ)
{
1− 4πi

λ
A− 16π2

λ2
A2
}

− 4πiω>(λ)
(4πi

λ

(
A− G̃(−λ)

))3(
1− 4πi

λ

(
A− G̃(−λ)

))−1

,

(3.58)

whereas

F (1)(λ) := 4πiω>(λ)

×
{
− 4πi

λ
G̃(−λ)− 16π2

λ2

(
A G̃(−λ) + G̃(−λ)A

)
+

16π2

λ2
G̃(−λ)2

}(3.59)

contains the oscillations explicitly.
Thus,

(3.60) F = F (0) + F (1) and Ω = Ω(0) + Ω(1) ,
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where, by means of (3.31),

(Ω(`)u)(x) :=
1

i(2π)
3
2 |x|

∫ +∞

0

e−iλ|x| F (`)(λ)(̂rMu)(−λ) dλ ,

` ∈ {0, 1} .
(3.61)

3.3.1. Lp-boundedness of Ω(0). The Lp-boundedness of the map u 7→ Ω(0)u
can be established via a straightforward adaptation of the arguments of Section

3.2, of course understanding that this is done for each component Ω
(0)
jk , and this is

possible precisely thanks to the lack of relevant oscillations in Ω(0).
This means that first we write, in analogy to (3.32),

(3.62) (Ω(0)u)(x) =
1

i(2π)
3
2 |x|

(F̂ (0) ∗ rMu)(|x|) ,

and it is easy to check that F (0) satisfies the properties of the function W in Lemma
3.2.2, from which, reasoning as in (3.37),

(3.63) ‖Ω(0)u‖Lp(R3) 6 Cp ‖u‖Lp(R3) , p ∈ ( 3
2 , 3) ,

for some constant Cp > 0.
Then, in analogy to (3.38), (3.39), (3.40), (3.42), and (3.49), we split

(3.64) Ω(0)u = Ω
(0)
1 u+ Ω

(0)
2 u

with

(Ω
(0)
1 u)(x) :=

−i

(2π)
3
2 |x|2

∫ +∞

0

e−iλ|x| F (0)(λ) ̂(r2Mu)(−λ) dλ ,

=
−i

(2π)
3
2 |x|2

(F̂ (0) ∗ r2Mu)(|x|)
(3.65)

and

(Ω
(0)
2 u)(x) :=

−1

(2π)
3
2 |x|2

∫ +∞

0

e−iλ|x| F (0)′(λ)(̂rMu)(−λ) dλ

=
−1

(2π)
3
2 ρ2

(L(0) ∗ rMu)(ρ)

=
−1

(2π)2|x|2

∫ +∞

0

e−iλ|x|F (0)′(λ)
(∫

R3

eiλ|y| − e−iλ|y|

4π|y|
u(y) dy

)
dλ ,

(3.66)

where L(0) is the Fourier transform of the function 1(0,∞)F
(0)′.

Since, as observed already, F (0) behaves like W in Lemma 3.2.2, we have,
reasoning as in (3.41),

(3.67) ‖Ω(0)
1 u‖Lp(R3) 6 Cp ‖u‖Lp(R3) , p ∈ (1, 3

2 ) ,

and since 1(0,∞)F
(0)′ too satisfies the properties of the function W in Lemma 3.2.2,

we have, using the second line in the r.h.s. of (3.66) and reasoning as in (3.44)-
(3.45),

(3.68) ‖Ω(0)
2 1{|x|>1}u‖Lp(R3) 6 Cp ‖1{|x|>1}u‖Lp(R3) , p ∈ (1, 3

2 ) ,

for some constant Cp > 0. Last, since 1(0,∞)F
(0)′ satisfies the properties of the

function Y in Lemma 3.2.3, we have, using the third line in the r.h.s. of (3.66) and
reasoning as in (3.49)-(3.50) and (3.47),

(3.69) ‖Ω(0)
2 1{|x|61}u‖Lp(R3) 6 Cp ‖1{|x|61}u‖Lp(R3) , p ∈ (1, 3

2 ) .
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Combining together the bounds (3.63), (3.67), (3.68), and (3.69), plus interpo-
lation so as to cover also the case p = 3

2 , yields finally

(3.70) ‖Ω(0)u‖Lp(R3) 6 Cp ‖u‖Lp(R3) , p ∈ (1, 3) ,

for some constant Cp > 0.

3.3.2. Lp-boundedness of Ω(1). The proof of the Lp-boundedness of the map
u 7→ Ω(1)u is somewhat more involved, however the basic idea of the proof is similar
to that for Ω(0). First we re-write (3.61) in analogy to (3.31) and (3.62) as

(3.71) (Ω(1)u)(x) =
1

i(2π)
3
2 |x|

(F̂ (1) ∗ rMu)(|x|) .

Owing to (3.59), the matrix elements of F (1)(λ) entering (3.61) and (3.71) above
are of the form

ω>(λ)

λ

e−iλ|yj−yk|

|yj − yk|
,

ω>(λ)

λ2

e−iλ|yj−yk|

|yj − yk|
,

ω>(λ)

λ2

e−iλ|yj−yk|

|yj − yk|
e−iλ|yr−ys|

|yr − ys|

(observe that the λ-dependence of the matrix elements of G̃ in (3.59) is G̃(−λ)).
This means that denoting by a > 0 any of the numbers |yj−yk| or |yj−yk|+|yr−ys|
and by X(λ) the function λ−1ω>(λ) or λ−2ω>(λ), formulas (3.61) and (3.71) imply
that Ω(1)u is a linear combination of terms of the form

(Ξu)(x) :=
1

i |x|

∫ +∞

0

e−iλ(|x|+a)X(λ) (̂rMu)(−λ) dλ

=
1

i |x|
(X̂ ∗ rMu)(|x|+ a) ,

(3.72)

and we need to prove the Lp-boundedness of the map u 7→ Ξu. In fact, we shall
establish it for each of the two terms of the bound

(3.73) ‖Ξu‖Lp(R3) 6 ‖1{|x|>R} Ξu‖Lp(R3) + ‖1{|x|6R} Ξu‖Lp(R3)

for a suitable R > 0.
Let us cast the discussion of such two terms into the following two Lemmas.

The combination of (3.73) above with (3.74) and (3.75) below will then complete
the proof of the Lp-boundedness of Ω(1).

Lemma 3.3.1. For any p ∈ (1, 3) and R > a there exists a constant Cp > 0
such that

(3.74) ‖1{|x|>R} Ξu‖Lp(R3) 6 Cp ‖u‖Lp(R3)

for all u ∈ Lp(R3), where Ξu is defined in (3.72).

Proof. We consider first the case p ∈ ( 3
2 , 3). From (3.72) and from the fact

that ρ > R+ a implies 1
2ρ 6 ρ− a 6 ρ,

‖1{|x|>R} Ξu‖pLp(R3) = 4π

∫ +∞

R

ρ2−p∣∣(X̂ ∗ rMu)(ρ+ a)
∣∣p dρ

= 4π

∫ +∞

R+a

(ρ− a)2−p∣∣(X̂ ∗ rMu)(ρ)
∣∣p dρ

6 Cp

∫ +∞

0

∣∣(X̂ ∗ rMu)(ρ)
∣∣p ρ2−pdρ .

Now, ρ2−p is an Ap-weight on R because p ∈ ( 3
2 , 3) (Theorem 3.2.1(iv)) and the

convolution with X̂ is a Calderón-Zygmund operator on R because the function X
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obviously satisfies the properties of the function W in Lemma 3.2.2. Then it follows
from Theorem 3.2.1(ii) that

‖1{|x|>R} Ξu‖pLp(R3) 6 Cp

∫ +∞

0

|(ρMu)(ρ)|p ρ2−p dρ 6 C ′p‖u‖
p
Lp(R3)

for suitable C ′p > 0. The Lemma is then proved in the case p ∈ ( 3
2 , 3).

Next we consider the case p ∈ (1, 3
2 ). Integration by parts in (3.72), using

e−iλ(ρ+a) = i(ρ+ a)−1∂λe
−iλ(ρ+a), yields

Ξu = Ξ1u+ Ξ2u

with

(Ξ1u)(x) :=
−i

|x|(|x|+ a)

∫ +∞

0

e−iλ(|x|+a)X(λ) ̂(r2Mu)(−λ) dλ

=
−i

|x|(|x|+ a)
(X̂ ∗ r2Mu)(|x|+ a)

and

(Ξ2u)(x) :=
−1

|x|(|x|+ a)

∫ +∞

0

e−iλ(|x|+a)X ′(λ) (̂rMu)(−λ) dλ

=
−1

|x|(|x|+ a)
(X̂ ′ ∗ rMu)(|x|+ a) .

Up to a change of variable, the quantity ‖1{|x|>R} Ξ1u‖Lp(R3) is estimated precisely
as the quantity ‖Ω1u‖Lp(R3) in Section 3.2.2 – see (3.41) above. Indeed,

‖1{|x|>R} Ξ1u‖pLp(R3) =

∫ +∞

R

4πρ2

ρp(ρ+ a)p
|(X̂ ∗ r2Mu)(ρ+ a)|p dρ

=

∫ +∞

R+a

4π(ρ− a)2−pρ−p |(X̂ ∗ r2Mu)(ρ)|p dρ

6 C

∫ +∞

0

|(X̂ ∗ r2Mu)(ρ)|p ρ2−2p dρ

6 C

∫ +∞

0

|Mu(ρ)|p ρ2 dρ 6 Cp‖u‖pLp(R3)

for some constants C,Cp > 0, having used 1
2ρ 6 ρ − a 6 ρ in the third step

and Theorem 3.2.1(ii) in the fourth step. This was possible because ρ2−2p is an

Ap-weight on R for p ∈ (1, 3
2 ) (Theorem 3.2.1(iv)) and because f 7→ X̂ ∗ f is a

Calderón-Zygmund operator on R (the function X does satisfy the assumptions on
the function W in Lemma 3.2.2).

It remains to estimate the quantity ‖1{|x|>R} Ξ2u‖Lp(R3) in the regime p ∈ (1, 3
2 )

and we proceed by splitting

‖1{|x|>R} Ξ2u‖pLp(R3) =

= ‖1{|x|>R} Ξ21{|x|>R}u‖pLp(R3) + ‖1{|x|>R} Ξ21{|x|6R}u‖pLp(R3) .

For estimating ‖1{|x|>R} Ξ21{|x|>R}u‖Lp(R3) we observe that

‖1{|x|>R} Ξ2u‖pLp(R3) =

∫ +∞

R

4πρ2

ρp(ρ+ a)p
|(X̂ ′ ∗ rMu)(ρ+ a)|p dρ

=

∫ +∞

R+a

4π(ρ− a)2−pρ−p |(X̂ ′ ∗ rMu)(ρ)|p dρ

6 C

∫ +∞

0

|(X̂ ′ ∗ rMu)(ρ)|p ρ2−2p dρ(*)
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for some constant C > 0, where we used again 1
2ρ < ρ−a 6 ρ. Then we can proceed

exactly as in (3.44)-(3.45), because ρ2−2p is an Ap-weight on R for p ∈ (1, 3
2 ) and

f 7→ X̂ ′ ∗ f is a Calderón-Zygmund operator on R; the conclusion is the same as in
(3.45), that is,

‖1{|x|>R} Ξ21{|x|>R}u‖pLp(R3) 6 Cp ‖1{|x|>R}u‖pLp(R3)

for some constant Cp > 0. We also observe from (*) that

‖1{|x|>R} Ξ2u‖pLp(R3)

6
∫
R3

dx
∣∣∣ 1

|x|2

∫ +∞

0

e−iλ|x|X ′(λ) (̂rMu)(−λ) dλ
∣∣∣p = ‖Ξ̃2u‖pLp(R3) ,

where Ξ̃2u has precisely the same structure as Ω2u in (3.39) with the function X ′

here in place of the function F ′ therein. Therefore, as argued in (3.49)-(3.50), since
X ′ satisfies the assumptions on the function Y in Lemma 3.2.3, the conclusion is
the same as in (3.47), that is,

‖1{|x|>R} Ξ21{|x|6R}u‖pLp(R3) 6 Cp ‖1{|x|6R}u‖pLp(R3)

for some constant Cp > 0. Therefore,

‖1{|x|>R} Ξ2u‖pLp(R3) 6 Cp ‖u‖pLp(R3)

and Lemma is then proved in the case p ∈ (1, 3
2 ).

Last, by interpolation the Lemma is also proved in the case p = 3
2 . �

Lemma 3.3.2. For any p ∈ (1, 3) and R > 100a there exists a constant Cp > 0
such that

(3.75) ‖1{|x|6R} Ξu‖Lp(R3) 6 Cp ‖u‖Lp(R3)

for all u ∈ Lp(R3), where Ξu is defined in (3.72).

Proof. By means of (3.17) we see that the map u 7→ Ξu defined in (3.72) is
an integral operator with kernel i

4π KΞ(x, y) given by

(3.76) KΞ(x, y) :=
1√
2π

∫ +∞

0

e−iλ(|x|+a)(e−iλ|y| − eiλ|y|)

|x| |y|
X(λ) dλ .

Since X(λ) = λ−1ω>(λ) or λ−2ω>(λ), obviously ρ 7→ X̂(ρ) is smooth for ρ 6= 0
and with rapid decrease as ρ → +∞. Moreover, since X ∈ Lq(R) for any q > 1,

X̂ ∈ Lp(R) for any p ∈ [2,∞), owing to the Hausdorff-Young inequality. Thus,

X̂ ∈ Lp(R) for any p ∈ [1,∞).
We shall prove the Lemma by splitting

‖1{|x|6R} Ξu‖pLp(R3)

= ‖1{|x|6R} Ξ 1{|x|>10R}u‖pLp(R3) + ‖1{|x|6R} Ξ 1{|x|610R}u‖pLp(R3)

(3.77)

and estimating separately the two summands in the r.h.s. above.

When R > 100a, |x| 6 R, and |y| > 10R, one has |X̂(|x| ± |y|+ a)| 6 Cn〈y〉−n
for any n ∈ N and suitable constants Cn > 0, which follows from the rapid decrease

of X̂. Then the identity

(3.78) KΞ(x, y) =
X̂(|x|+ a+ |y|)− X̂(|x|+ a− |y|)

|x||y|
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shows that in this regime |KΞ(x, y)| 6 2Cn|x|−1|y|−1〈y〉−n. Therefore, for any
p ∈ (1, 3) and corresponding n large enough,

‖KΞ(x, ·)1{|·|>10R}‖Lp′ (R3) 6
2Cn
|x|

(∫
|y|>10R

1

|y|p′〈y〉np′
)1/p′

6
Cp
|x|

for some constant Cp > 0. The latter bound and Hölder’s inequality then yield, for
any p ∈ (1, 3),

‖1{|·|6R} Ξ 1{|·|>10R}u‖pLp(R3)

6
∫
R3

dx1{|x|6R}(x)
∣∣∣ ∫

R3

dy KΞ(x, y)1{|y|>10R}(y)u(y)
∣∣∣p

6 Cp

∥∥∥ 1{|x|6R}

|x|

∥∥∥p
Lp(R3)

‖1{|·|>10R}u‖pLp(R3)

= C ′p ‖1{|·|>10R}u‖pLp(R3)

(3.79)

for some constant C ′p > 0.
This provides the first partial estimate for the proof of (3.75): the proof is

completed when we show in addition that

(3.80) ‖1{|·|6R} Ξ 1{|·|610R}u‖pLp(R3) 6 Cp ‖1{|·|610R}u‖pLp(R3)

for any p ∈ (1, 3) and suitable constant Cp > 0. We shall establish (3.80) above in
three separate regimes: p ∈ (2, 3), p ∈ ( 3

2 , 2), and p ∈ (1, 3
2 ). By interpolation, also

the cases p = 3
2 and p = 2 will then be covered.

From (3.78) we estimate

‖KΞ(x, ·)1{|·|610R}‖Lp′ (R3)

6
(4π)

1
p′

|x|
∑
±

(∫ 10R

0

dρ ρ2−p′ |X̂(|x|+ a± ρ)|p
′
)1/p′

.
(3.81)

When p ∈ (2, 3), and hence p′ ∈ ( 3
2 , 2), we have ρ2−p′ 6 (10R)2−p′ for every

ρ ∈ [0, 10R], and (3.81) then yields

(3.82) ‖KΞ(x, ·)1{|·|610R}‖Lp′ (R3) 6 C
‖X̂‖Lp′ (R)

|x|
.

When instead p ∈ ( 3
2 , 2), and hence p′ ∈ (2, 3), the r.h.s. of (3.81) is estimated with

Hölder’s inequality, with weights q = p′−1
2(p′−2) and q′ = p′−1

3−p′ , as

‖KΞ(x, ·)1{|·|610R}‖Lp′ (R3)

6
C

|x|

(∫ 10R

0

dρ

ρ
p′−1

2

)2(2−p)
p′ ‖X̂‖

L
p′(p′−1)

3−p′ (R)

.
(3.83)

In order to obtain analogous estimates to (3.82)-(3.83) in the remaining regime
p ∈ (1, 3

2 ), it is convenient to integrate by parts in (3.76), using e−iλ(|x|+a) =

i(|x|+ a)−1∂λe
−iλ(|x|+a), so as to split

(3.84) KΞ(x, y) = K
(1)
Ξ (x, y) +K

(2)
Ξ (x, y)

with

K
(1)
Ξ (x, y)

:=
−1√

2π |x|(|x|+ a)

∫ +∞

0

(e−iλ(|x|+a+|y|) + eiλ(|x|+a−|y|)X(λ) dλ

=
−1

|x|(|x|+ a)

(
X̂(|x|+ a+ |y|) + X̂(|x|+ a− |y|)

)(3.85)
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and

K
(2)
Ξ (x, y)

:=
−i√

2π |x|(|x|+ a)|y|

∫ +∞

0

e−iλ(|x|+a)(e−iλ|y| − eiλ|y|)X ′(λ) dλ .
(3.86)

Using (3.85) we get

‖K(1)
Ξ (x, ·)1{|·|610R}‖Lp′ (R3)

6
(4π)

1
p′

|x|(|x|+ a)

∑
±

(∫ 10R

0

dρ ρ2 |X̂(|x|+ a± ρ)|p
′
)1/p′

6
2 (4π)

1
p′ (10R)2

|x|(|x|+ a)
‖X̂‖Lp′ (R) .

(3.87)

As for K
(2)
Ξ , we exploit (3.86) using the bound |X ′(λ)| 6 C〈λ〉−2 for some C > 0,

which follows from the fact that X(λ) = λ−1ω>(λ) or λ−2ω>(λ), and the bound
|e−iλ|y| − eiλ|y|| 6 2(λ|y|)1−θ ∀θ ∈ (0, 1). Thus,

|K(2)
Ξ (x, y)| 6 1

|x|(|x|+ a)|y|

∫ +∞

0

2(λ|y|)1−θ |X ′(λ)|dλ 6 C

|x|(|x|+ a)|y|θ
,

whence

(3.88) ‖K(2)
Ξ (x, ·)1{|·|610R}‖Lp′ (R3) 6

C ′

|x|(|x|+ a)

∥∥∥ 1{|y|610R}

|y|θ
∥∥∥
Lp′ (R3)

,

for suitable constants C,C ′ > 0, where the Lp
′
-norm in the r.h.s. is finite whenever

θp′ < 3.
The estimates (3.82), (3.83), (3.84), (3.87), and (3.88) together then imply that,

for some constant Cp > 0,

(3.89) ‖KΞ(x, ·)1{|·|610R}‖Lp′ (R3) 6
Cp
|x|

, p ∈ (1, 3
2 ) ∪ ( 3

2 , 2) ∪ (2, 3) .

Then (3.89) and Hölder’s inequality yield

‖1{|·|6R} Ξ 1{|·|610R}u‖pLp(R3)

6
∫
R3

dx1{|x|6R}(x)
∣∣∣ ∫

R3

dy KΞ(x, y)1{|y|610R}(y)u(y)
∣∣∣p

6 Cp

∥∥∥ 1{|x|6R}

|x|

∥∥∥p
Lp(R3)

‖1{|·|610R}u‖pLp(R3)

= C ′p ‖1{|·|610R}u‖pLp(R3)

(3.90)

for some constant C ′p > 0.
We have thus obtained precisely the desired estimate (3.80). This completes

the proof because, as commented already, (3.79) and (3.80) together give (3.75). �

3.4. Unboundedness in L1(R3) and Lp(R3), p > 3

In this Section we complete the proof of Theorem 3.0.3 as far as the unbounded-
ness part is concerned, hence showing that the wave operators W±α,Y are unbounded

in Lp(R3) whenever p ∈ {1}∪ [3,+∞]. As commented already, it is enough to prove
this property for W+

α,Y .
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3.4.1. Unboundedness of W+
α,Y in Lp(R3) for p ∈ [3,+∞]. Because of

the Lp-boundedness of W+
α,Y for p ∈ (1, 3), it is clear that we only need to prove

that W+
α,Y is unbounded in L3(R3), for any Lp-boundedness for p > 3 would then

contradict, by interpolation, the unboundedness when p = 3.
Let us assume for contradiction that W+

α,Y is bounded in L3(R3), which by

duality implies also that (W+
α,Y )∗ is bounded in L3/2(R3).

Choose c > 0 sufficiently large so as to make the matrix Γα,Y (ic) non-singular.

Correspondingly, R0(−c2) maps continuously L3/2(R3) into W 2,3/2(R3) and hence
also L3/2(R3) into Lq(R3) for any q ∈ [ 3

2 ,∞), owing to a Sobolev embedding. Thus,

the L3/2-boundedness of (W+
α,Y )∗, the L3/2 → L3-boundedness of R0(−c2), and the

L3-boundedness of W+
α,Y imply, by means of the intertwining property (3.2), that

also the operator

Rα,Y (−c2)Pac(Hα,Y ) = W+
α,YR0(−c2)(W+

α,Y )∗

is continuous from L3/2(R3) to L3(R3). As a consequence, we read out from the
the resolvent identity (1.32) that for any u ∈ L2

ac(Hα,Y ) ∩ L3/2(R3) the function

Rα,Y (−c2)u−R0(−c2)u

=

N∑
j,k=1

(Γα,Y (ic)−1)jk G
yj
ic (x)

∫
R3

Gykic (y)u(y) dy
(*)

must belong to L3(R3).
Let us make now a choice of u for which the r.h.s. of (*) above fails instead to

belong to L3(R3). Since u ∈ L2
ac(Hα,Y ), then u is orthogonal to all the eigenfunc-

tions of Hα,Y , that is, owing to Theorem 1.1.4(i), u is orthogonal to an (at most)
N -dimensional subspace spanned by suitable linear combinations of Gy1iλk

, . . . ,GyNiλk

for k ∈ {1, . . . , N}, where −λ2
1, . . . ,−λ2

N are the eigenvalues of Hα,Y . Because of
our choice of c, in such an orthogonal complement there is surely u which is not

orthogonal to the Gykic ’s, namely,∫
R3

Gykic (y)u(y) dy 6= 0 ∀k ∈ {1 . . . , N} .

(In fact, such a u can be also found in C∞0 (R3) ∩ L2
ac(Hα,Y ): indeed, the point

spectral subspace of Hα,Y is at most N -dimensional, whereas the set of u’s that
satisfy the non-vanishing condition above is open in the topology of the space of
test functions.) For such u, because of the invertibility of the matrix Γα,Y (ic), the
expression

N∑
j,k=1

(Γα,Y (ic)−1)jk G
yj
ic (x)

∫
R3

Gykic (y)u(y) dy

is a linear combination of the Gyjic ’s with at least one non-zero coefficient, say, the
one for j = j0. Therefore, in a sufficiently small neighbourhood of yj0 (so small as
not to contain any other of the yj ’s of Y , for j 6= j0) the latter function must be of
the form cj0 |x−yj0 |−1 +R(x) for some constant cj0 6= 0 and some bounded (in fact,
smooth) function R(x). This would mean that in the considered neighbourhood of
yj0 Rα,Y (−c2)u−R0(−c2)u is not a L3-function, a contradiction.

3.4.2. Unboundedness of W+
α,Y in L1(R3). For this case the following pre-

liminary observation is going to be useful.

Remark 3.4.1. Let g ∈ C∞0 (R). Then

(3.91)
2√
2π

∫ +∞

0

e−iλρ ĝ(−λ) dλ = g(ρ)− i(Hg)(ρ) ,
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where g 7→ Hg denotes the Hilbert transform, defined as

(3.92) (Hg)(ρ) :=
1

π
P.V.

∫ +∞

−∞

g(τ)

ρ− τ
dτ.

Indeed, following from the fact [54, Eq. (5.1.13)] that the Hilbert transform is the
Fourier multiplier

(̂Hg)(λ) = −i sgn(λ) ĝ(λ) ,

one has

g(ρ)− i(Hg)(ρ) =
1√
2π

∫ +∞

−∞
eiρλ(1− sgn(λ)) ĝ(λ) dλ

=
2√
2π

∫ 0

−∞
eiρλ ĝ(λ) dλ =

2√
2π

∫ +∞

0

e−iλρ ĝ(−λ) dλ .

Let us now prove the fact that the wave operator W+
α,Y is unbounded in L1(R3).

We may assume without loss of generality to take the set Y = {y1, . . . , yN} of
interaction centres so that y1 = 0.

Let u ∈ C∞0 (R3) be rotationally invariant, and we write u(x) = f(|x|) for some
f : [0,+∞) → C which is smooth and compactly supported. We extend f to an
even function on the whole R. By construction, f(r) = Mu(r), the spherical mean
of u.

Our starting point is the stationary representation (3.19) for W+
α,Y u, that is,

(3.93) W+
α,Y u = u+

N∑
j,k=1

TyjΩjkT−yku ,

and for each j, k ∈ {1, . . . , N} we set Kjku := TyjΩjkT−yku. Explicitly,

(Kjku)(x)

=
1

iπ

∫
R3

dy u(y)

∫ +∞

0

dλFjk(λ)
e−iλ|x−yj |

4π|x− yj |
eiλ|y−yk| − e−iλ|y−yk|

4π|y − yk|
,

(3.94)

where we used (3.9) and (3.12).
We now proceed by re-scaling u and f as

(3.95) uε(x) := ε−3u(ε−1x) , fε(r) := ε−3f(ε−1r) , ε > 0 ,

which makes the norms

(3.96) 4π‖r2fε‖L1(0,+∞) = ‖uε‖L1(R3) = ‖u‖L1(R3) = 4π‖r2f‖L1(0,+∞)

ε-independent. This re-scaling is devised so as to make all interaction centres but
y1 ineffective, because uε is only bumped around the origin, and then to reduce the
question to the unboundedness of the wave operator relative to a single-centre point
interaction Hamiltonian, for which the answer will then come by direct inspection.

From (3.94) and (3.96),

(Kjkuε)(x)

=
1

iπε2

∫
R3

dy u(y)

∫ +∞

0

dλFjk(λε )
e−iλε |x−yj |

4π|x− yj |
eiλ|y− ykε | − e−iλ|y− ykε |

4π|y − yk
ε |

,
(3.97)

having made the changes of variables y → εy and λ→ ε−1λ in the integrations. If
we now define, for arbitrary v ∈ C∞0 (R3),

(K
(ε)
jk v)(x)

=
1

iπ

∫
R3

dy v(y)

∫ +∞

0

dλFjk(λε )
e−iλ|x−

yj
ε |

4π|x− yj
ε |

eiλ|y− ykε | − e−iλ|y− ykε |

4π|y − yk
ε |

,
(3.98)
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then for the considered u and its re-scaled uε we have

(3.99)
∥∥∥ N∑
j,k=1

Kjkuε

∥∥∥
L1(R3)

=
∥∥∥ N∑
j,k=1

K
(ε)
jk u

∥∥∥
L1(R3)

,

which follows by making the change of variable x 7→ εx in the integration on the
l.h.s.

We now want to study the contribution of each term K
(ε)
jk u as ε ↓ 0. We shall

establish the following limits

lim
ε↓0

(K
(ε)
11 u)(x) = −

√
2

π

∫ +∞

0

e−iλ|x|

|x|
(r̂f)(−λ) dλ ,

lim
ε↓0

(K
(ε)
jk u)(x) = 0 , (j, k) 6= (1, 1) ,

(3.100)

pointwise for a.e. x ∈ R3.
To this aim, we first find the bound

(3.101)

∫
R3

eiλ|y− ykε | − e−iλ|y− ykε |

4π|y − yk
ε |

u(y) dy 6| · | Cu 〈λ〉−2

∫
suppu

dy

|y − ε−1yk|

for some constant Cu > 0 depending on u, but not on ε. (3.101) is obvious for small
λ’s, since u is compactly supported, whereas for large λ’s we apply the distributional
identity

(−∆y − λ2)
( e±iλ|y− ykε |

4π|y − yk
ε |

)
= δ(y − yk

ε ) ,

and integrating by parts we find∫
R3

eiλ|y− ykε | − e−iλ|y− ykε |

4π|y − yk
ε |

u(y) dy

= λ−2

∫
R3

eiλ|y− ykε | − e−iλ|y− ykε |

4π|y − yk
ε |

(−∆)u(y)dy

6| · | Cu 〈λ〉−2

∫
suppu

dy

|y − ε−1yk|
,

thus, (3.101) is proved.
Next, in order to prove the first of the limits (3.100) by taking ε ↓ 0 in (3.98),

we use the asymptotics (3.13), namely,

lim
ε↓0

F11(ε−1λ) = −4πi ,

and we also recognise that the asymptotics as ε ↓ 0 of the y-integration of (3.98) is
precisely the quantity∫

R3

eiλ|y| − e−iλ|y|

4π|y|
u(y) dy =

√
2π (r̂Mu)(−λ) =

√
2π (r̂f)(−λ)

discussed in (3.17). The limit ε ↓ 0 can be exchanged with the integrations in λ and
in y by dominated convergence, because F11(λε ) is uniformly bounded (see Lemma
3.1.1(i)) and (3.101) provides a majorant that is integrable in λ. Thus,

lim
ε↓0

(K
(ε)
11 u)(x) =

1

iπ
(−4πi)

∫ +∞

0

e−iλ|x|

4π|x|
√

2π (r̂f)(−λ) dλ

= −
√

2

π

∫ +∞

0

e−iλ|x|

|x|
(r̂f)(−λ) dλ , x 6= 0 ,

and the first limit of (3.100) is proved.
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Concerning now (3.100) when (j, k) 6= (1, 1), from our estimate (3.101) we
deduce

|(K(ε)
jk u)(x)| 6 Cu

|x− yj
ε |

(∫ +∞

0

|Fjk(λε )| 〈λ〉−2 dλ
)(∫

suppu

dy

|y − yk
ε |

)
6 C ′u ‖Fjk‖L∞(0,∞)

1

|x− yj
ε |

∫
suppu

dy

|y − yk
ε |

(3.102)

for some new constant C ′u > 0. Since at least one among yj and yk does not coincide
with the origin, and since u is compactly supported, we conclude at once that

lim
ε↓0

(K
(ε)
jk u)(x) = 0 , x 6= 0 if j = 0.

The proof of (3.100) is thus completed, and in turn (3.100) implies

(3.103) lim
ε↓0

N∑
j,k=1

(K
(ε)
jk u)(x) = − 2√

2π

∫ +∞

0

e−iλ|x|

|x|
(r̂f)(−λ) dλ

pointwise for a.e. x ∈ R3.
This latter fact allows us to take the limit ε ↓ 0 in the r.h.s. of (3.99), provided

that the L1-norm is taken on compacts of R3. Indeed, for fixed R > 0 and any
sufficiently small ε > 0 such that |x − yj

ε | > |x| for any x ∈ {x||x| 6 R} ∪ suppu
and j = 1, . . . , N , the estimate (3.102) implies (1R ≡ the characteristic function of
the ball |x| 6 R)

1R(x)

N∑
j,k=1

|(K(ε)
jk u)(x)| 6 N2 Cu,R

|x|

∫
suppu

dy

|y|
6 N2

C ′u,R
|x|

for suitable constants Cu,R, C
′
u,R > 0, which gives a majorant in L1(R3). Then, by

(3.103) and dominated convergence,

lim
ε↓0

∫
|x|6R

∣∣∣ N∑
j,k=1

(K
(ε)
jk u)(x)

∣∣∣dx
=

2√
2π

∫
|x|6R

dx
∣∣∣∫ +∞

0

dλ
e−iλ|x|

|x|
(r̂f)(−λ)

∣∣∣
=
√

32π

∫ R

0

dρ
∣∣∣∫ ∞

0

ρ e−iλρ (r̂f)(−λ) dλ
∣∣∣ .

