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“È un paradosso: la matematica è umana perché è di accesso difficile.
È impossibile, nella matematica è impossibile essere uno scienziato a metà

o al 50%.”

L. Lafforgue

“Oggi c’è una pillola per ogni difficoltà.
Ma è così bella la difficoltà, beata...

È una benedizione del cielo non saper come fare,
perché lì diventi uomo e scopri il mondo, la vita, scopri che sei vivo.

Se prendi una pasticca per eliminare questo, è desertificare l’emozione,
non sei più vivo.”

R. Benigni
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Abstract

The central object of this thesis is time-optimal problem on an affine control system
of type

q̇ = f0(q) + u1f1(q) + . . . + ukfk(q), q ∈ M (Σ)

where f0, . . . , fk are k + 1 vector fields defined on the manifold M . We assume that
f0, . . . , fk are smooth (C∞(M)) and u = (u1, . . . , uk) are L∞ admissible controls
taking value in the k -dimensional closed unitary ball.

We analyse the local regularity of system (Σ), with the classical methods of
the optimal control theory: the Pontryagin maximum principle, the second order
optimality conditions and other methods based on the relations between geometric
local properties of (Σ) and algebraic structure, as the configurations on the Lie
brackets of the system.

We are interested in finding generic conditions on the vector fields of the system
(Σ) in a point q̄ in M , such that each time-optimal trajectory of (Σ) close to q̄
is piece-wise smooth with a finite number of smooth components, called arcs. More
precisely, we look for generic conditions that guaranties the absence of chattering
phemonema, i.e. the existence of a convergent series of smooth arcs in finite time.

We found this conditions in chapters 3 and 4. In particular, we show that in the
case of k = n − 1 there are sufficient conditions in terms of Lie bracket relations for
all optimal controls to be smooth or to have only isolated jump discontinuities; and
we characterized the flow of Pontryagin’s extremals.

In Chapter 5 we analyse the global number of singularities, called switchings,
considering (Σ) as a linear system: with linear drift f0 , and constant controllable
vector fields. We show that there will appear a unique or an infinity number of
switchings at regular time intervals.

Finally, in Chapter 6 we present the cases for which we were able to prove the
optimality of the broken extremal trajectory, we found in the previous chapters.

Here we list all the works collected in this thesis:
Chapter 3: A. A. Agrachev, C. Biolo, Switching in time-optimal problem with control
in a ball, arXiv:1610.06755 (2016), to appear on SIAM J. Control Optim.
Chapter 4: A. A. Agrachev, C. Biolo, Switching in time-optimal problem: the 3-D
case with 2-D control, J Dyn Control Syst, DOI 10.1007/s10883-016-9342-7, 2016.
Chapter 6: A. A. Agrachev, C. Biolo, Optimality of a broken extremal, preprint 2017.
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Chapter 1

Introduction

This thesis is a one more step towards the understanding of the structure of time-
optimal controls and trajectories for control affine systems of the form:

q̇ = f0(q) +

k∑

i=1

uifi(q), q ∈ M, (1)

where M is a n-dimensional manifold, u = (u1, . . . , uk) are L∞ admissible con-

trols taking value in U =
{

(u1, . . . , uk) :
∑k

i=1 u2
i ≤ 1

}
the k -dimensional ball, and

f0, f1, . . . , fk are smooth vector fields. We also assume that f1, . . . , fk are linearly
independent in the domain under consideration.

These control systems always attracted a special attention among non linear con-
trol theorists, since they represent a sort of laboratory, where nonlinear features
appear in great purity. In particular, if the control is scalar (k = 1).

Moreover, systems in the form (1) are, at least in first approximation, a conve-
nient modelling of many “real” control systems.

Our attention is devoted to the study of local regularity properties of time-optimal
trajectories of (1), which minimize the time needed to join two given points.
Our point of view is local in the following sense: given q̄ ∈ M , we study whether
there exists a neighbourhood Oq̄ of q̄ such that any optimal trajectory is smooth or
is a concatenation of a finite number of smooth arcs.

A piece of trajectory where the control is smooth is called an arc. Bang arc cor-
respond to a continuous control that lies in the boundary of U , on the other hand
an arc which is not bang is called singular. If two bang arcs are concatenated, we
call switching time the instance at which the control has a discontinuity. A finite
concatenation of bang arcs is called a bang-bang trajectory.

In order to restrict the family of candidate of time-optimal trajectories we used
the Pontryagin maximum principle, it states that if q(t) : [0, t1] → M is a time-
optimal trajectory of (1) with control ũ(·) , then there exists a non trivial lift λ(t)
of q(t) in the cotangent bundle T ∗M such that, denoted the family of Hamiltonians

11
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with respect u

hu(λ) =

〈
λ, f0(q) +

k∑

i=1

uifi(q)

〉
,

λ(t) satisfies

λ̇(t) =
−→
h ũ(λ(t))

and

hũ(λ(t)) = max
u∈U

hu(λ(t)) ≥ 0.

We call extremal trajectory any solution of (1) which satisfies the Pontryagin maxi-
mum principle.

The case k = n is the Zermelo navigation problem: optimal controls are smooth
in this case (see Remark 2.2.9). In more general situations, discontinuous controls
are unavoidable and, in principle, any measurable function can be an optimal control
(see [21]).

We call chattering a boundary control whose switching times form a monotone
sequence that converges in finite time.
Fuller first presented in [10] a control problem, which admits a formulation of type
(1), with a time optimal solution corresponding to a chattering control function.

In order to understand whether this phenomenon is stable with respect to small
perturbations of the system or not, it is reasonable to focus on generic ensembles of
vector fields f0, f1, . . . , fk .

If k = 1, n = 2, then for a generic pair of vector fields f0, f1 any optimal
control is piecewise smooth; moreover, any point in M has a neighbourhood such
that all optimal trajectories contained in are concatenation of at most two smooth
arcs, namely they have at most one switching (see [9] and [25]).

The complexity of optimal control grows fast with n .

For k = 1, n = 3 the generic situation is only partially studied (see [20], [26]
and [7]): we know that any point out of a 1-dimensional Whitney-stratified subset of
“bad point” has a small neighbourhood that contains only optimal trajectories with
at most three switchings. We still do not know if there is any bound on the number
of switchings in the points of the “bad” 1-dimensional subset.

We know however that the chattering phenomenon is unavoidable for k = 1 and
sufficiently big n (see [14] and [28]).

Beside these interesting theoretical challenges, a finite bound on the number of
arcs of time-optimal trajectories has a clear role in applications.

Transversality theory gives us adequate instruments for investigating generic prop-
erties of the system.
Let h ≥ 0 and denote by Jk+1,hM the vector bundle on M of all h-jets of k+1-uple
of vector fields (f0, f1, . . . , fk) on M . Let A be a stratified subset of Jk+1,hM such

that Jk+1,h
q M ∩ A is of codimension larger than a value m in Jk+1,h

q M , for every
q ∈ M . Then, generically, the set of points q ∈ M , such that the h-jet of (f0, . . . , fk)

at q , Jk+1,h
q (f0, . . . , fk) belongs to A , has codimension larger than m in M .
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In particular, if we find A such that m is the dimension on M , then generically
Jk+1,h

q (f0, . . . , fk) does not belong to A , for every q ∈ M .

Therefore, if we find A such that, for every f0, . . . , fk and q it holds Jk+1,h
q (f0, . . . , fk) /∈

A , all short time-optimal trajectories near q are finite concatenations of arcs, and if
m is the dimension on M , then, generically, chattering does not occur.
On the other hand, for any m less or equal to the dimension of M , if we can show
that no chattering appears near points for which Jk+1,h

q (f0, . . . , fk) ∈ A , then we
actually give a bound on the dimension of the set of points near which chattering
cannot be excluded.

Subsets of Jk+1,hM are defined in terms of conditions on the configurations of
iterated Lie brackets between f0, f1, . . . , fk , indeed Lie brackets preserve intrinsic re-
lations between the derivatives of the jets.

When we started to face this topic, we started studying the case k = 2 n = 3, in
particular, for a generic triple (f0, f1, f2) . We obtain that any point out a discrete
subset of “bad points” in M has a neighbourhood such that any optimal trajectory
contained in this neighbourhood has at most one switching. That means that it is
possible to avoid generically the chattering trajectories in this setting.
Then we saw that the techniques developed were efficient also in case k = n− 1 with
an arbitrary n and that complexity of the switchings depends much more on n − k
than on n .
Let us present the structure of the thesis, presenting a panoramic view of the original
contributions that we tried to give in this field.

Structure of the thesis

Chapter 2: Preliminary Theorems. In this Chapter we recall some definitions
and preliminary theorems in geometric control theory. We give the definition of opti-
mal control problem, present its reduction to study the attainable set of an extended
system and discuss the existence of optimal trajectories.
Moreover we introduce the first and second order optimality conditions: Pontryagin
maximum principle and Goh condition.

In the second part of this chapter we focus on the study of Pontryagin extremals
and extremal trajectories of the affine control system (1). We define in T ∗M the
singular locus

Λ = {λ ∈ T ∗M : h1(λ) = . . . = hk(λ) = 0},
where hi(λ) = 〈λ, fi(q)〉 with i ∈ {0, 1, . . . , k} , state the first fact on the local reg-
ularity of extremal trajectories: an arc of a time-optimal trajectory, whose extremal
is out of the singular locus, is a bang arc (see Corollary 2.2.8).

As a consequence we are interested in what happen if an extremal touches, enters
or goes though the singular locus. Extremal trajectories may be not always smooth.
For this reason, our attention will focus on the behaviour of the extremal flow close
to the singular locus Λ .

In the third section of this chapter we present some other preliminaries for Chap-
ter 6: theory of orbits and the Frobenius theorem. And, finally we give a deeper
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digression regarding the chattering phenomenon and generic conditions.

Chapter 3: Switching with control in a ball. In this chapter we present the
contribute that we wrote in [4]. We analyse local regularity of time-optimal controls
and trajectories for an n-dimensional affine control system (1), for any n .

In the case of k = n − 1 , we give generic sufficient conditions in terms of Lie
bracket relations for all optimal controls to be smooth or to have only isolated jump
discontinuities. Indeed, given f0, f1, . . . , fn−1 a generic germ of n-uple of vector fields
at q , then the germs of extremal trajectories at q may have only these less degenerate
singularities (see Theorem 3.1.1).
More precisely, let us define a vector a ∈ Rn−1 and a matrix A ∈ so(n − 1) by the
formulas:

a(q) = {det (f1(q), . . . , fn−1(q), [f0, fi](q))}n−1
i=1

A(q) = {det (f1(q), . . . , fn−1(q), [fi, fj ](q))}n−1
i,j=1.

Thus, if

a(q̄) /∈ A(q̄)Sn−2, (2)

where Sn−2 = {u ∈ Rn−1 : |u| = 1} , then there exists a neighbourhood Oq̄ of q̄ in
M such that any time-optimal trajectory contained in Oq̄ is piecewise smooth with
no more than one non smoothness point.

In the general case if k < n , we study the flow of extremals in the cotangent bundle
T ∗M in a neighbourhood Oλ̄ of a singular point λ̄ ∈ Λ such that q̄ = π(λ̄) . By the
preliminaries, we already know that out of Λ extremals and extremal trajectories are
smooth.
Let us define vector H0I ∈ Rk and matrix HIJ ∈ so(k) , univocally given by the
system and λ̄ , such that1:

H0I =
(
h0i(λ̄)

)
i∈{1,...,k}

HIJ =
(
hij(λ̄)

)
i,j∈{1,...,k}

.

Then by the following generic condition

H0I /∈ HIJSk−1 (3)

with Sk−1 = {u ∈ Rk : |u| = 1} , we proved that there are no optimal extremals in
Oλ̄ that lie in the singular locus Λ for a time interval (see Proposition 3.2.3).

Moreover, we give the complete characterization of the flow of extremals in Oλ̄ ,
explaining in which cases time-optional trajectories are smooth or have at most one
isolated singularity (see Theorem 3.2.4).
More precisely, if it holds

H0I ∈ HIJBk, (4)

1see Notation 2.2.4
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where Bk = {u ∈ Rk : |u| < 1} , then there exists a neighbourhood Oλ̄ ⊂ T ∗M such
that no optimal extremal intersects singular locus in Oλ̄ small enough.
On the other hand, if it holds

H0I /∈ HIJBk, (5)

then there exists a neighborhood Oλ̄ ⊂ T ∗M such that for any z ∈ Oλ̄ and t̂ >
0 there exists a unique contained in Oλ̄ extremal t 7→ λ(t, z) with the condition
λ(t̂, z) = z . Moreover, λ(t, z) continuously depends on (t, z) .
In particular, every extremal in Oλ̄ that passes through the singular locus is piece-
wise smooth with only one switching.
Besides that, if u is the control corresponding to the extremal through λ̄ , and t̄ is
its switching time, we have:

u(t̄ ± 0) = [±d Id + HIJ ]−1H0I ,

with d > 0 unique, univocally defined by the system and λ̄ , such that

〈
[d2 Id − H2

IJ ]−1H0I ,H0I

〉
= 1.

This theory is based on the blow-up techniques and the structure of partially hyper-
bolic equilibria.

Therefore, we observed that in general, the flow of extremals is not locally Lips-
chitz with respect to the initial value.
Since the Pontryagin maximum principle is a necessary but not sufficient condition
of optimality, we cannot guaranty that the broken extremals, that we found, are all
optimal. It is possible to say that they are certainly optimal only if the system is a
linear system with an equilibrium target. We will present the general case at Chapter
6.

Chapter 4: Switching with 2D control. In this chapter we present a deeper re-
sult on local regularity of time-optimal trajectories of system (1) in a 3-dimensional
manifold M with control in a 2-dimensional disk U (see [3]).

If n = 3 and k = 2, the condition (2) that we gave in Chapter 3 reads

det2 (f1(q̄), f2(q̄), [f0, f1](q̄)) + det2 (f1(q̄), f2(q̄), [f0, f2](q̄)) 6=

6= det2 (f1(q̄), f2(q̄), [f1, f2](q̄)) .
(6)

In this chapter, we study the regularity of optimal trajectories that lies in the neigh-
bourhood Oq̄ of q̄ if

det2 (f1(q̄), f2(q̄), [f0, f1](q̄)) + det2 (f1(q̄), f2(q̄), [f0, f2](q̄)) =

= det2 (f1(q̄), f2(q̄), [f1, f2](q̄)) ,
(7)

assuming the weaker condition

rank{f1(q̄), f2(q̄), f01(q̄), f02(q̄), f12(q̄)} = 3. (8)
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We proved that if (8) and (7) hold in q̄ there exists a neighbourhood Oq̄ of q̄ such that
any time-optimal trajectory that contains q̄ and is contained in the neighbourhood
is a bang arc. The correspondent extremal either remains out of the singular locus
Λ , or lies in

Λ ∩
{
λ ∈ T ∗M |h2

01(λ) + h2
02(λ) = h2

12(λ)
}

.

Anyway, the correspondent optimal control will be smooth without any switching,
taking values on the boundary of U , in both cases.

Chapter 5: Linear control system. In this chapter we are going to consider the
global regularity of the time-optimal problem if the control system (1) is a linear
control system in Rn , with coordinate x ∈ Rn , and k = n − 1 . It means that the
drift is linear f0(x) = Ax , denoted by a n × n real matrix A , and the controllable
vector fields are constant fi(x) = bi ∈ Rn , with i ∈ {1, . . . , n − 1} .
For simplicity we rewrite the system as follows

ẋ = Ax + Bu, x ∈ Rn

where B = (b1, . . . , bn−1) is a n × n − 1 real matrix, and u the admissible control
taking values in U closed unitary ball, as before.
In this system we assume the Kalman’s criterion

rank{B,AB, . . . , An−1B} = n. (9)

Given any x̄ ∈ Rn it is always possible to construct an extremal trajectory which has
a switching in x̄ (see Claim 5.3.1).
We prove that along the global extremal trajectory the switching could be unique or
there will be an infinity number of switching in regular intervals of time. It depends
on the configurations of (A,B) , satisfying (9).
In particular, assuming that A has simple complex and real eigenvalues α1+iβ1, α1−
iβ1, . . . , αj + iβj , αj − iβj , λ2j+1, . . . , λn , such that βi 6= 0 for all i ∈ {1, . . . , j} and
0 < j ≤ ⌊n

2 ⌋ , given the corresponding eigenvectors that form a basis B of Rn , and
p̄ ∈ Rn , such that p̄TB = 0, described with coordinates (p̄i)i=1,...n in B . There will
be infinite switching if we assume that

- there exists βA ∈ R \ {0} and Ki ∈ Q , ∀i ∈ {1, . . . , j} , such that βi = KiβA

- α = αi for all i ∈ {1, . . . , j} where p̄αi 6= 0, and α = λi for all i ∈ {2j +
1, . . . , n} such that p̄i 6= 0.

(see Theorems 5.3.5 and 5.3.6)

Chapter 6: Sufficient optimality condition. Here, we are going to discuss the
optimality of the projections of the non smooth extremals detected in the previous
chapters, given a non linear affine control system (1), (see [5]).
Let us recall that if condition (5) is satisfied at λ̄ ∈ Λ , there exist a broken extremal
that passes through Λ at λ̄ , and the flow of extremals is not locally lipschitz.

Denoting q̄ = π(λ̄) , and F = {f1, . . . , fk} , we prove the sufficient optimality of
the normal broken extremal, passing through λ̄ ∈ Λ , if

λ̄ ⊥ Lieq̄F , h0(λ̄) > 0
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and either rank {Lieq̄F} = n − 1 , or rank {LieqF} = rank {Lieq̄F} < n − 1 for all q
from a neighbourhood of q̄ in M (see Theorem 6.2.6). Moreover, if n = 3 k = 2 we
prove the optimality for a normal broken extremal if f1, f2 form a contact distribu-
tion in a neighbourhood of q̄ (see Theorem 6.2.9).
We use a method described by Agrachev and Sachkov in their book [6]. It is a geomet-
rical elaboration of the classical fields of extremals theory, it proves optimality only
for normal extremals, assuming the Hamiltonian smooth. We extended this method
in the Lipschitzian submanifold, with constructions ad hoc.

We also prove optimality of normal (or abnormal) broken extremals for n > 2
k = 2 and

λ̄ ⊥ span{f1(q̄), f2(q̄), [f1, f2](q̄)} (1.0.1)

in just that point (see Theorem 6.3.5). This result is given by direct estimates with
time-rescaling.

In this chapter, there is a last section “Open problem”, that presents the compu-
tations of this method with direct estimates in the general (possible abnormal) case,
if (1.0.1) does not hold. It may be useful to answer further questions.

Aknowledgements. I would like to thank my supervisor Andrei Agrachev for
having suggested these problems and for having introduced me to the research; his
enthusiasm and love for mathematics have fascinated me since the beginning. He
taught me that there is no trivial way to overcome a problem, and that very often
you just have to look at it with a different perspective; more important, he taught me
that, even though a computation or a new statement seems useless, it isn’t, because
everything can surprise us and help us to find a solution for a problem; this is a lesson
that I will use forever in my life.



18 CHAPTER 1. INTRODUCTION



Chapter 2

Preliminary Theorems

2.1 Optimal control problem

In this section we recall some definitions and preliminary theorems in Geometric
control theory.