(3.104)

An integration by parts and formula (3.91) in Remark 3.4.1 yield

√
32π

∫ ∞
0

ρ e−iλρ (r̂f)(−λ) dλ =
√

32π

∫ +∞

0

e−iλρ (r̂2f)(−λ) dλ

= 4π
(
(r2f)(ρ)− i(Hr2f)(ρ)

)
.

(3.105)

In the integration by parts the boundary term does not appear because r 7→ rf(r)

is an odd function and (r̂f)(0) = 0. The conclusion from (3.104) and (3.105) is
therefore

(3.106) lim
ε↓0

∥∥∥1R

N∑
j,k=1

K
(ε)
j,ku

∥∥∥
L1(R3)

= 4π

∫ R

0

∣∣(1− iH)(r2f)(ρ)
∣∣dρ .

The proof of the L1-unboundedness of W+
α,Y is completed as follows. Suppose

for contradiction that W+
α,Y is instead L1-bounded. Then, for arbitrary R > 0,
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4π

∫ R

0

∣∣(1− iH)(r2f)(ρ)
∣∣ dρ = lim

ε↓0

∥∥∥1R

N∑
j,k=1

K
(ε)
j,ku

∥∥∥
L1(R3)

6 lim inf
ε↓0

∥∥∥ N∑
j,k=1

K
(ε)
j,ku

∥∥∥
L1(R3)

= lim inf
ε↓0

∥∥∥ N∑
j,k=1

Kj,kuε

∥∥∥
L1(R3)

= lim inf
ε↓0

‖(W+
α,Y − 1)uε‖L1(R3)

6 (1 + ‖W+
α,Y ‖B(L1(R3)))‖uε‖L1(R3)

6 (1 + ‖W+
α,Y ‖B(L1(R3)))‖r2f‖L1(0,∞) ,

where we applied (3.106) in the first step, (3.99) in the third step, (3.93) in the
fourth step, the assumption of L1-boundedness in the fifth step, and the scale
invariance (3.96) in the last step. Moreover, due to the arbitrariness of R, the
estimate above also implies

(*) 4π‖(1− iH)(r2f)‖L1(0,∞) 6 (1 + ‖Wα,Y ‖B(L1(R3)))‖r2f‖L1(0,∞) .

However, the inequality (*) can be surely violated. Indeed it is well-known that the
Hilbert transform on R maps even functions into odd functions, but fails to map
even (and compactly supported) L1-functions into L1-functions, as one may see with
(a suitable mollification, so as to make it C∞0 and even, of) the function f0(r) =
(r2 + 1)−1, the Hilbert transform of which is (Hf0)(r) = r(r2 + 1)−1. Therefore
(*) is a contradiction. The conclusion is that W+

α,Y is necessarily unbounded on

L1(R3).

3.5. Lp-convergence of wave operators

In this concluding Section we establish a result of Lp-convergence of wave op-
erators in the limit when a regular Schrödinger Hamiltonian converges to a singular
point interaction Hamiltonian. This is part of the general picture outlined in Re-
mark 3.0.5 concerning the connection between two completely analogous results,
on the one hand our main result (Theorem 3.0.3) of Lp-boundedness for p ∈ (1, 3)
and Lp-unboundedness for p ∈ {1} ∪ [3,∞) of the wave operators relative to the
point interaction Hamiltonian Hα,Y , and on the other hand the analogous results
available in the previous literature, precisely in the same regimes of p, for wave
operators relative to Schrödinger Hamiltonians of the form −∆ + V .

For concreteness we restrict our attention to the case N = 1 and α = 0, thus
taking without loss of generality Y = {0}.

Let us conside a real measurable potential V , such that |V (x)| 6 〈x〉−δ for
some δ > 7. Under these hypothesis, V satisfies part (i) of the Assumption (I2)
introduced in Chapter 2. Owing to Lemma 2.1.1(iii), the Schrödinger operator
H := −∆ + V defined as a form sum is self-adjoint on L2(R3). It is well known
[76] that the wave operators

(3.107) W± := s-lim
t→±∞

eitHe−itH0

relative to the pair (H,H0) exist and are complete in L2(R3); W± extend to
bounded operators on Lp(R3) in the following regimes: for all p ∈ [1,+∞] if zero
is neither a resonance nor eigenvalue of H [18], and only for p ∈ (1, 3) if zero is a
resonance [114].
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With reference to Assumption (I2), we take η2 ≡ 1 as a distortion factor, and
accordingly to (2.2) we consider the re-scaled operator

(3.108) H(ε) := h(1)
ε = −∆ +

1

ε2
V
(x
ε

)
, ε > 0 .

In analogy to (3.107), we consider also the wave operators relative to the pair
(H(ε), H0), defined as

(3.109) W±ε := s-lim
t→±∞

eitH(ε)

e−itH0 .

Theorem 2.1.3 shows that H(ε) → Hα,Y |α=0,Y={0} as ε ↓ 0 in the norm resol-

vent sense of operators on L2(R3), and this in turn motivates us to investigate the
relation between W±ε and W±α,Y when ε ↓ 0, as bounded operators on Lp(R3) for

p ∈ (1, 3). Our result is the following.

Proposition 3.5.1. Suppose that V is a real measurable potential such that

|V (x)| 6 C〈x〉−δ for some δ > 7. Then, for any p ∈ (1, 3) the wave operators W±ε
extend to bounded operators on Lp(R3). If zero is a resonance but not an eigenvalue
for the self-adjoint operator H = −∆ + V on L2(R3), then in the weak topology of
Lp(R3) with p ∈ (1, 3), and hence also in the strong topology of L2(R3),

(3.110) lim
ε↓0

W±ε u = W±α,Y u , u ∈ Lp(R3) .

Proof. The statement on the Lp-boundedness of W±ε follows directly from
[114]. Concerning the limit (3.110), we shall prove it for W+

ε , the argument for
W−ε being completely analogous.

Let us consider the scaling operator Uε : L2(R3) → L2(R3) defined by (2.12).
Uε induces the unitary equivalence

(3.111) H(ε) = Uε(ε
−2H)U∗ε .

As a consequence, W+
ε and W+ are unitarily equivalent too as operators on L2(R3),

for

W+
ε = s-lim

t→+∞
eitH

(ε)

e−itH0

= Uε s-lim
t→+∞

eitε
−2He−itε

−2H0 U∗ε = UεW
+U∗ε .

(3.112)

Moreover, for any ε > 0 and p ∈ [1,+∞] the operator Uε is a bounded bijection on
Lp(R3) with norm

(3.113) ‖Uε‖B(Lp(R3)) = ε 3( 1
p−

1
2 )

and inverse

(3.114) (Uε)
−1 = Uε−1 .

Combining (3.112), (3.113), and (3.114), it follows that for any p ∈ (1, 3)

(3.115) ‖W+
ε ‖B(Lp(R3)) = ‖W+‖B(Lp(R3)) < +∞.

For the proof of (3.110) it suffices to show that, when α = 0 and Y = {0},

(3.116) lim
ε↓0

∫
R3

(W+
ε u)(x) v(x) dx =

∫
R3

(Wα,Y u)(x) v(x)

for any u and v in

(3.117) D := {u ∈ S(R3) | û ∈ C∞0 (R3)}
which is dense in Lp(R3) for any 1 < p <∞. Indeed by means of a straightforward
density argument, applicable because of the uniform norm-boundedness (3.115), the

result (3.116) can then be lifted to any u ∈ Lp(Rd) and v ∈ Lp′(Rd), whence the
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conclusion. Moreover, with the choice (3.117) we can equivalently re-write (3.116)
in Hilbert scalar product notation as

(3.118) lim
ε↓0
〈W+

ε u, v〉 = 〈Wα,Y u, v〉 .

Aimed at establishing (3.118), let us fix u, v ∈ D. Then there is R > 0 such
that û(ξ) = 0 for |ξ| > R, and also

(3.119) (Û∗ε u)(ξ) =
1

ε3/2
û
(ξ
ε

)
, (Û∗ε u)(ξ) = 0 for |ξ| > Rε .

We shall make crucial use of the well-known fact from the stationary scattering
theory [76] that

(3.120) W+ = 1− 1

iπ

∫ +∞

0

G0(−λ)V (1+G0(−λ)V )−1 (G0(λ)−G0(λ))λ dλ ,

where

(3.121) G0(±λ) := lim
η↓0

(H0 − (λ2 ± iη)1)−1 = lim
η↓0

R0(λ2 ± iη) , λ > 0 .

Then (3.112) and (3.120), together with G0(±λ)∗ = G0(∓λ), yield

〈W+
ε u, v〉 − 〈u, v〉

=
1

iπ

∫ +∞

0

〈
(1+G0(−λ)V )−1 (G0(λ)−G0(−λ))U∗ε u , V G0(λ)U∗ε v

〉
λ dλ .

(3.122)

In fact, the λ-integration in (3.122) is only effective for λ < Rε. To see this,
we compute the Fourier transform(

(G0(λ)−G0(−λ))U∗ε u
)̂

(ξ)

= lim
η↓0

(
(ξ2 − λ2 − iη)−1 − (ξ2 − λ2 + iη)

)−1
(Û∗ε u)(ξ)

= lim
η↓0

2 i η

(ξ2 − λ2)2 + η2
(Û∗ε u)(ξ)

(3.123)

and we argue that the function in (3.123) surely vanishes when |ξ| > Rε, owing to
(3.119), and when in addition λ > Rε such function also vanishes when |ξ| 6 Rε,
because in this case (ξ2 − λ2)2 > 0 and the above limit in η is zero. Thus,

(3.124) (G0(λ)−G0(−λ))U∗ε u ≡ 0 when λ > Rε .

By exploiting the scaling in ε in (3.122) we obtain

〈W+
ε u, v〉 − 〈u, v〉

=
ε2

iπ

∫ +∞

0

〈
(1+G0(−ελ)V )−1(G0(ελ)−G0(−ελ))U∗ε u , V G0(ελ)U∗ε v

〉
λdλ ,

(3.125)

where it has to be remembered that, owing to (3.124), the integration actually only
takes place when λ ∈ [0, R].

Next, in order to compute the limit ε ↓ 0 in (3.125), we consider separately the
behaviour of the operators

ε
1
2G0(±ελ)U∗ε and ε(1+G0(−ελ)V )−1 .

Indeed, we shall see that they do converge strongly in a suitable Banach space. A
weak-type Hölder’s inequality implies that(

ε
1
2G0(±ελ)U∗ε u

)
(x) =

∫
R3

e±iλ|εx−y|

4π|εx− y|
u(y) dy
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is bounded by a constant (by (4π)−1‖|x|−1‖L3,∞‖u‖
L

3
2
,1 in terms of Lorentz norms);

therefore, uniformly for λ ∈ [0, R] and x in compact sets,

lim
ε↓0

(
ε

1
2G0(±ελ)U∗ε u

)
(x) =

∫
R3

e±iλ|y|

4π|y|
u(y) dy = 〈 G±λ, u〉 .

As a consequence, we deduce that

(3.126) lim
ε↓0

∥∥ε 1
2G0(±ελ)U∗ε u− 〈G±λ, u〉1

∥∥
L2
−β(R3)

= 0

for β > 3
2 , where L2

−β(R3) ≡ L2(R3, 〈x〉−2βdx) and 1 denotes the function 1(x) = 1

∀x ∈ R3. Moreover, owing to the spectral and decay assumptions on V , it is a
standard fact [113, Theorem 4.8] that

(3.127) lim
ε↓0

∥∥∥ ε(1+G0(−ελ)V )−1 − 4πi

λa2
|ϕ〉〈V ϕ|

∥∥∥
B(L2

−β(R3))
= 0

for λ > 0 and β ∈ ( 3
2 , δ −

1
2 ), where ϕ is a zero-energy resonance for H = −∆ + V ,

uniquely identified by the conditions
∫
R3 V |ϕ|2dx = −1 and

∫
R3V ϕ dx > 0, and

where a :=
∫
R3V ϕ dx.

If we now and henceforth restrict β to the regime β ∈ ( 3
2 ,

δ
2 ), then (3.126) and

(3.127) are still valid, and in addition the multiplication by V is a L2
−β(R3) →

L2
β(R3) continuous map. Thus, the L2-scalar product appearing in the r.h.s. of

(3.125) can be also regarded as a L2
−β-L2

β duality product. Using this fact, and

by means of (3.126) and (3.127), which are applicable because the λ-integration in
(3.125) is actually only effective for λ ∈ [0, R], we find

lim
ε↓0

(r.h.s. of (3.125))

=
1

iπ

∫ +∞

0

〈 4πi

λa2
|ϕ〉〈V ϕ|

(
〈Gλ, u〉 − 〈G−λ, u〉

)
1 , V 〈Gλ, v〉1

〉
L2
−β ,L

2
β

λ dλ

= −4

∫ +∞

0

dλ
(∫

R3

dy u(y)
(
G−λ(y)− Gλ(y)

))(∫
R3

dxGλ(x) v(x)
)
.

Summarising, we have found

lim
ε↓0
〈W+

ε u, v〉 = 〈u, v〉

+ 4

∫ +∞

0

dλ
(∫

R3

dy u(y)
(
Gλ(y)− G−λ(y)

))(∫
R3

dxGλ(x) v(x)
)
.

(3.128)

Since the r.h.s. above is precisely the quantity 〈Wα,Y u, v〉 that we obtained in (3.9)
in the special case N = 1, α = 0, the limit 〈W+

ε u, v〉 → 〈Wα,Y u, v〉 of (3.118) is
then established and, as already argued, this completes the proof. �



CHAPTER 4

Global smoothing properties

In this Chapter we study the smoothing properties of the dynamics generated
by singular perturbations of the three-dimensional Laplacian.

As already discussed in the Introduction of this thesis, one main motivation is
the investigation of perturbative non-linear problems of the form

(4.1) i∂tu = −∆α,Y u+N (u) , t ∈ R , x ∈ R3 ,

which naturally arise in the context of many-body quantum systems subject to fixed
impurities, where the non-linear term N (u) describes the interactions between the
particles, in a suitable scaling regime. In fact, the smoothing properties of the
unitary group {eit∆α,Y }t∈R are a fundamental tool in order to prove local well-
posedness of (4.1), by means of a fixed point argument.

We begin our discussion by recalling some basic facts on the free Schrödinger
evolution. The unitary propagator eit∆ has an explicit integration kernel:

(4.2)
(
eit∆f

)
(x) = (4πit)−3/2

∫
R3

e−i
|x−y|2

4t f(y)dy, t 6= 0.

Owing to (4.2) and Young inequality one gets

(4.3) ‖eit∆f‖L∞(R3) . |t|−3( 1
2−

1
p )‖f‖L1(R3), p ∈ [2,+∞] , t 6= 0 .

Interpolating (4.3) with the trivial L2-bound, one deduces the well-known dispersive

(or Lp
′ − Lp) estimates:

(4.4) ‖eit∆f‖p . |t|−3( 1
2−

1
p )‖f‖p′ , p ∈ [2,+∞] , t 6= 0 .

Furthermore, the free propagator eit∆ satisfies a class of space-time estimates,
known as Strichartz estimates:

(4.5)

‖eit∆f‖Lq(Rt,Lp(Rdx)) 6 C‖f‖L2(R3),

2

q
+

3

p
=

3

2
, p ∈ [2, 6].

In the non-endpoint case p 6= 6, (4.5) follows by dispersive estimates (4.4) by
means of a duality argument and fractional integration [49, 110]. The proof in the
endpoint case p = 6 is more involved, and it is due to Keel and Tao [70].

The literature on dispersive and Strichartz estimates for actual Schrödinger
operators of the form −∆ + V , for sufficiently regular V : R3 → R vanishing at
spatial infinity, is vast [67, 111, 96, 52, 41, 94, 64, 51, 87, 113] and the problem
is well known to depend on the spectral properties of −∆ +V at the bottom of the
absolutely continuous spectrum, that is, at zero energy.

For singular perturbations of the Laplacian, the picture is much less developed.
In this direction, the first result was achieved by D’Ancona, Pierfelice, and Teta
[33], who proved weighted L1 − L∞ estimates, the weights being suitably chosen
in order to compensate the local singularities due to the point interactions.
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In my work [61], in collaboration with F. Iandoli, we proved in the single
centre case non-weighted dispersive and Strichartz estimates, that is, the analogue
of (4.4)-(4.5), in the regime p ∈ [2, 3). In my work [36], in collaboration with
G. Dell’Antonio, A. Michelangeli, and K. Yajima, the result was extended to the
general multi-centre case, as a consequence of the Lp-boundedness of the singular
wave operators (Theorem 3.0.3).

The Chapter is organised as follows. In Section 1 we discuss weighted L1−L∞
estimates and their consequences. In Section 2 we prove non-weighted dispersive
estimates, in the regime p ∈ (1, 3). As a by-product, we deduce Strichartz estimates
in the same range of p’s.

4.1. Weighted dispersive estimates

In this Section we study the weighted dispersive estimates for the unitary flow
generated by singular perturbations of the three-dimensional Laplacian. We start
our discussion with the case of a single point interaction, which can be assumed
to be centred at the origin. Hence we consider the family of self-adjoint operators
{−∆α}α∈R identified in Theorem 1.1.1. An important feature of the single-centre
case is that the unitary propagator eit∆α has an explicit expression. In particular,
we have the following characterisation [5, 100], valid for any f ∈ L2(R3) and t 6= 0.

(i) For α > 0,

(eit∆αf)(x) = (eit∆f)(x) +
1

(4πit)3/2|x|
×

×
∫
R3

(f(y)

|y|

∫ +∞

0

e−4παs(s+ |x|+ |y|)e−i
(s+|x|+|y|)2

4t ds
)
dy.

(4.6)

(ii) For α < 0,

(eit∆αf)(x) = (eit∆f)(x)− eit(4πα)2〈ψα, f〉ψα(x) +
1

(4πit)3/2|x|
×

×
∫
R3

(f(y)

|y|

∫ +∞

0

e4παs(s− |x| − |y|)e−i
(s−|x|−|y|)2

4t ds
)
dy,

(4.7)

where

ψα(x) := π
√

32|α|G|Eα| =
√

2|α| e
4πα|x|

|x|
is the normalised eigenfunction associated to the eigenvalue Eα = −(4πα)2.

(iii) For α = 0,

(4.8) (eit∆0f)(x) = (e−it∆f)(x) +
1

4π(πit)1/2|x|

∫
R3

e−i
(|x|+|y|)2

4t
f(y)

|y|
dy.

Owing to the explicit formulas above, the following result can be easily proved
(the original proof can be found in [33]).

Theorem 4.1.1. Let w(x) := 1 + |x|−1.

(i) For every α 6= 0, the following estimate holds:

(4.9) ‖w−1eit∆αPac(−∆α)f‖L∞(R3) . |t|−
3
2 ‖wf‖L1(R3), t 6= 0.

(ii) In the zero-energy resonant case α = 0, the following estimate holds:

(4.10) ‖w−1eit∆0f‖L∞(R3) . |t|−
1
2 ‖wf‖L1(R3), t 6= 0.

Remark 4.1.2. It is worth observing that the presence of a weight in (4.9)-
(4.10) is unavoidable, because of the structure of the domain of −∆α identified in
(1.6). Indeed, even if one take f ∈ C∞0 (R3 \ {0}), the evolution eit∆αf instanta-
neously developes a local singularity of order |x|−1, which prevents a non-weighted
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estimate like (4.3). Furthermore, it emerges from Theorem 4.1.1 that the occurence
of a zero-energy resonance results in a slower time-decay for the dispersive estimates,
a typical and well-known phenomenon for regular Schrödinger operators of the form
−∆ + V [64, 94, 87].

Proof of Theorem 4.1.1. Let use start with the case α > 0. Combining
the L1 − L∞-estimate (4.3) for the free propagator eit∆ with the trivial bounds

|e−i
(s+|x|+|y|)2

4t | 6 1,∫ +∞

0

e−4παs(s+ |x|+ |y|)ds . 1 + |x|+ |y|,

one deduces that for t 6= 0 and for almost every x ∈ R3

(4.11) |(eit∆αf)(x)| . t−3/2

∫
R3

(
1 +

1 + |x|+ |y|
|x||y|

)
|f(y)|dy.

Since

1 +
1 + |x|+ |y|
|x||y|

= w(x)w(y),

then (4.11) yields

‖w−1eit∆αf‖L∞(R3) . t
− 3

2 ‖wf‖L1(R3), t 6= 0,

which is the desired estimate, the absolutely continuous subspace for −∆α being
the whole L2(R3).

Let us consider now the case α < 0. Owing to (4.7), one can easily distinguish
the absolutely continuous part of the evolution:

(eit∆αPac(−∆α)f)(x) = (eit∆f)(x) +
1

(4πit)3/2|x|
×

×
∫
R3

(f(y)

|y|

∫ +∞

0

e4παs(s− |x| − |y|)e−i
(s−|x|−|y|)2

4t ds
)
dy,

(4.12)

Proceeding as above, estimate (4.9) immediately follows from (4.12).
Last, when α = 0, we can proceed again in the same way, and owing to (4.8)

we deduce (4.10). �

In the general multi-centre case, we do not have an explicit formula for the
propagator, and one needs to resort to spectral calculus and the resolvent identity
(1.32). In this perspective, the following result was proved in [33].

Theorem 4.1.3. Let α ∈ RN and Y ≡ {y1, . . . , yN} ⊂ R3, and assume that
the matrix Γα,Y (z) defined by (1.28) is invertible for z ∈ R, with locally bounded
inverse. Set

(4.13) w(x) =

N∑
j=1

(
1 +

1

|x− yj |

)
.

The following dispersive estimate holds:

(4.14) ‖w−1eit∆α,Y Pac(−∆α,Y )f‖L∞(R3) . |t|−
3
2 ‖wf‖L1(R3), t 6= 0.

The assumption on Γα,Y implies in particular that zero is netiher an eigenvalue
nor a resonance for −∆α,Y (see the discussion in Chapter 1). Unlike the single
centre case, no results are available when there is a zero-energy obstruction.

Furthermore, interpolating (4.14) with the trivial L2-bound, one deduces that
under the same assumption on Γα,Y as in Theorem 4.1.3 the following weighted
dispersive inequalities holds true, for p ∈ [2,+∞]:
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‖w−(1− 2
p )eit∆α,Y Pac(−∆α,Y )f‖Lp(R3) .

|t|−3( 1
2−

1
p )‖w

2
p′−1

f‖Lp′ (R3), t 6= 0.
(4.15)

4.2. Non-weighted dispersive and Strichartz estimates

Observe that, when p < 3, the function w given by (4.13) belongs to Lploc(R3).
Hence one could expect to prove, in the regime p ∈ [2, 3), an non-weighted version
of (4.15). Indeed, we have the following result [36]:

Theorem 4.2.1. Assume that zero in not an eigenvalue for −∆α,Y , and that
the matrix Γα,Y (z) is invertible for z ∈ R \ {0}. Then, for p ∈ [2, 3), one has the
dispersive estimates

(4.16) ‖eit∆α,Y Pac(−∆α,Y )f‖Lp(R3) . |t|−3( 1
2−

1
p )‖f‖Lp′ (R3), t 6= 0

Proof. As commented in Chapter 3, the wave operators W±α,Y relative to the

pair (−∆α,Y ,−∆) exist and are complete in L2(R3). In particular, the intertwining
property (3.2) yields

(4.17) eit∆α,Y Pac(−∆α,Y ) = W±α,Y e
it∆(W±α,Y )∗.

Moreover, for a given p ∈ [2, 3), Theorem 3.0.3 guarantees that W±α,Y are bounded

in Lp(R3), whence by duality (W±α,Y )∗ are bounded in Lp
′
(R3). It follows that

‖eit∆α,Y Pac(−∆α,Y )f‖Lp(R3) = ‖W±α,Y e
it∆(W±α,Y )∗f‖Lp(R3)

. ‖eit∆(W±α,Y )∗f‖Lp(R3)

. |t|−3( 1
2−

1
p )‖(W±α,Y )∗f‖Lp′ (R3)

. |t|−3( 1
2−

1
p )‖f‖Lp′ (R3),

where in the third step we used the dispersive estimates (4.4) for the free Laplacian.
The proof is complete. �

Remark 4.2.2. Unlike the weighted L1−L∞ estimates discussed in the previous
Section, Theorem 4.2.1 covers the zero-energy resonant case also in the multi-centre
setting. Moreover, in the considered regime p ∈ [2, 3), a zero-energy resonance does

not produce a slower time decay for the Lp
′ − Lp estimates.

Interpolating (4.16) with (4.14) we get that for p ∈ [3,+∞)

‖w−(1− 3−ε
p )eit∆α,Y Pac(−∆α,Y )f‖Lp(R3) .

|t|−3( 1
2−

1
p )‖w−(1− 3−ε

p )f‖Lp′ (R3), ε > 0, t 6= 0.
(4.18)

In the regime p ∈ [3,+∞), estimate (4.18) improves the weights appearing in (4.15).
As a consequence of the dispersive estimates (4.16), one can deduce a class

of Strichartz estimates for −∆α,Y [36]. We shall call a pair of exponents (q, p)
admissible for −∆α,Y if

(4.19) p ∈ [2, 3) and 0 6
2

q
= 3

(1

2
− 1

p

)
<

1

2
,

that is, q = 4p
3(p−2) ∈ (4,+∞].
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Theorem 4.2.3 (Strichartz estimates for −∆α,Y ). Assume that zero in not an
eigenvalue for −∆α,Y , and that the matrix Γα,Y (z) is invertible for z ∈ R \ {0}.
Let (q, p) and (s, r) be two admissible pairs for −∆α,Y . Then

(4.20) ‖eit∆α,Y Pac(−∆α,Y )f‖Lq(Rt,Lp(R3
x)) . ‖f‖L2(R3)

and

(4.21)

∥∥∥∥∫ t

0

ei(t−τ)∆α,Y Pac(−∆α,Y )F (τ) dτ

∥∥∥∥
Lq(Rt,Lp(R3

x))

. ‖F‖Ls′ (Rt,Lr′ (R3
x)) .

4.2.1. Single centre case. In the single centre case there is a more direct
proof of Theorem 4.2.1, found in my work with F. Iandoli [61], which in a sense is
elementary, since, unlike [36], it does not use any deep result from scattering theory.
Our argument is based on the explicit characterisation of the unitary propagator
eit∆α given by (4.6), (4.7), and (4.8). For our purposes, it is convient to re-write
such formulas in the following equivalent form:

(4.22) eit∆αf =


eit∆f +Mtf if α = 0

eit∆0f +Mα,tf if α > 0

eit∆0f + M̃α,tf if α < 0

, f ∈ L2(R3), t 6= 0,

where

(4.23) (Mtf)(x) :=
1

4π(πit)1/2|x|

∫
R3

f(y)

|y|
e−i

(|x|+|y|)2
4t dy,

(4.24) (Mα,tf)(x) :=
α

(πit)1/2|x|

∫
R3

f(y)

|y|

∫ +∞

0

e−4παse−i
(|x|+|y|+s)2

4t dsdy,

(4.25)

(M̃α,tf)(x) := −eit(4πα)2〈ψα, f〉ψα(x)− α

(πit)1/2|x|
×

×
∫
R3

f(y)

|y|

∫ +∞

0

e4παse−i
(|x|+|y|−s)2

4t dsdy,

Unlike the proof of weighted L1 − L∞ estimates (4.9)-(4.10), here we need to
deal with the oscillating terms in (4.23), (4.24), and (4.25). The relevant tool is the
following result from harmonic analysis, due to Pitt [92]:

Theorem 4.2.4 (Pitt’s theorem). Let 1 < γ 6 η <∞ and 0 < b < 1
γ′ be such

that β := 1
γ′ −

1
η − b < 0, and define v(x) = |x|bγ for all x ∈ R. There is a constant

C > 0 such that

(4.26)

(∫
R
|f̂(ξ)|η|ξ|βηdξ

)1/η

6 C

(∫
R
|f(x)|γ |x|bγdx

)1/γ

,

for all f ∈ Lγ(R, v(x)dx).

Theorem 4.2.4 is a one-dimensional extension of the well known Hausdorff-
Young inequality in the context of weighted Lebesgue spaces.

Alternative proof of Theorem 4.2.1, single centre case. By means
of a standard density argument, it is enough to prove the thesis for f ∈ C∞0 (R3).
Let R := R(f) be such that f(x) = 0 for |x| > R. In view of the discussion in
Chapter 1.1, we know that, with respect to the canonical angular decomposition of
L2(R3) given by (1.17), the singular Laplacian −∆α differs from the free Laplacian
only on the sector of zero angular moment. Hence we may further assume f to be
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radial, viz. f(x) = f̃(|x|) for some f̃ : [0,+∞)→ C, with supp f̃ ⊆ [0, R]. We need
to show that the following estimates hold, uniformly with respect to f .

‖Mtf‖Lp . |t|−3( 1
2−

1
p )‖f‖Lp′ ,(4.27)

‖Mα,tf‖Lp . |t|−3( 1
2−

1
p )‖f‖Lp′ ,(4.28)

‖M̃α,tPac(−∆α)f‖Lp . |t|−3( 1
2−

1
p )‖f‖Lp′ .(4.29)

The latter inequalities, combined with the dispersive estimates (4.4) for the free
Laplacian, are clearly sufficient to prove (4.16) in the single centre case.

Let us start by proving (4.27). Using spherical coordinates in both variables x
and y we get

(4.30) ‖Mtf‖Lp . |t|−1/2

[∫ +∞

0

r2−p

∣∣∣∣∣
∫ R

0

exp

(
−iρr

2t
− iρ

2

4t

)
ρf̃(ρ)dρ

∣∣∣∣∣
q

dr

]1/p

.

Setting

(4.31) h(ρ) :=

{
e−iρ

2/4tρf̃(ρ) 0 6 ρ 6 R
0 ρ ∈ R \ [0, R],

the latter expression becomes

(4.32) |t|−1/2

[∫ +∞

0

r2−p
∣∣∣ĥ( r

2t

)∣∣∣p dr]1/p

,

which is equal to

(4.33) |t|−3( 1
2−

1
p )

[∫ +∞

0

r2−p|ĥ(r)|pdr
]1/p

.

Since p < 3, we may use Theorem 4.2.4 in the case η = p, γ = p′, β = 2−p
p , and

b = 2−p′
p′ , obtaining

(4.34)

|t|−3( 1
2−

1
p )

[∫ +∞

0

r2−p|ĥ(r)|pdr
]1/p

. |t|−3( 1
2−

1
p )

[∫ +∞

0

|h(r)|p
′
r2−p′dr

]1/p′

,

which is the desired estimate, for

(4.35)

[∫ +∞

0

|h(r)|p
′
r2−p′dr

]1/p′

≈ ‖f‖Lp′ .

Let us prove now (4.28). Since p < 3, the function 1/|y| belongs to Lploc(R3),
hence we can exchange the order of integration in (4.24) and use Minkowski in-
equality:
(4.36)

‖Mα,tf‖Lp . |t|−1/2

∫ +∞

0

∥∥∥∥∥
∫
|y|6R

1

|x|
e−4παs−i (|x|+|y|+s)

2

4t
f(y)

|y|
dy

∥∥∥∥∥
Lp

ds

= |t|−1/2

∫ +∞

0

e−4παs

∥∥∥∥∥
∫
|y|6R

1

|x|
e−i

|y|2
4t −i

|x||y|
2t −i

s|y|
2t
f(y)

|y|
dy

∥∥∥∥∥
Lp

ds.

An integration in spherical coordinates yields
(4.37)

‖Mα,tf‖Lp . |t|−1/2

∫ +∞

0

e−4παs

(∫ +∞

0

r2−p

∣∣∣∣∣
∫ R

0

e−i
rρ
2t hs(ρ)(ρ)dρ

∣∣∣∣∣
p

dr

)
ds,
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where

(4.38) hs(ρ) :=

{
e−i

ρ2

4t−i
sρ
2t ρf̃(ρ) 0 6 ρ 6 R
0 ρ ∈ R \ [0, R]

.

The quantity (4.37) is nothing but

(4.39) |t|−1/2

∫ +∞

0

e−4παs

(∫ +∞

0

r2−p
∣∣∣ĥs ( r

2t

)∣∣∣p dr)1/p

ds,

which, arguing as before, is bounded by |t|−3( 1
2−

1
p )‖f‖Lp′ . This concludes the proof

of (4.28).
The proof of (4.29) is analogous: indeed, after projecting f onto the the ab-

solutely continuous subspace of L2(R3) for −∆α, the first summand in the right
hand side of (4.25) disappears, hence the remaining part can be treated exactly in
the same way as done in the proof of (4.28). �





CHAPTER 5

Singular-perturbed Sobolev spaces

In this Chapter we study the fractional powers of the non-negative, three-
dimensional ‘singular perturbed’ Laplacian −∆α, for α > 0. Since −∆α is semi-
bounded from below for any α ∈ R, then up to a non-essential shift our discussion
could be also exported to negative α’s.

We focus on the operators (−∆α)s/2, s ∈ R thus denoting the number of
‘singular fractional derivatives’, aiming at covering the regime of main relevance,
that is, s ∈ (0, 2) (the power s = 0 corresponds to the identity operator, the power
s = 2 corresponds to the actual −∆α).

Among the motivations for the interest on (−∆α)s/2, central is surely the ob-
servation that its domain provides a ‘singular-perturbed’ version of the classical
Sobolev space Hs(R3), adapted to the self-adjoint operator −∆α – we shall denote
it with Hs

α(R3) in our results. As already discussed in the Introduction of this
thesis, the knowledge of such singular Sobolev spaces, of their induced singular
Sobolev norms, and of the mutual control between classical and singular Sobolev
norms, constitutes a crucial tool, combined with dispersive properties of −∆α, for
the study of the well-posedness of semi-linear ‘singular’ Schrödinger equations of
the form

(5.1) i∂tu = −∆αu+N (u)

with non-linearities of relevance such as N (u) = |u|γu or N (u) = |x|−γ ∗ |u|2,
γ > 0. These are non-linear PDE’s that model, in a suitable regime, the presence
of a localised impurity. The natural energy space for equation (5.1) is H1

α(R3),
and one would like to address also a higher or lower regularity theory, whence the
importance of the understanding of the spaces Hs

α(R3).
The material presented in this Chapter is based on my recent work [46], in

collaboration with V. Georgiev and A. Michelangeli, where we provide a thorough
characterisation of the singular Sobolev spaces Hs

α(R3), in the regime s ∈ (0, 2).
In the first of our main results, Theorem 5.1.1, we determine the precise struc-

ture of Hs
α(R3), identifying regular and singular part of a generic g ∈ Hs

α(R3) in all
the regimes of s for which such decomposition is meaningful. In our second main
result, Theorem 5.1.3, we present a mutual control between classical and singular
Sobolev norms, and in our third main result, Theorem 5.1.4, we find an explicit
formula for the computation of (−∆α)s/2 u.

These results and related remarks are stated in Section 5.1. In particular,
there arise three natural regimes of increasing regularity, s ∈ (0, 1

2 ), s ∈ ( 1
2 ,

3
2 ), and

s ∈ ( 3
2 , 2): the first is so low that no canonical decomposition between regular and

singular part is possible; the second is large enough to produce indeed a decom-
position, however with no constraint between regular and singular component; the
third is so high as to induce a constraint between the two components, which is
completely analogous to what was already known for the space H2

α(R3), i.e., the
domain of −∆α. The transition cases s = 1

2 and s = 3
2 are discussed separately in

Section 5.1 and then in Propositions 5.6.1 and 5.6.2.

71
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A similar analysis was been done for Schrödinger operators with inverse square
potentials [71]. Despite their singular behavior, it turns out that the corresponding
adapted Sobolev spaces agree with the classical Sobolev space Hs(R3), for every
fractional power s ∈ (0, 2).

The material of this Chapter is organised as follows. In Sections 5.2 through
5.5 we develop an amount of preparatory material for the proof of our main results,
which is then the object of our concluding Section 5.6. In particular, in Section
5.2 we establish a spectral-theorem-based canonical decomposition of the domain
of (−∆α)s/2 and in Section 5.3 we study the regularity of each term of such a
decomposition. This leads us to identify convenient subspaces of the fractional
space Hs

α(R3) in Section 5.4, an information that we find convenient for the sake of
clarity to re-cast in an operator-theoretic language in terms of suitable fractional
maps, Section 5.5.

5.1. The fractional singular Laplacian (−∆α)s/2: main results

For α > 0, the singular perturbed Laplacian −∆α, characterised by Theorem
1.1.1, is a non-negative self-adjoint operator on L2(R3) and the spectral theorem
provides an unambiguous definition of its fractional powers (−∆α)s/2. Special
cases are s = 0, yielding the identity operator on L2(R3), and s = 2, yielding the
operator −∆α itself, whereas s = 1 (the square root) corresponds to an operator
whose domain is the form domain of −∆α.

For general s ∈ (0, 2) we are able to provide the following amount of informa-
tion.

Our first result concerns the ‘fractional domains’, namely the domains of the
fractional powers of −∆α. We find that for small s the fractional domain is the
Sobolev space of order s, whereas when s > 1

2 for each element of D((−∆α)s/2) we

retrieve a notion of a regular part in Hs(R3) and a singular part proportional to the
Green’s function Gλ defined in (1.4), thus carrying a local |x|−1 singularity. This is
in complete analogy to what happens with the operator domain D(−∆α) and the
form domain D[−∆α] – see (1.6) and (1.8). In particular, when s > 3

2 the singular
part is also continuous, and its evaluation at x = 0 provides the proportionality
constant in front of the singular part, the very same kind of boundary condition
displayed by the elements of D(−∆α).

Theorem 5.1.1. Let α > 0, λ > 0, and s ∈ (0, 2). The following holds.

(i) If s ∈ (0, 1
2 ), then

(5.2) D((−∆α)s/2) = Hs(R3) .

(ii) If s ∈ ( 1
2 ,

3
2 ), then

(5.3) D((−∆α)s/2) = Hs(R3)u span{Gλ} ,
where Gλ is the function (1.4).

(iii) If s ∈ ( 3
2 , 2), then

D((−∆α)s/2) =

=
{
g ∈ L2(R3)

∣∣∣ g = Fλ +
Fλ(0)

α+
√
λ

4π

Gλ with Fλ ∈ Hs(R3)
}
.

(5.4)

Separating the three regimes above, two different transitions occur. When
s decreases from larger values, the first transition arises at s = 3

2 , namely the
level of Hs-regularity at which continuity is lost. Correspondingly, the elements in
D((−∆α)3/4) still decompose into a regular H

3
2 -part plus a multiple of Gλ (singular

part), and the decomposition is still of the form Fλ + cFλGλ, except that now Fλ
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cannot be arbitrary in H
3
2 (R3): indeed, Fλ has additional properties, among which

the fact that its Fourier transform is integrable (a fact that is false for generic

H
3
2 -functions), and for such Fλ’s the constant cFλ has a form that is completely

analogous to the constant in (5.4), that is,

cFλ =
1

α+
√
λ

4π

1

(2π)
3
2

∫
R3

dp F̂λ(p)

(see (5.86) below). Then, for s < 3
2 , the link between the two components disap-

pears completely.
Decreasing s further, the next transition occurs at s = 1

2 , namely the level of

Hs-regularity below which the Green’s function itself belongs to Hs(R3) and it does
not necessarily carry the leading singularity any longer. At the transition s = 1

2 , the

elements in D((−∆α)1/4) still exhibit a decomposition into a regular H
1
2 -part plus

a more singular H
1
2
−

-part, except that H
1
2
−

-singularity is not explicitly expressed
in terms of the Green’s function Gλ. Then, for s < 1

2 , only Hs-functions form the
fractional domain.

We shall discuss these transition points in Propositions 5.6.1 and 5.6.2.

Remark 5.1.2. It is worth comparing (−∆α)s/2 (the fractional power of the

singular perturbation of the Laplacian) with k
(s/2)
α (the singular perturbation of

the fractional Laplacian, identified in Theorem 1.2.3), in the regime s ∈ ( 3
2 , 2).

The elements of the domains of both operators split into a regular Hs-part plus a
singular term, with a local boundary condition constraining the two components;
however, in the former case the local singularity is |x|−1 for all considered powers,
whereas in the latter it is the singularity of the function Gs,λ defined by (1.39),

namely |x|−(3−s).

Our next result concerns the ‘singular’ Sobolev norm induced by each fractional
power (−∆α)s/2 on its domain, in comparison with the corresponding ordinary
Sobolev norm of the same order. Recall that (−∆α + λ1)s/2 > λs/21 and hence
g 7→ ‖(−∆α+λ1)s/2g‖2 defines a norm on D((−∆α)s/2), with respect to which the
fractional domain is complete.

Theorem 5.1.3. Let α > 0, λ > 0, and s ∈ (0, 2). Denote by Hs
α(R3), the ‘sin-

gular Sobolev space’ of fractional order s, the Hilbert space D((−∆α)s/2) equipped
with the ‘fractional singular Sobolev norm’

(5.5) ‖g‖Hsα := ‖(−∆α + λ1)s/2g‖2 , g ∈ D(−∆α)s/2 .

The following holds.

(i) If s ∈ (0, 1
2 ), then

(5.6) ‖g‖Hsα ≈ ‖g‖Hs ∀g ∈ D(−∆α)s/2 = Hs(R3)

in the sense of equivalence of norms. The constant in (5.6) is bounded,
and bounded away from zero, uniformly in α.

(ii) If s ∈ ( 1
2 ,

3
2 ) and g = F + cGλ is a generic element in Hs

α(R3) according
to the decomposition (5.3), then

(5.7) ‖F + cGλ‖Hsα ≈ ‖F‖Hs + (1 + α)|c| .

(iii) If s ∈ ( 3
2 , 2) and g = Fλ + Fλ(0)

α+
√
λ

4π

Gλ is a generic element in Hs
α(R3)

according to the decomposition (5.4), then

(5.8)
∥∥Fλ + Fλ(0)

α+
√
λ

4π

Gλ
∥∥
Hsα
≈ ‖Fλ‖Hs .
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The constant in (5.8) is bounded, and bounded away from zero, uniformly
in α.

It is worth remarking that in the limit α → +∞ (recall that ∆α=∞ is the
self-adjoint Laplacian on L2(R3)) the equivalence of norms (5.7) tends to be lost,
consistently with the fact that the function Gλ does not belong to Hs(R3). Instead,
the norm equivalences (5.6) and (5.8) remain valid in the limit α→ +∞, which is
also consistent with the structure of the space Hs

α(R3) in those two cases.
Last, we examine the action of −∆α on generic functions of its domain and

in particular, when applicable, on the function Gλ. We prove a computationally
useful expression of (−∆α + λ1)s/2ϕ in terms of the classical fractional derivative
(−∆ + λ1)s/2ϕ.

Theorem 5.1.4. Let α > 0, λ > 0, and s ∈ (0, 2).

(i) For each ϕ ∈ L2(R3) one has the distributional identity

(−∆α+λ1)s/2ϕ =

= (−∆ + λ1)s/2ϕ− 4 sin sπ
2

∫ +∞

0

dt
ts/2 κϕ(t)

4πα+
√
λ+ t

e−
√
λ+t |x|

4π|x|
,

(5.9)

where

(5.10) κϕ(t) :=

∫
R3

dy
e−
√
λ+t |y|

4π|y|
ϕ(y) .

When ϕ ∈ D((−∆α)s/2) ∩ Hs(R3) (5.9) is understood as an identity be-
tween L2-functions, whereas when ϕ ∈ D((−∆α)s/2)\Hs(R3) the r.h.s. in
the L2-identity (5.9) is understood as the difference of two distributional
contributions.

(ii) The function Gλ defined in (1.4) belongs to D((−∆α)s/2) if and only if
s ∈ (0, 3

2 ), in which case

(5.11) (−∆α + λ1)s/2Gλ ∈ Hσ−(R3) , σ := min{ 3
2 − s,

1
2} , s ∈ (0, 3

2 ) .

Explicitly,

(5.12) (−∆α + λ1)s/2Gλ = Jλ ,

where Jλ is the L2-function given by

(5.13) Ĵλ(p) :=
sin sπ

2

π(2π)
3
2

∫ +∞

0

dt
t
s
2−1 φ(t)

p2 + λ+ t
, p ∈ R3 ,

and

(5.14) φ(t) :=
4πα+

√
λ

4πα+
√
λ+ t

, t > 0 .

Let us stress that the last Theorem applies to all the considered regimes of s,
unlike the separation into various regimes made in the previous main Theorems.
This way, formula (5.9) has the virtue to provide the explicit additional (distribu-
tional, in general) correction in the action of (−∆α + λ1)s/2 besides the ‘classical’
contribution (−∆ + λ1)s/2. Underlying (5.9), and in fact equivalent to it, we shall
discuss in Section 5.2 another key formula for the action of (−∆α + λ1)s/2, where,
in complete analogy to (1.7) we express such an action on ϕ as the classical action
(−∆ + λ1)s/2 on a suitable regular component of ϕ.

As mentioned already, the proofs of Theorems 5.1.1, 5.1.3, and 5.1.4 are deferred
to Section 5.6, after developing the preparatory material in Sections 5.2-5.5; the
only exception is the integral formula (5.9), that for its technical relevance in our
discussion will be proved in advance, at the end of Section 5.2.
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5.2. Canonical decomposition of the domain of (−∆α)s/2

In this Section we present an intermediate technical lemma that is crucial for
our analysis and gives a canonical decomposition of the domain of (−∆α)s/2 for
powers s ∈ (0, 2).

Based on the same argument, we then prove the integral formula (5.9) and
hence part (i) of Theorem 5.1.4.

Proposition 5.2.1. Fix α > 0 and λ > 0. Let s ∈ (0, 2) and g ∈ D((−∆α)s/2).
Then

(5.15) g = fg + hg

where fg ∈ Hs(R3) is given by

(5.16) fg := (−∆ + λ1)−s/2(−∆α + λ1)s/2g

and hg ∈ L2(R3) is given by

hg(x) : = 4 sin sπ
2

∫ +∞

0

dt
t−s/2 cg(t)

4πα+
√
λ+ t

e−
√
λ+t |x|

4π|x|
,(5.17)

having set

cg(t) :=

∫
R3

dy
e−
√
λ+t |y|

4π|y|
((−∆α + λ1)s/2g)(y) .(5.18)

When g runs in D((−∆α)s/2) then the corresponding component fg in the decom-
position (5.15) spans the whole Hs(R3). In terms of this decomposition,

(5.19) (−∆α + λ1)s/2g = (−∆ + λ1)s/2fg .

Proof. (5.19) follows from (5.16), so the proof consists of showing that (5.16)
and (5.17) give (5.15). Our argument is based on the identity

(5.20) D((−∆α)s/2) = D((−∆α + λ1)s/2) = (−∆α + λ1)−s/2L2(R3) ,

which follows from the spectral theorem, owing to −∆α > O, and on the integral
identity

(5.21) xs/2 =
sin sπ2
π

∫ +∞

0

dt ts/2−1 x

t+ x
, x > 0 , s ∈ (0, 2) .

By the functional calculus of −∆α, (5.21) gives

(−∆α+λ1)−s/2

=
sin sπ2
π

∫ +∞

0

dt ts/2−1 (−∆α + λ1)−1(t+ (−∆α + λ1)−1)−1

=
sin sπ2
π

∫ +∞

0

dt ts/2−2 (−∆α + (λ+ t−1)1)−1

and by means of the resolvent formula (1.10) and of (5.21) again one finds

(−∆α + λ1)−s/2 =
sin sπ2
π

∫ +∞

0

dt ts/2−2 (−∆ + (λ+ t−1)1)−1

+
sin sπ2
π

∫ +∞

0

dt ts/2−2
(
α+

√
λ+ t−1

4π

)−1

|Gλ+t−1〉〈Gλ+t−1 |

= (−∆ + λ1)−s/2 +

+
sin sπ2
π

∫ +∞

0

dt ts/2−2
(
α+

√
λ+ t−1

4π

)−1

|Gλ+t−1〉〈Gλ+t−1 | .

(5.22)
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Let now g ∈ D((−∆α)s/2): applying the operator identity (5.22) to the L2-
function (−∆α+λ1)s/2g gives g itself in the l.h.s. and two summands on the r.h.s.,
the first of which is precisely fg defined in (5.16), whereas the second is

sin sπ2
π

∫ +∞

0

dt ts/2−2
(
α+

√
λ+ t−1

4π

)−1

Gλ+t−1 〈Gλ+t−1 , (−∆α + λ1)s/2g 〉

= 4 sin sπ
2

∫ +∞

0

dt
t−s/2

4πα+
√
λ+ t

Gλ+t 〈Gλ+t , (−∆α + λ1)s/2g 〉 = hg

defined in (5.17)-(5.18). This proves that hg = g − fg ∈ L2(R3) and yields (5.15).

Not only is fg ∈ Hs(R3) for given g ∈ D((−∆α)s/2), but also, conversely,

given an arbitrary f ∈ Hs(R3) the function (−∆α +λ1)−s/2(−∆ +λ1)s/2f clearly
belongs to D((−∆α)s/2) and its component fg is precisely f . Thus, fg does span

Hs(R3) when g runs in D((−∆α)s/2). �

Remark 5.2.2. Formula (5.22) shows that, unlike what happens for singular
perturbations of the fractional Laplacian, the resolvent of (−∆α)s/2 is not a finite-
rank perturbations of the resolvent of the free fractional Laplacian (−∆)s/2.

Proof of Theorem 5.1.4(i). We follow the same line of reasoning that has
led to Proposition (5.2.1). By (5.21) and the functional calculus of −∆α,

(−∆α + λ1)s/2ϕ =
sin sπ2
π

∫ +∞

0

dt ts/2−1 (−∆α + λ1)(−∆α + (λ+ t)1)−1)ϕ .

Taking the difference between the identity above for generic α and for α = ∞
(namely for the operator −∆ instead of −∆α), together with the resolvent formula
(1.10), yields

(−∆α + λ1)s/2ϕ− (−∆ + λ1)s/2ϕ =

= −
sin sπ2
π

∫ +∞

0

dt ts/2
(

(−∆α + (λ+ t)1)−1)ϕ− (−∆ + (λ+ t)1)−1)ϕ
)

= −
sin sπ2
π

∫ +∞

0

dt ts/2
(
α+

√
λ+ t

4π

)−1 e−
√
λ+t |x|

4π|x|

∫
R3

dy
e−
√
λ+t |y|

4π|y|
ϕ(y) ,

which leads to (5.9), by means of the definition (5.10). �

5.3. Regularity properties

In this Section we discuss the regularity and asymptotic properties of functions
of the form hg that emerge in the the canonical decomposition of Proposition 5.2.1.

Preliminary, we state a Schur-test bound (see [46, Corollary A.3]) that we will
use systematically for the estimate of the norm of a number of integral operators.

Lemma 5.3.1. For given constants β ∈ (− 1
2 ,

1
2 ) and γ, δ > 0, and a measurable

function f on R+, let

(5.23) Qβ,γ,δ(u, v) :=
u( 1

2−β)γ− 1
2 v( 1

2 +β)δ− 1
2

uγ + vδ
, u, v > 0 ,

and

(5.24) (Qβ,γ,δf)(u) :=

∫ +∞

0

dv Qβ,γ,δ(u, v) f(v) .

Then Qβ,γ,δ defines a bounded linear map on L2(R+) with norm

(5.25) ‖Qβ,γ,δ‖L2(R+)→L2(R+) 6
1√
γδ

π

cosβπ
.
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For given α > 0, λ > 0, s ∈ (0, 2), and f ∈ Hs(R3), we define

cf (t) :=

∫
R3

dy
e−
√
λ+t |y|

4π|y|
((−∆ + λ1)s/2f)(y)(5.26)

and

(5.27) hf (x) := 4 sin sπ
2

∫ +∞

0

dt
t−s/2 c(t)

4πα+
√
λ+ t

e−
√
λ+t |x|

4π|x|
.

Equivalently, in Fourier transform,

(5.28) cf (t) :=
1

(2π)3/2

∫
R3

dp
(p2 + λ)s/2

p2 + λ+ t
f̂(p)

and

(5.29) ĥf (p) :=
4 sin sπ

2

(2π)3/2

∫ +∞

0

dt
t−s/2 c(t)

4πα+
√
λ+ t

1

p2 + λ+ t
.

It is also convenient to introduce the function wf whose Fourier transform is

(5.30) ŵf (p) := − 1

p2 + λ

4 sin sπ
2

(2π)
3
2

∫ +∞

0

dt
t1−

s
2 c(t)

4πα+
√
λ+ t

1

p2 + λ+ t
.

Formally,

(5.31) hf = qf Gλ + wf

where Gλ is the function (1.4) and

(5.32) qf := 4 sin sπ
2

∫ +∞

0

dt
t−

s
2 cf (t)

4πα+
√
λ+ t

.

Lemma 5.3.2. For given α > 0, λ > 0, s ∈ (0, 2), and f ∈ Hs(R3), the function
c(t) defined in (5.26) is continuous in t ∈ [0,+∞) and satisfies the bounds

(5.33) |cf (t)| . ‖f‖Hs(1 + t)−
1
4

and

(5.34)

∫ +∞

0

dt t−
1
2 |cf (t)|2 6 1

2 ‖(p
2 + λ)

s
2 f̂‖22 ≈ ‖f‖2Hs .

Proof. The continuity of t 7→ cf (t) is immediately checked by re-writing (5.26)

as cf (t) = 〈Gλ+t, (−∆ + λ1)s/2f〉. From

‖Gλ+t‖2 = (8π
√
λ+ t)−

1
2 6 (8π

√
λ)−

1
2 ,

a Schwarz inequality yields

|cf (t)| 6 ‖Gλ+t‖2 ‖(−∆ + λ1)s/2f‖2 . ‖f‖Hs

and

|cf (t)| . t−1/4‖f‖Hs ,
whence (5.33). Next, we consider the function

ηω(%) := %(%2 + λ)
s
2 f̂(%, ω) , % ∈ R+ , ω ∈ S2 ,

where we wrote f̂(p) = f̂(ρ, ω) in polar coordinates p ≡ (%, ω), % := |p|, ω ∈ S2.
Clearly, ∫

S2
dω‖ηω‖2L2(R+,d%) =

∫
S2

dω

∫ +∞

0

d% %2|(%2 + λ)
s
2 f̂(%, ω)|2

= ‖(p2 + λ)
s
2 f̂‖22 ≈ ‖f‖2Hs(R3) ,
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and we estimate∫ +∞

0

dt t−
1
2 |cf (t)|2 = 2

∫ +∞

0

dt |cf (t2)|2 =
1

4π3

∫ +∞

0

dt
∣∣∣∫

R3

dp
(p2 + λ)

s
2 f̂(p)

p2 + λ+ t2

∣∣∣2
=

1

4π3

∫ +∞

0

dt
∣∣∣ ∫

S2
dω

∫ +∞

0

d%
% ηω(%)

%2 + λ+ t2

∣∣∣2
6

1

π2

∫ +∞

0

dt

∫
S2

dω |(Qηω)(t)|2 =
1

π2

∫
S2

dω ‖Qηω‖2L2(R+,dt) ,

where η 7→ Qη is the integral operator on functions on R+ defined by

(Qη)(t) :=

∫ +∞

0

Q(t, %) η(%) d% , Q(t, %) :=
%

%2 + t2
.

We observe that Q has precisely the form of the operator Qβ,γ,δ defined in (5.23)-
(5.24) of Lemma 5.3.1 with β = 1

4 , γ = δ = 2. Then the Schur bound (5.25)
yields

‖Qη‖2 6
π√
2
‖η‖2 ∀η ∈ L2(R+,d%) .

Therefore,∫ +∞

0

dt t−
1
2 |cf (t)|2 6 1

π2

∫
S2

dω ‖Qηω‖2L2(R+,dt) 6
1

2

∫
S2

dω‖ηω‖2L2(R+,d%)

= 1
2 ‖(p

2 + λ)
s
2 f̂‖22 ≈ ‖f‖2Hs ,

which gives (5.34). �

Let us now exploit the above information on the behaviour of cf (t) in order to
obtain information about the regularity of the functions h and w defined, respec-
tively, in (5.27) and (5.30). To this aim, we shall make often use of the identity

(5.35)

∫ +∞

0

dt
ta−1

R+ t
=

π

sin aπ

1

R1−a , a ∈ (0, 1) , R > 0 ,

whence also the useful limit

(5.36) lim
R→+∞

( π

sin aπ

1

R1−a

)−1
∫ +∞

1

dt
ta−1

R+ t
= 1 , a ∈ (0, 1) .

We start with the function h in the regime of small s.

Proposition 5.3.3. For given α > 0, λ > 0, s ∈ (0, 1
2 ], and f ∈ Hs(R3), let

hf be the function defined in (5.26)-(5.27).

(i) If s ∈ (0, 1
2 ), then hf ∈ Hs(R3) with

(5.37) ‖hf‖Hs . ‖f‖Hs , s ∈ (0, 1
2 ) .

(ii) If s = 1
2 , then hf ∈ H

1
2
−

(R3), but in general hf /∈ H1/2(R3).

Proof. (i) Using (5.29) and setting µf (t) := t−
1
4 cf (t), we observe that

‖hf‖2Hs ≈
∫
R3

dp |(p2 + λ)
s
2 ĥf (p)|2

≈
∫
R3

dp
∣∣∣ ∫ +∞

0

dt
t−

s
2 cf (t)

4πα+
√
λ+ t

(p2 + λ)
s
2

p2 + λ+ t

∣∣∣2
.
∫ +∞

0

d%
∣∣∣ ∫ +∞

0

dt
1

t
1
4 + s

2

%(%2 + λ)
s
2

%2 + λ+ t
µf (t)

∣∣∣2
.
∫ 1

0

d% %2(%2 + λ)s
∣∣∣∫ +∞

0

dt
µf (t)

t
1
4 + s

2 (λ+ t)

∣∣∣2 +

∫ +∞

1

d%
∣∣∣ ∫ +∞

0

dt
%1+s

t
1
4 + s

2 (%2 + t)
µf (t)

∣∣∣2
. ‖µf‖2L2(R+,dt) + ‖Qµf‖2L2(R+,d%) ,
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the last step following by a Schwarz inequalities and by setting

(Qµf )(%) :=

∫ +∞

0

dtQ(%, t)µf (t) , Q(%, t) :=
%1+s

t
1
4 + s

2 (%2 + t)
.

In fact, this defines an integral operator Q on functions on R+ which has precisely
the form of the operator Qβ,γ,δ defined in (5.23)-(5.24) of Lemma 5.3.1 with β =
− 1

4 −
s
2 , γ = 2, δ = 1. Then the Schur bound (5.25) yields

‖Qµf‖2L2(R+,d%) 6
π√

2 cos(π4 + sπ
2 )
‖µf‖2L2(R+,dt) .

This, together with the bound (5.34), gives

‖hf‖2Hs . ‖µf‖2L2(R+,dt) + ‖Qµf‖2L2(R+,d%) . ‖µf‖
2
L2(R+,dt) . ‖f‖

2
Hs(R3) ,

which completes the proof of (5.37) and of part (i).
(ii) When s = 1

2 , (5.29) reads

ĥf (p) =
1

π
3
2

∫ +∞

0

dt
t−

1
4 cf (t)

4πα+
√
λ+ t

1

p2 + λ+ t
.

We consider the non-empty case of a non-zero f ∈ H1/2(R3) with positive Fourier
transform and hence with non-zero cf (t) > 0, due to (5.28). Owing to (5.33) and
dominated convergence,

1

π
3
2

∫ 1

0

dt
t−

1
4 cf (t)

4πα+
√
λ+ t

1

p2 + λ+ t
≈ C1

1

p2 + λ
as |p| → +∞

with constant

C1 :=

∫ 1

0

dt
π−

3
2 t−

1
4 cf (t)

4πα+
√
λ+ t

∈ (0,+∞) ,

namely a contribution to hf that is a H
1
2
−
– function not belonging to H

1
2 (R3). The

remaining contribution to hf is given by the integration over t ∈ [1,+∞), and it is
again a positive function of p, which therefore cannot compensate the singularity

of the first contribution, i.e., it cannot make hf more regular than H
1
2
−
(R3). �

Next we show that for given f ∈ Hs(R3) with s ∈ ( 1
2 , 2) the corresponding hf

is a H
1
2
−
– function given by the sum of the H

1
2
−
– function qfGλ, that carries the

leading singularity of hf , and the more regular function wf ∈ Hs(R3). This is seen
first discussing qf and then wf .

For given α > 0, λ > 0, s ∈ ( 1
2 , 2), we introduce the L2-function Υλ whose

Fourier transform is given by

(5.38) Υ̂λ(p) :=
4 sin sπ

2

(2π)3/2

∫ +∞

0

dt
t−s/2

(4πα+
√
λ+ t )(p2 + λ+ t)

.

Lemma 5.3.4. For given α > 0, λ > 0, s ∈ ( 1
2 , 2), and f ∈ Hs(R3), the

corresponding constant qf defined in (5.32) satisfies

(5.39) qf = 〈Υλ, (−∆ + λ1)s/2f〉 .

In particular,

(5.40) |qf | .
1

1 + α
‖f‖Hs

and

(5.41) qf = 0 ⇔ (−∆ + λ1)s/2f ⊥ Υλ

in the sense of L2-orthogonality.
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Proof. Because of (5.28) and (5.32),

qf =
4 sin sπ

2

(2π)3/2

∫ +∞

0

dt
t−s/2

4πα+
√
λ+ t

∫
R3

dp
(p2 + λ)

s
2 f̂(p)

p2 + λ+ t

=

∫
R3

dp Υ̂λ(p) (p2 + λ)
s
2 f̂(p) ,

whence (5.39). �

Proposition 5.3.5. For given α > 0, λ > 0, s ∈ ( 1
2 , 2), and f ∈ Hs(R3), the

functions hf and wf and the constant qf defined, respectively, in (5.27), (5.30),
and (5.32), satisfy the identity

(5.42) hf = qf Gλ + wf ,

where Gλ is the function (1.4). Moreover, wf belongs to Hs(R3) and

(5.43) ‖(p2 + λ)
s
2 ŵf‖2 6

√
2 sin sπ

2

sin( sπ2 −
π
4 )
‖(p2 + λ)

s
2 f̂‖2 ,

whence also

(5.44) ‖wf‖Hs . ‖f‖Hs .

Proof. The decomposition (5.42) is an immediate consequence of the finite-

ness of qf , namely of the bound (5.40). Using (5.30) and setting µf (t) := t−
1
4 cf (t),

we observe that

‖(p2+λ)
s
2 ŵf‖22 =

=
2 sin2 sπ

2

π3

∫
R3

dp
∣∣∣ ∫ +∞

0

dt
t1−

s
2 cf (t)

4πα+
√
λ+ t

1

(p2 + λ)1− s2 (p2 + λ+ t)

∣∣∣2
6

8 sin2 sπ
2

π2

∫ +∞

0

d%
∣∣∣ ∫ +∞

0

dt
% t

3
4−

s
2 µf (t)

(%2 + λ)1− s2 (%2 + λ+ t)

∣∣∣2
6

8 sin2 sπ
2

π2
‖Qµf‖2L2(R+,d%) ,

where for convenience we wrote

(Qµf )(%) :=

∫ +∞

0

dtQ(%, t)µf (t) , Q(%, t) :=
%s−1 t

3
4−

s
2

%2 + t
.

In fact this defines an integral operatorQ on functions on R+ which has precisely the
form of the operator Qβ,γ,δ defined in (5.23)-(5.24) of Lemma 5.3.1 with β = 3

4 −
s
2 ,

γ = 2, δ = 1. Then the Schur bound (5.25) yields

‖Q‖L2(R+,dt)→L2(R+,d%) 6
π√

2 sin( sπ2 −
π
4 )
.

Combining the estimates above with (5.34) then yields

‖(p2 + λ)
s
2 ŵf‖22 6

8 sin2 sπ
2

π2
‖Qµf‖2L2(R+,d%) 6

4 sin2 sπ
2

sin2( sπ2 −
π
4 )
‖µf‖2L2(R+,dt)

6
2 sin2 sπ

2

sin2( sπ2 −
π
4 )
‖(p2 + λ)

s
2 f̂‖22

which is precisely (5.43). �

For the last noticeable property we want to discuss in this Section, as well as
for later purposes, it is useful to highlight a few features, whose proof is elementary
and will be omitted, of the function t 7→ φ(t), t > 0, introduced in (5.14).
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Lemma 5.3.6. For given α > 0 and λ > 0, (5.14) defines a function φ ∈
C∞([0,+∞)) with

φ(t) =
4πα+

√
λ

4πα+
√
λ+ t

= 1− t

(4πα+
√
λ+ t )(

√
λ+ t +

√
λ)
,(5.45)

(5.46) 0 < φ(t) 6 φ(0) = 1 ,

and

(5.47) φ(t) . (1 + t)−1/2 .