Definition 2.1.1. Given a n-dimensional manifold M , we call Vec(M) the set of
C2 vector fields on M : f ∈ Vec(M) if and only if f is a smooth map with respect
to q ∈ M taking value in the tangent bundle,

f : M −→ TM,

such that if q ∈ M then f(q) ∈ TqM .
Each vector field defines a dynamical system

q̇ = f(q),

i. e. for each initial point q0 ∈ M it admits a solution q(t, q0) on an opportune time
interval I , such that q(0, q0) = q0 and

d

dt
q(t) = f(q(t)), a. e. t ∈ I.

Definition 2.1.2. f ∈ Vec(M) is a complete vector field if , for each initial point
q0 ∈ M , the solution q(t, q0) of the dynamical system q̇ = f(q) is defined for every
t ∈ R . If f ∈ Vec(M) has a compact support, it is a complete vector field.

In our local study, we may assume without lack of generality that all vector fields
under consideration are complete.

Definition 2.1.3. A control system in M is a family of dynamical systems

q̇ = fu(q), with q ∈ M, {fu}u∈U ⊆ Vec(M),

parametrized by u ∈ U ⊆ Rk , called space of control parameters.
Instead of constant values u ∈ U , we are going to consider L∞ time depending
functions taking values in U . Thus, we call

U = {u : I → U, u ∈ L∞}

19
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the set of admissible controls and study the following control system

q̇ = fu(q), with q ∈ M, u ∈ U . (2.1.1)

In particular, let us present the control system that we are going to study during
this Thesis: the affine control system.

Definition 2.1.4. An affine control system is a control system of the following form

q̇ = f0(q) +

k∑

i=1

uifi(q), q ∈ M (2.1.2)

where f0, . . . , fk ∈ Vec(M) and (u1, . . . , uk) ∈ U , taking values in the set U ⊆ Rk .
We assume that f1, . . . , fk are linearly independent in the domain under considera-
tion. The uncontrollable term f0 is called drift.

With the following theorem we want to show that, choosing an admissible control,
it is guaranteed the locally existence and uniqueness of the solution of a control system
for every initial point.

Theorem 2.1.5. Fixed an admissible control u ∈ U , (2.1.1) is a non-autonomous
ordinary differential equation, where the right-hand side is smooth with respect to q ,
and measurable essentially bounded with respect to t, then, for each q0 ∈ M , there
exists a local unique solution qu(t, q0) such that qu(0, q0) = q0 and it is lipschitzian
with respect to t.

Definition 2.1.6. We denote

Aq0 = {qu(t, q0) | t ≥ 0, u ∈ U}

the attainable set from q0 .
In the same way, one can consider the attainable sets for time t > 0 from q0

Aq0(t) = {qu(t, q0) | u ∈ U } ,

and the attainable sets for time not greater that t :

At
(0,q0) =

⋃

0≤τ<t

Aq0(τ).

We will write qu(t) = qu(t, q0) if we do not need to stress that the initial position is
q0 .

Definition 2.1.7. In order to compare admissible controls on a time-interval [0, t1] ,
we introduce a cost functional :

J(u) =

∫ t1

0
φ(qu(t), u(t))d t

with an integrand
φ : M × U → R

smooth with respect to q ∈ M and continuous with respect to the couple (q, u) ,
q ∈ M and u ∈ U .
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Definition 2.1.8. (Optimal control problem.)
Given any q0 ∈ M and q1 ∈ Aq0 , we define the optimal control problem as follows:

Optimal control problem is the minimization problem for J(u) with constrains on
u given by control system q̇ = fu(q) and the fixed initial and end points q(0) = q0

and q(t1) = q1 .

We can write it also in the following synthetic way:





q̇ = fu(q), q ∈ M, u ∈ U ⊂ Rm,
q(0) = q0, q(t1) = q1,

J(u) =
∫ t1
0 φ(qu(t), u(t))d t → min.

(2.1.3)

There are two types of problem, with fixed terminal time t1 and free terminal time.
We call a solution u of this problem an optimal control, and the corresponding

curve optimal trajectory.

Reduction to study of attainable sets

Let us present how optimal problems are studied.
It turns out that an optimal control problem on the state space M can be essentially
reduced to the study of the attainable set of the control system

d q̂

d t
= f̂u(q̂), q̂ ∈ M̂, u ∈ U, (2.1.4)

on the extended state space

M̂ = R × M = {q̂ = (y, q) | y ∈ R, q ∈ M},

such that

f̂u(q̂) =

(
φ(q, u)
fu(q)

)
, q ∈ M, u ∈ U,

where φ(q, u) is the integrand of the cost functional J(u) .
In particular, we are interested in q̂u(t) the solution of the extended system (2.1.4)

with initial condition

q̂u(0) =

(
y(0)
q(0)

)
=

(
0
q0

)
, (2.1.5)

with initial cost 0 .
For optimal problem with fixed terminal time t1 , we have the following propositions:

Proposition 2.1.9. Let qũ(t), t ∈ [0, t1], be an optimal trajectory in the problem
(2.1.3) with the fixed terminal time t1 . Then the corresponding trajectory q̂ũ(t) of
the extended system (2.1.4) comes to the boundary of the attainable set of this system:

q̂ũ(t1) ∈ ∂Â(0,q0)(t1), (2.1.6)

where

Â(0,q0)(t1) =

{
q̂u(t)

∣∣∣∣ q̂u(0) =

(
0
q0

)
, t ∈ [0, t1], u ∈ U

}
.
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As we can see from the picture if qũ(t) is optimal then (y1, q1) has to be in the
lowest part of Â(0,q0)(t1) .

y

y1

0

q̂ũ(t)

Â(0,q0)(t1)

(y1, q1)

q

q1

bb

q0

Figure 2.1: Optimal trajectory in the extended space state M̂ .

Analogously, we have a proposition for optimal problems with free terminal time.

Proposition 2.1.10. Let qũ(t), t ∈ [0, t1], be an optimal trajectory in the problem
(2.1.3) with the free terminal time. Then the corresponding trajectory q̂ũ(t) of the
extended system (2.1.4) comes to the boundary of the attainable set of this system:

q̂ũ(t1) ∈ ∂Ât
(0,q0), (2.1.7)

where

Ât
(0,q0) =

⋃

0≤τ<t

Â(0,q0)(τ).

Due to the reduction of optimal control problems, existence of optimal solutions is
reduced to compactness of attainable sets. Thus, sufficient conditions of compactness
of the attainable sets Aq0(t) and At

q0
are given in the following proposition.

Proposition 2.1.11. (Filippov) Let the space of control parameters Rm
⋑ U be

compact. Let there exist a compact K such that M ⋑ K and fu(q) = 0 for q /∈ K ,
u ∈ U . Moreover, let the velocity sets

fU (q) = {fu(q) |u∈U} ⊂ TqM, q ∈ M,

be convex. Then the attainable sets Aq0(t) and At
q0

are compact for all q0 ∈ M ,
t > 0.

Proof. See [6], Section 10.3 .
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Relaxation

Consider a control system of the form (2.1.1) with a compact set control parameters
U . There is a standard procedure called relaxation of control system (2.1.1), which
extends the velocity set fU (q) of this system to its convex hull convfU (q) .

The convex hull of a subset S of a linear space of the minimal convex set that
contain S .

Lemma 2.1.12. (Carathéodory) For any subset S ⊂ Rn ,its convex hull has the
form

convS =

{
n∑

i=0

αixi |xi ∈ S, αi ≥ 0,

n∑

i=0

αi = 1

}
.

Proof. See [19].

Relaxation of control system (2.1.1) is constructed in the following way. Let the
set of control parameters of the relaxed system

V = ∆n × U × . . . × U,

with

∆n =

{
(α0, . . . , αn) |αi ≥ 0,

n∑

i=0

αi = 1

}
⊂ Rn+1

is the standard n-dimensional simplex.
If U is compact V is compact as well. The relaxed system is

q̇ = gv(q) =
n∑

i=0

αifui(q), v = (α, u0, . . . , un) ∈ V, q ∈ M. (2.1.8)

By Carathéodory lemma, the velocity set gV (q) is convex, moreover,

gV (q) = convfU(q).

Let us give the following theorem on the convexity property of the exponential map.

Theorem 2.1.13. Let Xτ , Yτ , τ ∈ [0, t1], be non autonomous vector fields with a
common compact support. Let 0 ≤ α(τ) ≤ 1 be a measurable function. Then there
exists a sequence of non autonomous vector fields Zn

τ ∈ {Xτ , Yτ}, i. e., Zn
τ = Xτ or

Yτ for any τ and n , such that

−→exp

∫ t

0
Zn

τ dτ → −→exp

∫ t

0
(α(τ)Xτ + (1 − α(τ))Yτ ) dτ, n → ∞,

uniformly with respect to (t, q) ∈ [0, t1] × M and uniformly with all derivatives with
respect to q ∈ M .

Proof. See [6], Chapter 8 .

Hence, by Theorem 2.1.13, any trajectory of the relaxed system (2.1.8) can be
uniformly approximated by families of trajectories of initial system.

Thus, the attainable set of the relaxed system (2.1.8) coincide with the closure of
the attainable set of the initial system.
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2.1.1 Fist order optimality condition: Pontryagin maximum prin-

ciple

Now we are going to introduce basic notions about Lie brackets, Hamiltonian sys-
tems and Poisson brackets, so that we present the first and second order necessary
conditions of optimality: Pontryagin maximum principle, and Goh condition.

Definition 2.1.14. Let f, g ∈ Vec(M) , we define their Lie brackets the following
vector field

[f, g](q) =
1

2

∂2

∂t2

∣∣∣∣
t=0

e−tg ◦ e−tf ◦ etg ◦ etf (q), ∀q ∈ M.

where e−tf is the flow defined by −f .

b

b

etf

etg

e−tf

e−tg

q

[f, g](q)

e−tg ◦ e−tf ◦ etg ◦ etf (q)

Figure 2.2: Lie Bracket

Definition 2.1.15. An Hamiltonian is a smooth function on the cotangent bundle

h ∈ C∞(T ∗M).

The Hamiltonian vector field is the vector field associated with h via the canonical
symplectic form σ

σλ(·,−→h ) = dλh.

We denote
λ̇ =

−→
h (λ), λ ∈ T ∗M,

the Hamiltonian system, which corresponds to h .
Let (x1, . . . , xn) be local coordinates in M and (ξ1, . . . , ξn, x1, . . . , xn) induced co-
ordinates in T ∗M, λ =

∑n
i=1 ξidxi . The symplectic form has expression σ =∑n

i=1 dξi ∧ dxi . Thus, in canonical coordinates, the Hamiltonian vector field has
the following form

−→
h =

n∑

i=1

(
∂h

∂ξi

∂

∂xi
− ∂h

∂xi

∂

∂ξi

)
.

Therefore, in canonical coordinates, it is

{
ẋi = ∂h

∂ξi

ξ̇i = − ∂h
∂xi

for i = 1, . . . , n .
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Definition 2.1.16. The Poisson brackets {a, b} ∈ C∞(T ∗M) of two Hamiltonians
a, b ∈ C∞(T ∗M) are defined as follows: {a, b} = σ(~a,~b) ; the coordinate expression
is:

{a, b} =
n∑

k=1

(
∂a

∂ξk

∂b

∂xk
− ∂a

∂xk

∂b

∂ξk

)
.

Remark 2.1.17. Let us recall that, given g1 and g2 vector fields in M , considering
the Hamiltonians a1(ξ, x) = 〈ξ, g1(x)〉 and a2(ξ, x) = 〈ξ, g2(x)〉 , it holds

{a1, a2}(ξ, x) = 〈ξ, [g1, g2](x)〉 .

Remark 2.1.18. Given a smooth function Φ in C∞(T ∗M) , and λ(t) solution of the

Hamiltonian system λ̇ =
−→
h (λ) , the derivative of Φ(λ(t)) with respect to t is the

following
d

dt
Φ(λ(t)) = {h,Φ}(λ(t)).

Pontryagin maximum principle

The Pontryagin maximum principle is the fundamental necessary condition of opti-
mality for optimal control problems. The first classical version of PMP was obtained
or optimal control problems in Rn by L. S. Pontryagin [18].

This principle was born studying optimal problems via the reduction to the at-
tainable sets, that we explained previously.

At first let us present the geometric statement of PMP: it gives the necessary
conditions for any solution q̃(t) = qũ(t) , t ∈ [0, t1] , of a control system

q̇ = fu(q), q ∈ M, u ∈ U ⊂ Rm, (2.1.9)

and initial condition

q(0) = q0, (2.1.10)

such that

q̃(t1) ∈ ∂Aq0(t1).

Define the following family of Hamiltonians:

hu(λ) = 〈λ, fu(q)〉 , λ ∈ T ∗
q M, q ∈ M, u ∈ U.

The geometric statement of the PMP for fixed terminal time t1 is the following.

Theorem 2.1.19. (PMP). Let ũ(t), t ∈ [0, t1], be an admissible control and q̃(t) =
qũ(t) the corresponding solution of Cauchy problem (2.1.9) and (2.1.10). If

q̃(t1) ∈ ∂Aq0(t1),

then there exists a Lipschitzian curve in the cotangent bundle

λt ∈ T ∗
q̃(t)M, 0 ≤ t ≤ t1,
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such that
λt 6= 0 (2.1.11)

λ̇t =
−→
h ũ(t)(λt), (2.1.12)

hũ(t)(λt) = max
u∈U

hu(λt) (2.1.13)

for almost all t ∈ [0, t1].

Proof. See [6], Section 12.3 .

On the other hand, we have the geometric statement of the PMP for free terminal
time.

Theorem 2.1.20. Let ũ(·) be an admissible control for control system (2.1.9) such
that

q̃(t1) ∈ ∂




⋃

|t−t1|<ε

Aq0(t)



 ,

for some t1 > 0 and ε ∈ (0, t1). Then there exists a Lipschitzian curve

λt ∈ T ∗
q̃(t)M, λt 6= 0, 0 ≤ t ≤ t1,

such that
λ̇t =

−→
h ũ(t)(λt),

hũ(t)(λt) = max
u∈U

hu(λt)

hũ(t)(λt) = 0 (2.1.14)

for almost all t ∈ [0, t1].

Proof. See [6], Section 12.2 .

Hence, thanks to Propositions 2.1.9 and 2.1.10, it is possible to see explicitly the
necessary condition of PMP given an admissible control minimizing a cost J(·) .

Theorem 2.1.21. (1) Let ũ, t ∈ [0, t1], be an optimal control for problem (2.1.3)
with fixed terminal time:

J(ũ) = min{J(u) | qu(t1) = q1}.

Define a Hamiltonian function

hν
u(λ) = 〈λ, fu〉 + νφ(q, u), λ ∈ T ∗

q M, u ∈ U, ν ∈ R.

Then there exist a non trivial pair:

(ν, λt) 6= 0, ν ∈ R, λt ∈ T ∗
q̃(t)M,
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such that the following conditions hold:

λ̇t =
−→
h ν

ũ(t)(λt),

hν
ũ(t)(λt) = maxu∈U hν

u(λt), a.e. t ∈ [0, t1],

ν ≤ 0.

(2.1.15)

(2) If ũ is an optimal control for the problem (2.1.21) with free terminal time. We
define an Hamiltonian function in the same way. Then there exists a non trivial
pair (ν, λt) 6= 0 such that conditions (2.1.15) and

hν
ũ(t)(λt) ≡ 0.

hold.

Proof. See [6], Section 12.4 .

Remark 2.1.22. If we have a maximization problem then the inequality for ν should
be:

ν ≥ 0.

Remark 2.1.23. There are two distinct possibilities for the constant parameter ν in
Theorem 2.1.21:

(a) If ν 6= 0, then λt is a normal extremal. Reparametrising (ν, λt) , in this case
ν = −1 .

(b) If ν = 0, then λt is an abnormal case.

2.1.2 Second order optimality condition: Goh condition

Finally, we present the Goh condition, on the singular arcs of the extremal trajectory,
in which we do not have information from the maximality condition of the Pontryagin
maximum principle. We state the Goh condition only for affine control systems that
we denoted in Definition 2.1.4.

Theorem 2.1.24 (Goh condition). Let q̃(t), t ∈ [0, t1] be a time-optimal trajectory
corresponding to a control ũ. If ũ(t) ∈ intU for any t ∈ (τ1, τ2), then there exist an
extremal λ(t) ∈ T ∗

q(t)M such that

〈λ(t), [fi, fj](q(t))〉 = 0, t ∈ (τ1, τ2), i, j = 1, . . . ,m. (2.1.16)

Proof. See [6] Chapter 20 .

2.2 Time-optimal problem, with control in a ball

Let us present the problem that we are going to discuss in this Thesis.

We are interested in analysing the time-optimal problem of solutions of an affine
control system with control in a ball. They are defined as follows.
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Definition 2.2.1. An affine control system is a control system of the following form

q̇ = f0(q) +
k∑

i=1

uifi(q), q ∈ M (2.2.1)

where f0, . . . , fk ∈ Vec(M) and (u1, . . . , uk) ∈ U , taking values in the set U ⊆ Rk .
We assume that f1, . . . , fk are linearly independent in the domain under considera-
tion. The uncontrollable term f0 is called drift.
Moreover, we consider

U = B
k

= {u ∈ Rk : ||u|| ≤ 1}
the closed unitary ball in Rk .

Definition 2.2.2. Given any control system (2.2.1), q0 ∈ M and q1 ∈ Aq0 , the
time-optimal problem consists in minimizing the time of motion from q0 to q1 via
admissible trajectories:






q̇ = f0(q) +
∑k

i=1 uifi(q), u ∈ U
qu(0, q0) = q0

qu(t1, q0) = q1

t1 → min

(2.2.2)

We call these minimizer trajectories time-optimal trajectories, and time-optimal con-
trols the corresponding controls.

As we can notice by the Classical Filippov’s Theorem 2.1.11, the existence of the
time-optimal problem on a affine control system (2.2.1) is guaranteed if U is a convex
compact set and q0 is sufficiently close to q1 .
Moreover, let us present the Pontryagin maximum principle for the time-optimal
problem.

Theorem 2.2.3 (Pontryagin maximum principle - time-optimal problem). Let an
admissible control ũ , defined in the interval t ∈ [0, τ1], be time-optimal for the system
(2.1.1), and let the Hamiltonian associated with this control system be the action on
fu(q) ∈ T ∗

q M of a covector λ ∈ T ∗
q M :

hu(λ) = 〈λ, fu(q)〉 .

Then there exists λ(t) ∈ T ∗
qũ(t)M , for t ∈ [0, τ1], called extremal never null and

lipschitzian, such that for almost all t ∈ [0, τ1] the following conditions hold:

1. λ̇(t) = ~hũ(λ(t))

2. hũ(λ(t)) = maxu∈U hu(λ(t)) (Maximality condition)

3. hũ(λ(t)) ≥ 0.

Given the canonical projection π : TM → M , we denote q(t) = π(λ(t)) the extremal
trajectory.
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2.2.1 Consequence from the optimality conditions

In this thesis we are going to investigate the local regularity of time-optimal trajec-
tories for the n-dimensional affine control system with a k -dimensional control.