φ is strictly monotone decreasing and decays as t→ +∞ with asymptotics

(5.48) φ(t) =
4πα+

√
λ√

t
− 4πα(4πα+

√
λ)

t
+O(t−

3
2 ) as t→ +∞ .

We turn now to the discussion of a relevant connection between the constant
qf defined in (5.32) and the function

(5.49) Ff := f + wf .

In fact, owing to Proposition 5.3.5, when f ∈ Hs(R3) so is wf , and hence Ff too.
When s > 3

2 , a standard Sobolev lemma implies that Ff is continuous. We shall now
see that, in this regime of s, Ff (0) is a multiple of qf . Significantly, an analogous
property survives when s = 3

2 (see Proposition 5.4.5(ii) in the next Section).

Lemma 5.3.7. For given α > 0, λ > 0, s ∈ ( 3
2 , 2), and f ∈ Hs(R3), let wf and

qf be, respectively, the function and the constant defined in (5.30) and (5.32), and
let Ff be the function (5.49). Then Ff is continuous and

(5.50) F (0) = (α+
√
λ

4π ) qf .

Remark 5.3.8. It is worth noticing that (5.50) is consistent also when s→ 2.
Indeed, when s = 2 and f ∈ H2(R3), then wf ≡ 0, owing to (5.30), whence
Ff (0) = f(0). On the r.h.s. of (5.50), we re-write qf given by (5.32) as

qf =
sin sπ

2

π

∫ +∞

0

dt
t−

s
2 cf (t)

α+
√
λ+t
4π

.

As s→ 2 the pre-factor in front of the integral vanishes asymptotically as (1− s
2 ),

whereas the integral diverges: indeed when s = 2 we see from (5.28) that cf (t) →
f(0) as t→ 0, therefore when s→ 2 the leading (i.e., divergent) part of the integral
is given by the integration around t = 0, i.e.,∫ +∞

0

dt
t−

s
2 cf (t)

α+
√
λ+t
4π

≈ (α+
√
λ

4π )−1f(0)

∫ 1

0

dt t−s/2

= (α+
√
λ

4π )−1(1− s
2 )−1f(0) as s→ 2 .

Thus, (α+
√
λ

4π ) qf → Ff (0) as s→ 2.

Proof of Lemma 5.3.7. We have already argued before stating the Lemma
that Ff is continuous.

Since f ∈ Hs(R3) for s > 3
2 , then f̂ ∈ L1(R3) and

f(0) =
1

(2π)
3
2

∫
R3

dp f̂(p) =
1

(2π)
3
2

∫
R3

dp f̂(p)
sin sπ

2

π

∫ +∞

0

dt
t−

s
2 (p2 + λ)

s
2

p2 + λ+ t

=
sin sπ

2

π

∫ +∞

0

dt t−
s
2 cf (t) ,

having used (5.35) in the second identity and (5.28) in the third one.
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Also wf ∈ Hs(R3) for s > 3
2 , owing to Proposition 5.3.5, and hence ŵf ∈

L1(R3); from this fact and from (5.30) one obtains

wf (0) =
1

(2π)
3
2

∫
R3

dp ŵf (p)

= −
4 sin sπ

2

(2π)3

∫ +∞

0

dt
t1−

s
2 cf (t)

4πα+
√
λ+ t

∫
R3

dp

(p2 + λ+ t)(p2 + λ)

= −
sin sπ

2

π

∫ +∞

0

dt
t1−

s
2 cf (t)

(4πα+
√
λ+ t )(

√
λ+ t+

√
λ)

= −
sin sπ

2

π

∫ +∞

0

dt t−
s
2 cf (t) +

sin sπ
2

π

∫ +∞

0

dt t−
s
2 cf (t)φ(t) ,

where we used (5.45) for φ(t).
Combining the last two equations, and using (5.45) and (5.32), one obtains

Ff (0) = f(0) + wf (0) = (4πα+
√
λ )

sin sπ
2

π

∫ +∞

0

dt
t−

s
2 cf (t)

4πα+
√
λ+ t

= (α+
√
λ

4π ) qf ,

thus proving (5.50). �

5.4. Subspaces of D((−∆α)s/2)

In this Section we show that in the regime s ∈ (0, 3
2 ) the domain of the fractional

operator (−∆α)s/2 contains two noticeable subspaces: the one-dimensional span of
the Green function Gλ defined in (1.4) and the Sobolev space Hs(R3). We also show
that in the remaining regime s ∈ [ 3

2 , 2) none of these spaces is entirely contained in

D((−∆α)s/2) – however, there is a proper subspace of Hs(R3) u span{Gλ} which
is part of D((−∆α)s/2).

As a consequence, recalling that Gλ ∈ H
1
2−(R3), we will conclude that

(5.51) D((−∆α)s/2) ⊃ Hs(R3)u span{Gλ} , s ∈ [ 1
2 ,

3
2 ) ,

and

(5.52) D((−∆α)s/2) ⊃ Hs(R3) , s ∈ (0, 1
2 ) .

The first two main results of this Section are formulated as follows.

Proposition 5.4.1. For given α > 0, λ > 0, and s ∈ (0, 2), one has

(5.53) (−∆α + λ1)s/2Gλ = Jλ

in the distributional sense, where Jλ is the function defined by (5.13)-(5.14). In
particular,

(5.54) Gλ ∈ D((−∆α)s/2) ⇔ s ∈ (0, 3
2 ) ,

in which case

(5.55) ‖(−∆α + λ1)s/2Gλ‖2 . 1 + α .

Proposition 5.4.2. For given α > 0,

(i) if s ∈ (0, 3
2 ), then Hs(R3) is a subspace of D((−∆α)s/2) and for every

λ > 0 and F ∈ Hs(R3) one has

(5.56) ‖(−∆α + λ1)s/2F‖L2 . ‖F‖Hs ;

(ii) if s ∈ [ 3
2 , 2), then Hs(R3) is not a subspace of D((−∆α)s/2).
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The third main result of this Section will be discussed later, see Proposition
5.4.5 below. In order to prove Proposition 5.4.1 we establish the following proper-
ties.

Lemma 5.4.3. For given α > 0, λ > 0, and s ∈ (0, 2), the function Jλ defined
by (5.13)-(5.14) has real and bounded Fourier transform that satisfies

Ĵλ(p) =
κs

(p2 + λ)
(1 + o(1)) , 0 < s < 1 ,(5.57)

Ĵλ(p) = κ1
ln(p2 + λ+ 1)

(p2 + λ)
(1 + o(1)) , s = 1 ,(5.58)

Ĵλ(p) =
κs

(p2 + λ)
3
2−

s
2

(1 + o(1)) , 1 < s < 2 ,(5.59)

as |p| → +∞, where κs > 0 depends only on s (as well as on α and λ). As a
consequence, Jλ belongs to L2(R3) if and only if s ∈ (0, 3

2 ). When this is the case,

(5.60) ‖Jλ‖2 . 1 + α ,

and moreover

(5.61) Jλ ∈ Hσ−(R3) , σ := min{ 3
2 − s,

1
2} , s ∈ (0, 3

2 ) .

Proof. In the case s ∈ (0, 1), owing to (5.46)-(5.47),

κs :=
sin sπ

2

π(2π)
3
2

∫ +∞

0

dt t
s
2−1 φ(t) .

∫ +∞

0

dt
t
s
2−1

(1 + t)
1
2

< +∞ ,

whence

(p2 + λ) Ĵλ(p) =
sin sπ

2

π(2π)
3
2

∫ +∞

0

dt t
s
2−1 φ(t)

p2 + λ

p2 + λ+ t

|p|→+∞−−−−−−→ κs

by dominated convergence, which proves (5.57).
In the case s = 1,

Ĵλ(p) =
1

π(2π)
3
2

(∫ 1

0

dt
t−

1
2 φ(t)

p2 + λ+ t
+

∫ +∞

1

dt
t−

1
2 φ(t)

p2 + λ+ t

)
.

As |p| → +∞, ∫ 1

0

dt
t−

1
2 φ(t)

p2 + λ+ t
≈ const.

p2 + λ

by (5.46) and dominated convergence, and∫ +∞

1

dt
t−

1
2 φ(t)

p2 + λ+ t
≈ (4πα+

√
λ )

∫ +∞

1

dt
t−1

p2 + λ+ t
= (4πα+

√
λ )

ln(p2 + λ+ 1)

p2 + λ

by (5.48) and dominated convergence, which proves (5.58) with κ1 := 4πα+
√
λ

π(2π)3/2
.

In the case s ∈ (1, 2),

Ĵλ(p) =
sin sπ

2

π(2π)
3
2

(∫ 1

0

dt
t
s
2−1 φ(t)

p2 + λ+ t
+

∫ +∞

1

dt
t
s
2−1 φ(t)

p2 + λ+ t

)
.

As |p| → +∞, ∫ 1

0

dt
t−

1
2 φ(t)

p2 + λ+ t
≈ const.

p2 + λ
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by (5.46) and dominated convergence, and

sin sπ
2

π(2π)
3
2

∫ +∞

1

dt
t
s
2−1 φ(t)

p2 + λ+ t
≈

(4πα+
√
λ ) sin sπ

2

π(2π)
3
2

∫ +∞

1

dt
t
s
2−

3
2

p2 + λ+ t

≈
(4πα+

√
λ ) sin sπ

2

π(2π)
3
2

∫ +∞

0

dt
t
s
2−

3
2

p2 + λ+ t

= −
(4πα+

√
λ ) tan sπ

2

(2π)
3
2

1

(p2 + λ)
3
2−

s
2

by (5.48), (5.36), and dominated convergence, which proves (5.59) with

κs := −(2π)−
3
2 (4πα+

√
λ ) tan

sπ

2
> 0 .

It is clear from the above arguments that in all cases Ĵλ(p) is positive and uni-
formly bounded. Immediate consequences of the asymptotics (5.57)-(5.58)-(5.59)
are the fact that Jλ ∈ L2(R3) if and only if s ∈ (0, 3

2 ) and the gain of regularity
(5.61). Then the point-wise bound

(5.62) |Ĵλ(p)| . (1 + α)
sin sπ

2

π(2π)
3
2

∫ +∞

0

dt
t
s
2−1

(p2 + 1 + t)
√

1 + t

yields immediately (5.60). �

We can now prove Proposition 5.4.1.

Proof of Proposition 5.4.1. By formula (5.9) of Theorem 5.1.4(i), re-written
in Fourier transform, we have

((−∆α + λ1)
s
2Gλ)̂(p) = ((−∆ + λ1)

s
2Gλ)̂(p) + Îλ(p) ,

where for convenience we set

Îλ(p) := −
4 sin sπ

2

(2π)
3
2

∫ +∞

0

dt
t
s
2 κGλ(t)

4πα+
√
λ+ t

1

p2 + λ+ t
,

and κGλ , given by (5.10), is now computed as

κGλ(t) =
1

(2π)3

∫
R3

dp
1

(p2 + λ+ t)(p2 + λ)
=

1

4π

1
√
λ+ t +

√
λ
.

(Formula (5.9) is indeed usable here, because it has been already demonstrated, in
the end of Section 5.2.) Thus,

Îλ(p) = −
sin sπ

2

π(2π)
3
2

∫ +∞

0

dt
t
s
2−1

p2 + λ+ t
+

sin sπ
2

π(2π)
3
2

∫ +∞

0

dt
t
s
2−1 φ(t)

p2 + λ+ t
,

where φ(t) is the function already introduced in (5.14) and (5.45). Owing to (5.35),

sin sπ
2

π(2π)
3
2

∫ +∞

0

dt
t
s
2−1

p2 + λ+ t
=

1

(2π)
3
2

1

(p2 + λ)1− s2
= ((−∆ + λ1)

s
2Gλ)̂(p) ,

whereas, according to our definition (5.13),

sin sπ
2

π(2π)
3
2

∫ +∞

0

dt
t
s
2−1 φ(t)

p2 + λ+ t
= Ĵλ(p) .

Therefore, Îλ(p) = −((−∆ + λ1)
s
2Gλ)̂(p) + Ĵλ(p), whence

(−∆α + λ1)s/2Gλ = Jλ ,

that is, the identity (5.53). As proved in Lemma 5.4.3, Jλ ∈ L2(R3) ⇔ s ∈
(0, 3

2 ): thus, Gλ ∈ D((−∆α)s/2) ⇔ s ∈ (0, 3
2 ), and (5.54) follows. (5.55) is then an

immediate consequence of (5.60). �
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Let us now pass to the proof of Proposition 5.4.2. First, we establish the
following property.

Lemma 5.4.4. For given λ > 0, s ∈ (0, 3
2 ), and F ∈ Hs(R3), let κF (t) be the

function defined in (5.10), namely

(5.63) κF (t) =
1

(2π)
3
2

∫
R3

dp
F̂ (p)

p2 + λ+ t
.

Then

(5.64)

∫ +∞

0

dt
|κF (t)|2

(t+ λ)
1
2−s

. ‖F‖2Hs .

Proof. Passing to polar coordinates p ≡ (%, ω), % := |p|, ω ∈ S2, F̂ (p) =

F̂ (ρ, ω), we see that the function ηω(%) := %(%2 +λ)
s
2 F̂ (%, ω) belongs to L2(R+,d%)

with∫
S2

dω‖ηω‖2L2(R+,d%) =

∫
S2

dω

∫ +∞

0

d% %2|(%2 + λ)
s
2 F̂ (%, ω)|2 ≈ ‖F‖2Hs(R3) .

Moreover,

(*)

∫ +∞

0

dt
|κF (t)|2

(t+ λ)
1
2−s

6
∫ +∞

0

dt

∫
S2

dω
∣∣∣ ∫ +∞

0

d%
t
1
2 %1−s ηω(%)

(t2 + λ)
1
4−

s
2 (%2 + λ+ t2)

∣∣∣2 ,
because∫ +∞

0

dt
|κF (t)|2

(t+ λ)
1
2−s

= 2

∫ +∞

0

dt
t |κF (t2)|2

(t2 + λ)
1
2−s

=
1

4π3

∫ +∞

0

dt
t

(t2 + λ)
1
2−s

∣∣∣ ∫
R3

dp
(p2 + λ)

s
2 F̂ (p)

(p2 + λ+ t2)(p2 + λ)
s
2

∣∣∣2
=

1

4π3

∫ +∞

0

dt
∣∣∣ ∫

S2
dω

∫ +∞

0

d%
t
1
2 %2 (%2 + λ)

s
2 F̂ (%, ω)

(t2 + λ)
1
4−

s
2 (%2 + λ+ t2) (%2 + λ)

s
2

∣∣∣2
6

1

π2

∫ +∞

0

dt

∫
S2

dω
∣∣∣ ∫ +∞

0

d%
t
1
2 %1−s ηω(%)

(t2 + λ)
1
4−

s
2 (%2 + λ+ t2)

∣∣∣2 .
There are two possible cases: s ∈ [0, 1

2 ) and s ∈ [ 1
2 ,

3
2 ). In the first case one has

1
4 −

s
2 ∈ (0, 1

4 ], and (*) yields∫ +∞

0

dt
|κF (t)|2

(t+ λ)
1
2−s

6
∫ +∞

0

dt

∫
S2

dω
∣∣∣ ∫ +∞

0

d%
ts%1−s

%2 + λ+ t2
ηω(%)

∣∣∣2
6
∫ +∞

0

dt

∫
S2

dω
∣∣(Qηω)(t)

∣∣2 =

∫
S2

dω ‖Qηω‖2L2(R+,dt) ,

where Q is the integral operator on functions on R+ defined by the kernel

Q(%, t) :=
ts %1−s

%2 + t2
.

In fact, Q has precisely the form of the operator Qβ,γ,δ defined in (5.23)-(5.24) of
Lemma 5.3.1 with β = 1

4 −
s
2 , γ = δ = 2, where in this case β ∈ (0, 1

4 ] and hence it

is admissible (the admissibility condition in Lemma 5.3.1 is β ∈ (− 1
2 ,

1
2 )): then the

Schur bound (5.25) yields

‖Qηω‖L2(R+,dt) 6
π√

2 cos(π4 −
sπ
2 )
‖ηω‖L2(R+,d%) .
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Therefore, ∫ +∞

0

dt
|κF (t)|2

(t+ λ)
1
2−s

6
∫
S2

dω ‖Qηω‖2L2(R+,dt)

.
∫
S2

dω‖ηω‖2L2(R+,d%) ≈ ‖F‖
2
Hs(R3) ,

which proves (5.64) in the case s ∈ [0, 1
2 ). In the second case, namely s ∈ [ 1

2 ,
3
2 ),

one has s
2 −

1
4 ∈ [0, 1

2 ), and (*) yields∫ +∞

0

dt
|κF (t)|2

(t+ λ)
1
2−s

6
∫ +∞

0

dt

∫
S2

dω
∣∣∣ ∫ +∞

0

d%
t
1
2 (t2 + λ)

s
2−

1
4 %1−s ηω(%)

%2 + λ+ t2

∣∣∣2
6
∫ +∞

0

dt

∫
S2

dω
∣∣∣ ∫ +∞

0

d%
(t2 + λ)

s
2 %1−s ηω(%)

%2 + λ+ t2

∣∣∣2
.
∫ 1

0

dt (t2 + λ)s
∫
S2

dω
∣∣∣ ∫ +∞

0

d%
%1−s

%2 + λ
ηω(%)

∣∣∣2
+

∫ +∞

1

dt

∫
S2

dω
∣∣∣ ∫ +∞

0

d%
ts%1−s

%2 + t2
ηω(%)

∣∣∣2
.
∫
S2

dω ‖ηω‖2L2(R+,d%) +

∫
S2

dω ‖Qηω‖2L2(R+,dt) ,

the integral operator Q being defined as in the first case. Here Q is of the form
Qβ,γ,δ of(5.23)-(5.24) with β = 1

4 −
s
2 , γ = δ = 2, where in this case β ∈ (− 1

2 , 0]
and hence β is again admissible: the above inequality and the Schur bound (5.25)
then yield∫ +∞

0

dt
|κF (t)|2

(t+ λ)
1
2−s

.
∫
S2

dω ‖ηω‖2L2(R+,d%) +

∫
S2

dω ‖Qηω‖2L2(R+,dt)

.
∫
S2

dω‖ηω‖2L2(R+,d%) ≈ ‖F‖
2
Hs(R3) ,

which proves (5.64) also in the case s ∈ [ 1
2 ,

3
2 ). �

We can now prove Proposition 5.4.2. To this aim, it is convenient to introduce
the function IF whose Fourier transform is given by

(5.65) ÎF (p) := −
4 sin sπ

2

(2π)
3
2

∫ +∞

0

dt
t
s
2 κF (t)

4πα+
√
λ+ t

1

p2 + λ+ t
,

where

(5.66) κF (t) :=
1

(2π)
3
2

∫
R3

dp
F̂ (p)

p2 + λ+ t
.

Proof of Proposition 5.4.2. (i) By formulas (5.9)-(5.10) of Theorem 5.1.4(i),
re-written in Fourier transform, we have

(5.67) ((−∆α + λ1)
s
2F )̂(p) = ((−∆ + λ1)

s
2F )̂(p) + ÎF (p) ,

where the function IF is given by (5.65)-(5.66). By assumption, (−∆ + λ1)
s
2F ∈

L2(R3); therefore, the fact that F ∈ D((−∆α)s/2) with ‖(−∆α+λ1)
s
2F‖2 . ‖F‖Hs

follows at once from (5.67) if one proves that IF ∈ L2(R3) with ‖IF ‖L2 . ‖F‖Hs .
To this aim, setting µ(t) := (t+ λ)−

1
4 + s

2κF (t), we observe that

‖IF ‖22 .
∫
R3

dp
∣∣∣ ∫ +∞

0

dt
t
s
2 κF (t)

4πα+
√
λ+ t

1

p2 + λ+ t

∣∣∣2
.
∫ +∞

0

d%
∣∣∣ ∫ +∞

0

dt
t
s
2

(λ+ t)
1
4 + s

2

%

%2 + λ+ t
µ(t)

∣∣∣2 6 ‖Qµ‖2L2(R+,d%) ,
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where for convenience we wrote

(Qµ)(%) :=

∫ +∞

0

dtQ(%, t)µ(t) , Q(%, t) :=
t−

1
4 %

%2 + t
.

In fact, this defines an integral operator Q on functions on R+ which has precisely
the form of the operatorQβ,γ,δ defined in (5.23)-(5.24) of Lemma 5.3.1 with β = − 1

4 ,
γ = 2, δ = 1. Then the Schur bound (5.25) yields

‖Qµ‖L2(R+,d%) 6 π ‖µ‖L2(R+,dt) .

Combining the estimates above with (5.64) yields

‖IF ‖2 . ‖Qµ‖L2(R+,d%) . ‖µ‖L2(R+,dt) . ‖F‖Hs ,

which completes the proof of part (i).
As for part (ii), if for contradiction Hs(R3) was a subspace of D((−∆α)s/2),

then the canonical decomposition (5.15)/(5.42) g = fg + cfgGλ + wfg of a generic

element g ∈ D((−∆α)s/2) for suitable functions fg, wfg ∈ Hs(R3) would imply that

cfgGλ = g − fg − wfg ∈ D((−∆α)s/2). For those g’s with non-zero coefficient cg
this would yield the contradiction that Gλ too belongs to D((−∆α)s/2), which was
proved to be false in Proposition 5.4.1. �

We move now to the third main result of this Section. It is formulated for
s ∈ ( 1

2 , 2), but it is relevant for us in the regime of large s, namely s ∈ [ 3
2 , 2) (it

provides no new information for lower s). As seen previously, in the latter regime
neither Hs(R3) nor span{Gλ} are contained in D((−∆α)s/2). Nevertheless, we can
identify a suitable proper subspace of Hs(R3) u span{Gλ} which is still contained
in D((−∆α)s/2), as we shall now show.

To this aim, given α > 0, λ > 0, and s ∈ ( 1
2 , 2), we introduce the subspace

D(s)
0 ⊂ Hs(R3) defined by

(5.68) D(s)
0 :=

F ∈ Hs(R3)

∣∣∣∣∣∣∣
F (0) :=

1

(2π)
3
2

∫
R3

dp F̂ (p) < +∞

IF + F (0)

α+
√
λ

4π

Jλ ∈ L2(R3)

 ,

where IF is the function defined by (5.65)-(5.66) for given F , and Jλ is the function
defined by (5.13)-(5.14).

Proposition 5.4.5. Let α > 0 and λ > 0.

(i) For s ∈ ( 1
2 , 2) one has

(5.69) D((−∆α)s/2) ⊃
{
F +

F (0)

α+
√
λ

4π

Gλ

∣∣∣F ∈ D(s)
0

}
,

the space D(s)
0 ⊂ Hs(R3) being defined in (5.68). In particular, D(s)

0

contains the Schwarz class S(R3), and

(5.70) D((−∆α)s/2) ⊃
{
F +

F (0)

α+
√
λ

4π

Gλ

∣∣∣F ∈ S(R3)
}
.

(ii) For s = 3
2 one has

(5.71) D((−∆α)3/4) =
{
F +

F (0)

α+
√
λ

4π

Gλ

∣∣∣F ∈ D(3/2)
0

}
.
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Remark 5.4.6. Formula (5.71) qualifies the fractional domain in the transition
case s = 3

2 and implies the following interesting corollary: the only linear combi-

nations F + q Gλ that it is possible to find in D((−∆α)3/4) for some H
3
2 -function

F must satisfy
∫
R3 F̂ (p) dp < +∞; as such, F cannot be a generic function in

H
3
2 (R3). Such a loss of genericity of the H

3
2 -regular component in D((−∆α)3/4) is

the distinctive feature of the transition at s = 3
2 , since both below and above this

threshold the regular part of an element in the fractional domain D((−∆α)s/2) is
indeed a generic Hs-function.

Proof of Proposition 5.4.5. (i) Let F ∈ D(s)
0 . In particular, F ∈ Hs(R3)

and F (0) is finite.
In order to prove (5.69) one needs to show that (−∆α +λ1)s/2(F + F (0)

α+
√
λ

4π

Gλ)

is square integrable. In fact, owing to (5.53) and (5.67),

(5.72) (−∆α + λ1)s/2
(
F +

F (0)

α+
√
λ

4π

Gλ
)

= (−∆ + λ1)s/2F + IF +
F (0)

α+
√
λ

4π

Jλ ,

which indeed belongs to L2(R3) because so do (−∆ + λ1)s/2F and IF + F (0)

α+
√
λ

4π

Jλ,

as a consequence of the fact that F belongs to the space D(s)
0 .

Next, in order to prove (5.70) we combine (5.13)-(5.14) and (5.65)-(5.66) so as
to get

ÎF (p)+
F (0)

α+
√
λ

4π

Ĵλ(p)

=
4 sin sπ

2

(2π)
3
2

∫ +∞

0

dt
t
s
2−1(F (0) − t κF (t))

4πα+
√
λ+ t

1

p2 + λ+ t
.

(5.73)

When F ∈ S(R3) the finiteness of F (0) = F (0) is obvious, and

|F (0) − t κF (t)| =
∣∣∣ 1

(2π)
3
2

∫
R3

dp F̂ (p)
p2 + λ

p2 + λ+ t

∣∣∣ . const(F )

1 + t
,(5.74)

whence

(5.75)
∣∣∣ ÎF (p) +

F (0)

α+
√
λ

4π

Ĵλ(p)
∣∣∣ . const(F )

p2 + λ
.

This shows that IF + F (0)

α+
√
λ

4π

Jλ ∈ L2(R3) whenever F ∈ S(R3), thus concluding

that S(R3) ⊂ D(s)
0 .

(ii) One has to prove the opposite inclusion than (5.69) in the special case s = 3
2 . Let

g ∈ D((−∆α)3/4). Necessarily g = Ffg +qfg Gλ for functions fg, wfg , Ffg ∈ H
3
2 (R3)

with Ffg = fg + wfg and for a constant qfg ∈ C, as prescribed by the canonical
decomposition (5.15)/(5.42). Let us suppress the index ‘g’ in the following.

Now, we claim that

(i) F
(0)
f =

1

(2π)3/2

∫
R3

dp F̂f (p) < +∞ and qf =
F

(0)
f

α+
√
λ

4π

.

From this claim we deduce that Ff +
F

(0)
f

α+
√
λ

4π

Gλ = g ∈ D((−∆α)3/4); as a conse-

quence, (5.72) implies that IFf +
F

(0)
f

α+
√
λ

4π

Jλ ∈ L2(R3). This completes the proof,
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because the finiteness of F
(0)
f and the square-integrability of IFf +

F
(0)
f

α+
√
λ

4π

Jλ amount

to Ff ∈ D(3/2)
0 , and g has the form Ff +

F
(0)
f

α+
√
λ

4π

Gλ.

Let us therefore establish (i). To this aim, we mimic the proof of Lemma 5.3.7:
in that case we had s > 3

2 , which made the manipulation of all the indefinite inte-

grals harmless; now, instead, s = 3
2 and a truncation scheme is needed. Moreover,

thanks to the linearity, let us assume, non restrictively, that f̂(p) > 0, and hence
also cf (t) > 0 and −ŵf (p) > 0, as follows from (5.28) and (5.30).

First of all,

F
(0)
f = lim

R→+∞

∫
|p|<R

F̂f (p) dp

= lim
R→+∞

( 1

(2π)
3
2

∫
|p|<R

f̂(p) dp+
1

(2π)
3
2

∫
|p|<R

ŵf (p) dp
)
.

(ii)

In general, each integral in the r.h.s. above is in divergent as R → +∞, and we
want to show that a compensation among them cancels this possible divergence.

By inserting into the first integrand in the r.h.s. of (ii) the quantity

1 =
1

π
√

2

∫ +∞

0

dt
t−

3
4 (p2 + λ)

3
4

p2 + λ+ t

(see (5.35)), it is immediately checked that dominated convergence and exchange
of the truncated integration over t and p apply, so one has

1

(2π)
3
2

∫
|p|<R

f̂(p) dp =

=
1

π
√

2 (2π)
3
2

lim
T→+∞

∫
|p|<R

dp f̂(p)

∫ T

0

dt
t−

3
4 (p2 + λ)

3
4

p2 + λ+ t

=
1

π
√

2
lim

T→+∞

∫ T

0

dt t−
3
4

1

(2π)
3
2

∫
|p|<R

dp
(p2 + λ)

3
4 f̂(p)

p2 + λ+ t

=
1

π
√

2
lim

T→+∞

∫ T

0

dt t−
3
4 cR,f (t) ,

(iii)

where for convenience we denoted by

cR,f (t) :=
1

(2π)
3
2

∫
|p|<R

dp
(p2 + λ)

3
4 f̂(p)

p2 + λ+ t

the finite-momentum truncation of the function cf (t) defined in (5.28).
An analogous use of dominated convergence and exchange of integration, using

(5.30), yields

1

(2π)
3
2

∫
|p|<R

ŵf (p) dp =

= − 2
√

2

(2π)3

∫
|p|<R

dp

∫ +∞

0

dt
t
1
4 cf (t)

4πα+
√
λ+ t

1

(p2 + λ)(p2 + λ+ t)

= − 2
√

2

(2π)3
lim

T→+∞

∫
|p|<R

dp

∫ T

0

dt
t
1
4 cf (t)

4πα+
√
λ+ t

1

(p2 + λ)(p2 + λ+ t)

= − 2
√

2

(2π)3
lim

T→+∞

∫ T

0

dt
t
1
4 cf (t)

4πα+
√
λ+ t

∫
|p|<R

dp

(p2 + λ)(p2 + λ+ t)
.
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It is convenient to re-arrange the r.h.s. above as

1

(2π)
3
2

∫
|p|<R

ŵf (p) dp =

=
1

π
√

2
lim

T→+∞

∫ T

0

dt t−
3
4 cf (t)φ(t)

(
2
π arctan R√

λ+t

)
− 1

π
√

2
lim

T→+∞

∫ T

0

dt t−
3
4 cf (t)

(
2
π arctan R√

λ+t

)
− 2
√

2

(2π)3
lim

T→+∞

∫ T

0

dt
t
1
4 cf (t)

4πα+
√
λ+ t

×

×
( ∫
|p|<R

dp
(p2+λ)(p2+λ+t) −

4π√
λ+t+

√
λ

arctan R√
λ+t

)
,

(iv)

where we inserted the function φ(t) defined in (5.14)/(5.45).
Plugging (iii) and (iv) into (ii),

F
(0)
f = lim

R→+∞

{ 1

π
√

2
lim

T→+∞

∫ T

0

dt t−
3
4 cf (t)φ(t)

(
2
π arctan R√

λ+t

)
+

1

π
√

2
lim

T→+∞

∫ T

0

dt t−
3
4

(
cR,f (t)− cf (t)

(
2
π arctan R√

λ+t

))
− 2
√

2

(2π)3
lim

T→+∞

∫ T

0

dt
t
1
4 cf (t)

4πα+
√
λ+ t

×

×
( ∫
|p|<R

dp
(p2+λ)(p2+λ+t) −

4π√
λ+t+

√
λ

arctan R√
λ+t

)}
.

(v)

The first term in the r.h.s. of (v) can be thought of as an integration over

t ∈ R of the function t 7→ 1{t∈[0,T ]}t
− 3

4 cf (t)φ(t)( 2
π arctan R√

λ+t
). Recalling that

cf (t) . (1+ t)−
1
4 (see (5.33)), φ(t) . (1+ t)−

1
2 (see (5.47)), and 2

π arctan R√
λ+t

< 1,

we see that dominated convergence applies twice and

1

π
√

2

∫ T

0

dt t−
3
4 cf (t)φ(t)

(
2
π arctan R√

λ+t

)
T→+∞−−−−−−→ 1

π
√

2

∫ +∞

0

dt t−
3
4 cf (t)φ(t)

(
2
π arctan R√

λ+t

)
R→+∞−−−−−−→ 1

π
√

2

∫ +∞

0

dt t−
3
4 cf (t)φ(t) =

=
1

π
√

2

∫ +∞

0

dt t−
3
4 cf (t)

4πα+
√
λ

4πα+
√
λ+ t

= (α+
√
λ

4π ) qf ,

(vi)

having used (5.45) and (5.32) in the last two steps.
From (v) and (vi) we find

F
(0)
f = qf (α+

√
λ

4π )+

+
1

π
√

2
lim

R→+∞
lim

T→+∞

∫ T

0

dt t−
3
4

(
cR,f (t)− cf (t)

(
2
π arctan R√

λ+t

))
− 2
√

2

(2π)3
lim

R→+∞
lim

T→+∞

∫ T

0

dt
t
1
4 cf (t)

4πα+
√
λ+ t

×

×
( ∫
|p|<R

dp
(p2+λ)(p2+λ+t) −

4π√
λ+t+

√
λ

arctan R√
λ+t

)}
,
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which implies (i) as long as one proves that

(vii) lim
R→+∞

lim
T→+∞

∫ T

0

dt t−
3
4

(
cf (t)

(
2
π arctan R√

λ+t

)
− cR,f (t)

)
= 0

and

lim
R→+∞

lim
T→+∞

∫ T

0

dt
t
1
4 cf (t)

4πα+
√
λ+ t

×

×
( ∫
|p|<R

dp
(p2+λ)(p2+λ+t) −

4π√
λ+t+

√
λ

arctan R√
λ+t

)}
= 0 .