By the Pontryagin maximum principle, every time-optimal trajectory of our sys-
tem has an extremal in the cotangent bundle T ∗M that satisfies a Hamiltonian
system, given by the maximized Hamiltonian.

In the following pages we are going to present the first consequences from the
optimality condition in the time-optimal case that we are studying.

At first, let us give some notation and define the singular locus in T ∗M :

Notation 2.2.4. We call hi(λ) = 〈λ, fi(q)〉 , fij(q) = [fi, fj ](q), fijk(q) = [fi, [fj , fk]](q) ,
hij(λ) = 〈λ, fij(q)〉 , and hijk(λ) = 〈λ, fijk(q)〉 , with λ ∈ T ∗

q M and i, j, k ∈ {0, 1, . . . , k} .

Moreover, we denote the following vector H0I(λ) = {h0i(λ)}i ∈ Rk and k× k matrix
HIJ(λ) = {hij(λ)}ij with respect to λ ∈ T ∗M .

Definition 2.2.5. The singular locus Λ ⊆ T ∗M , is defined as follows:

Λ = {λ ∈ T ∗M : h1(λ) = . . . = hk(λ) = 0}.

The following proposition is an immediate Corollary of the Pontryagin maximum
principle.

Proposition 2.2.6. If an extremal λ(t), t ∈ [0, t1], does not intersect the singular
locus Λ, then ∀t ∈ [0, t1]

ũ(t) =





h1(λ(t))

(h2
1(λ(t))+...+h2

k(λ(t)))1/2

...
hk(λ(t))

(h2
1(λ(t))+...+h2

k(λ(t)))1/2



 . (2.2.3)

Moreover, this extremal is a solutions of the Hamiltonian system defined by the Hamil-

tonian H(λ) = h0(λ) +
√

h2
1(λ) + . . . + h2

k(λ) . Thus, it is smooth.

Definition 2.2.7. We will call bang arc any smooth arc of a time-optimal trajectory
q(t) , whose corresponding time-optimal control ũ lies in the boundary of the space
of control parameters: ũ(t) ∈ ∂U .

Corollary 2.2.8. An arc of a time-optimal trajectory, whose extremal is out of the
singular locus, is a bang arc.

From Corollary 2.2.8 we already have an answer about the regularity of time-
optimal trajectories: every time-optimal trajectory, whose extremal lies out of the
singular locus, is smooth.

Remark 2.2.9. Given an affine control system (4.2.2) with n = k , every extremal is
smooth, because the singular locus contains only the null covector Λ = {0} .
This case is called Zermelo Navigation Problem.

As a consequence we are interested in affine control system where n > k .
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However, we do not know what happen if an extremal touches the singular locus,
optimal controls may be not always smooth.

Definition 2.2.10. A switching is a discontinuity of an optimal control.
Given u(t) an optimal control, t̄ is a switching time if u(t) is discontinuous at t̄ .
Moreover given qu(t) the admissible trajectory, q̄ = qu(t̄) is a switching point if t̄ is
a switching time for u(t) .

A concatenation of bang arcs is called bang-bang trajectory.
An arc of an optimal trajectory that admits an extremal totally contained in the

singular locus Λ , is called singular arc.

2.3 Theory of orbits and the Frobenius theorem

In this Subsection we are going to give some preliminaries for Chapter 6: we define
and analyse the orbit of a given family F of vector fields and state die Frobenius
Theorem.

Given the control system

q̇ = f0(q) + u1f1(q) + . . . + ukfk(q), q ∈ M (2.3.1)

where f0, . . . , fk are smooth vector fields and (u1, . . . , uk) admissible control with

value in B
k
, let us denote F = {f1, . . . , fk} ⊂ Vec(M) , we will call

etfi : M → M

the exponential map with respect time t and autonomous vector field fi ∈ F and we
consider

P =
{

etjfj

(
etj−1fj−1

(
· · ·

(
et1f1

)))∣∣∣ ti ∈ R, fi ∈ F , j ∈ N

}
⊂ Diff(M)

the group of diffeomorphisms of M generated by flows in F .

Hence, the orbit of the family F through a point q0 ∈ M is defined as following:

Oq0 =
{

etjfj

(
etj−1fj−1

(
· · ·

(
et1f1(q0)

)))∣∣∣ ti ∈ R, fi ∈ F , j ∈ N

}
.

Theorem 2.3.1. (Orbit Theorem, Nagano-Sussmann). Let F ⊂ Vec(M) and
q0 ∈ M . Then:

1. Oq0 is a connected immersed submanifold of M ,

2. TqOq0 = span
{
P−1
∗ f(q) |P ∈ P, f ∈ F

}
, q ∈ Oq0.

Proof. See [6] Chapter 5.
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Let us give some corollaries.
Let Oq0 be an orbit of family F ⊂ Vec(M) .
If f ∈ F then f(q) ∈ TqOq0 for all q ∈ Oq0 . Indeed, the trajectory t → etf (q)

belongs to orbit Oq0 , thus its velocity vector f(q) is in the tangent space TqOq0 .
Further, if f1, f2 ∈ F , then [f1, f2](q) ∈ TqOq0 , for all q ∈ Oq0 . This follows since

the vector [f1, f2](q) is tangent to the trajectory

t 7−→ e−tf2

(
e−tf1

(
etf2

(
etf1(q)

)))
∈ Oq0 .

Given three vector fields f1, f2, f3 ∈ F , we have [f1, [f2, f3]](q) ∈ TqOq0 , q ∈ Oq0 .
Indeed, it follows that [f2, f3] starting in the immersed submanifold Oq0 do not leave
it.
Then we repeat the argument of the previous items.

We can go on and consider Lie brackets of arbitrarily high order

[f1, [. . . [fk−1, fk] . . .]](q)

as tangent vectors to Oq0 if fi ∈ F . These considerations can be summarized in
terms of the Lie algebra of vector fields generated by F :

LieF = span{[f1, [. . . [fk−1, fk] . . .]] | fi ∈ F , k ∈ N} ⊂ Vec(M),

and its evaluation at point q ∈ M

LieqF = {V (q) |V ∈ LieF} ⊂ TqM.

We obtain the following statement.

Corollary 2.3.2.
LieqF ⊂ TqOq0 (2.3.2)

for all q ∈ Oq0 .

Let us give the definition of bracket-generating family F .

Definition 2.3.3. A family F ⊂ Vec(M) that satisfies property

LieqF = TqM, ∀q ∈ M, (2.3.3)

is called completely nonholonomic or bracket-generating.

Another important corollary of the Orbit Theorem in the Rashevsky - Chow
Theorem.

Theorem 2.3.4. Rashevsky-Chow. Let M be a connected smooth manifold, and
let F ⊂ Vec(M). If the family F is completely nonholonomic, then

Oq0 = M, ∀q0 ∈ M.

Proof. By Corollary 2.3.2, equality (2.3.3) means that any orbit Oq0 is an open set
in M .

Further, consider the following equivalence relation in M :

q1 ∼ q2 ⇔ q2 ∈ Oq1 , q1, q2 ∈ M.

The manifold M is the union of naturally disjoint equivalence classes. Each class is
an open subset of M and M is connected. hence there is only one nonempty class.
That is, M is single orbit Oq0 .
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Analytic case

Let us consider the set Vec(M) as a module over C∞(M) .

Definition 2.3.5. A submodule V ⊂ Vec(M) is called finitely generated over C∞(M)
if it has a finite global basis of vector fields:

∃V1, . . . , Vk ∈ Vec(M) s. t. V =

{
k∑

i=1

aiVi | ai ∈ C∞(M)

}

.

Definition 2.3.6. A submodule V ⊂ Vec(M) is called locally finitely generated over
C∞(M) if any point q ∈ M has a neighbourhood O ⊂ M in which the restriction
F|O is finitely generated over C∞(O) .

Theorem 2.3.7. Let F ⊂ Vec(M). Suppose that the module LieF is locally finitely
generated over C∞(M). Then

TqOq0 = LieqF , q ∈ Oq0 (2.3.4)

for any orbit Oq0 , q0 ∈ M , of the family F .

Proof. See [6] Chapter 5.

Corollary 2.3.8. If M and F are real analytic, then equality (2.3.4) holds.

Proof. In the analytic case, LieF is locally finitely generated. Indeed, any module
generated by analytic vector fields is locally finitely generated. This is Nötherian
property of the ring of germs of analytic functions.

Frobenius Theorem

Definition 2.3.9. A distribution ∆ ⊂ TM on a smooth manifold M is a family of
linear subspaces ∆q ⊂ TqM smoothly depending on a point q ∈ M . Dimension of
the subspaces ∆q , ∀q ∈ M is assumed constant.

Definition 2.3.10. A distribution ∆ on a manifold M is called integrable if for any
point q ∈ M there exists an immersed submanifold Nq ⊂ M , q ∈ Nq , such that

Tq′Nq = ∆q′ , ∀q′ ∈ Nq.

The submanifold is called an integral manifold of the distribution ∆ through the
point q .

In other words, integrability of a distribution ∆ ⊂ TM means that through any
point q ∈ M we can draw a submanifold Nq whose tangent spaces are elements of
the distribution ∆ .

A distribution ∆ may be nonintegrable.

Theorem 2.3.11. Frobenius Theorem A distribution ∆ ⊂ TM is integrable if
and only if in a neighbourhood of any point q0 ∈ M any base of ∆ is closed with
respect to the Lie brackets.
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Proof. Assume that the distribution ∆ is integrable. Any vector field in ∆ is tangent
to the integral manifold N , thus the orbit Oq of the family of vector fields ∆ ,
restricted to a small enough neighbourhood of q ∈ N , is contained in the integral
manifold N .
Moreover, since dimOq ≥ dim∆q = dimN , then locally Oq = N : we can go in
N in any direction along vector fields of the family ∆ . By the Orbit Theorem,
TqOq ⊃ Lieq∆ , that is why

Lieq∆ = ∆q.

it means that in a neighbourhood of any point q ∈ M any base of ∆ is closed with
respect to the Lie brackets.

Viceversa, if in a neighbourhood of any point q0 ∈ M any base of ∆ is closed
with respect to the Lie brackets, then Lie(∆) = ∆ . By Theorem 2.3.7,

TqOq0 = Lie(∆), q ∈ Oq0 ,

thus,
TqOq0 = ∆q, q ∈ Oq0 ,

i.e. the orbit Oq0 is an integral manifold of ∆ through q0 .

2.4 Main purpose of the thesis

2.4.1 Chattering phenomenon

With the term “chattering phenomenon” we mean optimal control with a convergent
series of switchings in a finite time interval.

A typical behaviour of chattering trajectories in a two-dimensional phase space is
given by the Fuller’s Problem. Let us present it.

Fuller’s Problem: Given the system in R2 with coordinates (x1, x2)

ẋ1 = x2, ẋ2 = u, u ∈ [−1, 1]

where the control u is an admissible control, u(·) ∈ L∞[0,∞) , minimize

∫ t1

0
|x1|2dt → min,

with initial and final conditions

(x1(0), x2(0)) = (x0
1, x

0
2), (x1(t1), x2(t1)) = (0, 0).

We want present this problem, because there exist a unique optimal solution (x1(t), x2(t))
and finite terminal time t1 , with a control ũ(t) containing a countable set of switches.
Let us show briefly why. For a more detailed introduction, see [28].

Considering the cotangent space with coordinates ((p1, p2), (x1, x2)) , the Hamil-
tonian parametrized by u is

H = p1x2 + p2u + νx2
1.
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If we are going to study normal or abnormal extremals, then ν = −1 or ν = 0.
By maximality condition the optimal control must be ũ(t) = sgn(p2(t)) if p2(t) 6= 0.
Moreover, (p1(t), p2(t)) satisfy

{
ṗ1 = −2νx1

ṗ2 = −p1.

One can see that there is no singular curve. Indeed, along the singular curve we must
have p2(t) ≡ 0 , then p1 x1 and x2 must be null too.
It follows that all optimal controls are bang-bang, with switching occurring when
p2(t) = 0.
It turns out that the optimal solution has the following properties:

- Optimal controls are bang-bang with infinitely many switchings

- Switchings takes place on the curve
{(

x1
x2

)
: x1+γ|x2|x2 = 0

}
where γ ≈ 0.445

- Time intervals between consecutive switchings decrease in geometric progres-
sion.

The last property is consistent with the fact that the final time must be finite.
The occurrence of a switching pattern in which switching times form an infinite
sequence accumulating near the final time is known as Fuller’s phenomenon, or Zeno
behaviour.
The following Figure shows the switching curve and a sketch of an optimal state
trajectory.

x2

x1

Figure 2.3: Fullers Problem

An other example is the the Markov-Dubins problem with angular acceleration
control. It is a modifies version of the Markov-Dubins problem, in which the control
is angular acceleration rather than angular velocity






ẋ = cos(z)
ẏ = sin(z)
ż = w
ẇ = u.

It is proved in [27] that an optimal trajectory can not contain a junction of a bang-
bang and singular piece, and there are Pontryagin extremals involving infinite switch-
ings.
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2.4.2 Generic conditions

Let us give a digression on the Whitney topology in C∞ , transversality Theorem, and
generic condition.

Definition 2.4.1. Assume, M ⊂ Rn and N ⊂ Rk . We define the C∞ Whitney
topology in C∞(M,N) by defining the set of neighbourhoods U l,ε

f of a given map
f = (f1, . . . , fk) : M → N , which are parametrized by arbitrary l ≥ 0 and arbitrary
positive defined functions

ε : M → (0,∞).

They are defined by

U l,ε
f =

{

g ∈ C∞(M,N) :

∣∣∣∣∣
∂|I|(gi − fi)

∂xI
(x)

∣∣∣∣∣ < ε(x), ∀x ∈ M, i = {1, . . . , k}, |I| ≤ l

}

.

If we restrict the possible l to those satisfying l ≤ r , then we obtain the Whitney Cr

topology.

If M N are manifolds, the same definition of a neighbourhoods of a given f
can be given, by restricting the domain of x to an open chart Φ : U → M in Rn

such that its image under f lies in a given chart Ψ : V → N in Rk , then the open
neighbourhoods of f are also parametrized by such charts Φ and Ψ and form a
family U l,ε,Φ,Ψ

f defined by the set of g ∈ C∞(M,N) such that

∣∣∣∣∣
∂|I|((Ψ1 ◦ g ◦ Φ)i − (Ψ1 ◦ f ◦ Φ)i)

∂xI
(x)

∣∣∣∣∣ < ε(x), ∀x ∈ M, 1 ≤ i ≤ k, |I| ≤ l.

If the functions ε were taken constant, we would obtain the usual C∞ topology in
C∞(M,N) . Since the functions ε are taken arbitrary, in particular decaying fast
when x tends to the boundary of M , this topology is much stronger then the usual
C∞ topology.
We have (see [13]):

1. The space C∞(M,N) with Whitney topology is not metrizable.

2. This space has the Baire property: any countable intersection of open dense
subsets is dense in C∞(M,N) .

By the second property above, we define a residual set in the space C∞(M,N) .

Definition 2.4.2. A residual set is a countable intersection of some open dense
subset in C∞(M,N) .

Definition 2.4.3. A generic property P of maps in C∞(M,N) is a property which
is satisfied by a maps from some residual subset in C∞(M,N) .

Definition 2.4.4. We say that f is transversal to S ⊂ N at x if the image of the
tangent map f∗x is transversal to the tangent space to S at y = f(x) , i.e.,

f∗x(TxM) + TyS = TyM.

We call f transversal to S , if it is transversal to S to each x ∈ M .
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Remark 2.4.5. Given codimS = N − dimS , we note that if codimS > dimM , then

dimf∗x(TxM) + dimTyS < dimN

then transversality of f to S means that

f(M) ∩ S = Ø

holds.

Proposition 2.4.6. The set of maps f : M → N transversal to a given submanifold
S ⊂ N is residual in the Whitney C1 topology. It is also open and dense, if S is a
closed subset of N .

Definition 2.4.7. Given O ⊂ Rn an open set, let us recall that the h-jet jhφ(x) of
a C∞ function φ : M → R is the collection of all coefficients of its Taylor expansion
of order h at x .
If f = (f1, . . . , fk) : M → N ⊂ Rk , then we define jhf(x) = (jh

1 f(x), . . . , jh
k f(x)) .

All such jets fold a space Jh(M,N) .

If M and N are differential manifolds, we can define the jets in coordinate charts.
We denote by ≈x,h , the equivalence relation of k th order tangency of graphs of
f : M → N and g : M → N at x ; in coordinates,

f ≈x,h g

means the coincidence of their Taylor series up to order h at x .

Definition 2.4.8. The h-th jet of a map f : M → N at x is the equivalence class
of f under h-th order tangency at x , namely,

jhf(x) = [f ]x,h.

Remark 2.4.9. The space Jh(M,N) of all h-jets of smooth maps f : M → N forms
a differentiable manifold, with the coordinate charts induced from the coordinate
charts on M and N by “computing the Taylor coefficients up to order h in coordinate
charts”.

In order to state the Thom transversality theorem recall that a given C∞ map
f : N → M has the h-jet extension

jhf : M → Jk(M,N)

given by
x 7→ jhf(x)

which assigns to each point x the coefficients of the h-th order Taylor expansion of
f at x .

Theorem 2.4.10. Thom Transversality Theorem. If S1, . . . , Sl are submani-
folds of Jh(M,N), then the set of maps f ∈ C∞(M,N) such that jhf is transversal
to each of Si , ∀i ∈ {1, . . . , l}, is residual in the Whitney C∞ topology. Moreover, it
is also open if S1, . . . , Sl are closed subsets of Jh(M,N).



2.4. MAIN PURPOSE OF THE THESIS 37

Now, let us see why transversality theory gives us adequate instruments for in-
vestigating generic properties of the affine control system we are studying.
Instead of f : M → N we are going to consider k + 1-uple (f0, f1, . . . , fk) of vector
fields on M , taking value in Rn × . . . × Rn k + 1 times.

Let us call Jk+1,hM the vector bundle on M of all h-jets of k+1-uple (f0, f1, . . . , fk)
of vector fields on M , i.e. the image of the map jh(f0, f1, . . . , fk) .

Let S be a stratified subset of Jk+1,hM such that Jk+1,h
q M ∩S is of codimension

larger than the value m in Jk+1,h
q M , for every q ∈ M . Then, generically, the set of

points q ∈ M , such that the h-jet of (f0, . . . , fk) at q , Jk+1,h
q (f0, . . . , fk) belongs to

S , has codimension larger than m in M .
In particular, if we find S such that m is the dimension on M , then generically

Jk+1,h
q (f0, . . . , fk) does not belong to S , for every q ∈ M .

Therefore, if we find A such that, for every f1, . . . , fk and q such that Jk+1,h
q (f0, . . . , fk) /∈

S , all short time-optimal trajectories near q are finite concatenations of arcs, and if
m is the dimension on M , then, generically, chattering does not occur.

In particular, for any m less equal to the dimension of M , if we can show that
no chattering appears near points for which Jk+1,h

q (f0, . . . , fk) ∈ S , then we actually
give a bound on the dimension of the set of points near which chattering cannot be
excluded.