(viii)

Last, let us establish (vii) and (viii), thus completing the proof. One has∫ T

0

dt t−
3
4 cR,f (t) =

1

(2π)
3
2

∫ T

0

dt t−
3
4

∫
|p|<R

dp
(p2 + λ)

3
4 f̂(p)

p2 + λ+ t

T→+∞−−−−−−→ 1

(2π)
3
2

∫ +∞

0

dt t−
3
4

∫
|p|<R

dp
(p2 + λ)

3
4 f̂(p)

p2 + λ+ t
=

∫ +∞

0

dt t−
3
4 cR,f (t)

by dominated convergence, thanks to the uniform-in-T summable majorant function
t 7→ const(R) · t− 3

4 (λ+ t)−1. One also has∫ T

0

dt t−
3
4 cf (t)

(
2
π arctan R√

λ+t

) T→+∞−−−−−−→
∫ +∞

0

dt t−
3
4 cf (t)

(
2
π arctan R√

λ+t

)
by dominated convergence, thanks to the bound arctan( R√

λ+t
) 6 R√

λ+t
and hence

to the uniform-in-T summable majorant function t 7→ R t−
3
4 (λ+ t)−

1
2 . Thus,

lim
R→+∞

lim
T→+∞

∫ T

0

dt t−
3
4

(
cf (t)

(
2
π arctan R√

λ+t

)
− cR,f (t)

)
=

= lim
R→+∞

∫ +∞

0

dt t−
3
4

(
cf (t)

(
2
π arctan R√

λ+t

)
− cR,f (t)

)
Now, since cR,f (t)↗ cf (t) and 2

π arctan R√
λ+t
↗ 1 as R→ +∞, the functions

t 7→ t−
3
4

(
cf (t)

(
2
π arctan R√

λ+t

)
− cR,f (t)

)
form a decreasing-in-R net of summable functions, whose point-wise limit as R →
+∞ is the null function. Therefore, by monotone convergence,

lim
R→+∞

∫ +∞

0

dt t−
3
4

(
cf (t)

(
2
π arctan R√

λ+t

)
− cR,f (t)

)
= 0

and (vii) is proved.
Concerning (viii), with analogous bounds as above one takes the limit T → +∞

based on dominated convergence. In order to take the limit R → +∞ in the
resulting quantity∫ +∞

0

dt
t
1
4 cf (t)

4πα+
√
λ+ t

( ∫
|p|<R

dp
(p2+λ)(p2+λ+t) −

4π√
λ+t+

√
λ

arctan R√
λ+t

)
one observes that(

4π√
λ+t+

√
λ

arctan R√
λ+t
−
∫
|p|<R

dp
(p2+λ)(p2+λ+t)

)
=

= 4π√
λ+t+

√
λ

arctan R√
λ+t
− 1

t

(√
λ+ t arctan R√

λ+t
−
√
λ arctan R√

λ

)
=

√
λ

t

(
arctan R√

λ
− arctan R√

λ+t

)
6

π
√
λ

t
,
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which shows that the integrand vanishes point-wise in t as R→ +∞ and is bounded
by a uniformly-in-R integrable function: then dominated convergence applies and
(viii) is also proved. �

5.5. Fractional maps

In this Section we revisit part of the results of Sections 5.2-5.4 relative to the
regime s ∈ ( 1

2 , 2) in terms of certain linear maps which it is very natural to introduce
and which provide a more compact formulation.

For s ∈ ( 1
2 , 2), we define the linear maps

(5.76) Rs : Hs(R3)→ Hs(R3) , Rsf := f + wf

and

(5.77) Qs : Hs(R3)→ C , Qsf := qf ,

where wf is the function defined in (5.30) and qf is the constant defined in (5.32),
for given α > 0 and λ > 0. Owing to Lemma 5.3.4 and Proposition 5.3.5, both
maps are bounded:

(5.78) ‖Rsf‖Hs . ‖f‖Hs , |Qsf | .
1

1 + α
‖f‖Hs .

As a consequence of Propositions 5.2.1 and 5.3.5,

(5.79) D((−∆α)s/2) = {Rsf + (Qsf)Gλ | f ∈ Hs(R3)} ,

that is, when f spans Hs(R3), Rsf spans all possible regular components and
(Qsf)Gλ spans all possible singular components of the elements of D((−∆α)s/2).

It is also convenient to write

(5.80) Rs = 1−Ws , Wsf := −wf .

The linear map Ws : Hs(R3)→ Hs(R3) is bounded, because of Proposition 5.3.5.

Proposition 5.5.1.

(i) When s ∈ ( 1
2 ,

3
2 ), the maps Rs and Qs are surjective and not injective;

moreover, there are functions in kerRs that do not belong to kerQs and
vice versa.

(ii) Explicitly, when s ∈ ( 1
2 ,

3
2 ), the non-zero Hs-function

(5.81) f? := (−∆ + λ1)−s/2Jλ ,

where Jλ is the function defined in (5.14), satisfies

(5.82) Rsf? = 0 , and Qsf? = 1 .

(iii) For any s ∈ ( 1
2 , 2),

(5.83) kerQs = (−∆ + λ1)−s/2
(
{Υλ}⊥

)
in the sense of L2-orthogonality, where Υλ is the function defined in
(5.38).

(iv) When s = 3
2 , R3/2 is injective and not surjective, whereas Qs is surjective

and not injective.
(v) When s ∈ ( 3

2 , 2), Rs is surjective and injective, hence a bijection in

Hs(R3), whereas Qs is surjective and not injective.

Proof. (i) From (5.79) and from the fact thatHs(R3) ⊂ D((−∆α)s/2) (Propo-
sition 5.4.2(i)) it follows that Rs is surjective and Qs is not injective, and that there
exist f ’s in Hs(R3) for which Rsf 6= 0 whereas Qsf = 0. From (5.79) again and
from the fact that span{Gλ} ⊂ D((−∆α)s/2) it follows that Qs is surjective and
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Rs is not injective, and that there exist f ’s in Hs(R3) for which Qsf 6= 0 whereas
Rsf = 0.

(ii) Owing to (5.19),

(−∆α + λ1)−s/2Jλ = (−∆α + λ1)−s/2(−∆ + λ1)s/2f? ∈ D((−∆α)s/2) ,

whence also, owing to (5.53), as well as to (5.15), (5.16), and (5.19),

Gλ = (−∆α + λ1)−s/2Jλ = Rsf? + (Qsf?)Gλ ,

from which (5.82) follows.
(iii) The identity (5.83) is precisely equation (5.41) proved in Lemma 5.3.4.
(iv)-(v) The surjectivity of Qs is obvious, and its non-injectivity is proved in

general in part (iii) above.
For the injectivity of Rs when s ∈ [ 3

2 , 2) we exploit the fact, encoded in (5.79),

that if f ∈ Hs(R3), then g := Rsf + (Qsf)Gλ is an element of D((−∆α)s/2) and
(5.19) implies that f = (−∆ + λ1)−s/2(−∆α + λ1)s/2g. Therefore, if Rsf = 0,
then necessarily Qsf = 0 (for otherwise Gλ would belong to D((−∆α)s/2) for s > 3

2 ,
which is forbidden by Proposition 5.4.1), whence also g = 0 and then f = 0: Rs is
injective.

The lack of surjectivity of R3/2 is a consequence of Proposition 5.4.5(ii), as is

evident from comparing the expressions (5.71) and (5.79) for D((∆α)3/4), taking

into account that D(3/2)
0  H

3
2 (R3).

When s ∈ ( 3
2 , 2) one can prove the invertibility of Rs = 1−Ws as a bijection on

Hs(R3) by means of the following argument. The bound (5.43) found in Proposition
5.3.5 in the present notation reads

‖(p2 + λ)
s
2 Ŵsf‖2 6

√
2 sin sπ

2

sin( sπ2 −
π
4 )
‖(p2 + λ)

s
2 f̂‖2 ∀f ∈ Hs(R3) .

Since

s 7−→
√

2 sin sπ
2

sin( sπ2 −
π
4 )

is continuous and strictly monotone decreasing, attaining the value 1 at s = 3
2 , then

for s ∈ ( 3
2 , 2) the map FWsF−1 (where F : L2(R3,dx)→ L2(R3,dp) is the Fourier

transform, inherited also onHs(R3,dx)) is bounded on the space L2(R3, (p2+λ)sdp)
with norm strictly smaller than 1. As a consequence, FRsF−1 = 1− FWsF−1 is

a bijection on such space. Using an obvious isomorphism L2(R3, (p2 + λ)sdp)
∼=7−→

L2(R3, (p2 + 1)sdp) = FHs(R3,dx), one then concludes that the map Rs is a
bijection on Hs(R3,dx). �

5.6. Proofs of the main results and transition behaviours

Proof of Theorem 5.1.1.
(i) Case s ∈ (0, 1

2 ). Let g ∈ D((−∆α)s/2). Owing to Proposition 5.2.1, g =

fg + hg with fg ∈ Hs(R3) given by (5.16) and hg given by (5.17). In Proposition

5.3.3 we established that hg ∈ Hs(R3) too, therefore D((−∆α)s/2) ⊂ Hs(R3).

Conversely, in Proposition 5.4.2(i) we established that D((−∆α)s/2) ⊃ Hs(R3).
The conclusion is the identity (5.2).

(ii) Case s ∈ ( 1
2 ,

3
2 ). Again, owing to Proposition 5.2.1, a generic g ∈ D((−∆α)s/2)

decomposes as g = fg+hg with fg ∈ Hs(R3) given by (5.16) and hg given by (5.17).
In Proposition 5.3.5 we established that hg = qfgGλ + wfg for some qfg ∈ C and

some wfg ∈ Hs(R3). Therefore, D((−∆α)s/2) ⊂ Hs(R3) + span{Gλ}. Conversely,
in Propositions 5.4.1 and 5.4.2(i) we established the opposite inclusion (5.51). The
conclusion is the identity (5.3).
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(iii) Case s ∈ ( 3
2 , 2). Owing to Propositions 5.2.1 and 5.3.5, D((−∆α)s/2)

consists exactly of elements of the form f + qfGλ +wf , obtained by letting f span
the whole Hs(R3) and by taking wf and qf according to (5.30) and (5.32). (With
the same argument as in the proof of part (ii), this allows one to deduce again
D((−∆α)s/2) ⊂ Hs(R3) u span{Gλ}, however the latter is now a strict inclusion,
as established in Propositions 5.4.1 and 5.4.2(ii).) It follows from Proposition 5.3.5
that Ff := f+wf ∈ Hs(R3) and it follows from Lemma 5.3.7 that Fλ is a continuous

function on R3 with Ff (0) = (α+
√
λ

4π )qf . Thus,

D((−∆α)s/2) ⊂
{
F +

F (0)

α+
√
λ

4π

Gλ

∣∣∣F ∈ Hs(R3)
}
.

Conversely, we established in Proposition 5.4.5 that

D((−∆α)s/2) ⊃
{
F +

F (0)

α+
√
λ

4π

Gλ

∣∣∣F ∈ Hs(R3)
}
,

because in this regime of s the space D(s)
0 used in Proposition 5.4.5 is the whole

Hs(R3) and F (0) = F (0). The conclusion is the identity (5.4). Alternatively, in the
equivalent language of the fractional maps introduced in Section 5.5, one argues as
follows: according to (5.79),

D((−∆α)s/2) = {Rsf + (Qsf)Gλ | f ∈ Hs(R3)} ,
Lemma 5.3.7 reads

Qsf =
(Rsf)(0)

α+
√
λ

2π

,

and Proposition 5.5.1(v) establishes that Rs : Hs(R3) → Hs(R3) is a bijection,
which all together gives precisely the representation (5.4) for D((−∆α)s/2). �

Proof of Theorem 5.1.3.
(i) Case s ∈ (0, 1

2 ). The bound ‖g‖Hsα . ‖g‖Hs was proved in (5.56) of
Proposition (5.4.2)(i). As for the opposite bound, Proposition 5.2.1 implies that
g = fg + hg and ‖g‖Hsα = ‖(−∆ + λ1)s/2fg‖2 ≈ ‖fg‖Hs , Proposition 5.3.3 implies
that ‖hg‖Hs . ‖fg‖Hs , therefore ‖g‖Hs . ‖fg‖Hs = ‖g‖Hsα .

(ii) Case s ∈ ( 1
2 ,

3
2 ). By means of the decomposition of Propositions 5.2.1

and 5.3.5, as well as the surjectivity of the map f 7→ f + wf on Hs(R3) (Propo-
sition 5.5.1(i)), one has g = Ffg + qfgGλ with Ffg = fg + wfg , and ‖g‖Hsα =

‖(−∆ + λ1)s/2fg‖2 ≈ ‖fg‖Hs . Combining this norm equivalence with the bounds
‖Ffg‖Hs . ‖fg‖Hs and (1 + α)|qfg | . ‖fg‖Hs (Lemma 5.3.4 and Proposition 5.3.5,
i.e., eq. (5.78)) one has ‖Ff‖Hs + (1 + α)|qfg | . ‖Ff + qfgGλ‖Hsα . For the op-
posite inequality we write ‖Ffg + qfgGλ‖Hsα 6 ‖Ffg‖Hsα + |qfg |‖Gλ‖Hsα and we
use ‖Ffg‖Hsα . ‖Ffg‖Hs (eq. (5.56) in Proposition 5.4.2) and ‖Gλ‖Hsα . (1 + α)
(eq. (5.55) in Proposition 5.4.1), whence the conclusion.

(iii) Case s ∈ ( 3
2 , 2). Arguing as in part (ii), for Fλ + Fλ(0)

α+
√
λ

4π

Gλ one has

Fλ = f + wf = Rsf , Fλ(0)

α+
√
λ

4π

= Qsf , and
∥∥Fλ + Fλ(0)

α+
√
λ

4π

Gλ
∥∥
Hsα
≈ ‖f‖Hs . Since in

the regime s ∈ ( 3
2 , 2) the map Rs is invertible on Hs(R3) (Proposition 5.5.1(v)),

and hence also with bounded inverse, then ‖f‖Hs ≈ ‖Rsf‖Hs = ‖Fλ‖Hs , which
completes the proof. �

Proof of Theorem 5.1.4.
Part (i) was proved already in the end of Section 5.2. Part (ii) is entirely proved

in Proposition 5.4.1 and Lemma 5.4.3. �

The transition cases s = 1
2 and s = 3

2 are characterised as follows.
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Proposition 5.6.1 (Transition case s = 1
2 ). Let α > 0, λ > 0, and s = 1

2 .
Then

(5.84) D((−∆α)1/4) = {f + hf | f ∈ H
1
2 (R3)} ,

where, for given f , hf is the H
1
2
−
-function defined in (5.26)-(5.27) and discussed

in Proposition 5.3.3(ii). Moreover,

(5.85) H
1
2 (R3)u span{Gλ}  D((−∆α)1/4) ⊂ H

1
2
−
(R3) .

Proof. The first statement is an immediate consequence of the canonical de-
composition (5.15) of Proposition 5.2.1 and of the definition (5.26)-(5.27). The in-

clusion D((−∆α)1/4) ⊂ H 1
2
−
(R3) of (5.85) follows at once from the decomposition

(5.15) and from Proposition 5.3.3(ii), whereas the inclusion H1/2(R3)uspan{Gλ} ⊂
D((−∆α)1/4) is precisely the inclusion (5.51) for s = 1

2 , which follows from Propo-
sitions 5.4.1 and 5.4.2(ii). Last, in order to see that the latter inclusion is strict, we
observe that in course of the proof of Proposition 5.3.3(ii) certain non-zero func-

tions f ∈ H1/2(R3) were considered for which ĥf (p) ≈ 〈p〉−2 ln〈p〉 as |p| → +∞,

which is logarithmically more singular than Gλ and than an H
1
2 -function. �

Proposition 5.6.2 (Transition case s = 3
2 ). Let α > 0, λ > 0, and s = 3

2 .
Then

(5.86) D((−∆α)3/4) =
{
F +

F (0)

α+
√
λ

4π

Gλ

∣∣∣F ∈ D(3/2)
0

}
,

where
(5.87)

D(3/2)
0 =

F ∈ H 3
2 (R3)

∣∣∣∣∣∣∣
F (0) :=

1

(2π)
3
2

∫
R3

dp F̂ (p) < +∞

IF + F (0)

α+
√
λ

4π

Jλ ∈ L2(R3)

  H
3
2 (R3) ,

IF is the function defined by (5.65)-(5.66) for given F and s = 3
2 , and Jλ is the

function defined by (5.13)-(5.14) for s = 3
2 .

Proof. An immediate consequence of Proposition 5.4.5. �

Remark 5.6.3. Let us elaborate further on the two conditions

(*)

∫
R3

dp F̂ (p) < +∞

and

(**) IF +
F (0)

α+
√
λ

4π

Jλ ∈ L2(R3)

that characterise D(3/2)
0 and hence the fractional domain D((−∆α)3/4). The con-

straint (**) is actually a cancellation condition, as was seen in the proof of Propo-
sition 5.4.5, formulas (5.73)-(5.75), in the special case of F ∈ S(R3). In general,
because of the asymptotics (Lemma 5.4.3)

Ĵλ(p) =
κ

(p2 + λ)
3
4

+R(p) as |p| → +∞

for some L2-function R, one must have

(***) ÎF (p) = − κF (0)

α+
√
λ

4π

· 1

(p2 + λ)
3
4

+ R̃(p) as |p| → +∞
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for some L2-function R̃ in order for a cancellation to occur and then for (**) to hold.

One can see that the inverse Fourier transform of (p2 + λ)−
3
4 belongs to the Besov

space B0
2,∞(R3) % L2(R3) = B0

2,2(R3). Therefore, if ÎF satisfies the asymptotic
expansion (***), the cancellation property is equivalent to the vanishing of the
B0

2,∞(R3)-term in

IF +
F (0)

α+
√
λ

4π

Jλ.

Moreover, a closer inspection of the argument in formulas (5.73)-(5.75) shows

that condition (**), equivalently (***), follows as soon as one assumes for F̂ a
slightly better large-p decay than the one imposed by (*), for example∫

R3

F̂ (p)〈p〉εdp < +∞

for arbitrary ε > 0.



CHAPTER 6

Singular Hartree equation

In this Chapter we study the singular Hartree equation in three dimension

(6.1) i∂tu = −∆αu+ (w ∗ |u|2)u ,

in the complex-valued unknown u ≡ u(x, t), t ∈ R, x ∈ R3, for a given measurable
function w : R3 → R.

In order to avoid non-essential additional discussions, we restrict ourselves once
and for all to positive α’s. In fact, −∆α is semi-bounded from below for every α ∈ R,
thus shifting it up by a suitable constant one ends up with studying a modification
of (6.1) with a trivial linear term that does not affect the solution theory of the
equation.

The singular Hartree equation (6.1) can be interpreted as a classical Hartree
equation

(6.2) i∂tu = −∆u+ V u+ (w ∗ |u|2)u,

in which the external potential V models a ‘delta’-like impurity at the origin.
Among the several contexts of relevance of (6.2), one is surely the quantum

dynamics of large Bose gases, where particles are subject to an external potential
V and interact through a two-body potential w. When V is locally sufficiently
regular, (6.2) emerges as the effective evolution equation, rigorously in the limit of
infinitely many particles, of a many-body initial state that is scarcely correlated,
say, Ψ(x1, . . . , xN ) ∼ u0(x1) · · ·u0(xn), whose evolution can be proved to retain
the approximate form Ψ(x1, . . . , xN ; t) ∼ u(x1, t) · · ·u(xn, t) for some one-body
orbital u ∈ L2(Rd) that solves the Hartree equation (6.2) with initial condition
u(x, 0) = u0(x). The precise meaning of the control of the many-body wave function
is in the sense of one-body reduced density matrices. The limit N → +∞ is
taken with a suitable re-scaling prescription of the many-body Hamiltonian, so
as to make the limit non-trivial. In the mean field scaling, that models particles
paired by an interaction of long range and weak magnitude, the interaction term in
the Hamiltonian has the form N−1

∑
j<k w(xj − xk), and when applied to a wave

function of the approximate form u(x1) · · ·u(xn) it generates indeed the typical self-
interaction term (w ∗ |u|2)u of (6.2). This scenario is today controlled in a virtually
complete class of cases, ranging from bounded to locally singular potentials w, and
through a multitude of techniques to control the limit (see, e.g., [20, Chapter 2]
and the references therein).

Irrespectively of the technique to derive the Hartree equation from the many-
body linear Schrödinger equation (hierarchy of marginals, Fock space of fluctua-
tions, counting of the condensate particles, and others), one fundamental require-
ment is that at least for the time interval in which the limit N → +∞ is monitored
the Hartree equation itself is well-posed. In fact, for sufficiently regular V , the
Cauchy problem for (6.2) has been extensively studied, and nowadays its local and
global well-posedness, as well as its long-time behavior are well understood – for
the vast literature on the subject, we refer to the monograph [25], as well as to the
recent work [80].
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For the singular Hartree equation the picture is much less developed. The
material presented here is based on my recent work [83], in collaboration with A.
Michelangeli and A. Olgiati, where we study the Cauchy problem associated to
(6.1)

(6.3)

{
i∂tu = −∆αu+ (w ∗ |u|2)u

u(0) = f ∈ Hs
α(R3),

where Hs
α(R3) are the singular Sobolev spaces introduced in Chapter 5. We are

going to discuss local solution theory both in a regime of low (i.e., s ∈ [0, 1
2 )), in-

termediate (i.e., s ∈ ( 1
2 ,

3
2 )), and high (i.e., s ∈ ( 3

2 , 2]) regularity. Then, exploiting
the conservation of the mass and the energy, we are going to obtain a global theory
in the mass space (s = 0) and the energy space (s = 1). Our result is the first fun-
damental step towards a rigorous derivation of (6.1) from the many-body quantum
dynamics.

We deal with strong Hs
α-solutions of the problem (6.3), meaning, functions

u ∈ C(I,Hs
α(R3)) for some interval I ⊆ R with I 3 0, which are fixed points for

the solution map

(6.4) Φ(u)(t) := eit∆αf − i

∫ t

0

ei(t−τ)∆α(w ∗ |u(τ)|2)u(τ) dτ .

Let us recall the notion of local and global well-posedness (see [25, Section 3.1]).

Definition 6.0.1. We say that the Cauchy problem (6.3) is locally well-posed
in Hs

α(R3) if the following properties hold:

(i) For every f ∈ Hs
α(R3), there exists a unique strong Hs

α-solution u to the
equation

(6.5) u(t) = eit∆αf − i

∫ t

0

ei(t−τ)∆α(w ∗ |u(τ)|2)u(τ) dτ

defined on the maximal interval (−T∗, T ∗), where T∗, T
∗ ∈ (0,+∞] depend

on f only.
(ii) There is the blow-up alternative: if T ∗ < +∞ (resp., if T∗ < +∞), then

limt↑T∗ ‖u(t)‖Hsα = +∞ (resp., limt↓T∗ ‖u(t)‖Hsα = +∞).

(iii) There is continuous dependence on the initial data: if fn
n→+∞−−−−−→ f in

Hs
α(R3), and if I ⊂ (−T∗, T ∗) is a closed interval, then the maximal

solution un to (6.3) with initial datum fn is defined on I for n large

enough, and satisfies un
n→+∞−−−−−→ u in C(I,Hs

α(R3)).

If T∗ = T ∗ = +∞, we say that the solution is global. If (6.3) is locally well-
posed and for every f ∈ Hs

α(R3) the solution is global, we say that (6.3) is globally
well-posed in Hs

α(R3).

Let us emphasize an important feature of solutions to the integral equation
(6.5). As already mentioned in Section 1.1, −∆α diagonalises w.r.t. the canonical
angular decomposition (1.17) of L2(R3). In particular, the subspace of L2(R3) of
definite rotational symmetry are invariant under the propagator eit∆α . If both f
and w are spherically symmetric, then, the solution u to (6.5) is radial too. This
makes the above definitions of strong solutions and well-posedness meaningful also
with respect to the spaces

Hs
α,rad(R3) := Hs

α(R3) ∩ L2
`=0(R3)

equipped with the Hs
α-norm. Part of the solution theory we found is set in such

spaces.
We can finally formulate our main results. Let us start with the local theory.
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Theorem 6.0.2 (L2-theory – local well-posedness). Let α > 0. Let w ∈
L

3
γ ,∞(R3) for γ ∈ [0, 3

2 ). Then the Cauchy problem (6.3) is locally well-posed in

L2(R3).

Theorem 6.0.3 (Low regularity – local well-posedness). Let α > 0 and s ∈
(0, 1

2 ). Let w ∈ L
3
γ ,∞(R3) for γ ∈ [0, 2s]. Then the Cauchy problem (6.3) is locally

well-posed in Hs
α(R3), which in this regime coincides with Hs(R3).

Theorem 6.0.4 (Intermediate regularity – local well-posedness). Let α > 0
and s ∈ ( 1

2 ,
3
2 ). Let w ∈W s,p(R3) for p ∈ (2,+∞). Then the Cauchy problem (6.3)

is locally well-posed in Hs
α(R3).

Theorem 6.0.5 (High regularity – local well-posedness). Let α > 0 and s ∈
( 3

2 , 2]. Let w ∈ W s,p(R3) for p ∈ (2,+∞) and spherically symmetric. Then the

Cauchy problem (6.3) is locally well-posed in Hs
α,rad(R3).

The transition cases s = 1
2 and s = 3

2 are not covered explicitly for the mere

reason that the structure of the perturbed Sobolev spaces H
1/2
α (R3) and H

3/2
α (R3)

is not as clean as that of Hs
α(R3) when s /∈ { 1

2 ,
3
2} – see the disussion after Theorem

5.1.1.
Let us remark that for s > 0 we have an actual ‘continuity’ in s of the assump-

tion on w in the three Theorems 6.0.3, 6.0.4, and 6.0.5 above – in the low regularity
case our proof does not require any control on derivatives of w and therefore we
find it more informative to formulate the assumption in terms of the Lorentz space
corresponding to W s,p(R3).

Such a ‘continuity’ is due to the fact that under the hypotheses of Theorems
6.0.3, 6.0.4, and 6.0.5 we can work in a locally-Lipschitz regime of the non-linearity.
When instead s = 0 we have a ‘jump’ in the form of an extra range of admissible
potentials w, which is due to the fact that for the L2-theory we are able to make
use of the Strichartz estimates for the singular Laplacian.

Next, we investigate the global theory in the mass and in the energy spaces.

Theorem 6.0.6 (Global solution theory in the mass space). Let α > 0, and

let w ∈ L∞(R3) ∩W 1,3(R3), or w ∈ L
3
γ ,∞(R3) for γ ∈ (0, 3

2 ). Then the Cauchy

problem (6.3) is globally well-posed in L2(R3).

Theorem 6.0.7 (Global solution theory in the energy space). Let α > 0, w ∈
W 1,p

rad(R3) for p ∈ (2,+∞), and f ∈ H1
α,rad(R3).

(i) There exists a constant Cw > 0, depending only on ‖w‖W 1,p , such that if
‖f‖L2 6 Cw, then the unique strong solution in H1

α,rad(R3) to (6.3) with
initial data f is global.

(ii) If w > 0, then the Cauchy problem (6.3) is globally well-posed in H1
α,rad(R3).

As stated in the Theorems above, part of the local and of the global solution
theory is set for spherically symmetric potentials w and solutions u. In a sense,
this is the natural solution theory for the singular Hartree equation, for sufficiently
high regularity. In particular, the spherical symmetry needed for the high regularity
theory is induced naturally by the special structure of the spaceHs

α(R3) (as opposite
to Hs(R3), or also to Hs

α(R3) for small s), where a boundary (‘contact’) condition
holds between regular and singular component of Hs

α-functions.
Before concluding this general introduction, it is worth mentioning that the one-

dimensional version of the non-linear Schrödinger equation with point-like pseudo-
potentials is much more deeply investigated and better understood, as compared
to the so far virtually unexplored scenario in three dimensions.
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In the last dozen years a systematic analysis was carried out of singular non-
linear Schrödinger equation in one dimension, mainly with local non-linearity, ini-
tially motivated by phenomenological models of short-range obstacles in non-linear
transport [109]. This includes local and global well-posedness in operator domain
and energy space and blow-up phenomena [3, 1, 2], weak Lp-solutions [91], scatter-
ing [16], solitons [62, 63], as well as more recent modifications of the non-linearity
[14]. None of such works has a three-dimensional counterpart.

The material of this Chapter is organised as follows. In Section 1 we collect
some preliminary results which will turn out to be useful for our analysis. The
local well-posedness in the low, intermediate, and high regularity will be carried
out, respectively, in Section 2, 3 and 4. Last, in Section 5, we discuss the global
theory in the mass and in the energy space.

6.1. Preparatory materials

We start this Section by recalling some fundamental tools of fractional calcu-
lus. One is the following fractional Leibniz rule by Kato and Ponce, also in the
generalised version by Gulisashvili and Kon.

Theorem 6.1.1 (Generalised fractional Leibniz rule, [69, 58]). Suppose that
r ∈ (1,+∞) and p1, p2, q1, q2 ∈ (1,+∞] with 1

pj
+ 1

qj
= 1

r , j ∈ {1, 2}, and suppose

that s, µ, ν ∈ [0,+∞). Let d ∈ N, then

‖Ds(fg)‖Lp(Rd) . ‖Ds+µf‖Lp1 (Rd)‖D−µg‖Lq1 (Rd)

+ ‖D−νf‖Lp2 (Rd)‖Ds+νg‖Lq2 (Rd) ,
(6.6)

where Ds = (−∆)
s
2 , the Riesz potential. The same result holds when Ds is the

Bessel potential (1−∆)
s
2 .

Remark 6.1.2. As a direct consequence of Mihlin multiplier theorem [22, Sec-
tion 6.1], the estimate (6.6) holds as well for Ds = (−∆ + λ1)

s
2 for any λ > 0.

We also need a more versatile re-distribution of the derivatives among the two
factors f and g in (6.6): the following recent result by Fujiwara, Georgiev, and
Ozawa provides a very useful refinement of the fractional Leibniz rule and is based
on a careful treatment of the correction term

(6.7) [f, g]s := f Dsg + gDsf .

Theorem 6.1.3 (Higher order fractional Leibniz rule, [44]). Suppose that p, q, r
∈ (1,+∞) with 1

p + 1
q = 1

r and let d ∈ N.

(i) Let s1, s2 ∈ [0, 1] and set s := s1 + s2. Then

(6.8) ‖Ds(fg)− [f, g]s‖Lp(Rd) . ‖Ds1f‖Lp(Rd)‖Ds2g‖Lq(Rd) .

(ii) Let s1 ∈ [0, 2], s2 ∈ [0, 1] be such that s := s1 + s2 > 1. Then

‖Ds(fg)− [f, g]s + sDs−2(∇f · ∇g) + sDs−2(g∆f)− sgDs−2∆f‖Lp(Rd)

. ‖Ds1f‖Lp(Rd)‖Ds2g‖Lq(Rd) .(6.9)

Moreover, since

Ds−2(∇f · ∇g) +Ds−2(g∆f)− gDs−2∆f = Ds−2∇ · (g∇f) + gDsf
we can rewrite (6.9) in the more compact form

‖Ds(fg)− fDsg + (s− 1)gDsf + sDs−2∇ · (g∇f)‖Lp(Rd)

. ‖Ds1f‖Lp(Rd)‖Ds2g‖Lq(Rd) .
(6.10)

For the fractional derivative of |x|−1e−λ|x| we need, additionally, a point-wise
estimate.
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Lemma 6.1.4. Let λ > 0, s ∈ (0, 2]. We have the estimate

(6.11)
∣∣∣Ds e−λ|x||x|

∣∣∣ . e−λ|x|

|x|
+
e−λ|x|

|x|1+s
, x 6= 0 .