Main purpose

We are interested in studying the local regularity of time-optimal trajectories defined
by the affine control systems

q̇ = f0(q) + u1f1(q) + . . . + ukfk(q), q ∈ M,

where u takes value in the closed unitary ball.
In general situations discontinuous control are unavoidable, and there could be chat-
tering trajectories.
The main purpose of the thesis is to understand how it is possible to avoid chattering
phenomenon given generic conditions on the vector fields f0, . . . , fk . Namely if it
possible to obtain more regularity with a perturbation of the system.
Thanks to the previous digression, we saw why we look for generic condition, and
which kind of conditions we need to consider in order to complete the theory.
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Chapter 3

Switching in time-optimal

problem, with control in a ball

3.1 Introduction

In this Chapter we are going to present the most general result that we reach during
this years [4]: we analyse local regularity of time-optimal controls and trajectories for
an n-dimensional affine control system with a control parameter, taking values in a
k -dimensional closed ball.

We study singularities of the extremals of the time-optimal problem for the affine
control system of the form:

q̇ = f0(q) +

k∑

i=1

uifi(q), q ∈ M, (u1, . . . , uk) ∈ U , (3.1.1)

where M is a smooth n-dimensional manifold, f0, f1, . . . , fk are smooth vector fields
and (u1, . . . , uk) are admissible controls taking values in U = {u ∈ Rk : |u| ≤ 1} the
k -dimensional ball. We also assume that f1(q), . . . , fk(q) are linearly independent in
the domain under consideration.

In the case of k = n − 1 , we give sufficient conditions in terms of Lie bracket
relations for all optimal controls to be smooth or to have only isolated jump discon-
tinuities.

Indeed, given f0, f1, . . . , fn−1 a generic germ of n-tuple of vector fields at q ,
then the germs of extremal trajectories at q may have only these less degenerate
singularities. More precisely, let us define a vector a ∈ Rn−1 and a matrix A ∈
so(n − 1) by the formulas:

a(q) = {det (f1(q), . . . , fn−1(q), [f0, fi](q))}n−1
i=1 ,

A(q) = {det (f1(q), . . . , fn−1(q), [fi, fj](q))}n−1
i,j=1,

where [·, ·] is a Lie bracket. We have the following:

Theorem 3.1.1. If
a(q̄) /∈ A(q̄)Sn−2, (3.1.2)

39
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then there exists a neighbourhood Oq̄ of q̄ in M such that any time-optimal trajectory
contained in Oq̄ is piecewise smooth with no more than 1 non smoothness point.

Here Sn−2 = {u ∈ Rn−1 : |u| = 1} is the unit sphere.
If n = 3, k = 2, the inequality (3.1.2) reads:

det2 (f1(q̄), f2(q̄), [f0, f1](q̄)) + det2 (f1(q̄), f2(q̄), [f0, f2](q̄)) 6=

6= det2 (f1(q̄), f2(q̄), [f1, f2](q̄)) .

(3.1.3)

In this case, we will see in Chapter 4 that the result of Theorem 3.1.1 follows from
Theorem 4.2.1, and the cited result is a bit stronger than this. Indeed, assumption
(3.1.3) is more restrictive than the assumption used in Theorem 4.2.1:

rank{f1(q̄), f2(q̄), [f0, f1](q̄), [f0, f2](q̄), [f1, f2](q̄)} = 3.

This theory is based on the blow-up techniques and the structure of partially hyper-
bolic equilibria.

3.2 Statement of the result

Let us assume that dim M = n and study the time-optimal problem for the following
system

q̇ = f0(q) +

k∑

i=1

uifi(q), q ∈ M, u ∈ U , (3.2.1)

where k < n , f0, f1, . . . , fk are smooth vector fields, and U = {u ∈ Rk : |u| ≤
1} ; we also assume that f1, . . . , fk are linearly independent in the domain under
consideration, and fij = [fi, fj] with i, j ∈ {0, 1, . . . , k} .

Notation 3.2.1. Recalling Notation 2.2.4, let us introduce the following abbreviated
notation: H0I := H0I(λ̄), HIJ := HIJ(λ̄) , chosen an opportune λ̄ ∈ Λ|q̄ .

In order to prove Theorem 3.1.1, we are going to study extremals for any control
system of the form (3.2.1) with k < n in a neighbourhood of λ̄ ∈ Λq̄ ⊆ T ∗

q̄ M such
that

H0I /∈ HIJ Sk−1, (3.2.2)

where Sk−1 = {u ∈ Rk : |u| = 1} is the unit sphere.

Remark 3.2.2. If k = n − 1 , we should choose λ̄ = f1(q̄) ∧ . . . ∧ fn−1(q̄) . One can
notice that conditions (3.1.2) and (3.2.2) are equivalent.

From Corollary 2.2.8 we already know that every arc of a time-optimal trajectory,
whose extremal lies out of Λ , is bang, and so smooth.
Thus, we are interested to study arcs of a time-optimal trajectories, whose extremals
passes through Λ or lies in Λ .
The fist step is to investigate if our system admits singular arcs.

Proposition 3.2.3. Assuming (3.2.2), there are no optimal extremals in Oλ̄ that lie
in the singular locus Λ for a time interval.
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Thanks to Proposition 3.2.3, if it holds (3.2.2), the description of optimal ex-
tremals in a neighbourhood of λ̄ is essentially reduced to the study of the solutions
of the Hamiltonian system with a discontinuous right-hand side, defined by the Hamil-

tonian H(λ) = h0(λ) +
√

h2
1(λ) + . . . + h2

k(λ) .

Theorem 3.2.4. Assume that condition (3.2.2) is satisfied.
If it holds

H0I /∈ HIJBk, (3.2.3)

where Bk = {u ∈ Rk : |u| < 1}, then there exists a neighbourhood Oλ̄ ⊂ T ∗M
such that for any z ∈ Oλ̄ and t̂ > 0 there exists a unique contained in Oλ̄ extremal
t 7→ λ(t, z) with the condition λ(t̂, z) = z . Moreover, λ(t, z) continuously depends on
(t, z) and every extremal in Oλ̄ that passes through the singular locus is piece-wise
smooth with only one switching.
Besides that, if u is the control corresponding to the extremal that passes through λ̄ ,
and t̄ is its switching time, we have:

u(t̄ ± 0) = [±d Id + HIJ ]−1H0I , (3.2.4)

with d > 0 unique, uni vocally defined by the system and λ̄, such that

〈
[d2 Id − H2

IJ ]−1H0I ,H0I

〉
= 1. (3.2.5)

If it holds
H0I ∈ HIJBk, (3.2.6)

then there exists a neighbourhood Oλ̄ ⊂ T ∗M such that no one optimal extremal
intersects singular locus in Oλ̄ .

Note that HIJBk = HIJSk−1 if the matrix HIJ is degenerate, and that this ma-
trix is always degenerate for odd k . Hence, assuming (3.2.2), we have the following
possibilities:

It holds (3.2.3) if it is verified one of the following
scenarios:

(A) k is odd

(B) k is even and HIJ is degenerate

(C ′) k is even, HIJ is non-degenerate and H0I /∈
HIJBk .

It holds (3.2.6) if it is verified the following scenario:

(C ′′) k is even, HIJ is non-degenerate and H0I ∈
HIJBk .
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Remark 3.2.5. In general, the flow of switching extremals from Theorem 3.2.4 is
not locally Lipschitz with respect to the initial value. Indeed, we found a simple
counterexample for n = 3 k = 2

ẋ =




0
0

αx1



 + u1




1
0
0



 + u2




0
1
x1





that can be easily generalized to any k < n .

Since the Pontryagin maximum principle is a necessary but not sufficient condi-
tion of optimality, even if we have found extremals that passes through the singular
locus, we cannot guaranty that they are all optimal, namely that their projections in
M are time-optimal trajectory. In some cases they are certainly optimal, in particu-
lar, for linear system with an equilibrium target, where to be an extremal is sufficient
for optimality. We will study general case at Chapter 6.

3.3 Proof

In this Section we are going to present at first the proof of Theorem 3.2.4, secondly we
are going to prove Proposition 3.2.3. All together, these statements contain Theorem
3.1.1.

3.3.1 Proof of Theorem 3.2.4

Let us present the Blow-up technique, in order to analyse the discontinuous right-
hand side Hamiltonian system, defined by

H(λ) = h0(λ) +
√

h2
1(λ) + · · · + h2

k(λ), (3.3.1)

in a neighbourhood Oλ̄ of λ̄ .

Blow-up technique

In view of the fact that this is a local problem in Oλ̄ ⊆ T ∗M , it is very natural
consider directly its local coordinates (ξ, x) ∈ Rn∗ × Rn , such that λ̄ corresponds to
(ξ̄, x̄) with x̄ = 0. Hence,

H(ξ, x) = h0(ξ, x) +
√

h2
1(ξ, x) + . . . + h2

k(ξ, x). (3.3.2)

Since f1, . . . , fk are linearly independent everywhere, we can define n− k never null
vector fields fk+1, . . . , fn , such that {f1, . . . , fn} form a basis at any q ∈ M , then we
will have the corresponding hj(ξ, x) = 〈ξ, fj(x)〉 , with j = k + 1, . . . , n . Therefore,
we are allowed to consider the following smooth change of variables

Φ : (ξ, x) −→ ((h1, . . . , hn), x),

so the singular locus becomes the subspace

Λ = {((h1, . . . , hn), x) : h1 = . . . = hk = 0}.
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Notation 3.3.1. In order not to do notations even more complicated, we call λ
any point defined with respect to the new coordinates ((h1, . . . , hn), x) , and λ̄ what
corresponds to the singular point.

Thus, let us define the blow-up technique.

Definition 3.3.2. The blow-up technique is defined in the following way:
We make a change of variables: (h1, . . . , hk) = (ρu1, . . . , ρuk) with ρ ∈ R+ and
(u1, . . . , uk) ∈ Sk−1 . Instead of considering the components h1, . . . , hk of the singular
point λ̄ in Λ , as the point (0, . . . , 0) in the k-dimensional euclidean space, we will
consider it as a sphere Sk−1 , where {ρ = 0} .

λ̄

Blow - up

λ̄

λ̄u

b
b

((h1, . . . , hk, hk+1, . . . , hn), x) ((ρ, u1, . . . , uk, hk+1, . . . , hn), x)

b

Figure 3.1: Blow-up technique

Let us notice that it is good to denote u := (u1, . . . , uk) the Sk−1 -coordinates. As it
is already know from Proposition 2.2.6, every optimal control ũ , that corresponds to
an extremal λ(t) out of Λ , satisfies formula (2.2.3): therefore ũ lies on ∂U = Sk−1 ,
and it is the normalization of the vector (h1(λ(t)), . . . , hk(λ(t))) .
It is useful denote

fu(x) = u1f1(x) + . . . + ukfk(x)

and hu(λ) = 〈ξ, fu(x)〉 ; and finally we can see that

hu(λ) =
√

h2
1 + . . . + h2

k,

namely hu(λ) = ρ , because hu(λ) = u1h1 + . . . + ukhk , and ui = hi√
h2
1+...+h2

k

for all

i ∈ {1, . . . , k} .
Hence, with this new formulation the maximized Hamiltonian becomes

H(λ) = h0(λ) + hu(λ). (3.3.3)

Thanks to Notation 2.2.4, Remarks 2.1.18 and 2.1.17, the Hamiltonian system has
the following form:






ẋ = f0(x) + fu(x)
ρ̇ = 〈H0I(λ), u〉
u̇ = 1

ρ (H0I(λ) − 〈H0I(λ), u〉 u − HIJ(λ)u)

ḣj = h0j(λ) + huj(λ), j ∈ {k + 1, . . . , n}.

(3.3.4)
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Claim 3.3.3. If assumption (3.2.3) is satisfied at the singular point λ̄, then in Sk−1

u 7−→ H0I − 〈H0I , u〉 u − HIJ u (3.3.5)

has two zeros u+ and u− defined in the following way:

u± = [±d Id + HIJ ]−1H0I , (3.3.6)

with d > 0 such that 〈
[d2 Id − H2

IJ ]−1H0I ,H0I

〉
= 1. (3.3.7)

The function (3.3.5) has no zero if it holds assumption (3.2.6).

Proof. Denoting Z := 〈H0I , u〉 , we are looking for u ∈ Sk−1 and Z ∈ R such that

H0I = (Z Id + HIJ)u.

We already know that, if Z = 0, then there is no u ∈ Sk−1 such that H0I = HIJu ,
by assumption (3.2.2). Moreover, since HIJ is a skew-symmetric matrix, if Z 6= 0
then (Z Id + HIJ) is invertible, and

u = (Z Id + HIJ)−1H0I .

Let us consider the function

Z 7−→ ||(Z Id + HIJ)−1H0I ||2 (3.3.8)

that will be continuous even and monotone in the domains (−∞, 0) and (0,+∞) ,
because

||(Z Id + HIJ)−1H0I ||2 =
〈
[Z2 Id − H2

IJ ]−1H0I ,H0I

〉
,

and its derivation with respect to Z2 is negative

d

d(Z2)

〈
[Z2 Id − H2

IJ ]−1H0I ,H0I

〉
< 0.

Indeed, it holds

d
d(Z2)

〈
[Z2 Id − H2

IJ ]−1H0I ,H0I

〉
= −

〈
[Z2 Id − H2

IJ ]−2H0I ,H0I

〉

= −||[Z2Id − H2
IJ ]−1H0I ||2.

We are going to verify if and in which cases the function (3.3.8) takes value 1 two or
zero times. Thus, let us compute the limits of ||(Z Id + HIJ)−1H0I ||2 as Z → ±∞
or Z → 0± .

At first one can observe that,

lim
Z→±∞

||(Z Id + HIJ)−1H0I ||2 = 0+.

In order to compute limZ→0± ||(Z Id + HIJ)−1H0I ||2 , let us assume that HIJ is
in the canonical Jordan form, without loss of generality: it is defined by j ≤ ⌊n

2 ⌋
2 × 2 skew symmetric blocks with the following form

Ji =

(
0 ai

−ai 0

)
i ∈ {1, . . . , j},
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and the rest of the matrix is null.

Let HIJ be a degenerate matrix. If H0I does not belong to its image, namely
H0I /∈ HIJRk , it holds

lim
Z→0±

||(Z Id + HIJ)−1H0I ||2 = +∞.

On the other hand, let us show that if H0I ∈ HIJRk the limit limZ→0± ||(Z Id +
HIJ)−1H0I ||2 is finite strictly grater that 1.

Since HIJ is degenerate, it holds HIJB
k

= HIJSk−1 , then by condition (3.2.2) we

have H0I /∈ HIJB
k
. Thus, given condition H0I ∈ HIJRk we have that for all X ,

such that H0I = HIJ X , it has norm strictly grater than 1 .
Finally, let us define

X =





J−1
1

. . .

J−1
j

0(n−2j)×(n−2j)




H0I ,

and see, by construction, that

lim
Z→0±

||(Z Id + HIJ)−1H0I ||2 = ||X||2 > 1.

Hence, if HIJ is degenerate, by monotonicity and continuity of (3.3.8), there will
be a value Z = d > 0 such that

||(±d Id + HIJ)−1H0I ||2 = 1.

It means that there exist u+ and u− zeros of the function (3.3.5) such that | 〈H0I , u±〉 | =
d . We will assume 〈H0I , u+〉 > 0 and 〈H0I , u−〉 < 0 .
These facts happen in scenarios (A) and (B) of condition (3.2.3).

If HIJ is a non-degenerate matrix, then (3.3.8) is a continuous function for all
Z ∈ R and

lim
Z→0

||(Z Id + HIJ)−1H0I ||2 = ||H−1
IJ H0I ||2.

Thus, in this case the function (3.3.5) will have two or no zeros if and only if

||H−1
IJ H0I || > 1 or ||H−1

IJ H0I || < 1 , namely H0I /∈ HIJBk or H0I ∈ HIJBk .
These are, indeed, scenarios (C ′) and (C ′′) .

Case H0I ∈ HIJBk

.
Once we have seen that (3.3.5) have no zero in this case, let us present the following
Lemma in order to prove Theorem 4.2.5 if H0I ∈ HIJBk .
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Lemma 3.3.4. Let us assume (3.2.2), (3.2.6) and give a neighbourhood Oλ̄ small
enough such that

H0I(λ) − 〈H0I(λ), u〉 u − HIJ(λ)u 6= 0, ∀λu ∈ Oλ̄.

Then there exist two constants c > 0 and α > 0 such that every optimal extremal
that lies for a time interval I ⊆ [0,+∞) in Oλ̄ satisfies the following inequality:
ρ(t) ≥ ce−tαρ(0), for t ∈ I .

Proof. Let us call

v(λ) = H0I(λ) − 〈H0I(λ), u〉 u − HIJ(λ)u, (3.3.9)

by construction, we can assume that for all λ ∈ Oλ̄ it holds

||v(λ)|| > 0.

Since in the compact set Oλ̄ the map λ → v(λ) is continuous and not null, then
there exist constants c1 > 0 and c2 > 0 such that, for all λ ∈ Oλ̄ ,

c1 ≥ ||v(λ)|| ≥ c2 > 0.

Given the extremal λ(t) in Oλ̄ , we can observe that

d

dt
ρ(t)||v(λ(t))|| = ρ(t)

〈v(λ(t)), A(λ(t))〉
||v(λ(t))|| = ρ(t)Ã(λ(t))

where
A(λ(t)) = Ḣ0I(λ(t)) −

〈
Ḣ0I(λ(t)), u(t)

〉
u(t) − ḢIJ(λ(t))u(t).

Let us notice that for any Hamiltonian h(λ) its time-derivative along λ(t) is

ḣ(λ(t)) = {h0 + ρ, h}(λ(t)) = {h0, h}(λ(t)) + {ρ, h}(λ(t))

= {h0, h}(λ(t)) + 1
ρ

∑k
i=1 hi(λ(t)){hi, h}(λ(t))

= {h0, h}(λ(t)) +
∑k

i=1 ui(t){hi, h}(λ(t))

and it is bounded.
As a consequence each component of A(λ(t)) is bounded too, and Ã|O is bounded
from below by a negative constant C

Ã|O ≥ C.

Finally, we can see that

d

dt



 ρ(t)||v(λ(t))||
exp

(∫ t
0 C [||v(λ(s))||]−1 ds

)



 ≥ 0,

hence, for each t ≥ τ1 , by the monotonicity:

ρ(t) ≥ ρ(τ1)
||v(λ(τ1))||
||v(λ(t))|| exp

(∫ t
τ1

C [||v(λ(s))||]−1 ds
)

≥ ρ(τ1)
c2
c1

exp
(

C
c2

(t − τ1)
)

.

Denoting c := c2
c1

and α := − C
c2

, the thesis follows.

This Lemma proves Theorem 4.2.5 if H0I ∈ HIJBk , because it shows that, given
those conditions, every optimal extremal in Oλ̄ does not intersect the singular locus
in finite time, and forms a smooth local flow.
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Case H0I /∈ HIJBk

Proposition 3.3.5. Given condition (3.2.2) and assumption (3.2.3), there exists a
unique extremal that passes through λ̄ in finite time.

Proof. Let us prove that there is a unique solution of the system (3.3.4) passing
through its point of discontinuity λ̄ in finite time.
In order to detect solutions that go through λ̄ , we rescale the time considering the
time t(s) such that d

ds t(s) = ρ(s) and we obtain the following system






x′ = ρ (f0(x) + fu(x))
ρ′ = ρ 〈H0I(λ), u〉
u′ = H0I(λ) − 〈H0I(λ), u〉 u − HIJ(λ)u
h′

j = ρ (h0j(λ) + huj(λ)) , j ∈ {k + 1, . . . , n}.
(3.3.10)

with a smooth right-hand side.
This system has an invariant subset {ρ = 0} in which only the u-component is mov-
ing. Moreover, as we saw from Claim 3.3.3, at λ̄ ∈ {ρ = 0} there are two equilibria
λ̄u−

and λ̄u+ , such that 〈H0I , u+〉 > 0 and 〈H0I , u−〉 < 0 .

Let us present the Shoshitaishvili’s Theorem [22] that explain how is the behaviour
of the solutions in Oλ̄u−

and Oλ̄u+
neighbourhoods of the equilibria λ̄u−

and λ̄u+ in

T ∗M .

Theorem 3.3.6 (Shoshitaishvili’s Theorem). In a n-dimensional manifold N with
λ ∈ N , let

λ̇ = f(λ) (3.3.11)

a dynamical system in N , where f ∈ Ck(N), 2 ≤ k < ∞. Given λ̄ ∈ N there
exists an opportune neighbourhood Oλ̄ such that, via the coordinate chart, (3.3.11) is
described by the following system in Rn

ż = Bz + r(z), z ∈ Rn, (3.3.12)

where r ∈ Ck(Rn), r(0) = 0, ∂zr|0 = 0, and B : Rn → Rn is a linear operator whose
eigenvalues are divided into three groups:

I = {µi, 1 ≤ i ≤ k0|Reµi = 0}
II = {µi, k

0 + 1 ≤ i ≤ k0 + k−|Reµi < 0}
III = {µi, k

0 + k− + 1 ≤ i ≤ k0 + k− + k+|Reµi > 0}

k0 + k− + k+ = n.

Let the subspaces of Rn , which are invariant with respect B and which correspond to
these groups be denoted by X , Y − and Y + respectively, and let Y −×Y + be denoted
by Y .
Then the following assertions are true:
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1. There exists a Ck−1 manifold γ0 that is invariant with respect to (3.3.11),
may be given by the graph of mapping γ0 : X → Y , y = γ0(x), and satisfies
γ0(0) = 0 and ∂xγ0(0) = 0.

2. The system (3.3.11) in Oλ̄ is homeomorphic to the product of the multidimen-
sional saddle ẏ+ = y+ , ẏ− = −y− , and

ẋ = B̂x + r1(x)

where r1(x) is the x-component of the vector r(z), z = (x, γ0(x)), i.e. (3.3.11)in
Oλ̄ is homeomorphic to the system

{
ẏ+ = y+, ẏ− = −y−

ẋ = B̂x + r1(x).

Due to the fact that λ̄u−
and λ̄u+ belong to the invariant subset {ρ = 0} , where

the components ρ , hj with j ∈ {k + 1, . . . , n} and x are fixed, we can observe
that Jacobian matrix of (3.3.10) have the following eigenvalues: 〈H0I , u±〉 that cor-
responds to the ρ-coordinate, the eigenvalues of the matrix ∂uv(λ̄u)|λ̄u±

, recalling

notation (3.3.9), that correspond to the u-coordinate, and 2n− k 0-eigenvalues cor-
responding to the other coordinates.

Thus, let us study ∂uv(λ̄u)|λ̄u±

that has the following form

∂uv(λ̄u)|λ̄u±

= −
[
〈H0I , u±〉 Id + HIJ + u± HT

0I

]
(3.3.13)

where HT
0I is the row vector.

Let us prove that the real part of its eigenvalues is equal −〈H0I , u±〉 .

Let α + iβ be an eigenvalue of ∂uv(λ̄u)|λ̄u±

with wR + iwI 6= 0 eigenvector, as a

consequence we can claim that

{
∂uv(λ̄u)|λ̄u±

wR = αwR − βwI

∂uv(λ̄u)|λ̄u±

wI = αwI + βwR.

Thus, it holds
〈
∂uv(λ̄u)|λ̄u±

wR, wR

〉
+

〈
∂uv(λ̄u)|λ̄u±

wI , wI

〉
= α(|wR|2 + |wI |2) , and

it implies
−〈H0I , u±〉 (|wR|2 + |wI |2) = α(|wR|2 + |wI |2),

because wR and wI are orthogonal to u± . Since wR + iwI 6= 0, it holds

α = −〈H0I , u±〉 .

By Claim 3.3.3, we know that 〈H0I , u−〉 and 〈H0I , u+〉 are not null with opposite
sign. Hence, assuming 〈H0I , u−〉 < 0 , we can conclude that in a neighbourhood of
λ̄u−

there is a stable 1-dimensional submanifold with respect to ρ and an unstable
submanifold with respect to u . Analogously in a neighbourhood of λ̄u+ , we can
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notice the unstable 1-dimensional submanifold with respect to ρ and the stable one
with respect to u .

Central manifolds γ0 of Theorem 3.3.6 applied to the equilibria λ̄u±
are (2n−k )-

dimensional submanifolds defined by the equations ρ = 0, u = u± . The dynamics
on the central manifold is trivial: all points are equilibria.

Hence, according to the Shoshitaishvili theorem, there is a trajectory from the
one-dimensional asymptotically stable invariant submanifold that tends to the equi-
librium point λ̄u−

as s → +∞ , and analogously there is a trajectory from the
one-dimensional asymptotically unstable invariant submanifold that escapes from the
equilibrium point λ̄u+ as s → −∞ .

In order to obtain that exactly one solution of (3.3.10) enters submanifold ρ = 0 at
λ̄u−

and exactly one goes out of this submanifold at λ̄u+ , let us present together with
Shoshitaishvili theorem the following Proposition 3.3.7, that shows the behaviour of
solutions with rescaled time s , in the subset {ρ = 0} where only the u-component
is moving with respect to the equation

u′ = H0I − 〈H0I , u〉 u − HIJu. (3.3.14)

Then it is completely described the whole phase portrait of the system (3.3.10).

b
b

λ̄u+

λ̄u−

Y +
λ̄u+

Y −
λ̄u−

{ρ = 0}

λ̄

Figure 3.2: Solution of (3.3.10) that passes through λ̄ ∈ Λ .

Proposition 3.3.7. Let u(s), s ∈ R , be a solution of system (3.3.14) that is not an
equilibrium. Then u(s) → u± as s → ±∞.

Proof. Let y(t) be a solution of the system ẏ = |y|H0I − HIJy, y ∈ Rk , then
u(t) = 1

|y(t)|y(t) satisfies system (3.3.14). Consider a linear (k + 1)-dimensional
system

ẋ = 〈H0I , y〉, ẏ = xH0I − HIJy. (3.3.15)

Its solutions preserve the Lorentz form Q(x, y) = x2 − |y|2 and, in particular, the
cone

C = {(x, y) ∈ Rk+1 : x2 = |y|2}.
We obtain that s 7→ y(s) is a solution of system ẏ = |y|H0I − HIJy, y ∈ Rk if and
only if s 7→ (|y(s)|, y(s)) is a solution of (3.3.15).
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System (3.3.15) has a form ż = Bz , where z = (x, y) and B is a
(k + 1) × (k + 1)-matrix. Moreover, vectors (1, u±) are eigenvectors of the ma-
trix B with eigenvalues 〈H0I , u±〉 . System ż = Bz preserves any invariant subspace
of B and in particular hyperplanes T(1,u±)C . Note that the projectivization of C is
a strictly convex cone, hence C ∩ T(1,u±)C = span{(1, u±)} .

We obtain that a co-dimension two subspace E = T(1,u±)C ∩ T(1,u±)C has zero
intersection with C . It follows that quadratic form Q is sign-definite on the subspace
E . Hence all solutions of system ż = Bz that belong to the invariant subspace E
are bounded for both positive and negative time. Any solution of system ż = Bz has
a form:

s 7→ c+es〈H0I ,u+〉(1, u+) + c−es〈H0I ,u−〉(1, u−) + e(s),

where e(s) ∈ E . Recall that 〈H0I , u+〉 is positive and 〈H0I , u−〉 is negative. Collect-
ing now all the information we obtain that any nonzero solution of system ż = Bz
that belong to the invariant cone C asymptotically tends to the line span{(1, u±)}
as s → ±∞ .

b

b

u−

u+

ũ(s)

u(s)

Figure 3.3: Two distinct solution u(s) and ũ(s) of (3.3.14).

Once we have study the system (3.3.10) with rescaled time s , we are going to
show that the trajectory that we found, which enters in λ̄u− and goes out from λ̄u+ ,
is an extremal of the system (3.3.4) that passes through λ̄ in finite time.

Thus, let us estimate the time ∆t that this extremal needs to reach λ̄ .

Due to the facts that 〈H0I , u−〉 < 0 and 〈H0I(λ), u〉 at λ̄u−
is continuous with

respect to λu , there exist a neighbourhood Oλ̄u−
of λ̄u−

, in which 〈H0I(λ), u〉 is
bounded from above by a negative constant c1 < 0 , namely 〈H0I(λ), u〉|Oλ̄u−

< c1 <

0 .
Hence, in Oλ̄u−

we have the following estimate of the derivative ρ′

ρ′ = ρ 〈H0I(λ), u〉 < ρ c1,

consequently until ρ(s) > 0 , it holds

∫ s

s0

ρ′

ρ
ds <

∫ s

s0

c1ds,



3.3. PROOF 51

then this inequality implies log(ρ(s)) < c1(s − s0) + log(ρ(s0)) , and so

ρ(s) < ρ(s0)e
c1(s−s0).

Since d
ds t(s) = ρ(s) , the amount of time that we want to estimate is the following

∆t = lim
s→∞

t(s) − t(s0) =

∫ ∞

s0

ρ(s)ds,

therefore,

∆t =

∫ ∞

s0

ρ(s)ds < ρ(s0)

∫ ∞

s0

ec1(s−s0)ds =
ρ(s0)

−c1
< ∞.

The amount of time in which this extremal goes out from λ̄ may be estimate in an
analogous way.

By the previous proposition and the fact that every extremal out of Λ is smooth,
it is proven that there exist a neighbourhood Oλ̄ ⊂ T ∗M such that for any z ∈ Oλ̄

and t̂ > 0 there exists a unique extremal t 7→ λ(t, z) contained in Oλ̄ ⊂ T ∗M with
condition λ(t̂, z) = z .

Let us conclude the proof with the following proposition.

Proposition 3.3.8. The map (t, z) → λ(t, z) continuously depends on (t, z) ∈ I ×
Oλ .

Proof. At first let us observe that for all singular point λ ∈ Oλ̄ the phase portrait in
the rescaled time after blow up have the same structure. Moreover, the splitting of
the phase space on the hyperbolic and central part continuously depend on λ . This
follows from basic facts on invariant submanifold, see [12] for details.

To guarantee continuity of the map (t, z) 7→ λ(t, z) it remains to prove that for
each ε > 0 there exists a neighbourhood Oε

λ̄
such that the maximum time interval

of the extremals in this neighbourhood ∆Oε
λ̄
t is less than ε .

As we saw previously, the solution of (3.3.10) through λ̄ arrives and goes out at
u− and u+ . Let us fix two neighbourhoods Oλ̄u+

of λ̄u+ and Oλ̄u−
of λ̄u−

, we can

distinguish three parts of any trajectory close to λ̄ : the parts in Oλ̄u−
and in Oλ̄u+

,

and the part between those neighbourhoods.
In this last region, since each ρ-component is close to 0 and the corresponding time
interval with time s is uniformly bounded, as we saw in Proposition 3.3.7, then ∆t
is arbitrarily small with respect to Oλ̄ .
Hence, in Oλ̄u−

we are going to show that there exists a sequence of neighbourhoods

of λ̄u− (
OR

u−

)

R
,

such that
lim

R→0+
∆OR

u−

t = 0.

For simplicity, we are going to prove this fact in Oλ̄u−
, because the situations in

Oλ̄u+
is equivalent.
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Let us denote OR
u−

a neighbourhood of λ̄u−
such that OR

u−
⊆ Oλ̄u−

, for each λ ∈ OR
u−

ρ < R and ||u − u−|| < R . Therefore, we can define

MR = sup
λ∈OR

u−

〈H0I(λ), u〉 ,

and assume that it is strictly negative and finite, due to the fact that we can choose
Oλ̄u−

in which 〈H0I(λ), u〉 is strictly negative and finite.

Hence, for every λ(t(s)) in OR
u−

, until its ρ-component is different that zero, it holds

ρ̇(s)

ρ(s)
< MR,

then
ρ(s) < ρ(s0)e

MR(s−s0),

for every s > s0 .
Consequently, ∆OR

u−

t can be estimated in the following way:

∆OR
u−

t <

∫ ∞

s0

ρ(s0)e
MR(s−s0)ds =

ρ(s0)

−MR
<

R

−MR
.

Due to the fact that limR→0+
R

−MR
= 0, we have proved that for each ε > 0 there

exists OR
u−

such that ∆OR
u−

t < ε .

3.3.2 Proof of Proposition 3.2.3

Let us assume that there exist a time-optimal control ũ , and an interval (τ1, τ2) such
that ũ corresponds to an extremal λ(t) in Oλ̄ , and λ(t) ∈ Λ , ∀t ∈ (τ1, τ2) . By
construction, for t ∈ (τ1, τ2) it holds






d
dth1(λ(t)) = 0
...
d
dthk(λ(t)) = 0.

(3.3.16)

Since the maximized Hamiltonian associated with ũ is

Hũ(λ) = h0(λ) + ũ1h1(λ) + . . . + ũkhk(λ),

by Remark 2.1.18, (3.3.16) implies

H0I(λ(t)) − HIJ(λ(t))ũ = 0.

Moreover, due to condition (3.2.2),we can claim that, choosing Oλ̄ small enough,

H0I(λ(t)) /∈ HIJ(λ(t))Bk or H0I(λ(t)) ∈ HIJ(λ(t))Bk , for all t ∈ (τ1, τ2) .

If H0I(λ(t)) /∈ HIJ(λ(t))Bk , we arrive to a contradiction, because in this case ||ũ|| >
1 but the norm of admissible controls is less equal than 1 . On the other hand, if
H0I(λ(t)) ∈ HIJ(λ(t))Bk , such extremals might exist, but they are not optimal by
the Goh Condition, presented at Subsection 2.1.2.



Chapter 4

Switching in time-optimal

problem, the 3D case with 2D

control

4.1 Introduction

In this chapter we are going to present a deeper result on local regularity of time-
optimal problem for the affine control system in a 3-dimensional manifold M with
control in a 2-dimensional disk U :

q̇ = f0(q) + u1f1(q) + u2f2(q), q ∈ M, (4.1.1)

where f0 , f1 and f2 are smooth vector fields in M , (u1, u2) admissible controls
taking values in U = {(u1, u2) ∈ R2 : u2

1 + u2
2 ≤ 1} ; we also assume that f1 and f2

are linearly independent, in the domain under consideration.
In Chapter 3, we proved that if k = n − 1 it is possible to avoid chattering

trajectories in a neighbourhood Oq̄ of q̄ , if we assume condition (3.1.2) at q̄ ∈ M .
If n = 3 and k = 2 (3.1.2) reads

det2 (f1(q̄), f2(q̄), [f0, f1](q̄)) + det2 (f1(q̄), f2(q̄), [f0, f2](q̄)) 6=

6= det2 (f1(q̄), f2(q̄), [f1, f2](q̄)) .
(4.1.2)

In this chapter we are going to present a more complete result in this dimension,
assuming the weaker condition

rank{f1(q̄), f2(q̄), f01(q̄), f02(q̄), f12(q̄)} = 3. (4.1.3)

Since in Chapter 3 we have already showed the behaviour of all possible extremals in
the neighbourhood Oλ̄ of λ̄ ∈ Λ such that π(λ̄) = q̄ , if it holds (4.1.2), we will focus
our attention in the case in which

det2 (f1(q̄), f2(q̄), [f0, f1](q̄)) + det2 (f1(q̄), f2(q̄), [f0, f2](q̄)) =

= det2 (f1(q̄), f2(q̄), [f1, f2](q̄))
(4.1.4)

that is included in condition (4.1.3).

53
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4.2 Statement

Theorem 4.2.1. Let q̄ ∈ M ; if it holds

rank{f1(q̄), f2(q̄), f01(q̄), f02(q̄), f12(q̄)} = 3, (4.2.1)

then there exists a neighbourhood Oq̄ of q̄ in M such that any time-optimal trajectory
contained in Oq̄ is bang-bang, with no more than one switching.

Let us give the following notation.

Notation 4.2.2. Let λ̄ = f1(q̄)×f2(q̄) ∈ Λq̄ and introduce the following abbreviated
notations: hij := hij(λ̄) , ∀i, j ∈ {0, 1, 2} , and r := (h2

01 + h2
02)

1/2 .

As we did in Chapter 3, we are going to study directly the behaviour of extremals
in the cotangent bundle in the neighbourhood of λ̄ , that is any lift of q̄ in Λq̄ ⊆ T ∗

q̄ M ,
not null.
Let us give an equivalent condition to (4.2.1) at the point λ̄ .

Claim 4.2.3. Given λ̄ ∈ Λq̄ ⊆ T ∗
q̄ M , λ̄ 6= 0, equation (4.2.1) is equivalent to

h2
01 + h2

02 + h2
12 6= 0,

namely,
r2 + h2

12 6= 0. (4.2.2)

Moreover, analogously it is possible to rewrite condition (4.1.2) at λ̄, it is

r2 6= h2
12. (4.2.3)

Due to the homogeneity of any hij with respect to λ, inequalities (4.2.2) and (4.2.3)
dos not depend on the choice of λ̄ ∈ Λq̄ .

Proof. Since by construction λ̄ is orthogonal to f1(q̄) and f2(q̄) , (4.2.1) will be true
if and only if the valuers h01(λ̄) h02(λ̄) and h12(λ̄) can not be all null. On the other
hand inequality (4.2.3) comes from definition of λ̄ .

Let us recall with this simplified notation what was claimed by Proposition 3.2.3.

Proposition 4.2.4. If r2 6= h2
12 there are no optimal extremals in Oλ̄ that lie in the

singular locus Λ for a time interval. On the other hand, if r2 = h2
12 there might be

arcs of optimal extremal contained in Λ.

In the same way we have Theorem 3.2.4:

Theorem 4.2.5. Suppose that r2 6= h2
12 .

If
r2 > h2

12, (4.2.4)

then there exists a neighbourhood Oλ̄ ⊂ T ∗M such that for any z ∈ Oλ̄ and t̂ > 0
there exists a unique contained in Oλ̄ extremal t 7→ λ(t, z) with the condition λ(t̂, z) =
z . Moreover, λ(t, z) continuously depends on (t, z) and every extremal in Oλ̄ that
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passes through the singular locus is piece-wise smooth with only one switching.
Besides that, we have:

u(t̄ ± 0) =
1

r2

(
−h02h12 ± h01(r

2 − h2
12)

1
2 , h01h12 ± h02(r

2 − h2
12)

1
2

)
, (4.2.5)

where u is the control correspondent to the extremal that passes through λ̄ , and t̄ is
its switching time. If

r2 < h2
12, (4.2.6)

then there exists a neighbourhood Oλ̄ ⊂ T ∗M such that every optimal extremal does
not intersect the singular locus in Oλ̄ ; all the optimal trajectories which are close to
q̄ are smooth bang arcs.