Proof. Obvious when s = 2, and a straightforward consequence of the identity

DsGλ = F−1(|p|sĜλ(p)) = −F−1
( 1

(2π)
3
2

λ

|p|2 + λ

)
+ F−1

( 1

(2π)
3
2

|p|s + λ

|p|2 + λ

)
when s ∈ (0, 2), where Gλ is the function (1.4) for some λ > 0. �

Based on the preceding properties, we derive now two useful estimates that we
are going to apply systematically in our discussion when s > 1

2 . Let us recall that
in this case

(6.12) ‖g1g2‖W s,q . ‖g1‖W s,q ‖g2‖W s,q (s > 1
2 , q ∈ (6,+∞)) ,

as follows, for example, from the fractional Leibniz rule (6.6) and Sobolev’s embed-
ding W s,q(R3) ↪→ L∞(R3).

We start with the estimate for the regime s ∈ ( 1
2 ,

3
2 ), for which we recall

Sobolev’s embedding

W s,q(R3) ↪→ C0,ϑ(s,q)(R3)

ϑ(s, q) := min{s− 3
q , 1} (s ∈ ( 1

2 ,
3
2 ), q ∈ (6,+∞) .

(6.13)

Proposition 6.1.5. Let s ∈ ( 1
2 ,

3
2 ) and h ∈ W s,q(R3) for some q ∈ (6,+∞).

Then

(6.14)
∥∥Ds((h− h(0))Gλ

)∥∥
L2 . ‖h‖W s,q(R3) ,

Proof. It is not restrictive to fix λ = 1. We set G̃(x) := |x|−1e−
1
2 |x|.

By means of the commutator bound (6.8) we find∥∥Ds((h− h(0))G1

)∥∥
L2 ≈

∥∥Ds(e− 1
2 |x|(h− h(0)) G̃

)∥∥
L2

6
∥∥Ds(e− 1

2 |x|(h− h(0)) G̃
)
−
[
e−

1
2 |x|(h− h(0)), G̃

]
s

∥∥
L2

+
∥∥e− 1

2 |x|(h− h(0))DsG̃
∥∥
L2 +

∥∥G̃Ds(e− 1
2 |x|(h− h(0))

)∥∥
L2

.
∥∥Ds1(e− 1

2 |x|(h− h(0))
)∥∥
Lq1
‖Ds2G̃‖Lq2

+
∥∥e− 1

2 |x|(h− h(0))DsG̃
∥∥
L2 +

∥∥G̃Ds(e− 1
2 |x|(h− h(0))

)∥∥
L2

≡ R1 +R2 +R3

(i)

for every s1, s2 ∈ [0, 1] with s1 + s2 = s and every q1, q2 ∈ [2,+∞] such that
q−1
1 + q−1

2 = 2−1.
Let us estimate the term R3. Since, by (6.12) and Sobolev’s embedding,∥∥Ds(e− 1

2 |x|(h− h(0))
)∥∥
Lq
.
∥∥(1−∆)

s
2

(
e−

1
2 |x|(h− h(0))

)∥∥
Lq

6
∥∥e− 1

2 |x|h
∥∥
W s,q + |h(0)| ‖e− 1

2 |x|‖W s,q

. ‖h‖W s,q + ‖h‖L∞ . ‖h‖W s,q ,

(ii)

and since ‖G̃‖ 2q
q−2

< +∞ because 2q
q−2 < 3 for q > 6, then Holder’s inequality yields

(iii) R3 6
∥∥Ds(e− 1

2 |x|(h− h(0))
)∥∥
Lq

∥∥G̃∥∥
L

2q
q−2

. ‖h‖W s,q .

Next, let us estimate R1. When s ∈ ( 1
2 , 1], we choose s1 = s, s2 = 0, q1 = q,

and q2 = 2q
q−2 and we proceed exactly as for R3. When instead s ∈ (1, 3

2 ), we choose
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s1 = 1, s2 = s− 1 ∈ (0, 1
2 ), q1 = ( 1

q −
s−1

3 )−1, and q2 = ( 1
2 −

1
q1

)−1. Then Sobolev’s

embedding W s,q(R3) ↪→W 1,q1(R3) and estimate (ii) above imply∥∥∥Ds1(e− 1
2 |x|(h− h(0))

)∥∥∥
Lq1
.
∥∥∥(1−∆)

s
2

(
e−

1
2 |x|(h− h(0))

)∥∥∥
Lq
. ‖h‖W s,q ,

whereas estimate (6.11) and the fact that q2 < sq2 < 3 for s ∈ (1, 3
2 ) imply

‖Ds2G̃‖Lq2 .
∥∥e− 1

2 |x|
(

1
|x| + 1

|x|s
)∥∥
Lq2

< +∞ .

Thus, in either case s ∈
(

1
2 , 1
]

and s ∈
(
1, 3

2

)
,

(iv) R1 . ‖h‖W s,q .

Last, let us estimate R2. Because of the embedding (6.13),∥∥∥e− 1
2 |x|(h− h(0))

|x|ϑ(s,q)

∥∥∥
L∞
. ‖h‖W s,q .

Moreover, since ϑ(s, q) > s− 1
2 and hence 2(1−ϑ(s, q)) < 2(1 + s−ϑ(s, q)) < 3 for

every s ∈
(

1
2 ,

3
2

)
, estimate (6.11) implies∥∥|x|ϑ(s,q)DsG̃
∥∥
L2 .

∥∥e− 1
2 |x|
(
|x|−(1−ϑ(s,q)) + |x|−(1+s−ϑ(s,q))

)∥∥
L2 < +∞ .

Thus,

(v) R2 6
∥∥∥e− 1

2 |x|(h− h(0))

|x|ϑ(s,q)

∥∥∥
L∞

∥∥|x|ϑ(s,q)DsG̃
∥∥
L2 . ‖h‖W s,q .

Plugging (iii), (iv), and (v) into (i) the thesis follows. �

We establish now an analogous estimate for the regime s ∈ ( 3
2 , 2], for which we

recall Sobolev’s embedding

W s,q(R3) ↪→ C1,ϑ(s,q)(R3)

ϑ(s, q) := s− 1− 3
q (s ∈ ( 3

2 , 2], q ∈ (6,+∞)) .
(6.15)

Proposition 6.1.6. Let s ∈ ( 3
2 , 2] and h ∈ W s,q(R3) for some q ∈ (6,+∞).

Assume further that h is spherically symmetric and that (∇h)(0) = 0. Then

(6.16)
∥∥Ds((h− h(0))Gλ

)∥∥
L2 . ‖h‖W s,q(R3) ,

where Gλ is the function (1.4) for some λ > 0.

Prior to proving Proposition 6.1.6 let us highlight the following property.

Lemma 6.1.7. Under the assumptions of Proposition 6.1.6,

(6.17) |h(x)− h(0)| . ‖h‖W s,q |x|1+ϑ(s,q) ,

where ϑ(s, q) = s− 1− 3
q , as fixed in (6.15).

Proof. By assumption, h(x) = h̃(|x|) for some even function h̃ : R→ C. Ow-

ing to the embedding (6.15), h̃ ∈ C1,ϑ(s,q)(R), whence h̃′ ∈ C0,ϑ(s,q)(R). Moreover,

h̃′(0) = 0, because (∇h)(0) = 0. Therefore,

|h̃′(ρ)| = |h̃′(ρ)− h̃′(0)| . ‖h‖W s,q |ρ|ϑ(s,q) .

As a consequence,

|h(x)− h(0)| 6
∫ |x|

0

|h̃′(ρ)|dρ . ‖h‖W s,q

∫ |x|
0

ρϑ(s,q) dϑ . ‖h‖W s,q |x|1+ϑ(s,q) ,

which completes the proof. �
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Proof of Proposition 6.1.6. It is not restrictive to fix λ = 1. We set
G̃(x) := |x|−1e−

1
2 |x|. Let us split∥∥Ds((h− h(0))G

)∥∥
L2 ≈

∥∥Ds(e− 1
2 |x|(h− h(0)) G̃

)∥∥
L2

6
∥∥Ds(e− 1

2 |x|(h− h(0)) G̃
)
− e− 1

2 |x|(h− h(0))DsG̃

+ (s− 1)G̃Ds
(
e−

1
2 |x|(h− h(0))

)
+ sDs−2∇ ·

(
G̃∇

(
e−

1
2 |x|(h− h(0))

)∥∥
L2

+
∥∥e− 1

2 |x|(h− h(0))DsG̃
∥∥
L2 + (s− 1)

∥∥G̃Ds(e− 1
2 |x|(h− h(0))

)∥∥
L2

+ s
∥∥Ds−2∇ ·

(
G̃∇

(
e−

1
2 |x|(h− h(0))

)∥∥
L2

≡ R1 +R2 +R3 +R4 .(i)

We estimate the termR1 by means of the commutator bound (6.10) with s1 = s
and s2 = 0 and of (6.12), namely

(ii) R1 .
∥∥∥Ds(e− 1

2 |x|(h− h(0))
)∥∥∥
Lq
‖G̃‖

L
2q
q−2

. ‖h‖W s,q

(since 2q
q−2 ∈ [2, 3) and ‖G̃‖ 2q

q−2
< +∞).

For the estimate of R2, we observe that s−ϑ(s, q) < 3
2 and hence (6.11) implies∥∥ |x|1+ϑ(s,q)DsG̃

∥∥
L2 .

∥∥ e− 1
2 |x|
(
|x|ϑ(s,q) + |x|−(s−ϑ(s,q))

)∥∥
L2 < +∞ ;

this and the bound (6.17) yield

(iii) R2 6
∥∥∥ h− h(0)

|x|1+ϑ(s,q)

∥∥∥
L∞

∥∥ |x|1+ϑ(s,q)DsG̃
∥∥
L2 . ‖h‖W s,q .

For R3, Hölder’s inequality, the property (6.12), and Sobolev’s embedding yield

R3 .
∥∥Ds(e− 1

2 |x|(h− h(0))
)
‖Lq ‖G̃‖

L
2q
q−2

.
∥∥e− 1

2 |x|(h− h(0))‖W s,q . ‖h‖W s,q + ‖h‖L∞
. ‖h‖W s,q .

(iv)

For R4, one has

R4 .
∥∥Ds−1

(
G̃∇

(
e−

1
2 |x|(h− h(0)

))∥∥
L2

.
∥∥∇(e− 1

2 |x|(h− h(0)
)∥∥
W s−1,q . ‖h‖W s,q ,

(v)

where we used the estimate (6.14) in the second inequality (indeed, s− 1 ∈ ( 1
2 , 1)),

and the property (6.12) and Sobolev’s embedding in the last inequality.
Plugging the bounds (ii)-(v) into (i) completes the proof. �

6.2. L2-theory and low regularity theory

In this Section we prove Theorems 6.0.2 and 6.0.3. Let us start with Theorem
6.0.3 and then discuss the adaptation for s = 0. The proof for s ∈ (0, 1

2 ) is based
on a fixed point argument in the complete metric space (XT,M , d) defined by

XT,M :=
{
u ∈ L∞([−T, T ], Hs

α(R3)) | ‖u‖L∞([−T,T ],Hsα(R3) 6M
}

d(u, v) := ‖u− v‖L∞([−T,T ],L2(R3))

(6.18)

for given T,M > 0. This is going to be the same space for the contraction argument
in the intermediate regularity regime s ∈ ( 1

2 ,
3
2 ) (Section 6.3), whereas for the high

regularity regime s ∈ ( 3
2 , 2) (Section 6.4) we are going to only use the spherically

symmetric sector of the space (6.18).
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Proof of Theorem 6.0.3.
Since by assumption s ∈ (0, 1

2 ), the spaces Hs(R3) and Hs
α(R3) coincide and

their norms are equivalent (Theorem 5.1.1), so we can interchange them in the
computations that follow.

From the expression (6.4) for the solution map Φ(u) one finds

‖Φ(u)‖L∞Hsα 6 ‖f‖Hsα + T ‖(w ∗ |u|2)u‖L∞Hsα
and applying the fractional Leibniz rule (6.6) (Theorem 6.1.1), Hölder’s inequality,
and Young’s inequality one also finds

‖(w ∗ |u|2)u‖L∞Hsα = ‖(w ∗ |u|2)u‖L∞Hs

. ‖w ∗ |u|2‖L∞L∞ ‖Dsu‖L∞L2

+ ‖Ds(w ∗ |u|2)‖
L∞L

6
γ
,∞ ‖u‖

L∞L
6

3−γ

. ‖w‖
L

3
γ
,∞

(R3)
‖u‖2

L∞L
6

3−γ
‖Dsu‖L∞L2 .

Sobolev’s embedding Hα(R3) = Hs(R3) ↪→ H
γ
2 (R3) ↪→ L

6
3−γ (R3) then yields

(i) ‖Φ(u)‖L∞Hsα(R3) 6 ‖f‖Hsα + C1 T ‖w‖
L

3
γ
,∞ ‖u‖3L∞Hsα .

for some constant C1 > 0.
On the other hand, again by Hölder’s and Young’s inequality,

‖Φ(u)− Φ(v)‖L∞L2 6 T ‖(w ∗ |u|2)u− (w ∗ |v|2)v‖L∞L2

. T
(
‖(w ∗ |u|2)(u− v)‖L∞L2 +

∥∥(w ∗ (|u|2 − |v|2
)
v
∥∥
L∞L2

)
. T

(
‖w‖

L
3
γ
,∞ ‖u‖2

L∞L
6

3−γ
‖u− v‖L∞L2

+ ‖w‖
L

3
γ
,∞ ‖u− v‖L∞L2 ‖|u|+ |v|‖

L∞L
6

3−γ
‖v|‖

L∞L
6

3−γ

)
,

whence, by the same embedding Hα(R3) ↪→ L
6

3−γ (R3) as before,

d(Φ(u),Φ(v)) 6 C2 ‖w‖
L

3
γ
,∞

(
‖u‖2L∞Hsα + ‖v‖2L∞Hsα

)
T d(u, v)(ii)

for some constant C2 > 0.
Thus, choosing T and M such that

M = 2 ‖f‖Hsα , T = 1
4

(
max{C1, C2}M2‖w‖

L
3
γ
,∞

)−1
,

estimate (i) reads ‖Φ(u)‖L∞Hsα 6M and shows that Φ maps the space XT,M defined

in (6.18) into itself, whereas estimate (ii) reads d(Φ(u),Φ(v)) 6 1
2d(u, v) and shows

that Φ is a contraction on XT,M . By Banach’s fixed point theorem, there exists a
unique fixed point u ∈ XT,M of Φ and hence a unique solution u ∈ XT,M to (6.5),
which is therefore also continuous in time.

Furthermore, by a customary continuation argument we can extend such a
solution over a maximal interval for which the blow-up alternative holds true. Also
the continuous dependence on the initial data is a direct consequence of the fixed
point argument. We omit the standard details, they are part of the well-established
theory of semi-linear Schrödinger equations (see [25, Section 4.4]). �

We move now to the proof of Theorem 6.0.2. Crucial for this case are the
Strichartz estimates of Theorem 4.2.3. To this aim, we modify the contraction
space (6.18) to the complete metric space (YT,M , d) defined by

YT,M :=

{
u ∈ L∞([−T, T ], L2(R3)) ∩ Lq(γ)([−T, T ], Lp(γ)(R3))

s. t. ‖u‖L∞([−T,T ],L2(R3)) + ‖u‖Lq(γ)([−T,T ],Lp(γ)(R3)) 6M

}
d(u, v) := ‖u− v‖L∞([−T,T ],L2(R3)) + ‖u− v‖Lq(γ)([−T,T ],Lp(γ)(R3))

(6.19)
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for given T,M > 0, where

(6.20) q(γ) :=
6

γ
, p(γ) :=

18

9− 2γ

are defined so as to form an admissible pair (q(γ), p(γ)) for −∆α, in the sense of
(4.19). For the rest of the proof let us drop the explicit dependence on γ in (q, p).

Proof of Theorem 6.0.2. Clearly, when γ = 0 the very same argument
used in the proof of Theorem 6.0.3 applies.

When γ ∈ (0, 3
2 ) we exploit instead a contraction argument in the modified

space (6.19).
One has

‖Φ(u)‖L∞L2 + ‖Φ(u)‖LqLp 6
∥∥∥∫ t

0

ei(t−τ)∆α
(
(w ∗ |u|2)u

)
(τ) dτ

∥∥∥
L∞L2

+
∥∥∥ ∫ t

0

ei(t−τ)∆α
(
(w ∗ |u|2)u

)
(τ) dτ

∥∥∥
LqLp

+ ‖f‖L2 + ‖eit∆αf‖LqLp ,

from which, by means of the Strichartz estimates (4.20)-(4.21), one deduces

‖Φ(u)‖L∞L2 + ‖Φ(u)‖LqLp 6 C
(
‖f‖L2 + ‖(w ∗ |u|2)u‖Lq′Lp′

)
for some constant C > 0.

By Hölder’s and Young’s inequalities,

‖(w ∗ |u|2)u‖Lq′Lp′ 6 ‖w ∗ |u|
2‖
Lq′L

9
γ
‖u‖L∞L2

. ‖w‖
L

3
γ
,∞‖u‖2L2q′Lr

‖u‖L∞L2

and
‖u‖2

L2q′Lr
6 (2T )1− γ2 ‖u‖2LqLr ,

whence

(i) ‖Φ(u)‖L∞L2 + ‖Φ(u)‖LqLp 6 C1

(
‖f‖L2 + T 1− γ2 ‖w‖

L
3
γ
,∞‖u‖2LqLr‖u‖L∞L2

)
for some constant C1 > 0.

Following the very same scheme, one finds

‖Φ(u)− Φ(v)‖L∞L2 + ‖Φ(u)− Φ(v)‖LqLp . ‖(w ∗ |u|2)u− (w ∗ |v|2)v‖Lq′Lp′

6 ‖(w ∗ |u|2)(u− v)‖Lq′Lp′ + ‖w ∗ (|u|2 − |v|2)v‖Lq′Lp′ ,
and moreover

‖(w ∗ |u|2)(u− v)‖Lq′Lp′ . T 1− γ2 ‖w‖
L

3
γ
,∞‖u‖2LqLr‖u− v‖L∞L2

and

‖w∗(|u|2−|v|2)v‖Lq′Lp′ . T 1− γ2 ‖w‖
L

3
γ
,∞‖u−v‖LqLp

(
‖u‖LqLp+‖v‖LqLp

)
‖v‖L∞L2 .

Thus,

d(Φ(u),Φ(v)) 6 C2‖w‖
L

3
γ
,∞

(
‖u‖2L∞L2 + ‖u‖2LqLp + ‖v‖2L∞L2 + ‖v‖2LqLp

)
×

× T 1− γ2 d(u, v) .
(ii)

Therefore, choosing T and M such that

M = 2C1 ‖f‖L2 , T =
(
8 max{C1, C2}M2‖w‖

L
3
γ
,∞

)−1+ γ
2 ,

estimate (i) reads ‖Φ(u)‖L∞L2 + ‖Φ(u)‖LqLp 6 M and shows that Φ maps YT,M
into itself, whereas estimate (ii) reads d(Φ(u),Φ(v)) 6 1

2d(u, v) and shows that Φ
is a contraction on YT,M .

The thesis then follows by Banach’s fixed point theorem through the same
arguments outlined in the end of the proof of Theorem 6.0.3. �
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For later purposes, let us conclude this Section with the following stability
result.

Proposition 6.2.1. Let α > 0. For given w ∈ L
3
γ ,∞(R3), γ ∈ [0, 3

2 ), and

f ∈ L2(R3), let u be the unique strong L2-solution to the Cauchy problem (6.3)
in the maximal interval (−T∗, T ∗). Consider moreover the sequences (wn)n and

(fn)n of potentials and initial data such that wn
n→+∞−−−−−→ w in L

3
γ ,∞(R3) and

fn
n→+∞−−−−−→ f in L2(R3). Then there exists a time T := T (‖w‖

L
3
γ
,∞ , ‖f‖L2) > 0,

with [−T, T ] ⊂ (−T∗, T ∗), such that, for sufficiently large n, the Cauchy problem
(6.3) with potential wn and initial data fn admits a unique strong L2-solution un
in the interval [−T, T ]. Moreover,

(6.21) un
n→+∞−−−−−→ u in C([−T, T ], L2(R3)) .

Proof. As a consequence of Theorem 6.0.2, there exist an interval [−Tn, Tn]
for some Tn := Tn(‖wn‖

L
3
γ
,∞ , ‖fn‖L2) > 0 and a unique un ∈ C([−Tn, Tn], L2(R3))

such that

(i) un(t) = eit∆αfn − i

∫ t

0

ei(t−τ)∆α(wn ∗ |un(τ)|2)un(τ) dτ .

Since ‖wn‖
L

3
γ
,∞ and ‖fn‖L2 are asymptotically close, respectively, to ‖w‖

L
3
γ
,∞ and

‖f‖L2 , then there exists T := T (‖w‖
L

3
γ
,∞ , ‖f‖L2) such that T 6 Tn eventually in

n, which means that un is defined on [−T, T ]. Let us set φn := u− un.
By assumption u solves (6.5), thus subtracting (i) from (6.5) yields

(ii)

φn = eit∆α(f − fn)− i

∫ t

0

ei(t−τ)∆α
(
(w ∗ |u|2)u− (wn ∗ |un|2)un

)
(τ) dτ

= eit∆α(f − fn)− i

∫ t

0

ei(t−τ)∆α

{(
(w − wn) ∗ |u|2

)
u+ (wn ∗ |u|2)φn

+
(
wn ∗ (uφn + φnun)

)
un

}
(τ) dτ .

Let us first discuss the case γ = 0. From (ii) above, using Hölder’s and Young’s
inequality in weak spaces, one has

‖φn‖L∞L2 . ‖f − fn‖L2 + T ‖w − wn‖L∞ ‖u‖3L∞L2

+ T ‖wn‖L∞
(
‖u‖2L∞L2 + ‖un‖2L∞L2

)
‖φn‖L∞L2 .

Since ‖wn‖L∞ and ‖un‖L∞L2 are bounded uniformly in n, then the above inequality
implies, decreasing further T if needed,

‖φn‖L∞L2 . ‖f − fn‖L2 + ‖w − wn‖
L

3
γ
,∞

n→+∞−−−−−→ 0 ,

which proves the proposition in the case γ = 0.
Let now γ ∈ (0, 3

2 ). In this case, owing to Theorem 6.0.2, u, un belong to

Lq([−T, T ], Lp(R3)), where (q, p) = ( 6
γ ,

18
9−2γ ) is the admissible pair defined in the

proof therein. We can then argue as in the proof of Theorem 6.0.2. Applying the
Strichartz estimates (4.20)-(4.21) to the identity (ii) above, one gets

‖φn‖L∞L2 + ‖φn‖LqLp . ‖f − fn‖L2 +
∥∥((w − wn) ∗ |u|2

)
u
∥∥
Lq′Lp′

+
∥∥(wn ∗ |u|2)φn

∥∥
Lq′Lp′

+
∥∥(|wn| ∗ (|un|+ |u|)|φn|

)
un
∥∥
Lq′Lp′

.
(iii)
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By means of Hölder’s and Young’s inequality in weak spaces one finds

∥∥((w − wn) ∗ |u|2
)
u
∥∥
Lq′Lp′

. T 1− γ2 ‖w − wn‖
L

3
γ
,∞‖un‖2LqLp ‖u‖L∞L2∥∥(wn ∗ |u|2)φn

∥∥
Lq′Lp′

. T 1− γ2 ‖wn‖
L

3
γ
,∞ ‖u‖2LqLp‖φn‖L∞L2∥∥(|wn| ∗ (|un|+ |u|)|φn|

)
un
∥∥
Lq′Lp′

. T 1− γ2 ‖wn‖
L

3
γ
,∞

(
‖un‖LqLp + ‖u‖LqLp

)
×

× ‖φn‖LqLp‖u‖L∞L2 .

(iv)

Since ‖wn‖
L

3
γ
,∞ and ‖un‖LqLp are bounded uniformly in n, then inequalities (iii)

and (iv) imply, decreasing further T if needed,

‖φn‖L∞L2 + ‖φn‖LqLp . ‖f − fn‖L2 + ‖w − wn‖
L

3
γ
,∞

n→+∞−−−−−→ 0 ,

which completes the proof. �

6.3. Intermediate regularity theory

In this Section we prove Theorem 6.0.4. The proof is based again on a contrac-
tion argument in the complete metric space XT,M , for suitable T,M > 0, defined
in (6.18), now with s ∈ ( 1

2 ,
3
2 ).

As a consequence, in the energy space (s = 1) we shall deduce that the solution
to the integral problem (6.5) is also a solution to the differential problem (6.3).

We conclude the Section with a stability result of the solution with respect to
the initial datum f and the potential w.

Let us start with two preparatory lemmas.

Lemma 6.3.1. Let α > 0 and s ∈ ( 1
2 ,

3
2 ). Let w ∈ W s,p(R3) for p ∈ (2,+∞).

Then

‖w ∗ (ψ1ψ2)‖L∞(R3) . ‖w ∗ (ψ1ψ2)‖W s,3p(R3)

. ‖w‖W s,p(R3)‖ψ1‖Hsα(R3)‖ψ2‖Hsα(R3)

(6.22)

for any Hs
α-functions ψ1, ψ2, and ψ3.

Proof. The first inequality in (6.22) is due to Sobolev’s embedding

W s,3p(R3) ↪→ L∞(R3) .

For the second inequality, let us observe preliminarily that

Hs
α(R3) ↪→ L

6p
3p−2 (R3) .

Indeed, decomposing by means of (5.3) a generic ψ ∈ Hs
α(R3) as ψ = φλ+κλ Gλ

for some φλ ∈ Hs(R3) and some κλ ∈ C, one has

‖ψ‖
L

6p
3p−2

6 ‖φλ‖
L

6p
3p−2

+ |κλ| ‖Gλ‖
L

6p
3p−2

. ‖φλ‖Hs + |κλ| ≈ ‖ψ‖Hsα ,

the second step following from Sobolev’s embedding Hs(R3) ↪→ L
6p

3p−2 (R3) and

from Gλ ∈ L
6p

3p−2 (R3), because 6p
3p−2 ∈ [2, 3) for p ∈ (2,+∞), the last step being

the norm equivalence (5.7). Therefore Young’s inequality yields

‖w ∗ (ψ1ψ2)‖W s,3p ≈ ‖(1−∆)
s
2 (w ∗ (ψ1ψ2))‖L3p = ‖((1−∆)

s
2w) ∗ (ψ1ψ2)‖L3p

. ‖(1−∆)
s
2w‖Lp ‖ψ1‖

L
6p

3p−2
‖ψ2‖

L
6p

3p−2

. ‖w‖W s,p(R3)‖ψ1‖Hsα(R3)‖ψ2‖Hsα(R3) ,

thus proving (6.22). �
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Lemma 6.3.2. Let α > 0 and s ∈ ( 1
2 ,

3
2 ). Let h ∈ W s,q(R3) for q ∈ (6,+∞).

Then hψ ∈ Hs
α(R3) for each ψ ∈ Hs

α(R3) and

(6.23) ‖hψ‖Hsα(R3) . ‖h‖W s,q(R3) ‖ψ‖Hsα(R3) .

Proof. Let us decompose ψ ∈ Hs
α(R3) as ψ = φλ+κλGλ for some φλ ∈ Hs(R3)

and κλ ∈ C, according to (5.3). On the other hand, by the embedding (6.13) the
function h is continuous and |h(0)| 6 ‖h‖L∞(R3) . ‖h‖W s,q(R3). Thus,

(i) h g = hφλ + κλ (h− h(0))Gλ + κλ h(0)Gλ .

Applying the fractional Leibniz rule (6.6) and using Sobolev’s embedding,

(ii)

‖hφλ‖Hs ≈ ‖(1−∆)
s
2 (hφλ)‖L2

. ‖(1−∆)
s
2h‖Lq ‖φλ‖

L
2q
q−2

+ ‖h‖L∞‖(1−∆)
s
2φλ‖L2

. ‖h‖W s,q‖φλ‖Hs .

Moreover, since Gλ ∈ L2(R3),

‖(h− h(0))Gλ‖L2 . ‖h− h(0)‖L∞ . ‖h‖W s,q ;

this, together with the estimate (6.14), gives

(iii) ‖κλ (h− h(0))Gλ‖Hs . |κλ| ‖h‖W s,q .

The bounds (ii) and (iii) imply that hψ is the sum of the function hφλ + κλ(h −
h(0))Gλ ∈ Hs(R3) and of the multiple κλh(0)Gλ of Gλ: as such, owing to (5.3), hψ
belongs to Hs

α(R3) and its Hs
α-norm is estimated, according to the norm equivalence

(5.7), by

‖hψ‖Hsα(R3) ≈ ‖hφλ + κλ (h− h(0))Gλ‖Hsα + |κλ| |h(0)|
. ‖h‖W s,q (‖φλ‖Hs + |κλ|) + |κλ| ‖h‖W s,q

≈ ‖h‖W s,q ‖ψ‖Hsα ,

which completes the proof. �

Combining Lemmas 6.3.1 and 6.3.2 one therefore has the trilinear estimate

(6.24) ‖(w ∗ (u1u2))u3‖Hsα(R3) . ‖w‖W s,p(R3)

3∏
j=1

‖uj‖Hsα(R3) .

Let us now prove Theorem 6.0.4.

Proof of Theorem 6.0.4.
From the expression (6.4) for the solution map Φ(u) and from the bound (6.24)

one finds

‖Φ(u)‖L∞Hsα 6 ‖f‖Hsα + T ‖(w ∗ |u|2)u‖L∞Hsα
6 ‖f‖Hsα + C1 T ‖w‖W s,p ‖u‖3L∞Hsα

(i)

for some constant C1 > 0.
Moreover,

‖Φ(u)− Φ(v)‖L∞L2 6 T ‖(w ∗ |u|2)u− (w ∗ |v|2)v‖L∞L2

. T
(
‖(w ∗ |u|2)(u− v)‖L∞L2 +

∥∥(w ∗ (|u|2 − |v|2
)
v
∥∥
L∞L2

)
.

(ii)

For the first summand in the r.h.s. above estimate (6.22) and Hölder’s inequality
yield

‖(w ∗ |u|2)(u− v)‖L∞L2 6 ‖w ∗ |u|2‖L∞L∞ ‖u− v‖L∞L2

. ‖w‖W s,p‖u‖2L∞Hsα ‖u− v‖L∞L2 .
(iii)
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For the second summand, let us observe preliminarily that

(iv) Hs
α(R3) ↪→ L3,∞(R3) .

Indeed, decomposing by means of (5.3) a generic ψ ∈ Hs
α(R3) as ψ = φλ + κλ Gλ

for some φλ ∈ Hs(R3) and some κλ ∈ C, one has

‖ψ‖L3,∞ 6 ‖φλ‖L3,∞ + |κλ| ‖Gλ‖L3,∞ . ‖φλ‖Hs + |κλ| ≈ ‖ψ‖Hsα ,

the second step following from the Sobolev’s embedding Hs(R3) ↪→ L3(R3), the
last step being the norm equivalence (5.7). Then (iv) above, Sobolev’s embedding
W s,p(R3) ↪→ L3(R3), and an application of Holder’s and Young’s inequality in
Lorentz spaces, yield

‖(w ∗ (|u|2−|v|2))v‖L∞L2 6 ‖w ∗ (|u|2−|v|2)‖L∞L6,2 ‖v‖L∞L3,∞

. ‖w‖L3 ‖u+ v‖L∞L3,∞ ‖u− v‖L∞L2 ‖v‖L∞L3,∞

. ‖w‖W s,p ‖u+ v‖L∞Hsα ‖u− v‖L∞L2 ‖v‖L∞Hsα .
(v)

Thus, (ii), (iii), and (v) together give

d(Φ(u),Φ(v)) 6 C2 T ‖w‖W s,p

(
‖u‖2L∞Hsα + ‖v‖2L∞Hsα

)
d(u, v)(vi)

for some constant C2 > 0.
Now, setting C := max{C1, C2} and choosing T and M such that

M = 2 ‖f‖Hsα , T = 1
4

(
CM2‖w‖W s,p

)−1
,

estimate (i) reads ‖Φ(u)‖L∞Hsα 6M and shows that Φ maps the space XT,M defined

in (6.18) into itself, whereas estimate (vi) reads d(Φ(u),Φ(v)) 6 1
2d(u, v) and shows

that Φ is a contraction on XT,M . By Banach’s fixed point theorem, there exists a
unique fixed point u ∈ XT,M of Φ and hence a unique solution u ∈ XT,M to (6.5),
which is therefore also continuous in time.