Remark 4.2.6. We would like to stress the fact that formula (4.2.5) explicitly describes
the jump of the time-optimal control at the switching point in terms of Lie brackets
relations.
If the value h12 equals zero at the jump point, then the control reaches the antipodal
point of the boundary of the disk. This happen at points where f1 f2 and f12 are
linearly dependent.
Moreover, if the inequality r2 > h2

12 is close to being an equality the jump will be
smaller and smaller.

In the limit case r2 = h2
12 we have the following result:

Proposition 4.2.7. If
r2 = h2

12, (4.2.7)

there exists a neighbourhood of q̄ such that any time-optimal trajectory that contains
q̄ and is contained in the neighbourhood is a bang arc. The correspondent extremal
either remains out of the singular locus Λ, or lies in

Λ ∩
{
λ ∈ T ∗M |h2

01(λ) + h2
02(λ) = h2

12(λ)
}

. (4.2.8)

Anyway, the correspondent optimal control will be smooth without any switching, tak-
ing values on the boundary of U , in both cases.

Remark 4.2.8. One can notice that the case, in which an extremal λ(t) lies in (4.2.8)
for a time interval, is very rare. Indeed, necessarily along the curve the following
conditions (Pk) on (f0, f1, f2) hold, i.e. tag the equalities as (Pk)

dk

dtk
(
h2

01(λ(t)) + h2
02(λ(t)) − h2

12(λ(t))
)

= 0, k ∈ N,

and it is easy to see that at least conditions (P0) (P1) and (P2) are distinct and
independent.

Theorem 4.2.1 is given by Proposition 4.2.4, Theorem 4.2.5 and Proposition 4.2.7.
Since Proposition 4.2.4 and Theorem 4.2.5 are included in Proposition 3.2.3 and
Theorem 3.2.4, hence it remains to prove Proposition 4.2.7.
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4.3 Proof of Proposition 4.2.7

At first, let us remember that we have already proved by Proposition 4.2.4 that there
could exist an optimal extremal λ(t) contained in the singular locus Λ , in particular
in (4.2.8) and the correspondent controls take values on the boundary of the disk U ,
with equation {

u1(t) = −h02(λ(t))
h12(λ(t))

u2(t) = h01(λ(t))
h12(λ(t))

in the corresponding time interval I .

Now, let us study the extremal out side the singular locus and analyse the Hamil-
tonian system if n = 3 and k = 2, it can be written in the following way






ẋ = f0(x) + fθ(x)
ρ̇ = cos(θ)h01(λ) + sin(θ)h02(λ)

θ̇ = 1
ρ [h12(λ) + (− sin(θ)h01(λ) + cos(θ)h02(λ))]

ḣ3 = h03 + hθ3.

(4.3.1)

We are going to show that, given a time-optimal trajectory through q̄ , whose ex-
tremal has a point out of the singular locus, then it does not attain Λ in finite time.

At first, let us consider the neighbourhood Oλ̄θ̄
of λ̄θ̄ included in Oλ̄ , such that θ̄

is the unique angle such that h12 + cos(θ̄)h02 − sin(θ̄)h01 = 0. In this neighbourhood
we are going to see that in Oλ̄θ̄

the ρ component of the extremal .

Without loss of generality, we assume that θ̄ = 0.
We omit some routine details and focus on the essential part of the estimate. First
we freeze slow coordinates x, h3 and study the system (4.3.1) with only two variables
ρ, θ . In the worst scenario we get the following system:

{
ρ̇ = − sin(θ) − ρ

θ̇ = 1
ρ (1 − cos(θ)) + 1.

Consequently, the behaviour of ρ-component with respect the θ -component is de-
scribed by the following equation:

ρ′(θ) =
−ρ(sin(θ) + ρ)

1 − cos(θ) + ρ
. (4.3.2)

With the next Lemma 4.3.1 we analyse (4.3.2) and prove that, on the θ -axis there
exists an interval I containing 0 , on which ρ has a positive increment for any suffi-
ciently small initial condition ρ(0) = ρ0 > 0 .

Lemma 4.3.1. Given Oλ̄θ̄
, there exist η > 0 small enough and θ1 > 0, such that for

every initial values (ρ(0), θ(0)) = (ρ0, 0) with ρ0 6= 0, the solution of system (4.3.2)
satisfies the following implication: if θ > θ1 then

ρ(−θ) < ρ(η θ).
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Proof. Given any η > 0 and any solution of (4.3.2) ρ(θ) , we are going to compare
the behaviour of ρ̃(θ) = ρ(−θ) and ρ̂(θ) = ρ(η θ) for θ > 0 .
They will be solutions for θ > 0 of the following two systems

ρ̃′(θ) =
ρ̃(ρ̃ − sin(θ))

1 − cos(θ) + ρ̃

and

ρ̂′(θ) = −η
ρ̂(ρ̂ + sin(η θ))

1 − cos(η θ) + ρ̂
.

We can see that ρ̃′(0) > ρ̂′(0) , thus if θ is very small it holds ρ̃(θ) > ρ̂(θ) .
On the other hand, let us notice that choosing η > 0 small there exists ν > 1 such
that if θ > ν ρ then ρ̂′(θ) > ρ̃′(θ) . By the classical theory of dynamical system, this
implies that in the domain

{(ρ, θ) | θ > νρ}
if ρ̂(θ) > ρ̃(θ) at a certain θ > 0 , then the inequality remains true for every bigger
value.
In order to compare the behaviour of ρ̃(θ) and ρ̂(θ) when ρ0 tends to zero, we
consider the following re-scaling:






θ = st
ρ̃ = s + s2x(t)
ρ̂ = s + s2y(t)

where s is the initial value ρ0 and x(0) = y(0) = 0.
One can easily notice that if s tends to 0 then

{
x′(t) = 1 − t + O(s)
y′(t) = η(−1 − ηt) + O(s),

hence, it holds {
x0(t) = t − 1

2t2 + O(s)

y0(t) = −ηt − η2

2 t2 + O(s),

and

x0(t) − y0(t) = t

(
(1 + η) − (1 − η2)

2
t

)
+ O(s).

Hence, there exist T > 2 1+η
1−η2 > 2 , such that, denoting ρMAX

0 the maximum among

the initial values ρ0 in Oλ̄θ̄
, and calling θ1 = ρMAX

0 T , it holds that if θ > θ1 then
ρ̃(θ) < ρ̂(θ) , namely

ρ(−θ) < ρ(η θ).

Hence, given λ(t) extremal that runs close to λ̄ , we can denote J ⊆ [0,∞) the
time interval that the extremal needs to arrive in λ̄ .
We can assume that, until λ(t) attains λ̄ , the θ -component is monotone θ̇ > 0 , and
that λ(0) ∈ Oλ̄ \ Oλ̄θ̄

.
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Let us denote [ti, ti+1] , with i ∈ {0, 2, 4, . . .} even, the sub intervals of J in which
λ(t) ∈ Oλ̄θ̄

and the ρ component increases, as we saw in the previous lemma. Thus,
J is the union of a infinite number of separated intervals.

Denoting ρ(t) and θ(t) the ρ and θ -components of λ(t) , let us define λ̂(t) with
components ρ̂(t) θ̂(t) such that

λ̂(0) = λ(0)

ρ̂(ti) = ρ̂(ti+1), ∀i even

θ̂(tj) = θ(tj), ∀j ∈ N

and λ̂(t) satisfies the Hamiltonian system (4.3.1) in Oλ̄ \ Oλ̄θ̄
.

Now, we redefine λ̂(t) gluing together its arcs in Oλ̄ \ Oλ̄θ̄
, it will be a curve

in Oλ̄ \ Oλ̄θ̄
discontinuous in all its components except for the ρ̂ component. We

redefine λ̂(t) in this time interval Ĵ denoted as follows: it is the interval

J \ ∪i even[ti, ti+1),

gluing together all its parts.

By construction we have that

ρ(t) ≥ ρ̂(t), ∀t ∈ Ĵ .

With the following claim let us estimate ρ̂(t) with respect to ρ̂(0) , that is equal to
ρ(0) , in order to give a final estimate of ρ(t) with respect to ρ(0) .

Claim 4.3.2. There exist two constants c > 0 and α > 0 such that ρ̂(t) ≥ c e−tαρ̂(0)
for all t > 0.

Proof. Let us call

v(λ) = h12(λ) + (− sin(θ)h01(λ) + cos(θ)h02(λ)) .

By construction, ∀λ ∈ Oλ̄ \ Oλ̄θ̄

v(λ) 6= 0,

moreover in Oλ̄ \ Oλ̄θ̄
the map λ → v(λ) is continuous and not null, then it is

bounded and there exist constants c1 > 0 and c2 > 0 such that

c1 ≥ v(λ) ≥ c2 > 0.

Given the λ̂(t) we can observe that

d

dt
ρ̂(t)v(λ̂(t)) = ρ(t)A(λ̂(t))

where
A(λ̂(t)) = ḣ12(λ̂(t)) + cos(θ̂(t))ḣ02(λ̂(t)) − sin(θ̂(t))ḣ01(λ̂(t)).
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Moreover, we can claim that A(λ̂(t)) is bounded from below by a negative constant
C

A(λ̂(t)) ≥ C.

Finally, we can see that

d

dt



 ρ̂(t)v(λ̂(t))

exp
(∫ t

0 Cv(λ̂(s))−1ds
)



 ≥ 0,

hence, for each t ≥ 0 , by the monotonicity:

ρ̂(t) ≥ ρ̂(0) v(λ̂(0))

v(λ̂(t))
exp

(∫ t
0 C

[
λ̂(s)

]−1
ds

)

≥ ρ̂(0) c2
c1

exp
(

C
c2

t
)

.

Denoting c := c2
c1

and α := − C
c2

, the thesis follows.

Thanks to Claim 4.3.2 and this construction we conclude that there exist c > 0
and α > 0 such that

ρ(t) ≥ ρ(0) ce−tα, ∀t ∈ J

and prove that the extremal λ(t) can not attain in finite time the singular point λ̄ .
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Chapter 5

Switching in time-optimal

problem: Linear control system

5.1 Introduction

In this Chapter we are going to consider the global regularity of the time-optimal
problem for a linear control system in Rn , that is a particular case of affine control
system.

5.1.1 Linear control systems

Let us start with some Definition

Definition 5.1.1. A linear control system is a family of dynamical system

ẋ = Ax + c + Bu, x ∈ Rn (5.1.1)

parametrized by admissible control u taking values in U ⊆ Rk , where A and B are
a real constant matrices n × n and n × k , c ∈ Rn is constant too.
Let us assume B with the maximum rank: rank(B) = k . During this chapter, we
will consider B = (b1, . . . , bk) matrix formed by k linearly independent vector in Rn .

Due to the fact that admissible controls are locally integrable, given an initial
point x0 ∈ Rn let us directly compute the corresponding solution x(t, u, x0) :

x(t, u, x0) = etA
(
x0 +

∫ t
0 e−τA (Bu(τ) + c) dτ

)

= etAx0 + etA−Id
A c + etA

∫ t
0 e−τABu(τ)dτ

(5.1.2)

Let us analyse the attainable sets of this system considering U = Rk the whole
k-dimensional space as the space of control parameters.

Definition 5.1.2. The system (5.1.1) on Rn is called completely controllable for all
t > 0 if

Ax0(t) = Rn, ∀x0 ∈ Rn.

61



62 CHAPTER 5. LINEAR CONTROL SYSTEM

This means that for any pair of point x0 and x1 in M there exists an admissible
control u(·) such that x(·, u, x0) of the control system goes from x0 to x1 in t time

x(0, u, x0) = x0, x(t, u, x0) = x1.

The completely controllability of linear systems can be explicitly studied by the
following observation. The affine mapping (5.1.2) is surjective if and only if its linear
part

u → etA

∫ t

0
e−τABu(τ)dτ (5.1.3)

is onto. Moreover, it is surjective if and only if the map

u →
∫ t

0
e−τABu(τ)dτ (5.1.4)

is onto. Let us present the following Theorem that give an equivalent condition on the
matrices A and B of the system that is equivalent to the completely controllability
for a time t > 0 . It is called Kalman’s Criterion.

Theorem 5.1.3. Kalman’s Criterion The linear control system (5.1.1) is com-
pletely controllable for time t ≥ 0 if and only if.

rank{B,AB, . . . , An−1B} = n, (5.1.5)

where {B,AB, . . . , An−1} is the Kalman’s controllability matrix n × nk formed by
the columns of all those matrices.

Proof. Let us assume by contradiction that (5.1.5) does not hold. Then, there exists
p ∈ Rn not null such that

pT AjB = 0 ∈ Rk, (5.1.6)

for all j ∈ {0, . . . , n − 1} . By the Cayley-Hamilton Theorem1 we can claim that An

is a linear combination of A, . . . , An−1 , thus for all ñ ≥ n also Añ is equal to a linear
combination of A, . . . , An−1 .
Hence, the assumption (5.1.6) implies

pT AiB = 0 ∈ Rk

for all i ∈ N .
Since the exponential matrix is defined in the following way

e−tA = Id − tA +
t2

2!
An + ... + (−1)n

tn

n!
An + ... ,

1The characteristic polynomial of A is a monic polynomial and its degree is n, such that pA(λ) =
det(λI − A) . The Cayley-Hamilton Theorem proves that pA(A) = 0 , hence with opportune real

αj it holds

A
n =

n−1
X

j=1

αjA
j
.
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we have that

pT e−tAB = 0 ∈ Rk.

As a result, there exists p ∈ Rn not null such that

pT

(∫ t

0
e−τABu(τ)dτ

)
= 0,

for all admissible control u ∈ U , and it gives the contradiction: the function (5.1.4)
is not surjective in Rn .

Vice-versa, if we assume by contradiction that the map (5.1.4) is not surjective,
then there exists p ∈ Rn not null such that

pT

(∫ t

0
e−τABu(τ)dτ

)
= 0 (5.1.7)

for all admissible control u ∈ U . In particular, let us chose the following u ∈ U not
null only in the i-th component:

u(t) = (0, ..., 0, vs(τ), 0, ..., 0)

where

vs(τ) =

{
1 0 ≤ τ ≤ s
0 τ > s

.

Then the equation (5.1.7) becomes:

pT

(∫ s

0
e−τAbidτ

)
= 0

with s ∈ R and bi the i-th column of B .
Since it holds for all s ∈ [0, t1] and i ∈ {1, . . . , k} we have

pT e−tAB = 0 ∈ Rk, ∀t ∈ [0, t1]. (5.1.8)

Let us, hence, derive this equality n − 1 times at t = 0: we obtain that

pT AjB = 0, ∀j ∈ {0, . . . , n − 1}.

It gives a contradiction of the condition (5.1.5).

5.2 Linear Time-optimal Problem, with control in a ball

Now, we are going to study an optimal problem for a linear control system, in par-
ticular let us consider the linear time-optimal problem.

The linear time-optimal problem for such a control system is the following






ẋ = Ax + Bu, x ∈ Rn, u ∈ U ,
x(0) = x0, x(t1) = x1 ∈ Ax0(t1), x0, x1 ∈ Rn fixed,
t1 → min,

(5.2.1)
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where A B are constant matrices of order n×n and n× k respectively and u is an
admissible control taking value in U ⊂ Rk strictly contained in Rk .

In particular we are going to assume U = B
k

the k -dimensional closed unitary ball.

Let us spend few words about this assumption.

As we saw in Chapter 2, we reduce the problem of optimality to the study of
attainable sets. In order to have the existence of the optimal trajectories we have
to guaranteed the compactness of the extended attainable sets that we denoted in
Proposition 2.1.9 and Proposition 2.1.10.
Since we are considering time-optimal problem, it is enough study directly the at-
tainable set of the system.
Thanks to the Filippov’s Theorem, in order to have a compact attainable set Ax0 for
any x0 ∈ Rn initial point, we need to consider U compact and fU (q) convex.
From Chapter 2, we saw that there is a standard procedure, called Relaxation, which
extends the velocity set fU(q) to its convex hull.
For the linear control system ẋ = Ax + Bu with A B constant, that we are consid-
ering, we extend the velocity set fU (q) to its convex hull extending U to its convex
hull of U .
An example of compact and convex set Rk is the polytope, that is the convex hull of
a finite number of point a1, . . . , am in Rk . Indeed, the classical linear time-optimal
problem, that was studied and explained in the book [18], written by Pontryagin
Boltyanskij Granmkrelidze and Mishchenko, consider the space of control parameters
U as a polytope in Rk .

In this Thesis, we are going to study directly the time-optimal problem with

U = B
k
. Anyway let us notice that many of the results that we are going to show

holds if U is compact and strictly convex with analytic boundary.

Let us recall the Pontryagin maximum principle in this setting, then we will
present its consequences.

Theorem 5.2.1. (Pontryagin maximum principle) Let ũ(t) be, for t ∈
[0,∞), a time-optimal control, and xũ(t) the corresponding trajectory.
We define the Hamiltonian

hu(x, p) = pT (Ax + c + Bu)

with (x, p) ∈ Rn × Rn , u ∈ U .
Then there exists p(t) ∈ Rn Lipschitzian curve never null, such that for almost every
t ∈ [0,∞) it holds:

1. {
ẋ = Ax + c + Bu
ṗT = −pT A

2. hũ(t)(x(t), p(t)) = maxu∈U hu(x(t), p(t)), namely

p(t)T Bũ(t) = max
u∈U

p(t)T Bu



5.2. LINEAR SYSTEM WITH CONTROL IN A BALL 65

3. hũ(t)(p(t)) ≥ 0.

Let us stress the fact that the component p(t) of the extremal (x(t), p(t)) is
defined only by the matrix A and an initial value p0 :

p(t)T = pT
0 e−tA.

Remark 5.2.2. We can see that given the linear control system (5.2.1), by the max-
imality condition of the Pontryagin maximum principle if, for a time interval Ĩ , it
holds

p(t)T B 6= 0 ∈ Rk, ∀t ∈ Ĩ .

then the corresponding time-optimal control ũ(t) is explicitly defined by the equation

ũ(t) =
BT p(t)

||BT p(t)|| (5.2.2)

at Ĩ and it will be analytic.

Regarding the problem to avoid the chattering phenomenon for the linear control
system (5.2.1), we are going to see in this case the classical Bang-Bang Theorem: if
the system satisfies the condition of completely controllability (5.1.5) then optimal
controls u(t) are piece-wise analytic.

Theorem 5.2.3. (Bang-Bang Theorem) Given a linear control system (5.2.1)
that satisfies the condition

rank{B,AB, . . . , An−1B} = n, (5.2.3)

any of its time-optimal control u(t) is piece-wise analytic.