Furthermore, by a standard continuation argument we can extend such a so-
lution over a maximal interval for which the blow-up alternative holds true. Also
the continuous dependence on the initial data is a direct consequence of the fixed
point argument. �

A straightforward consequence of Theorem 6.0.4 when s = 1 concerns the
differential meaning of the local strong solution determined so far.

Corollary 6.3.3 (Integral and differential formulation). Let α > 0. For given
w ∈ W 1,p(R3), p ∈ (2,+∞), and f ∈ H1

α(R3), let u be the unique solution in the
class C([−T, T ], H1

α(R3)) to the integral equation (6.5) in the interval [−T, T ] for
some T > 0, as given by Theorem 6.0.4. Then u(0) = f and u satisfies the
differential equation (6.1) as an identity between H−1

α -functions, H−1
α (R3) being

the topological dual of H1
α(R3).

Proof. The bound (6.24) shows that the non-linearity defines a map u 7→
(w ∗ |u|2)u that is continuous from H1

α(R3) into itself, and hence in particular it is
continuous from H1

α(R3) to H−1
α (R3). Then the thesis follows by standard facts of

the theory of linear semi-groups (see [25, Section 1.6]). �

For later purposes, let us conclude this Section with the following stability
result.

Proposition 6.3.4. Let α > 0 and s ∈ ( 1
2 ,

3
2 ). For given w ∈ W s,p(R3),

p ∈ (2,+∞), and f ∈ Hs
α(R3), let u be the unique strong Hs

α-solution to the Cauchy
problem (6.3) in the maximal interval (−T∗, T ∗). Consider moreover the sequences

(wn)n and (fn)n of potentials and initial data such that wn
n→+∞−−−−−→ w in W s,p(R3)

and fn
n→+∞−−−−−→ f in Hs

α(R3). Then there exists a time T := T (‖w‖W s,p , ‖f‖Hsα) >
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0, with [−T, T ] ⊂ (T∗, T
∗), such that, for sufficiently large n, the Cauchy problem

(6.3) with potential wn and initial data fn admits a unique strong Hs
α-solution un

in the interval [−T, T ]. Moreover,

(6.25) un
n→+∞−−−−−→ u in C([−T, T ], Hs

α(R3)) .

Proof. As a consequence of Theorem 6.0.4, there exist an interval [−Tn, Tn]
for some Tn := Tn(‖wn‖W s,p , ‖fn‖Hsα) > 0 and a unique un ∈ C([−Tn, Tn], H1

α(R3))
such that

(*) un(t) = eit∆αfn − i

∫ t

0

ei(t−τ)∆α(wn ∗ |un(τ)|2)un(τ) dτ .

Since ‖wn‖W s,p and ‖fn‖Hsα are asymptotically close, respectively, to ‖w‖W s,p and
‖f‖Hsα , then there exists T := T (‖w‖W s,p , ‖f‖Hsα) such that T 6 Tn eventually
in n, which means that un is defined on [−T, T ]. Let us set φn := u − un. By
assumption u solves (6.5), thus subtracting (*) from (6.5) yields

φn = eit∆α(f − fn)− i

∫ t

0

ei(t−τ)∆α
(
(w ∗ |u|2)u− (wn ∗ |un|2)un

)
(τ) dτ

= eit∆α(f − fn)− i

∫ t

0

ei(t−τ)∆α

{(
(w − wn) ∗ |u|2

)
u+ (wn ∗ |u|2)φn

+
(
wn ∗ (uφn + φnun)

)
un

}
(τ) dτ .

From the above identity, taking the Hs
α-norm of φn boils down to repeatedly apply-

ing the estimate (6.24) to the summands in the integral on the r.h.s., thus yielding

‖φn‖L∞Hsα . ‖f − fn‖Hsα + T ‖w − wn‖W s,p ‖u‖3L∞Hsα
+ T ‖wn‖W s,p

(
‖u‖2L∞Hsα + ‖un‖2L∞Hsα

)
‖φn‖L∞Hsα .

Since by assumption ‖wn‖W s,p and ‖un‖2L∞Hsα are bounded uniformly in n, then

the above inequality implies, decreasing further T if needed,

‖φn‖L∞Hsα . ‖f − fn‖Hsα + ‖w − wn‖W s,p
n→+∞−−−−−→ 0 ,

which completes the proof. �

6.4. High regularity theory

In this Section we prove Theorem 6.0.5 for the regime s ∈ ( 3
2 , 2]. The approach

is again a contraction argument, that we now set in the spherically symmetric
sector of the space XT,M introduced in (6.18), namely in the complete metric space

(X (0)
T,M , d) with

X (0)
T,M :=

{
u ∈ L∞([−T, T ], Hs

α,rad(R3)) | ‖u‖L∞([−T,T ],Hsα(R3) 6M
}

d(u, v) := ‖u− v‖L∞([−T,T ],L2(R3))

(6.26)

for suitable T,M > 0.
A very much useful by-product of such a contraction argument will be the proof

that when s = 2 the solution to the integral problem (6.5) is also a solution to the
differential problem (6.3), as we shall show in a moment.

Let us start with two preparatory lemmas.

Lemma 6.4.1. Let α > 0 and s ∈ ( 3
2 , 2]. Let w ∈ W s,p(R3) for p ∈ (2,+∞)

and assume that w is spherically symmetric. Then
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(i) one has the estimate

‖w ∗ (ψ1ψ2)‖L∞(R3) . ‖w ∗ (ψ1ψ2)‖W s,3p(R3)

. ‖w‖W s,p(R3)‖ψ1‖Hsα(R3)‖ψ2‖Hsα(R3)

(6.27)

for any Hs
α-functions ψ1, ψ2, and ψ3;

(ii) if in addition ψ1, ψ2 are spherically symmetric, so too is w ∗ (ψ1ψ2) and(
∇(w ∗ (ψ1ψ2))

)
(0) = 0 .

Proof. (i) The first inequality in (6.27) is due to Sobolev’s embedding

W s,3p(R3) ↪→ L∞(R3) .

For the second inequality, let us observe preliminarily that

Hs
α(R3) ↪→ L

6p
3p−2 (R3) .

Indeed, decomposing by means of (5.4) a generic ψ ∈ Hs
α(R3) as ψ = φλ+ φλ(0)

α+
√
λ

4π

Gλ

for some φλ ∈ Hs(R3), one has

‖ψ‖
L

6p
3p−2

. ‖φλ‖
L

6p
3p−2

+ |φλ(0)| ‖Gλ‖
L

6p
3p−2

. ‖φλ‖Hs ≈ ‖ψ‖Hsα ,

the second step following from Sobolev’s embeddingHs(R3) ↪→ L
6p

3p−2 (R3)∩L∞(R3)

and from Gλ ∈ L
6p

3p−2 (R3), because 6p
3p−2 ∈ [2, 3) for p ∈ (2,+∞), the last step being

the norm equivalence (5.8). Therefore Young’s inequality yields

‖w ∗ (ψ1ψ2)‖W s,3p ≈ ‖(1−∆)
s
2 (w ∗ (ψ1ψ2))‖L3p

= ‖((1−∆)
s
2w) ∗ (ψ1ψ2)‖L3p

. ‖(1−∆)
s
2w‖Lp ‖ψ1‖

L
6p

3p−2
‖ψ2‖

L
6p

3p−2

. ‖w‖W s,p(R3) ‖ψ1‖Hsα(R3) ‖ψ2‖Hsα(R3) ,

thus proving (6.27).
(ii) The spherical symmetry of w ∗ (ψ1ψ2) in this second case is obvious. From

Sobolev’s embedding W s,3p(R3) ↪→ C1(R3) we deduce that ∇(w∗(ψ1ψ2))(x) is well
defined for every x ∈ R3; moreover,

∇(w ∗ (ψ1ψ2))(0) =
(
(∇w) ∗ (ψ1ψ2)

)
(0) =

∫
R3

(∇w)(−y)ψ1(y)ψ2(y) dy = 0 ,

the above integral vanishing because the integrand is of the form R(y) y
|y| for some

spherically symmetric function R. �

Lemma 6.4.2. Let α > 0 and s ∈ ( 3
2 , 2]. Let h ∈W s,q

rad(R3) for some q ∈ (6,+∞)

and assume that (∇h)(0) = 0. Then hψ ∈ Hs
α(R3) for each ψ ∈ Hs

α(R3) and

(6.28) ‖hψ‖Hsα(R3) . ‖h‖W s,q(R3) ‖ψ‖Hsα(R3) .

Proof. Let us decompose ψ ∈ Hs
α(R3) as ψ = φλ + φλ(0)

α+
√
λ

4π

Gλ for some φλ ∈

Hs(R3), according to (5.4). On the other hand, by the embedding (6.15) the
function h is continuous and |h(0)| 6 ‖h‖L∞(R3) . ‖h‖W s,q(R3). Thus,

(i) hψ = hφλ + φλ(0)

α+
√
λ

4π

(h− h(0))Gλ + φλ(0)

α+
√
λ

4π

h(0)Gλ .

Applying the fractional Leibniz rule (6.6) and using Sobolev’s embedding,

(ii)

‖hφλ‖Hs ≈ ‖(1−∆)
s
2 (hφλ)‖L2

. ‖(1−∆)
s
2h‖Lq ‖φλ‖

L
2q
q−2

+ ‖h‖L∞‖(1−∆)
s
2φλ‖L2

. ‖h‖W s,q‖φλ‖Hs .
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Moreover, since Gλ ∈ L2(R3),∥∥ φλ(0)

α+
√
λ

4π

(h− h(0))Gλ
∥∥
L2 . ‖h− h(0)‖L∞ ‖φλ‖L∞ . ‖h‖W s,q ‖φλ‖Hs ;

this, together with the estimate (6.16) (which requires indeed spherical symmetry),
gives

(iii)
∥∥ φλ(0)

α+
√
λ

4π

(h− h(0))Gλ
∥∥
Hs
. ‖h‖W s,q‖φλ‖Hs .

The bounds (ii) and (iii) above imply that Fλ := hφλ + φλ(0)

α+
√
λ

4π

(h− h(0))Gλ belongs

to Hs(R3) with

(iv) ‖F‖Hs . ‖h‖W s,q‖φλ‖Hs .

In particular, Fλ is continuous. One has

Fλ(0) = h(0)φλ(0) + φλ(0)

α+
√
λ

4π

lim
|x|→0

h(x)− h(0)

|x|
= h(0)φλ(0)

because by assumption (∇h)(0) = 0 . In turn, (i) now reads hψ = Fλ + Fλ(0)

α+
√
λ

4π

Gλ,

which means, in view of the domain decomposition (5.4), that hψ belongs to
Hs
α(R3). Owing to (iv) above and to the norm equivalence (5.8), we conclude

‖hψ‖Hsα ≈ ‖Fλ‖Hs . ‖h‖W s,q‖φλ‖Hs ,

which completes the proof. �

Combining Lemmas 6.4.1 and 6.4.2 one therefore has the trilinear estimate

(6.29) ‖(w ∗ (u1u2))u3‖Hsα,rad(R3) . ‖w‖W s,p(R3)

3∏
j=1

‖uj‖Hsα,rad(R3).

Let us now prove Theorem 6.0.5.

Proof of Theorem 6.0.5.
From the expression (6.4) for the solution map Φ(u) and from the bound (6.29)

one finds

‖Φ(u)‖L∞Hsα,rad 6 ‖f‖Hsα,rad + T ‖(w ∗ |u|2)u‖L∞Hsα,rad
6 ‖f‖Hsα,rad + C1 T ‖w‖W s,p ‖u‖3L∞Hsα,rad

(i)

for some constant C1 > 0.
Moreover,

‖Φ(u)− Φ(v)‖L∞L2 6 T ‖(w ∗ |u|2)u− (w ∗ |v|2)v‖L∞L2

. T
(
‖(w ∗ |u|2)(u− v)‖L∞L2 +

∥∥(w ∗ (|u|2 − |v|2
)
v
∥∥
L∞L2

)
.

(ii)

For the first summand in the r.h.s. above the bound (6.27) and Hölder’s inequality
yield

‖(w ∗ |u|2)(u− v)‖L∞L2 6 ‖w ∗ |u|2‖L∞L∞ ‖u− v‖L∞L2

. ‖w‖W s,p ‖u‖2L∞Hsα ‖u− v‖L∞L2 .
(iii)

For the second summand, let us observe preliminarily that the embedding

(iv) Hs
α(R3) ↪→ L3,∞(R3)
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valid for s ∈ ( 1
2 ,

3
2 ) and established in the proof of Theorem 6.0.4 holds true even

more when s ∈ ( 3
2 , 2]. Then (iv) above, Sobolev’s embedding W s,p(R3) ↪→ L3(R3),

and an application of Holder’s and Young’s inequality in Lorentz spaces, yield

‖(w ∗ (|u|2−|v|2))v‖L∞L2 6 ‖w ∗ (|u|2−|v|2)‖L∞L6,2 ‖v‖L∞L3,∞

. ‖w‖L3 ‖u+ v‖L∞L3,∞ ‖u− v‖L∞L2 ‖v‖L∞L3,∞

. ‖w‖W s,p ‖u+ v‖L∞Hsα ‖u− v‖L∞L2 ‖v‖L∞Hsα .
(v)

Combining (ii), (iii), and (v) we get

d(Φ(u),Φ(v)) 6 C2 T ‖w‖W s,p

(
‖u‖2L∞Hsα + ‖v‖2L∞Hsα

)
d(u, v)(vi)

for some constant C2 > 0.
Thus, choosing T and M such that

M = 2 ‖f‖Hsα , T = 1
4

(
max{C1, C2}M2‖w‖W s,p

)−1
,

estimate (i) reads ‖Φ(u)‖L∞Hsα,rad 6 M and shows that Φ maps the space X (0)
T,M

into itself, whereas estimate (vi) reads d(Φ(u),Φ(v)) 6 1
2d(u, v) and shows that Φ

is a contraction on X (0)
T,M . By Banach’s fixed point theorem, there exists a unique

fixed point u ∈ X (0)
T,M of Φ and hence a unique solution u ∈ X (0)

T,M to (6.5), which is
therefore also continuous in time.

Furthermore, by a standard continuation argument we can extend such a so-
lution over a maximal interval for which the blow-up alternative holds true. Also
the continuous dependence on the initial data is a direct consequence of the fixed
point argument. �

A straightforward, yet crucial for us, consequence of Theorem 6.0.5 when s = 2
concerns the differential meaning of the local strong solution determined so far.

Corollary 6.4.3 (Integral and differential formulation). Let α > 0 and w ∈
W 2,p(R3), p ∈ (2,+∞), a spherically symmetric potential. Assume moreover f ∈
H2
α,rad(R3). Let u ∈ C([−T, T ], H2

α,rad(R3)) the unique local to the Cauchy problem

(6.3) in the interval [−T, T ], for some T > 0, i.e. u satisfies the Duhamel formula
(6.5). Then u(0, ·) = f and u satisfies the equation i∂tu = −∆αu + (w ∗ |u|2)u as
an identity in between L2(R3)-functions.

Proof. The bound (6.29) shows that the non-linearity defines a map u 7→
(w ∗ |u|2)u that is continuous from H2

α,rad(R3) into itself, and hence in particular it

is continuous from H2
α,rad(R3) to L2(R3). Then the thesis follows by standard fact

on the theory of linear semi-groups (see [25, Section 1.6]). �

6.5. Global solutions in the mass and in the energy space

In order to study the global solution theory of the Cauchy problem (6.3) when
s = 0 (the mass space L2(R3)) and s = 1 (the energy space H1

α(R3)), we introduce
the following two quantities, that are formally conserved in time along the solutions.

Definition 6.5.1.

(i) Let u ∈ L2(R3). We define the mass of u as

M(u) := ‖u‖2L2 .
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(ii) Let λ > 0 and let u = φλ+κλ Gλ ∈ H1
α(R3), according to (5.3). We define

the energy of u as

E(u) := 1
2 (−∆α)[u] + 1

4

∫
R3

(w ∗ |u|2)|u|2 dx

= 1
2

(
λ‖φλ‖2L2 + ‖∇φλ‖2L2 +

(
α+

√
λ

4π

)
|κλ|2 − λ‖u‖2L2

)
+ 1

4

∫
R3

(w ∗ |u|2)|u|2 dx .

Remark 6.5.2. For given u, the value of (−∆α)[u] (the quadratic form of −∆α)
is independent of λ, and so too is the energy E(u).

We shall establish suitable conservation laws in order to prolong the local so-
lution globally in time. The mass is conserved in L2(R3) in the following sense.

Proposition 6.5.3 (Mass conservation in L2(R3)).
Let α > 0, and let w belong either to the class L∞(R3) ∩W 1,3(R3) or to the class

w ∈ L
3
γ ,∞(R3), for γ ∈ (0, 3

2 ). For a given f ∈ L2(R3), let u be the unique

local solution in C((−T∗, T ∗), L2(R3)) to the Cauchy problem (6.5) in the maximal
interval (−T∗, T ∗), as given by Theorem 6.0.4. Then M(u(t)) is constant for t ∈
(−T∗, T ∗).

Proof. Let us discuss first the case w ∈ L∞(R3)∩W 1,3(R3). Consider prelim-
inarily an initial data f ∈ H1

α(R3). Owing to Corollary 6.3.3, for each t ∈ (−T∗, T ∗)
u satisfies i∂tu = −∆αu+(w∗ |u|2)u as an identity between H−1

α -functions, whence〈
i∂tu+ ∆αu− (w ∗ |u|2)u, u

〉
H−1
α ,H1

α
= 0 .

The imaginary part of the above identity gives
d
dt ‖u(t)‖2L2 = 0 ,

which implies thatM(u(t)) is constant on (−T∗, T ∗). For arbitrary f ∈ L2(R3) we

use a density argument. Let (fn)n be a sequence in H1
α(R3) such that fn

n→∞−−−−→ f
in L2(R3), and denote by un the solution to the Cauchy problem (6.3) with initial
datum fn. Because of the continuous dependence on the initial data, we have that
un → u in C(I, L2(R3)), for every closed interval I ⊂ (−T∗, T ∗). SinceM(un(t)) =
M(un(0)) =M(fn) for every n, we deduce thatM(u(t)) =M(f) for t ∈ I. Owing
to the continuity of the map t 7→ M(u(t)), we conclude that M(u(t)) =M(f) for
t ∈ (−T∗, T ∗).

Let us discuss now the case w ∈ L
3
γ ,∞(R3), γ ∈ (0, 3

2 ). Consider preliminarily

an initial data f ∈ H1
α(R3) and a Schwartz potential w. Owing to Corollary 6.3.3,

for each t ∈ (−T∗, T ∗) u satisfies i∂tu = −∆αu+ (w ∗ |u|2)u as an identity between
H−1
α -functions, and reasoning as above we deduce that M(u(t)) is constant on

(−T∗, T ∗). For arbitrary f ∈ L2(R3) and w ∈ L
3
γ ,∞(R3), γ ∈ (0, 3

2 ), we use a

density argument. Let (fn)n be a sequence in H1
α(R3) such that fn

n→∞−−−−→ f in

L2(R3), (wn)n be a sequence of Schwartz potentials such that wn
n→∞−−−−→ w in

L
3
γ ,∞(R3), and denote by un the L2 strong solution to the Cauchy problem (6.3)

with initial datum fn and potential wn. The stability result given by Proposition

6.2.1 guarantees that un
n→+∞−−−−−→ u in C([−T, T ], L2(R3)) for some T > 0, whence

M(un(t))
n→+∞−−−−−→M(u(t)) for t ∈ [−T, T ]. Using the mass conservation for un we

deduce thatM(u(t)) =M(f) for t ∈ [−T, T ]. Repeating the above argument with
f replaced by u(t0) for some t0 ∈ (−T∗, T ∗) yields the property that t 7→ M(u(t))
is constant in a suitable interval around t0 and hence, by the arbitrariness of t0, it
is locally constant on the whole (−T∗, T ∗). But (−T∗, T ∗) 3 t 7→ M(u(t)) is also
continuous, whence the conclusion. �
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We therefore conclude the following.

Proof of Theorem 6.0.6. An immediate consequence of the conservation
of the mass, i.e., conservation of the L2-norm, and of the blow up alternative in
L2. �

Let us move now to the conservation of mass and energy in the energy space.
We observe the following.

Lemma 6.5.4. Let α > 0 and let w ∈W 1,p(R3) for some p > 2. If vn
n→+∞−−−−−→ v

in H1
α(R3), then E(vn)

n→+∞−−−−−→ E(v). As a consequence, if u ∈ C([−T, T ], H1
α(R3))

for some T > 0, then t 7→ E(u(t)) is continuous on [−T, T ].

Proof. The limit E(vn)
n→+∞−−−−−→ E(v) follows from the inequality

|E(v)− E(vn)| . | (−∆α)[v]− (−∆α)[vn] |
+ ‖(w ∗ |v|2)|v|2 − (w ∗ |vn|2)|vn|2‖L1

combined with the estimates

| (−∆α)[v]− (−∆α)[vn] | . ‖v − vn‖H1
α

(
‖v‖H1

α
+ ‖vn‖H1

α

)
and

‖(w ∗ |v|2)|v|2 − (w ∗ |vn|2)|vn|2‖L1

. ‖(w ∗ |v|2)(|v|2 − |vn|2)‖L1 + ‖(w ∗ (|v|2 − |vn|2)|vn|2‖L1

. ‖w ∗ |v|2‖L∞‖v − vn‖2
(
‖v‖2 + ‖vn‖2

)
+
∥∥|w| ∗ (|v − vn|(|v|+ |vn|))∥∥L∞‖vn‖2L2

. ‖w‖W 1,p‖v − vn‖H1
α

(
‖v‖2H1

α
+ ‖vn‖2H1

α

)
,

the last two steps above following from Hölder’s and Young’s inequality, and from
the inequality (6.22). �

We then see that mass and energy are conserved in the spherically symmetric
component of the energy space.

Proposition 6.5.5 (Mass and energy conservation in H1
α,rad(R3)).

Let α > 0. For a given w ∈W 1,p
rad(R3), p ∈ (2,+∞), and a given f ∈ H1

α,rad(R3), let

u be the unique local solution in C((−T∗, T ∗), H1
α,rad(R3)) to the Cauchy problem

(6.5) in the maximal interval (−T∗, T ∗), as given by Theorem 6.0.4. Then M(u(t))
and E(u(t)) are constant for t ∈ (−T∗, T ∗).

Proof. We start proving the statement for the mass. Owing to Corollary
6.3.3, for each t ∈ (−T∗, T ∗) u satisfies i∂tu = −∆αu+ (w ∗ |u|2)u as an identity in
H−1
α (R3), whence 〈

i∂tu+ ∆αu− (w ∗ |u|2)u, u
〉
H−1
α ,H1

α
= 0 .

The imaginary part of the above identity gives
d
dt ‖u(t)‖2L2 = 0 ,

which implies that M(u(t) is constant on (−T∗, T ∗).
Let us prove now that the energy is conserved, first in the special case f ∈

H2
α,rad(R3) and w ∈ W 2,p

rad(R3), for p ∈ (2,+∞). Owing to Corollary 6.4.3, u

satisfies i∂tu = −∆αu+ (w ∗ |u|2)u as an identity in L2(R3), whence〈
i∂tu+ ∆αu− (w ∗ |u|2)u, ∂tu

〉
L2 = 0 .

The real part in the above identity gives
d
dt

(
1
2 〈−∆αu, u〉L2 − 1

4

∫
R3(w ∗ |u|2)|u|2dx

)
= 0 ,
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which implies that E(u(t)) is constant on (−T∗, T ∗).
For arbitrary f ∈ H1

α,rad(R3) and w ∈ W 1,p
rad(R3) we use the stability result of

Proposition 6.3.4. Let (fn)n be a sequence in H2
α,rad(R3) and (wn)n be a sequence

in W 2,p
rad(R3) such that fn

n→+∞−−−−−→ f in H1
α(R3) and wn

n→+∞−−−−−→ w in W 1,p(R3),
and denote by un the solution to the Cauchy problem (6.3) with initial datum

fn and potential wn. Then Proposition 6.3.4 guarantees that un
n→+∞−−−−−→ u in

C([−T, T ], H1
α(R3)) for some T > 0, and Lemma 6.5.4 implies that E(un(t))

n→+∞−−−−−→
E(u(t)) for t ∈ [−T, T ]. Using the energy conservation for un we deduce that
E(u(t)) = E(f) for t ∈ [−T, T ]. Repeating the above argument with f replaced
by u(t0) for some t0 ∈ (−T∗, T ∗) yields the property that t 7→ E(u(t)) is constant
in a suitable interval around t0 and hence, by the arbitrariness of t0, it is locally
constant on the whole (−T∗, T ∗). But (−T∗, T ∗) 3 t 7→ E(u(t)) is also continuous,
whence the conclusion. �

We are now ready to prove our result on the solution theory for the Cauchy
problem (6.3).

Proof of Theorem 6.0.7.
Let u ∈ C((−T∗, T ∗), H1

α,rad(R3)) be the unique local strong solution to (6.3),

on the maximal time interval (−T∗, T ∗), with given initial datum f = φλ + cGλ ∈
H1
α,rad(R3), for some λ > 0, and given potential w ∈ W 1,p

rad(R3), for some p ∈
(2,+∞), as provided by Theorem 6.0.4. Then (−T∗, T ∗) 3 t 7→ M(u(t)) + E(u(t))
is the constant map, as follows from Propositions 6.5.5. Decomposing u(t) = φλ(t)+
κλ(t)Gλ for each t ∈ (−T∗, T ∗) and using (5.7) we find

‖u(t)‖2H1
α
≈ ‖φλ(t)‖2H1 + |κλ(t)|2

. (λ+ 1) ‖u(t)‖L2

+
(
λ‖φλ(t)‖2L2 − λ‖u(t)‖2L2 + ‖∇φλ(t)‖2L2 +

(
α+

√
λ

4π

)
|κλ(t)|2

)
. M(u(t)) + 1

2 (−∆α)[u(t)] .(*)

For part (i) of the statement, we observe that

sup
t∈(−T∗,T∗)

‖u(t)‖2H1
α
. sup

t∈(−T∗,T∗)

(
M(u(t)) + 1

2 (−∆α)[u(t)]
)

. sup
t∈(−T∗,T∗)

(
M(u(t)) + E(u(t)) + ‖(w ∗ |u(t)|2)|u(t)|2‖L1

x

)
. 1 + sup

t∈(−T∗,T∗)
‖w ∗ |u|2‖L∞x ‖u‖

2
L2
x

. 1 + sup
t∈(−T∗,T∗)

‖w‖W s,p‖u‖2H1
α
‖f‖2L2 ,

having used (*), the estimate (6.22), and the mass and energy conservation. There-
fore, if ‖f‖L2 is sufficiently small (depending only on ‖w‖W s,p), then

sup
t∈(−T∗,T∗)

‖u(t)‖2H1
α
. 1 ,

and we conclude that solution is global, owing to the blow up alternative.
For part (ii) of the statement, the additional assumption w > 0 implies

1
2 (−∆α)[u(t)] 6 1

2 (−∆α)[u(t)] + 1
4

∫
R3

(w ∗ |u(t)|2)|u(t)|2dx = E(u(t)) ,

which, combined with (*) and the mass and energy conservation yields

sup
t∈(−T∗,T∗)

‖u(t)‖2H1
α
. sup

t∈(−T∗,T∗)

(
M(u(t)) + E(u(t))

)
. 1 .
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Therefore, the solution is global, by the blow up alternative. Since this is true for
every initial datum f ∈ H1

α,rad(R3), we deduce global well-posedness for (6.3). �

6.6. Comments on the spherically symmetric solution theory

As initially mentioned in the introduction of this Chapter, and then shown in
the preceding discussion, part of the solution theory was established for spherically
symmetric potentials and solutions (Theorems 6.0.5 and 6.0.7) and in this Section
we collect our remarks on the emergence of such a feature.

This is indeed a natural phenomenon both for the local high regularity theory
and for the global theory in the energy space, as we are now going to explain. Of
course, the spherically symmetric solution theory is the most relevant in the study
of the singular Hartree equation, since the linear part, namely the operator −∆α,
differs from the ordinary −∆ precisely in the L2-sector of rotationally symmetric
functions.

For the local theory, one ineludible ingredient of the fixed point argument is

the treatment of the non-linear part of the solution map (6.4) with a H̃s
α-estimate

that we close by means of the trilinear estimate (6.24)/(6.29).
This estimate is designed for functions of the form hu, where h = w ∗ |u|2,

and it is crucially sensitive to the specific structure of the space H̃s
α(R3) for s > 1

2
(Theorem 5.1.1(ii)-(iii)). In particular, in order to recognise that the regular part
hu is indeed a Hs-function, one must show that (h−h(0))Gλ ∈ Hs(R3). Technically
this is dealt with by means of the fractional Leibniz rule, suitably generalised so
as to avoid the direct Lp-estimate of s derivatives of each factor h− h(0) and Gλ;
already heuristically it is clear that this only works with a sufficient vanishing rate
of h− h(0) as |x| → 0 in order to compensate the local singularity of Gλ.

For intermediate regularity (Proposition 6.1.5 and Lemmas 6.3.1-6.3.2) the van-
ishing rate h(x)− h(0) ∼ |x|θ that can be deduced from the embedding w ∗ |u2| ∈
C0,θ(R3) is enough to close the argument and no spherical symmetry is required.
For high regularity (Proposition 6.1.6 - Lemma 6.1.7, and Lemmas 6.4.1-6.4.2) the
embedding w ∗ |u2| ∈ C1,θ(R3) would only guarantee an insufficient vanishing rate
h(x)−h(0) ∼ |x|; since one needs h(x)−h(0) ∼ |x|1+θ, this requires the additional
condition ∇h(0) = 0. For the latter condition to hold for h = w ∗ |u|2, as shown in
the proof of Lemma 6.4.1(ii), the spherical symmetry of both w and u appears as
the most natural and explicitly treatable assumption.

In fact, the condition ∇h(0) = 0 is even more crucial and apparently un-

avoidable in one further point of the argument hu ∈ H̃s
α(R3), because unlike the

intermediate regularity case, where it suffices to prove that the regular component
of hu is a Hs-function, in the high regularity case one must also prove that such
regular component satisfies the correct boundary condition in connection with the
singular component. As shown in the proof of Lemma 6.4.2, the correct boundary
condition is equivalent to |x|−1(h(x) − h(0)) → 0 as |x| → 0, for which ∇h(0) = 0
is again necessary.

Concerning the global theory in the energy space, the emergence of a solution
theory for spherically symmetric functions is due to one further mechanism. As
usual, globalisation is based upon the mass and energy conservation. In the theory
of semi-linear Schrödinger equations it is typical that the conservation laws are
deduced from a suitably regularised problem (see, e.g., the proof of [25, Theorem
3.3.5]). In the present context (Proposition 6.5.5) we follow this scheme showing

first the conservation laws at the level of H̃2
α-regularity, and then controlling the

stability of a density argument which is set for H̃1
α-regularity. Clearly the first step

appeals to the local H̃2
α-theory, which is derived only for the spherically symmetric

case, thus the stability argument can only work in the spherically symmetric sector
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of the energy space. It would be interesting to understand if this is just a technical
issue, or if the conservation of energy fails in the non-radial setting.



CHAPTER 7

Finite energy week solutions to magnetic NLS

In this last Chapter we move on to a different scenario that represents a sec-
ond playground, besides the singular perturbations of pseudo-differential operators
studied in the previous Chapters, for the general scheme for linear and non-linear
Schrödinger equations presented in the Introduction.

Here the operator of interest is going to be the magnetic Laplacian. We shall
then consider the initial value problem associated with the non-linear Schrödinger
equation with magnetic potential

(7.1) i∂tu = −(∇− iA)2u+N (u)

in the complex-valued unknown u ≡ u(t, x), t ∈ R, x ∈ R3, where

(7.2) N (u) = |u|γ−1u+ (| · |−α ∗ |u|2)u, γ ∈ (1, 5] , α ∈ (0, 3)

is a defocusing non-linearity, both of local (pure power) and non-local (Hartree)
type, and A : Rt × R3

x → R3 is the external time-dependent magnetic potential.
Formally, solutions of (7.1) conserve in time both the mass and the energy,

defined respectively by

(M(u))(t) :=

∫
R3

|u(t, x)|2 dx

(E(u))(t) :=

∫
R3

(
1
2 |(∇− iA(t))u|2 + 1

γ+1 |u|
γ+1 + 1

4 (|x|−α ∗ |u|2)|u|2
)

dx .

Let us highlight that we shall choose A within a considerably larger class of
rough potentials than what customarily considered in the literature so far. We
will be in the condition to prove the existence of global-in-time, finite energy, weak
solutions to (7.1), without attacking for the moment the general issue of global well-
posedness and conservation of energy. To be concrete, let us state the conditions
on the magnetic potential.

Assumption 1. The magnetic potential A belongs to one of the two classes A1

or A2 defined by

A1 := Ã1 ∩R

A2 := Ã2 ∩R ,
where

Ã1 :=

A = A(t, x)

∣∣∣∣∣∣∣∣
divA = 0 for a.e. t ∈ R,

A = A1 +A2 such that, for j ∈ {1, 2},
Aj ∈ L

aj
loc(R, Lbj (R3,R3))

aj ∈ (4,+∞], bj ∈ (3, 6), 2
aj

+ 3
bj
< 1


and

Ã2 :=

A = A(t, x)

∣∣∣∣∣∣∣∣∣
divA = 0 for a.e. t ∈ R,

A = A1 +A2 such that, for j ∈ {1, 2},

Aj ∈ L
aj
loc(R,W 1,

3bj
3+bj (R3,R3))

aj ∈ (2,+∞], bj ∈ (3,+∞], 2
aj

+ 3
bj
< 1

 ,
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and where

R :=
{
A ∈ Ã1 or A ∈ Ã2 | ∂tAj ∈ L1

loc(R, Lbj (R3,R3)), j = 1, 2
}
.

A few observations are in order. First and foremost, both classes A1 and A2

include magnetic potentials for which in general the validity of Strichartz estimates
for the magnetic Laplacian is not known. In fact, for non-smooth magnetic poten-
tials, Strichartz estimates are only available with a number of restrictions. When A
is time-independent, global-in-time magnetic Strichartz estimates were established
by various authors under suitable spectral assumptions (absence of zero-energy res-
onances) on the magnetic Laplacian A [39, 40, 31], or alternatively under suitable
smallness of the so called non-trapping component of the magnetic field [32], up to
the critical scaling |A(x)| ∼ |x|−1. Counterexamples at criticality are also known
[42]. In the time-dependent case, magnetic Strichartz estimates are available only
under suitable smallness condition of A [47, 104].

A large part of our intermediate results, including in particular the local so-

lution theory, are found with magnetic potentials in the larger classes Ã1 and Ã2.
The mild amount of regularity in time provided by the intersection with the class
R is needed to infer suitable a priori bounds on the solution from the estimates
on the total energy. Regularity in time of the external potential is not needed
either, when equation (7.1) is studied in the mass sub-critical regime, i.e., when
γ ∈ (1, 7

3 ), α ∈ (0, 2), and max {b1, b2} ∈ (3, 6). In this case we are able to work

with the more general condition A ∈ Ã1. This is a customary fact in the con-
text of Schrödinger equations with time-dependent potentials, as well known since
[110] (compare Theorems [110, Theorem 1.1] and [110, Theorem 1.4] therein: La-
integrability in time on the electric external potentials yields a Lp-theory in space,
whereas additional La-integrability of the time derivative of the potential yields a
H2-theory in space). Our aim here of studying finite energy solutions to (7.1) thus
requires some intermediate assumptions on the magnetic potential, determined by
the class R above.

The additional requirement on ∇A present in the class A2 is taken to accom-
modate slower decay at infinity for A, way slower than the behaviour |A(x)| ∼ |x|−1

(and in fact even a L∞-behaviour) which, as mentioned before, is critical for the
validity of magnetic Strichartz inequalities.

Last, it is worth remarking that the divergence-free condition, divA = 0, is
assumed merely for convenience: our whole analysis can be easily extended to the
cases where divA belongs to suitable Lebesgue spaces and consider it as a given
(electrostatic) scalar potential.

Before stating our main result, we collect some preliminary tools. We begin
by defining the energy space for the magnetic Laplacian (here, with respect to our
general setting, A is meant to be a magnetic vector potential at a fixed time).

Definition 7.0.1. Let A ∈ L2
loc(R3). We define the magnetic Sobolev space

H1
A(R3) := {f ∈ L2(R3) | (∇− iA)f ∈ L2(Rd)}

equipped with the norm

‖f‖2H1
A(R3) := ‖f‖2L2(Rd) + ‖(∇− iA)f‖2L2(Rd) ,

which makes H1
A(R3) a Banach space.

We recall [78, Theorem 7.21] that, when A ∈ L2
loc(R3), any f ∈ H1

A(R3) satisfies
the diamagnetic inequality

(7.3) |(∇|f |)(x)| 6 |((∇− iA)f)(x)| for a.e. x ∈ R3 .
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As a consequence of diamagnetic inequality, the following two useful Lemmas
can be easily proved.

Lemma 7.0.2. Assume that A ∈ A1 or A ∈ A2. Then, for every t ∈ R,

(7.4) ‖2 iA(t) · ∇f + |A(t)|2f‖H−1(R3) . CA(t)‖f‖H1(R3) ,

where
CA(t) := 1 + ‖A1(t)‖2Lb1 (R3) + ‖A2(t)‖2Lb2 (R3) .

In particular, for every t ∈ R, (∇ − iA(t))2 is a continuous map from H1(R3) to
H−1(R3).

Lemma 7.0.3. Let A ∈ Lb(R3) with b ∈ [3,+∞]. One has

(7.5) (1 + ‖A‖Lb(R3))
−1‖f‖H1(R3) . ‖f‖H1

A(R3) . (1 + ‖A‖Lb(R3))‖f‖H1(R3) ,

whence H1
A(R3) ∼= H1(R3) as an isomorphism between Banach spaces

Remark 7.0.4. As an immediate consequence of Lemma 7.0.3, given a potential
A ∈ A1 or A ∈ A2, for every t > 0 the magnetic Sobolev space H1

A(t)(R
3) is

equivalent to the ordinary Sobolev space H1(R3).

We can finally state our main result, proved in my work in collaboration with
A. Michelangeli and P. Antonelli [13]. Clearly, there is no fundamental difference
in studying solutions forward or backward in time, and as customary we shall only
consider henceforth the problem for t > 0. Our entire discussion can be repeated
for the case t 6 0.

Theorem 7.0.5 (Existence of global, finite energy weak solutions).
Let the magnetic potential A be such that A ∈ A1 or A ∈ A2, and take γ ∈ (1, 5],
α ∈ (0, 3). Then, for every initial datum f ∈ H1(R3), the Cauchy problem{

i ∂tu = −(∇− iA)2u+ |u|γ−1u+ (| · |−α ∗ |u|2)u

u(0, ·) = f

t ∈ [0,+∞), x ∈ R3

(7.6)

admits a global weak H1-solution

u ∈ L∞loc([0,+∞), H1(R3)) ∩W 1,∞
loc ([0,+∞), H−1(R3)) ,

meaning that (7.1) is satisfied for a.e. t ∈ [0,+∞) as an identity in H−1 and
u(0, ·) = f . Moreover, the energy E(u)(t) is bounded on compact intervals.

7.1. The heat-Schrödinger flow

As already mentioned, Strichartz estimates are in general not available for a
magnetic potential A in the class A1 or A2. To overcome this issue, we introduce
a small dissipation term in equation (7.1)

(7.7) i∂tu = −(1− i ε)(∇− iA)2u+N (u)

and we study the approximated problem. Similar parabolic (or vanishing viscosity)
regularisation procedures are commonly used in PDEs, see for example the work
by Guo, Nakamitsu, and Strauss [59] on the existence of global, finite energy weak
solutions to the Maxwell-Schrödinger system.

Let us consider the Cauchy problem associated to (7.7){
i ∂tu = −(1− i ε)(∇− iA)2u+N (u)

u(0, ·) = f

t ∈ [0, T ] , x ∈ R3 .

(7.8)
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We aim at establishing local well-posedness for (7.8), by considering (1− i ε)∆u
as the main linear part and−(1−i ε)(2 iA·∇u+|A|2u)+N (u) as a perturbation. The
relevant tool is a family of space-time smoothing estimates for the heat-Schrödinger
propagator e(i+ε)t∆. We recall that a pair (q, r) is said (Strichartz) admissible if

2

q
+

3

r
=

3

2
, r ∈ [2, 6].

The pair (2, 6) is called endpoint. We have the following result [13, Proposition
2.12].

Proposition 7.1.1 (Space-time estimates for the heat-Schrödinger flow).
Let ε > 0 and let (q, r) be an admissible pair.

(i) One has (homogeneous Strichartz estimate)

(7.9) ‖e(i+ε)t∆f‖Lq([0,T ],Lr(R3)) . ‖f‖L2(R3) .

(ii) Let T > 0 and let the pair (s, p) satisfy

(7.10)
2

s
+

3

p
=

7

2
,

{
1
2 6

1
p 6 1 2 6 r < 3

1
2 6

1
p <

1
r + 2

3 3 6 r 6 6 .

Then (inhomogeneous retarded Strichartz estimate)

(7.11)
∥∥∥∫ t

0

e(i+ε)(t−τ)∆F (τ) dτ
∥∥∥
Lq([0,T ],Lr(R3))

. ε ‖F‖Ls([0,T ],Lp(R3)) .

(iii) Assume in addition that (q, r) is non-endpoint. Let T > 0 and let the pair
(s, p) satisfy

(7.12)
2

s
+

3

p
=

5

2
,

1

2
6

1

p
<

1

r
+

1

3
.

Then (inhomogeneous retarded smoothing-Strichartz estimate)

(7.13)
∥∥∥∇∫ t

0

e(i+ε)(t−τ)∆F (τ) dτ
∥∥∥
Lq([0,T ],Lr(R3))

. ε ‖F‖Ls([0,T ],Lp(R3)) .

Remark 7.1.2. It is worth noticing that in (7.10) the range of admissible pairs
(s, p) is larger as compared to the case of the Schrödinger equation. See [13, Remark
2.13] for further observations on this point.

7.2. The viscous magnetic propagator

As an intermediate step towards the local well posedness of (7.8), in this Section
we discuss the existence of the linear magnetic viscous propagator associated to
the equation i∂tu = −(∇− iA)2 and we prove that, under our assumptions on the
magnetic potential, it satisifes a family of Strichartz-type estimates. We preliminary
need a technical Lemma.

Let us first define, for T > 0, the space

X(4,3)[0, T ] := L∞([0, T ], H1(R3)) ∩ L4([0, T ],W 1,3(R3))

equipped with the Banach norm

‖ · ‖X(4,3)[0,T ] := ‖ · ‖L∞([0,T ],H1(R3)) + ‖ · ‖L4([0,T ],W 1,3(R3)) .

Owing to the space-time estimates (7.11)-(7.13) for the heat-Schrödinger prop-
agator, the following result can be proved [13, Lemmas 2.20 and 2.21]

Lemma 7.2.1. Let A ∈ Ã1 or A ∈ Ã2, and let ε > 0. There exists a constant
θA > 0 such that, for every T ∈ (0, 1],∥∥∥ ∫ t

0

e(i+ε)(t−σ)∆
(
A(σ) · ∇+ |A(σ)|2

)
u(σ) dσ

∥∥∥
X(4,3)[0,T ]

. ε,A T θA‖u‖X(4,3)[0,T ] .
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We can now prove a fundamental Theorem.

Theorem 7.2.2. Assume that A ∈ Ã1 or A ∈ Ã2. Let τ ∈ R, ε > 0, f ∈
H1(R3), and F ∈ Ls(R,W 1,p(R3)) for some pair (s, p) satisfying (7.10) with r = 3.
Consider the inhomogeneous Cauchy problem

(7.14)

{
i ∂tu = − (1− i ε)(∆u− 2 iA · ∇u− |A|2u) + F

u(τ, ·) = f

and the associated integral equation

u(t, ·) = e(i+ε)(t−τ)∆f

− i

∫ t

τ

e(i+ε)(t−σ)∆
(
(1− i ε)(2 iA · ∇u+ |A|2u)(σ) + F (σ)

)
dσ ,

(7.15)

There exists a unique solution u ∈ C([τ,+∞), H1(R3)) to (7.15). Moreover, for
any T > τ and for any Strichartz pair (q, r), with r ∈ [2, 3],

(7.16) ‖u‖Lq([τ,T ],W 1,r(R3)) . ε,A,T ‖f‖H1(R3) + ‖F‖Ls(R,W 1,p(R3)).

Proof. It is clearly non-restrictive to set the initial time τ = 0. For given
T ∈ (0, 1] and M > 0, we consider the ball of radius M in X(4,3)[0, T ], i.e.,

XT,M := {u ∈ X(4,3)[0, T ] | ‖u‖X(4,3)[0,T ] 6M}.

Moreover, we define the solution map u 7→ Φu where, for t ∈ [0, T ],

(Φu)(t) := e(i+ε)t∆f

− (i + ε)

∫ t

0

e(i+ε)(t−σ)∆
(
(2 iA(σ) · ∇+ |A(σ)|2)u(σ) + F (σ)

)
dσ .

(7.17)

Thus, finding a solution to the integral equation (7.15), with τ = 0, is equivalent to
finding a fixed point for the map Φ. We shall then prove Theorem 7.2.2 by showing
that, for suitable T and M , the map Φ is a contraction on XT,M . To this aim, let
us consider a generic u ∈ XT,M : owing to the Strichartz estimates (7.9) and (7.13)
and to Lemma 7.2.1, there exist positive constants C ≡ Cε,A and θ ≡ θA such that,
for T ∈ (0, 1],

(7.18) ‖Φu‖X(4,3)[0,T ] 6 C
(
‖f‖H1(R3) + ‖F‖Ls([0,T ],W 1,p(R3) + T θ‖u‖X(4,3)[0,T ]

)
.

It is possible to restrict further M and T such that

M > 2C
(
‖f‖H1(R3) + ‖F‖Ls([0,T ],W 1,p(R3)

)
and 2CT θ < 1, in which case (7.18) yields

‖Φu‖X(4,3)[0,T ] 6 M( 1
2 + CT θ) < M .

This proves that Φ maps indeed XT,M into itself. Next, for generic u, v ∈ XT,M ,
and with the above choice of M and T , (7.18) also yields

‖Φu− Φv‖X(4,3)[0,T ] = ‖Φ(u− v)‖X(4,3)[0,T ] 6 CT θ‖u− v‖X(4,3)[0,T ]

<
1

2
‖u− v‖X(4,3)[0,T ] ,

which proves that Φ is indeed a contraction on XT,M . By Banach’s fixed point
theorem, we conclude that the integral equation u = Φu has a unique solution
in XT,M . Furthermore, Φu ∈ C([0, T ], H1(R3)). Hence, we have found a local
solution u ∈ C([0, T ], H1(R3)) to the integral equation (7.15), which satisfies (7.16).
Moreover, since the local existence time T does not depend on the initial data, this
solution can be extended globally in time, and (7.16) is satisfied for any T > 0. �
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Theorem 7.2.2 shows the existence of a unique solution u to the integral equa-
tion (7.15). From the assumptions on the magnetic potential and the source term
F and by using standard arguments in the theory of evolution equations (see for
example [25]) we may also infer that u satisfies (7.14) for almost every t ∈ R
in the sense of distributions. In the case when F = 0, the solution u to (7.14)
defines an evolution operator, namely for any f ∈ H1(R3) the magnetic viscous
evolution is defined by Uε,A(t, τ)f := u(t) where u is the solution to (7.14) with
F = 0. As a consequence of Theorem 7.2.2 we have that Uε,A(t, τ) enjoys a class of
Strichartz-type estimates [13, Proposition 3.2].

Proposition 7.2.3. The family {Uε,A(t, τ)}t,τ of operators on H1(R3) satisfies
the following properties:

(i) Uε,A(t, s)Uε,A(s, τ) = Uε,A(t, τ) for any τ < s < t;
(ii) Uε,A(t, t) = 1;

(iii) the map (t, τ) 7→ Uε,A(t, τ) is strongly continuous in H1(R3);
(iv) for any admissible pair (q, r) with r ∈ [2, 3], and for any f ∈ H1(R3) and

F ∈ Ls(R,W 1,p(R3)) for some pair (s, p) satisfying (7.10) with r = 3 (in
particular, (s, p) can be the dual of an admissible pair), one has

‖Uε,A(t, τ)f‖Lq([τ,T ],W 1,r(R3)) . ε,A,T ‖f‖H1(R3)(7.19) ∥∥∥∫ t

τ

Uε,A(t, σ)F (σ) dσ
∥∥∥
Lq([τ,T ],W 1,r(R3))

. ε,A,T ‖F‖Ls([τ,T ],W 1,p(R3)).(7.20)

7.3. Solution theory for the regularised magnetic NLS

In this Section we study local and global solution theory for the approximated
magnetic NLS (7.7). We can write the integral formulation for its associated Cauchy
problem (7.8) in terms of the viscous magnetic propagator:

(7.21) u(t) = Uε,A(t, τ)f − i

∫ t

τ

Uε,A(t, σ)N (u(σ)) dσ .

Owing to (7.21) and the Strichartz-type estimates (7.19)-(7.20) we can set up
a fixed point argument and show the existence of solutions to (7.8). We first focus
on the case of energy sub-critical non-linearities.

Proposition 7.3.1 (Local well-posedness, energy sub-critical case). Let ε > 0.

Assume that A ∈ Ã1 or A ∈ Ã2 and that the exponents in the non-linearity (7.2)
are in the regime γ ∈ (1, 5) and α ∈ (0, 3). Then for any f ∈ H1(R3) there
exists a unique solution u ∈ C([0, Tmax), H1(R3)) to (7.21) on a maximal interval
[0, Tmax) such that the following blow-up alternative holds: if Tmax < +∞ then
limt↑Tmax ‖u(t)‖H1 = +∞.

Proof. Since the linear magnetic viscous propagator Uε,A(t, τ) satisfies the
Strichartz-type estimates (7.19)-(7.20), and since the non-linearities considered here
are sub-critical perturbation of the linear flow, a customary contraction argument
in the space

(7.22) C([0, T ], H1(R3)) ∩ Lq(γ)([0, T ],W 1,r(γ)(R3)) ∩ Lq(α)([0, T ],W 1,r(α)(R3)) ,

where

(7.23) (q(γ), r(γ)) :=
(

4(γ+1)
γ−1 , 3(γ+1)

γ+2

)
(see, e.g., [80, Theorems 2.1 and 3.1]) and

(7.24) (q(α), r(α)) :=

{
(+∞, 2) α ∈ (0, 2](
6

α−2 ,
18

13−2α

)
α ∈ (2, 3)
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(see, e.g., [79, Section 5.2]), guarantees the existence of a unique local solution for
sufficiently small T . We observe, in particular, that with the above choice one has
r(γ), r(α) ∈ [2, 3). Furthermore, by a customary continuation argument we can
extend such a solution over a maximal interval for which the blow-up alternative
holds true. �

In the presence of a energy-critical non-linearity (γ = 5) the above arguments
cannot be applied. However, it is possible to exploit a similar idea as in [26] to
infer a local well-posedness result when γ = 5.

Proposition 7.3.2 (Local existence and uniqueness, energy critical case). Let

A ∈ Ã1 or A ∈ Ã2 and let the exponents in the non-linearity (7.2) be in the regime
γ = 5 and α ∈ (0, 3). Let ε > 0 and f ∈ H1(R3). There exists η0 > 0 such that, if

(7.25) ‖∇eit∆f‖
L6([0,T ],L

18
7 (R3))

6 η

for some (small enough) T > 0 and some η < η0, then there exists a unique
solution u ∈ C([0, T ], H1(R3)) to (7.21). Moreover, this solution can be extended
on a maximal interval [0, Tmax) such that the following blow-up alternative holds
true: Tmax <∞ if and only if ‖u‖L6([0,Tmax),L18(R3)) =∞.

Proof. A direct application of a well-known argument by Cazenave and Weiss-
ler [26] (we refer to [72, Section 3] for a more recent discussion). In particular,
having established Strichartz estimates for Uε,A(t, τ) relative to the pair (q, r) =
(6, 18

7 ), we proceed exactly as in the proof of [72, Theorem 3.4 and Corollary 3.5],
so as to find a unique solution u to the integral equation (7.21) in the space

(7.26) C([0, T ], H1(R3)) ∩ L6([0, T ],W 1, 187 (R3)) ∩ Lq(α)([0, T ],W 1,r(α)(R3))

with (q(α), r(α)) given by (7.24), together with the L6
tL

18
x -blow-up alternative. �

Our next step is to establish some a priori estimates which will be needed
in order to extend the local approximating solution to (7.21) over arbitrary time
intervals. In particular, we show that the total mass and energy are uniformly
bounded. Furthermore, by exploiting the dissipative regularisation, we will infer
some a priori space-time bounds which will allow to extend globally the solution
also in the energy-critical case.

We consider potentials A ∈ A1 or A ∈ A2, so to have the time regularity needed
in order to study the energy functional. The following result can be proved [13,
Proposition 5.2].

Proposition 7.3.3. Assume that A ∈ A1 or A ∈ A2, and that the exponents
in the non-linearity (7.2) are in the whole regime γ ∈ (1, 5] and α ∈ (0, 3). For fixed
ε > 0, let uε ∈ C([0, T ), H1(R3)) be the local solution to the regularised equation
(7.7) for some T > 0. Then the mass, the energy, and the H1-norm of uε are
bounded in time over [0, T ), uniformly in ε > 0, that is,

sup
t∈[0,T ]

M(uε) . 1(7.27)

sup
t∈[0,T ]

E(uε) .A,T 1(7.28)

‖uε‖L∞([0,T ),H1(R3)) .A,T 1 ,(7.29)

and moreover one has the a priori bounds
(7.30)∫ T

0

∫
R3

(
|(∇− iA(t))uε|2

(
|uε|γ−1 + (|x|−α ∗ |uε|2)

)
+ (γ − 1)|uε|γ−1|∇|uε||2

+ (|x|−α ∗ ∇|uε|2)∇|uε|2
)

dxdt .A,T ε−1 .



126 7. FINITE ENERGY WEEK SOLUTIONS TO MAGNETIC NLS

Remark 7.3.4. A virtue of Proposition 7.3.3 is to produce bounds (7.27)-(7.29)
that are uniform in ε. The non-uniformity in T of (7.28)-(7.29) is due to the fact
that the magnetic potential is only ACloc in time: for AC-potentials such bounds
would be uniform in T as well.

We can now exploit the a priori estimates for mass and energy so as to prove
that the local solution to the regularised Cauchy problem (7.8) can be actually
extended globally in time.

We discuss first the result in the energy sub-critical case.

Theorem 7.3.5 (Global well-posedness, energy sub-critical case). Assume that
A ∈ A1 or A ∈ A2, and that the exponents in the non-linearity (7.2) are in the
regime γ ∈ (1, 5) and α ∈ (0, 3). Let ε > 0. Then the regularised non-linear
magnetic Schrödinger equation (7.7) is globally well-posed in H1(R3). Moreover,
the solution uε to (7.7) with given initial datum f ∈ H1(R3) satisfies the bound

(7.31) ‖uε‖L∞[0,T ],H1(R3) .T 1 ∀T ∈ (0,+∞) ,

uniformly in ε > 0.

Proof. The local well-posedness is proved in Proposition 7.3.1. Because of
(7.29), the H1-norm of uε is bounded on finite intervals of time. Therefore, by the
blow-up alternative, the solution is necessarily global and in particular it satisfies
the bound (7.31). �

We discuss now the analogous result in the energy-critical case.

Theorem 7.3.6 (Global existence and uniqueness, energy critical case). As-
sume that A ∈ A1 or A ∈ A2, and that the exponents in the non-linearity (7.2)
are in the regime γ = 5 and α ∈ (0, 3). Let ε > 0 and f ∈ H1(R3). The Cauchy
problem (7.8) has a unique global strong H1-solution uε. Moreover, u satisfies the
bound

(7.32) ‖uε‖L∞[0,T ],H1(R3) .T 1 ∀T ∈ (0,+∞) ,

uniformly in ε > 0.

Proof. The existence of a unique local solution uε is proved in Proposition
7.3.2. The a priori bound (7.30) implies that∫ T

0

∫
R3

(
|uε|2∇|uε|

)2
dxdt . ε−1 ,

which, together with Sobolev’s embedding, yields

(7.33)

‖uε‖6L6([0,T ],L18(R3)) = ‖u3
ε‖2L2([0,T ],L6(R3)) .

∫ T

0

∫
R3

|∇|uε|3|2 dxdt

.
∫ T

0

∫
R3

|uε|4 |∇|uε||2 dxdt . ε−1 < +∞ .

Owing to (7.33) and to the blow-up alternative proved in Proposition 7.3.2, we
conclude that the solution u can be extended globally and moreover, using again
(7.29), it satisfies the bound (7.32). �

Remark 7.3.7. As anticipated right after stating the assumptions on the mag-
netic potential, let us comment here about the fact that in the mass sub-critical

regime (γ ∈ (1, 7
3 ) and α ∈ (0, 2)) we can work with the larger class Ã1 instead of

A1 and still prove the extension of the local solution globally in time with finite H1-
norm on arbitrary finite time interval. This is due to the fact that, for a potential

u ∈ Ã1 and in the mass sub-critical regime, in order to extend the solution globally
neither need we the estimate (7.29) as in the proof of Theorem 7.3.5, nor need we
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the estimate (7.30) as in the proof of Theorem 7.3.6. Indeed, we can first prove
local well-posedness in L2(R3) for the regularised magnetic NLS (7.7), using a fixed
point argument based on the space-time estimates for the heat-Schrödinger flow, in
the very same spirit of the proof of Theorem 7.2.2. Then we can extend such a so-
lution globally in time using only the mass a priori bound (7.27), for proving such a
bound does not require any time-regularity assumption on the magnetic potential.
Moreover, since the non-linearities are mass sub-critical and since we can prove
convenient estimates on the commutator [∇, (∇− iA)2] when max {b1, b2} ∈ (3, 6),
we can show that the global L2-solution exhibits persistence of H1-regularity in
the sense that it stays in H1(R3) for every positive time provided that the initial
datum belongs already to H1(R3). This way, we obtain existence and uniqueness
of one global strong H1-solution.

7.4. Removing the regularisations

In this Section we prove our main Theorem 7.0.5. The proof is based on a
compactness argument, owing to the uniform bounds (7.31) and (7.32), so as to
remove the ε-regularisation and leads to a local weak H1-solution to (7.6). The
crucial result is the following [13, Proposition 7.1].

Proposition 7.4.1. Assume that A ∈ A1 or A ∈ A2, and that the exponents in
the non-linearity (7.2) are in the whole regime γ ∈ (1, 5] and α ∈ (0, 3). Let T > 0,
and f ∈ H1(R3). For any sequence (εn)n of positive numbers with εn ↓ 0, let un
be the unique global strong H1-solution to the Cauchy problem (7.8) with viscosity
parameter ε = εn and with initial datum f , as provided by Theorem 7.3.5 in the
energy sub-critical case and by Theorem 7.3.6 in the energy critical case. Then,
up to a subsequence, un converges weakly-∗ in L∞([0, T ], H1(R3)) to a local weak
H1-solution u to the magnetic NLS (7.1) in the time interval [0, T ] and with initial
datum f , meaning that

u ∈ L∞([0, T ], H1(R3)) ∩W 1,∞([0, T ], H−1(R3)) ,

satisfies (7.1) for a.e. t ∈ [0, T ] as an identity in H−1, and u(0, ·) = f .

Proof. We only sketch here the arguments we presented in detail in [13,
Section 7]. Owing to the uniform-in-ε bounds (7.31) and (7.32) and the Banach-
Alaoglu theorem, we deduce that the sequence (un)n in the assumption of Propo-
sition 7.4.1 admits, up to a subsequence, a weak-∗ limit u in L∞([0, T ], H1(R3)).
Moreover, it can be proved [13, Corollary 7.5] that there exist indices pi, pij ,
p(γ), and p̃(α) in [6

5 , 2], and there exists functions Xi ∈ L∞([0, T ], Lpi(R3)), Yij ∈
L∞([0, T ], Lpij (R3)), N1 ∈ L∞([0, T ], Lp(γ)(R3)), and N2 ∈ L∞([0, T ], Lp̃(α)(R3))
such that, up to subsequences,

Ai · ∇un → Xi weakly-∗ in L∞([0, T ], Lpi(R3))

Ai ·Ajun → Yij weakly-∗ in L∞([0, T ], Lpij (R3))

|un|γ−1un → N1 weakly-∗ in L∞([0, T ], Lp(γ)(R3))

(| · |−α ∗ |un|2)un → N2 weakly-∗ in L∞([0, T ], Lp̃(α)(R3)) .

As an application of the Aubin-Lions compactenss lemma (see, e.g., [98, Section
7.3]) one can deduce the following identities [13, Lemma 7.8]:

Ai · ∇u = Xi

Ai ·Aju = Yij

|u|γ−1u = N1(
| · |−α ∗ |u|2

)
u = N2 .
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We are now able to show that the function u is actually a local weak H1-solution
to the magnetic NLS (7.1) with initial datum f in the time interval [0, T ]. Indeed,
all the exponents pi, pij , p(γ) and p̃(α) belong to the interval [ 6

5 , 2], and then by

Sobolev’s embedding the functions Xi = Ai · ∇u, Yij = Ai · Aju, N1 = |u|γ−1u,
and N2 = (| · |−α ∗ u2)u all belong to H−1(R3), and so too does ∆u, obviously.
Therefore (7.1) is satisfied by u as an identity between H−1-functions, which also
implies ∂tu ∈ L∞([0, T ], H−1(R3)). Thus, u ∈ W 1,∞([0, T ], H−1(R3)). On the
other hand un ∈ C1([0, T ], H−1(R3)), whence∫ T

0

∫
R3

η(t, x)
(
un(t, x)− u(t, x)

)
dxdt → 0 ∀η ∈ L1([0, T ], H−1(R3)) .

For η(t, x) = δ(t − t0, x)ϕ(x), where t0 is arbitrary in [0, T ] and ϕ is arbitrary
in L2(R3), the limit above reads un(t0, ·) → u(t0, ·) weakly in L2(R3), whence
u(0, ·) = f(·). �

It is already evident at this stage that had we assumed the magnetic potential
to be an AC-function for all times, then the proof of the existence of a global weak
solution with finite energy would be completed with the proof of Proposition 7.4.1
above, in full analogy with the scheme of the work [59] above mentioned.

Our potential being in general only ACloc in time, we cannot appeal to bounds
that are uniform in time (indeed, our (7.31) and (7.32) are T -dependent), and the
following straightforward ‘glueing’ argument must be added in order to complete
the proof of our main result.

Proof of Theorem 7.0.5. We set T = 1 and we choose an arbitrary se-
quence (εn)n of positive numbers with εn ↓ 0. Let un be the unique local strong
H1-solution to the regularised magnetic NLS (7.7) with viscosity parameter ε = εn
and with initial datum f ∈ H1(R3). By Proposition 7.4.1, there exists a subse-
quence (εn′)n′ of (εn)n such that un′ → u1 weakly-∗ in L∞([0, 1], H1(R3)), where
u1 is a local weak H1-solution to the magnetic NLS (7.1) with u1(0) = f . If
we take instead T = 2 and repeat the argument, we find a subsequence (εn′′)n′′

of (εn′)n′ such that un′′ → u2 weakly-∗ in L∞([0, 2], H1(R3)), where u2 is a local
weak H1-solution to (7.1) with u2(0) = f , now in the time interval [0, 2]. Moreover,
having refined the un′ ’s in order to obtain the un′′ ’s, necessarily u2(t) = u1(t) for
t ∈ [0, 1]. Iterating this process, we construct for any N ∈ N a function uN which
is a local weak H1-solution to (7.1) in the time interval [0, N ], with uN (0) = f and
uN (t) = uN−1(t) for t ∈ [0, N − 1]. It remains to define

u(t, x) := uN (t, x) x ∈ R3 , t ∈ [0,+∞) N = [t] .

Since uN ∈ L∞([0, N ], H1(R3)) ∩W 1,∞([0, N ], H−1(R3)) for every N ∈ N , such u
turns out to be a global weak H1-solution to (7.6) with finite energy for a.e. t ∈ R,
uniformly on compact time intervals. �
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