Proof. We are going to show that if the system (5.2.1) satisfies (5.2.3) then there
exists no accumulating series of time (tn)n ⊆ [0, t1] such that it holds

p(tn)T B = 0 ∈ Rk, ∀n ∈ N. (5.2.4)

By Remark 5.2.2, it implies the thesis.
Let us assume, by contradiction, that there exists an accumulating series of time

(tn)n such that it holds (5.2.4). Since it holds p(t)T = pT
0 e−tA , each component of

the vector p(t)T B is analytic, then, as a consequence from (5.2.4), we have that

p(t)T B = pT
0 e−tAB ≡ 0, ∀t ∈ [0, t1].

Let us, hence, derive this equality n − 1 times at t = 0: we obtain that

pT
0 AjB = 0, ∀j ∈ {0, . . . , n − 1},

and it gives a contradiction to the hypothesis (5.2.3), since p0 6= 0.

Moreover, if t̄ is a switching time, the corresponding extremal (x(t), p(x)) satisfies
this equation at t̄

p(t̄)T B = 0 ∈ Rk.

Therefore, let us show that the Bang-Bang Theorem implies the uniqueness of
the time-optimal solution from any x0 ∈ Rn and any x1 ∈ Ax0
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Theorem 5.2.4. (Uniqueness of time-optimal solution) Let x0 ∈ Rn

and x1 ∈ Ax0 via admissible trajectories of the linear control system (5.2.1) with
condition (5.2.3), then the solution of the time-optimal problem is unique.

Proof. We assume by contradiction that u1(t) e u2(t) are two time-optimal control
such that x1 = xu1(t1) = xu2(t1) , we have that

x1 = et1A
(
x0 +

∫ t1
0 e−tABu1(t)dt

)

= et1A
(
x0 +

∫ t1
0 e−tABu2(t)dt

)
,

thus, ∫ t1

0
e−tABu1(t)dt =

∫ t1

0
e−tABu2(t)dt.

Let p1(t)
T = p1(0)

T e−tA be the curve defined by u1(t) via the Pontryagin maximum
principle. Applying to the last equation p1(0)

T we will have

∫ t1

0
p1(t)

T Bu1(t)dt =

∫ t1

0
p1(t)

T Bu2(t)dt. (5.2.5)

From the maximality condition it holds

p1(t)
T Bu1(t) = max

u∈U
p1(t)

T Bu

then
p1(t)

T Bu1(t) ≥ p1(t)
T Bu2(t).

Due to (5.2.5) equality for almost every t ≥ 0 we have

p1(t)
T Bu1(t) = p1(t)

T Bu2(t).

Hence, the analyticity of p(t) implies u1(t) = u2(t) for almost every t ≥ 0 .

Now, we are going to show how is the jump of any optimal control (5.2.2) at
the switching time: as we can imagine by what we studied in Chapter 3, the control
jumps in the antipodal point of the ball.

Proposition 5.2.5. Given t any switching time of the time-optimal control ũ, it
holds

lim
ǫ→0+

ũ(t̄ + ǫ) = − lim
ǫ→0+

ũ(t̄ − ǫ).

Proof. At first, let us write the Taylor expansion of p(t̄ + ǫ) and p(t̄ − ǫ) at ǫ = 0
until the second order

p(t̄ + ǫ) = p(t̄) + e−t̄AT
(−AT )p(0)ǫ + o(ǫ)

p(t̄ + ǫ) = p(t̄) + e−t̄AT
AT p(0)ǫ + o(ǫ).

We can see that, since ũ(t) satisfies equation (5.2.2) it holds

ũ(t̄ ± ǫ)||BT p(t̄ ± ǫ)|| = BT p(t̄ ± ǫ)



5.3. GLOBAL NUMBER OF SWITCHINGS 67

and than by the hypothesis on t̄ we have

ũ(t̄ ± ǫ)||BT p(t̄ ± ǫ)||| = −BT e−t̄AT
AT p(0)ǫ + o(ǫ)

ũ(t̄ ± ǫ)||BT p(t̄ ± ǫ)|| = BT e−t̄AT
AT p(0)ǫ + o(ǫ).

With the same computation we can notice that ||p(t̄ + ǫ)T B|| and ||p(t̄ − ǫ)T B||
coincide until the second order, and moreover they are O(ǫ) .

Hence, if ǫ tends to 0+ the thesis holds.

5.3 Global number of switchings, if k = n − 1

Instead of the non linear case, given a linear control system (5.2.1) with condition
(5.2.3) in Rn it is more clear how to investigate globally any time-optimal trajectory
x(t) for t ∈ R .

In this Section we are going to investigate on the number of switching that an
optimal control has if k = n − 1 , namely, we have such a linear control system with
co dimension 1 control.

Claim 5.3.1. Given any couple (x̄, p̄) ∈ Rn×Rn such that p̄TB = 0, we can give the
equation of an extremal trajectory x(t) that at time 0 it is in x̄ and has a switching
at that point.

Proof. Let us define
p(t)T = p̄T e−tA, t ∈ R

then ũ(t) and x(t) are defined by (5.2.2) (5.2.1).

Claim 5.3.2. Given the extremal defined at Claim 5.3.1, there exists another switch-
ing time t̃ ∈ R , t̃ 6= 0, if and only if

e−t̃AT
p̄ = λp̄,

namely p̄ is an eigenvector of e−t̃AT
with a real eigenvalue.

Proof. Let us observe that there exists another switching time t̃ ∈ R , t̃ 6= 0, if and
only if

p(t̃)T B = 0.

It means that t̃ is a switching time if and only if p(t) is orthogonal to the subspace
generated by the vector columns of the matrix B .

Since we assume that k = n − 1 , the subspace of Rn generated by the vector
columns of the matrix B has dimension n−1 and without loss of generality we claim
that its orthogonal complement is defined by p̄ :

〈p̄〉 = {p ∈ Rn | pT B = 0 ∈ Rn}.

As a consequence, it holds that there exists another switching time t̃ ∈ R , t̃ 6= 0, if
and only if

p(t̃) ∈ 〈p̄〉 ,
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it means that there exists a coefficient λ ∈ R such that

p̄T e−t̃A = λp̄T

namely,
e−t̃AT

p̄ = λp̄

p̄ is an eigenvector of e−t̃AT
, with t̃ 6= 0, with a real eigenvalue.

Let us see the following Proposition

Proposition 5.3.3. Given (5.2.1) with k = n− 1, it does not hold condition (5.2.3)
if and only if the vector p̄, such that p̄TB = 0, is an eigenvector of AT with real
eigenvalue.

Proof. Given p̄ 6= 0 such that p̄T B = 0, it holds condition (5.2.3)

rank{B,AB, . . . , An−1B} = n,

if and only if there exists j ∈ {1, . . . , n − 1} such that p̄T AjB 6= 0, namely

BT (AT )j p̄ 6= 0.

If, by contradiction, p̄ is an eigenvector of AT with eigenvalue µ ∈ R , then

(AT )j p̄ = µj p̄

for all j ∈ {1, . . . , n − 1} , and there is a contradiction with condition (5.2.3).

Viceversa, if the vector p̄ , such that BT p̄ = 0, is not an eigenvector of AT with
real eigenvalue, then

(A)T p̄ /∈ 〈p̄〉 .

Hence, it holds BT AT p̄ 6= 0, and so

rank{B,AB} = n,

that means that it holds condition (5.2.3).

Remark 5.3.4. Given (5.2.1) with k = n−1 , satisfying condition (5.2.3), the extremal
defined at Claim 5.3.1 has another switching time t̃ ∈ R , t̃ 6= 0, if the vector p̄ is
not an eigenvector of AT with real eigenvalue but it is an eigenvector of e−t̃AT

with
a real eigenvalue.

Hence we obtain the following Theorems:

Theorem 5.3.5. Given (5.2.1) in Rn with k = n − 1, satisfying condition (5.2.3),

ẋ = Ax + Bu, x ∈ Rn (5.3.1)

it is always possible to give an optimal trajectory with a switching point at any given
x̄ ∈ Rn . Moreover, along that time-optimal trajectory this switching is unique, if AT

has only real eigenvalues.
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Proof. We are going to directly consider the extremal denoted in Claim 5.3.1.
As we saw by Claim 5.3.2 and Proposition 5.3.3, we are going to see when it is

satisfied what we claimed in Remark 5.3.4.

We analyse the problem with respect to the eigenvalues of AT . Without loss of
generality we consider the matrix AT in canonical Jordan blocks.
Assuming A with only real eigenvalue, AT has only real eigenvalues too. Let us
distinguish and analyse if the eigenvalues are simple or not.

(1) If AT has simple real eigenvalues.

We are going to see that, if AT has simple real eigenvalues, then any time-optimal
trajectories has at most a unique switching.

Let us consider λ1, . . . , λn eigenvalues of AT with vλ1 , . . . , vλn corresponding
eigenvectors that form a basis of Rn . Given p̄ with this basis

p̄ = p̄1vλ1 + . . . + p̄nvλn , p̄i ∈ R, i ∈ {1, . . . , n},

we will have

etAT
p̄ =

n∑

i=1

p̄ie
tλivλi

.

If, by contradiction, there exists t̃ 6= 0 such that et̃AT
has a real eigenvalue with

respect to p̄ , then λi = λ for all i ∈ {1, . . . , n} where p̄i 6= 0.
As a consequence, we have that p̄ is a real eigenvector of AT

AT p̄ = λp̄,

that is a contradiction.

(2) If AT has real eigenvalues and some of them are not simple.

We are going to see that, if AT has real eigenvalues and some of them are not simple,
then any time-optimal trajectories has at most a unique switching.

Let us consider λ1, . . . , λj with j < n , eigenvalues of AT with vλ1 , . . . , vλj
cor-

responding eigenvectors. Let us consider the generalized eigenvalues v′λ1
, . . . , v′λj1

of

vλ1 , . . . , vλj1
, with j1 < j , moreover we will have v′′λ1

, . . . , v′′λj2
of v′λ1

, . . . , v′λj2
, with

j2 < j1 , and so on.
Now, we assume that the basis of Rn with eigenvector and generalized eigenvector

is the following: vλ1 , . . . , vλj
, v′λ1

, . . . , v′λj1
, v′′λ1

, . . . , v′′λj2
.

We can observe that





AT vλi
= λivλi

, i ∈ {1, . . . , j}

AT v′λi
= λiv

′
λi

+ vλi
, i ∈ {1, . . . , j1}

AT v′′λi
= λiv

′′
λi

+ v′λi
, i ∈ {1, . . . , j2}
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and 




etAT
vλi

= etλivλi
, i ∈ {1, . . . , j}

etAT
v′λi

= etλiv′λi
+ tetλivλi

, i ∈ {1, . . . , j1}

etAT
v′′λi

= etλiv′′λi
+ tetλiv′λi

+ t2etλivλi
, i ∈ {1, . . . , j2}

Let us give the following vector p̄ ,

p̄ = p̄1vλ1 + . . . + p̄jvλj
+ p̄j+1v

′
λ1

+ . . . + p̄j+j1v
′
λj1

+ p̄j+j1+1v
′′
λ1

+ . . . + p̄nv′′λj2
,

with p̄i ∈ R i ∈ {1, . . . , n} , if we assume that it is not an eigenvector of AT with
real eigenvalue, then it means that

n∑

i=j+1

p̄2
i 6= 0. (5.3.2)

Hence, we have

etAT
p̄ =

∑j
i=1 p̄ie

tλivλi
+

∑j1
i=1 p̄j+i

(
etλiv′λi

+ tetλivλi

)
+

+
∑j2

i=1 p̄j+j1+i

(
etλiv′′λi

+ tetλiv′λi
+ t2etλivλi

)
,

thus,

etAT
p̄ =

∑j
i=1 etλi p̄i vλi

+
∑j1

i=1 etλi p̄j+i v
′
λi

+
∑j2

i=1 etλi p̄j+j1+i v
′′
λi

+

+t
∑j1

i=1 etλi p̄j+i vλi
+ t

∑j2
i=1 etλi p̄j+j1+i v

′
λi

+ t2
∑j2

i=1 etλi p̄j+j1+i vλi
,

if, by contradiction, there exists t̃ 6= 0 such that et̃AT
has a real eigenvalue with

respect to p̄ , then λi = λ for all i ∈ {1, . . . , j} where p̄i 6= 0, and p̄j+i = 0 for all
i ∈ {1, . . . , n − j} . And this contradicts inequality (5.3.2).

Theorem 5.3.6. Given (5.2.1) in Rn with k = n − 1, satisfying condition (5.2.3),

ẋ = Ax + Bu, x ∈ Rn (5.3.3)

it is always possible to give an optimal trajectory with a switching point at any given
x̄ ∈ Rn . Assuming that

(3) A has simple complex and real eigenvalues α1 +iβ1, α1−iβ1, . . . , αj +iβj , αj −
iβj , λ2j+1, . . . , λn , such that βi 6= 0 for all i ∈ {1, . . . , j} and 0 < j ≤ ⌊n

2 ⌋,

given the corresponding eigenvectors that form a basis B of Rn , and p̄ described with
coordinates (p̄i)i=1,...n in B . There will be an infinite number of switchings in regular
intervals if we assume that

- there exists βA ∈ R \ {0} and Ki ∈ Q, ∀i ∈ {1, . . . , j}, such that βi = KiβA
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- α = αi for all i ∈ {1, . . . , j} where p̄αi 6= 0, and α = λi for all i ∈ {2j +
1, . . . , n} where p̄i 6= 0.

Therefore, if A has simple complex and real eigenvalues such that

- there exists βA ∈ R \ {0} and Ki ∈ Q, ∀i ∈ {1, . . . , j}, such that βi = KiβA

- α = αi for all i ∈ {1, . . . , j}, and α = λi for all i ∈ {2j + 1, . . . , n},

then for all matrix B , every time-optimal trajectory will have infinite isolated switch-
ing, in regular time-interval.

Proof. As we did in previous Theorem, we are going to directly consider the extremal
denoted in Claim 5.3.1, and see when it is satisfied what we claimed in Remark 5.3.4.
Without loss of generality we consider the matrix AT in canonical Jordan blocks.

Let us start assuming that j = 1 in (3A), then we will study the general case (3B)
with 0 < j ≤ ⌊n

2 ⌋ .
(3A) If AT has a couple of complex eigenvalues and n − 2 real simple eigenvalues.

Let us consider α + iβ , α − iβ , with β 6= 0, and λ3, . . . , λn eigenvalues of AT with
vα , vβ and vλ3 , . . . , vλn corresponding eigenvectors that form a basis of Rn .

We can observe that





AT vα = αvα + βvβ

AT vβ = αvβ − βvα

AT vλi
= λivλi

i ∈ {3, . . . , n}

and 




etAT
vα = etα cos(tβ)vα + etα sin(tβ)vβ

etAT
vβ = etα cos(tβ)vβ − etα sin(tβ)vα

etAT
vλi

= eλivλi

i ∈ {3, . . . , n}.

Given the vector p̄ with basis B
p̄ = p̄αvα + p̄βvβ + p̄3vλ3 + . . . + p̄nvλn , p̄α, p̄β, p̄i ∈ R, ∀i ∈ {3, . . . , n},

if we say that it is not an eigenvector of AT with a real eigenvalue, it means that
p̄2

α + p̄2
β 6= 0.

Hence, we can see that

etAT
p̄ = p̄α(etα cos(tβ)vα + etα sin(tβ)vβ)+

+p̄β(etα cos(tβ)vβ − etα sin(tβ)vα)+

+
∑n

i=3 p̄ie
tλivλi

and there exists t̃ sucht that p̄ is an eigenvector with a real eigenvalue of et̃AT
if and

only if t̃ = 2Kπ
β with any K ∈ Z and α = λi for all i ∈ {3, . . . , n} where p̄i 6= 0.

Therefore, we can see that there will be infinite isolated switching at switching time

t̃Kβ = 2Kπ K ∈ Z.

in regular time-intervals.
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(3B) If AT has complex and real simple eigenvalues: α1 + iβ1, α1 − iβ1, . . . , αj +
iβj , αj − iβj and λ2j+1, . . . , λn , with βi 6= 0 for all i ∈ {1, . . . , j} and j ≤ ⌊n

2 ⌋ .
Let vα1 , . . . , vαj , vβ1 , . . . , vβj

and vλ2j
, . . . , vλn be the corresponding eigenvectors

that form basis B of Rn .
We can notice that






AT vαi = αivαi + βivβi
i ∈ {1, . . . , j}

AT vβi
= αivβi

− βivαi

AT vλi
= λivλi

i ∈ {2j + 1, . . . , n}
and






etAT
vαi = etαi cos(tβi)vαi + etαi sin(tβi)vβi

i ∈ {1, . . . , j}
etAT

vβi
= etαi cos(tβi)vβi

− etαi sin(tβi)vαi

etAT
vλi

= etλivλi
i ∈ {2j + 1, . . . , n}

Given p̄ with basis B
p̄ = p̄α1vα1 +p̄β1vβ1+. . .+p̄αjvαj +p̄βj

vβj
+p̄2j+1vλ2j+1

+. . .+p̄nvλn , p̄αi , p̄βi
, p̄i ∈ R,

we can see that if it is not an eigenvector of AT with a real eigenvalue, it holds

j∑

i=1

[
p̄2

αi
+ p̄2

βi

]
6= 0.

Hence,

etAT
p̄ =

∑j
i=1

[
p̄αi(e

tαi cos(tβi)vαi + etαi sin(tβi)vβi
)+

+p̄βi
(etαi cos(tβi)vβi

− etαi sin(tβi)vαi)
]
+

+
∑n

i=2j+1 p̄ie
tλivλi

and there exists t̃ such that p̄ is an eigenvector with a real eigenvalue of et̃AT
if and

only if

- there exists βA ∈ R \ {0} and Ki ∈ Q , ∀i ∈ {1, . . . , j} , such that βi = KiβA

- α = αi for all i ∈ {1, . . . , j} where p̄αi 6= 0, and α = λi for all i ∈ {2j +
1, . . . , n} where p̄i 6= 0.

Indeed, given Ki = mi
ni

for i ∈ {1, . . . , j} , it is possible to denote the switching time

t̃ = 2π
βA

n1 . . . nj , and for all i ∈ {1, . . . , j}

t̃βi = 2π · n1 . . . n̂i · . . . · nj · mi︸ ︷︷ ︸
=K∈Z

.

Finally we can see that there will be infinite isolated switchings at switching times

t̃K =
2Kπ

βA
· n1 . . . · nj, K ∈ Z

in regular time-intervals.

In general we can say that if
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- there exists βA ∈ R \ {0} and Ki ∈ Q , ∀i ∈ {1, . . . , j} , such that βi = KiβA

- α = αi for all i ∈ {1, . . . , j} , and α = λi for all i ∈ {2j + 1, . . . , n} ,

then for any matrix B , with the corresponding p̄ , any optimal trajectory with a
switching, actually has an infinite series of switchings at regular time intervals.
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Chapter 6

Sufficient optimality condition

6.1 Introduction

At Chapters 3, 4 and 5 we proved that with some generic conditions it is possible
to avoid chattering phenomenon, moreover we denoted in which cases it is possible
to find non smooth optimal trajectories. Actually, at the moment, we can not claim
that they exist. Indeed, via the Pontryagin maximum principle, we know that every
time-optimal trajectory has a lift, called extremal, in T ∗M . But, on the other hand
it is not guaranteed that given any extremal its projection on M is time-optimal:
even though we have found extremals through the singular locus Λ that projects in
piece-wise smooth trajectories, non necessarily those trajectories are time-optimal.

It is guaranteed the optimality of the projection of any extremal, only if we
consider a linear control system, satisfying (5.2.3), and put the final point in a equi-
librium. It is true due to the fact that the uniqueness of the time-optimal solution
and the uniqueness of the extremal hold.

In this Chapter we are going to discuss the optimality of the projections of the non
smooth extremals, that we call broken extremals, detected in the previous Chapters,
given a non linear affine control system.

Let us briefly recall the conditions that we need in a neighbourhood Oλ̄ of λ̄ ∈ Λ
in order to have and study broken extremals.

Given a n-dimensional manifold M , let us consider our system

q̇ = f0(q) + u1f1(q) + . . . + ukfk(q), q ∈ M (6.1.1)

where f0, . . . , fk are smooth vector fields and (u1, . . . , uk) admissible control with

value in B
k
. From the Pontryagin maximum principle necessarily every time-optimal

trajectory of this control system is a projection of an extremal defined in T ∗M .

Out of the singular locus Λ = {λ ∈ T ∗M |h1(λ) = . . . = hk(λ) = 0} extremals
satisfy the Hamiltonian system defined by1

H(λ) = h0(λ) +
√

h2
1(λ) + . . . + h2

k(λ). (6.1.2)

1See Notation 2.2.4

75
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In Chapter 3 we proved that if, at λ̄ ∈ Λ , it is satisfied the condition

H0I /∈ HIJB
k

(6.1.3)

there exist an extremal that passes through Λ at λ̄ . And the flow of extremals is not
locally Lipschitz.

We started to investigate this topic from the sufficient optimality that Andrei
A. Agrachev and Sachkov present in their book [6]. They considered only normal
extremals and assumed the Hamiltonian to be smooth.

In order to present our contribute, we will recall their method for the time-optimal
problem. Hence, we are going to show the sufficient optimality of normal extremals
in a neighbourhood Oλ̄ of λ̄ , where the Hamiltonian is not smooth and has form
(6.1.2).
Denoting q̄ = π(λ̄) , and F = {f1, . . . , fk} , we prove the sufficient optimality of the
normal broken extremal, passing through λ̄ ∈ Λ , if

λ̄ ⊥ Lieq̄F , h0(λ̄) > 0

and either rank {Lieq̄F} = n − 1 , or rank {LieqF} = rank {Lieq̄F} < n − 1 for all q
from a neighbourhood of q̄ in M (see Theorem 6.2.6). Moreover, if n = 3 k = 2 we
prove the optimality for a normal broken extremal if f1, f2 form a contact distribution
in a neighbourhood of q̄ (see Theorem 6.2.9).
We use a method described by Agrachev and Sachkov in their book [6]. It is a
geometrical elaboration of the classical fields of extremals theory, it proves optimality
only for normal extremals, assuming the Hamiltonian smooth. We extended this
method in the Lipschitzian submanifold, with constructions ad hoc.

We also prove optimality of normal (or abnormal) broken extremals for n > 2
k = 2 and

λ̄ ⊥ span{f1(q̄), f2(q̄), [f1, f2](q̄)}
in just that point (see Theorem 6.3.5). This result is given by direct estimates with
time-rescaling.

6.2 Sufficient optimality for normal extremals

In the following subsection we would like to present what is already know regarding
sufficient optimality condition for time-optimal control problem with free time. Let
us recall what Andrei A. Agrachev and Yuri L. Sachkov observed in their book [6].

6.2.1 With smooth Hamiltonian

The authors considered the following optimal control problem with free time






q̇ = fu(q), q ∈ M,u ∈ U
q(0) = q0, q(t1) = q1, q0, q1 fixed∫ t1
0 φ(q(t), u(t))dt → min,
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if we assume φ(q(t), u(t)) ≡ 1 we face the time-optimal problem.
Let us present their contribute regarding the sufficient optimality condition of a nor-
mal extremal in the time-optimal problem.

Analysing only normal extremal, the control-dependent Hamiltonian of PMP is

hu(λ) = 〈λ, fu(q)〉 − 1, λ ∈ T ∗M, q = π(λ) ∈ M, u ∈ U,

and the maximized Hamiltonian is

H(λ) = max
u∈U

hu(λ).

constant equal 0 along the extremal λ(t) .
Without loss of generality, we redenote the maximized Hamiltonian along λ(t) in the
following way

H(λ(t)) = max
u∈U

〈λ(t), fu(q(t))〉 = 1.

Given any arbitrary smooth function a ∈ C∞(M) , we consider the graph of differen-
tial da , that is a n-dimensional smooth submanifold in T ∗M

L0 = {dqa | q ∈ M} ⊂ T ∗M.

The first and second assumptions that the authors gave were the following

(A1) H is defined and smooth in T ∗M , and
−→
H is complete.

(A2) 1 is a regular value of the restriction H|L0
, i.e. dλH|TλL0

6= 0, for all λ ∈
L0 ∩ H−1(1) .

Moreover, let us denote s the tautological 1-form on T ∗M , sλ = λ ◦ π∗ , and its
differential is the canonical symplectic structure in T ∗M , ds = σ .

Notation 6.2.1. If F : M → N is a smooth mapping, we denote F ∗ : ΛkN → ΛkM
the mapping of differential forms, if ω ∈ ΛkN , (F ∗ω)q(v1, . . . , vk) = ωF (q)(F∗v1, . . . , F∗vk) ,
q ∈ M vi ∈ TqM

Proposition 6.2.2. Assuming (A2) the map

Φ : L0 ∩ H−1(1) × R −→ T ∗M, Φ(λ0, t) = et
−→
H (λ0), (6.2.1)

is an immersion and Φ∗s is an exact form.

Proof.

(1) Assumption (A2) implies that L0 ∩ H−1(1) is a smooth manifold.

(2) Let us prove that Φ∗s is an exact form in Λ1(L0 ∩ H−1(1) × R) .
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(2a) At first we are going to prove that it is a closed form.
We can immediately see that

d(Φ∗s)|(λ0,t) = Φ∗σ|(λ0,t) = σ
|et

−→
H (λ0)

= σ|λ0

for the properties of the exterior derivative and the form σ , moreover by the
definition of L0

σ|λ0
= d s|λ0

= d(d a ◦ π)|λ0
= 0.

(2b) Now, let us show that Φ∗s is an exact form, namely for any closed curve

γ : τ 7→ (λ0(τ), t(τ)) ∈ L0 ∩ H−1(1) × R,

it holds ∫

γ
Φ∗s = 0.

Indeed, ∫

γ
Φ∗s =

∫

Φ(γ)
s

Φ(γ) is homeomorphic to

γ̃0 : τ 7→ λ0(τ) ∈ L0 ∩ H−1(1),

then, by the Stokes Theorem and the definition of L0 ,
∫

Φ(γ)
s =

∫

γ̃0

s =

∫

γ̃0

d(a ◦ π) = 0.

(3) To prove that Φ is an immersion, it is enough to show that the vector

∂Φ

∂t
(λ0, t) =

−→
H (λt), λt = Φ(λ0, t)

it is not tangent to the image of L0 ∩ H−1(1) under the diffeomorphism

et
−→
H : T ∗M → T ∗M

for all λ0 ∈ L0 ∩ H−1(1) .

Let us notice that et
−→
H (L0 ∩ H−1(1)) = Lt ∩ H−1(1) , where

Lt = et
−→
H (L0).

Hence, it is enough prove that
−→
H (λt) is not tangent to Lt .

We saw that σ|Lt
= ds|Lt

= 0, then we show that the form i−→
H

σ does not vanish
at the point λt

(i−→
H

σ)|Lt
=

(
et

−→
H

)∗
((i−→

H
σ)|L0

) = −
(
et

−→
H

)∗
(dH|L0

),

since
(
et

−→
H

)∗
is invertible, it is enough claim that

dH|L0
6= 0

does not vanish, and it is true by the assumption (A2).
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Now given W a domain of L0 ∩ H−1(1) × R let us put an other assumption:

(A3) The map
π ◦ Φ|W : W → M (6.2.2)

is a map of W onto a domain in M .

Theorem 6.2.3. Let W be a domain in L0 ∩ H−1(1) × R such that it holds (A3),
and let

λ̃t = et
−→
H (λ̃0), t ∈ [0, t1],

be a normal extremal such that (λ̃0, t) ∈ W for all t ∈ [0, t1]. Then the extremal tra-
jectory q̃(t) = π(λ̃t) (with the corresponding control ũ(t)) realizes a strict minimum of
the cost

∫ τ
0 φ(q(t), u(t))dt among all admissible trajectories such that q(t) ∈ π◦Φ(W )

for all t ∈ [0, τ ], q(0) = q̃(0), q(τ) = q̃(t1), τ > 0.

Proof. Let us set L = Φ(W ) , then π : L → π(L) is a diffeomorphism and s|L is an
exact form.
Let q(t) , t ∈ [0, τ ] , be an admissible trajectory generated by a control u(t) and
contained in π(L) , with the boundary conditions q(0) = q̃(0) , q(τ) = q̃(t1) . Then
there exist a smooth curve t 7→ λ(t) in L such that λ(0) = λ̃0 , λ(τ) = λ̃t1 and
q(t) = π(λ(t)) , 0 ≥ t ≥ τ .

Recalling that
∫
λ(·) s =

∫
λ̃ s and H(λ(t)) = maxu∈U 〈λ(t), fu(q(t))〉 = 1 we have

∫

λ̃
s =

∫ t1

0

〈
λ̃t, ˙̃q(t)

〉
dt =

∫ t1

0

〈
λ̃t, fũ(t)(q̃(t))

〉
dt = t1.

On the other hand,
∫

λ(·)
s =

∫ τ

0
〈λ(t), q̇(t)〉 dt =

∫ τ

0

〈
λ(t), fu(t)(q(t))

〉
dt ≤ τ

Moreover, the inequality is strict if the curve t 7→ λ(t) is not a solution of the equation

λ̇ =
−→
H (λ) , namely is does not coincide with λ̃(t) .

6.2.2 With non smooth Hamiltonian

In this section we are going to see some cases in which we prove the sufficient opti-
mality of normal extremals through the singular locus.

Here we are going to show a generalization of the previous method, applied to the
broken extremal defined by the system

q̇ = f0(q) +

k∑

i=1

uifi(q), q ∈ M,u ∈ U (6.2.3)

where the space of control parameters is the k -dimensional closed unitary ball U =
{u ∈ Rk : ||u|| ≤ 1} . In this setting extremals satisfies the Hamiltonian system
denoted by the non smooth Hamiltonian

H(λ) = h0(λ) +
√

h2
1(λ) + . . . + h2

k(λ).
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We consider only normal extremal that passes through the singular locus Λ . Hence,
assuming that every λ(t) must remain in the level set H(λ(t)) = 1, necessarily
H(λ̄) = h0(λ̄) = 1.

Theorem 6.2.4. Let λ̃(t) be broken extremal passing through λ̄ ∈ Λ. If it is possible
to define

(1) A co-dimension one submanifold N of M such that the curve q̃(t) ∈ π(λ̃(t))
passes transversally through N in both sides with q̃(t̄) = q̄ = π(λ̄) ∈ N

(2) A section ω of bundle T ∗M|N such that

ω : q ∈ N → ωq ∈ T ∗M,

H(ωq) = 1 and 〈ωq, fi(q)〉 = 0 with i ∈ {1, . . . , k} for all q ∈ N ; moreover
ω|N is a well defined differential 1-form of N and dω|N = 0.

Then q̃(t) is time-optimal at q̄ : there exists an interval J = (t1, t2) with t̄ ∈ J , such
that q̃(t) with t ∈ J realizes a strict minimum time among all admissible trajectories
q(t) such that q(t1) = q̃(t1) and q(τ) = q̃(t2) with τ > t1 .

Proof. Given N ⊂ M and ω : q ∈ N → ωq ∈ TqM with those hypothesis, let us
consider

N = {ωq : q ∈ N}
that is a submanifold in T ∗M such that N ⊂ Λ ∩ H−1(1) , in particular λ̄ ∈ N .

From what we have proved in chapter 3, if λ̄ ∈ Λ satisfies condition (3.2.3), given
Oλ̄ a small enough neighbourhood of λ̄ , for all λ̂ ∈ Oλ̄∩Λ there exists a unique broken
extremal λλ̂(t) that passes through the singular locus at λ̂ . We assume λλ̂(t̄) = λ̂ .
Moreover, let us recall that out of Λ each extremal satisfies the Hamiltonian system

λ̇ =
−→
H (λ) , with H(λ) = h0(λ) +

√
h2

1(λ) + . . . + h2
k(λ) .

Hence, we restrict N to those points close to λ̄ and define the map

Φ : N × I → T ∗M

where I ⊆ R is an interval with t̄ ∈ I , such that Φ(λ̂, t) = λλ̂(t) .

From what we have explained in chapter 3: given any λ̂ ∈ N λλ̂(t) is piece-wise
smooth with respect to t in the two sides where t < t̄ or t > t̄ , and it is globally
lipschitzian because the right and left limits of λ̇(t) as t → t̄ ± 0 are well defined.
Moreover, Theorem 3.2.4 claims that at Oλ̄ it is defined a continuous flow of ex-
tremals that is not locally Lipschitz. Nevertheless, considering just broken extremals
passing through N , the image of map Φ is a piece-wise smooth manifold composed
by two smooth manifolds with boundary N . Globally Φ(N × I) is Lipschitzian,

because we have that ∂Φ
∂t (λ̂, t)|t6=t̄ =

−→
H

(
λλ̂(t))

)
for all (λ̂, t) ∈ N ×{I \ {t̄}} and the

limits as t → t̄ ± 0 are explicitly defined (see Chapter 3).

Let us stress that, given W a domain in N × I such that (λ̄, 0) ∈ W , the map

π ◦ Φ|W : W → M
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is a Lipschitzian (even piece-wise smooth) homeomorphism of W into a domain in
M , by construction. This is because we assume that q̃(t) passes transversally through
N in both sides.

As a consequence, we have that Φ is a piece-wise smooth immersion since π◦Φ|W

is immersion.

Now, we need to prove a technical fact: Φ∗s is an exact form.

It is a closed form, because

d(Φ∗s)|(λ̂,t) = Φ∗σ|(λ̂,t) = σ|Φ(λ̂,t) ∀(λ̂, t) ∈ N × R

by the properties of the exterior derivative, and

σ|Φ(λ̂,t) = σ|λ̂ = ds|λ̂ = d(ω ◦ π)|λ̂ = 0 ∀(λ̂, t) ∈ N × R

because of the properties of form σ and by definition of N .
On the other hand, it is exact because, given any closed curve

γ : τ 7→ (λ0(τ), t(τ)) ∈ N × R,

one can see that ∫

γ
Φ∗s = 0.

We have ∫

γ
Φ∗s =

∫

Φ(γ)
s

Φ(γ) is homeomorphic to
γ0 : τ 7→ λ0(τ) ∈ N ,

then, by the Lipschitzian version of Stokes Theorem [15] and the definition of N
∫

Φ(γ)
s =

∫

γ0

s =

∫

γ0

ω ◦ π = 0.

Finally, we prove the thesis of the theorem.

Let us call NW = Φ(W ) ⊂ T ∗M such that π : NW → π(NW ) is a Lipschitzian (even
piece-wise smooth) homeomorphism and s|NW

is an exact form.

Given q̃(t) = π(λ̃(t)) with t ∈ (t1, t2) such that t1 < 0 < t2 and q̃(0) = q̄ = π(λ̄) , let
us consider q(t) with t ∈ (t1, τ) an admissible trajectory generated by a control
u(t) and contained in π(NW ) , with the boundary conditions q(t1) = q̃(t1) and
q(τ) = q̃(t2) . Then, by the map π|NW

, there exists a curve λ(·) : t 7→ λ(t) in

NW such that λ(t1) = λ̃(t1) λ(τ) = λ̃(t2) and q(t) = π(λ(t)) for all t ∈ (t1, τ) .

Since
∫
λ(·) s =

∫
λ̃(·) s and H(λ(t)) = maxu∈U

〈
λ(t), f0(q(t)) +

∑k
i=1 ui(t)fi(q(t))

〉
=

1 we have
∫

λ̃
s =

∫ t1

0

〈
λ̃t, ˙̃q(t)

〉
dt =

∫ t1

0

〈

λ̃t, f0(q̃(t)) +

k∑

i=1

ũi(t)fi(q̃(t))

〉

︸ ︷︷ ︸
=H(λ̃(t))=1

dt = t1.
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On the other hand,

∫

λ(·)
s =

∫ τ

0
〈λ(t), q̇(t)〉 dt =

∫ τ

0

〈
λ(t), f0(q(t)) +

k∑

i=1

ui(t)fi(q(t))

〉

︸ ︷︷ ︸
≤1

dt ≤ τ

Moreover, the inequality is strict if the curve t 7→ λ(t) is not a solution of the equa-

tion λ̇ =
−→
H(λ) , namely is does not coincide with λ̃(t) .

Therefore, we have proved that q̃(t) is locally time-optimal in the switching point
q̄ . Actually, it is globally optimal.
It is optimal with respect to the whole trajectory. Indeed, it will spend strictly more
time going out side the neighbourhood.

b bq̄

q̃(t)

alternative optimal triajectory

Figure 6.1: Global optimality of q̃(t) .

Remark 6.2.5. On the other hand, if we study the problem with a smooth Hamiltonian

H and
−→
H complete, as before, it is enough give a Lagrangian N such that

N = {dqa | q ∈ M} ,

with a ∈ C∞(M) any arbitrary smooth function. We called it L0 .
As a consequence ω = da .

Now, let us present two cases in which we found such a Lagrangian submanifold
N .
This method proves the optimality of those extremals that pass through Λ .

Theorem 6.2.6. Given an affine control system (6.2.3) with f1, . . . , fk analytic
fields, let λ̄ ∈ Λ be a singular point such that it holds (6.1.3) and H(λ̄) = 1.
In this setting let us consider the normal broken extremal λ̃(t) through λ̄, such that
λ̃(0) = λ̄.
We denote F = {f1, . . . , fk} the family of controllable vector fields. If

λ̄ ⊥ Lieq̄F , h0(λ̄) > 0

and either rank {Lieq̄F} = n − 1, or rank {LieqF} = rank {Lieq̄F} < n − 1 for all
q from a neighbourhood Oq̄ of q̄ in M , then q̃(t) = π(λ̃(t)) is locally time-optimal
among all admissible trajectory in Oq̄ with the same boundary conditions.
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Proof. As we discussed previously, it is enough find an opportune Lagrangian sub-
manifold N with the said conditions.
Let us consider F and the distribution LieqF , that, by definition, is closed with
respect to the Lie brackets.

If rank{Lieq̄F} = n − 1 , we will denote N the orbit Oq̄ of distribution LieF
at point q̄ that is a n − 1 dimensional submanifold of M by Nagano Theorem (see
Theorem 2.3.1).

Otherwise, if rank {LieqF} = rank {Lieq̄F} = m < n − 1 ∀q ∈ Oq̄ , then, by
Frobenius Theorem (see Theorem 2.3.11), it is defined a fibration in Oq̄ give by the
m dimensional submanifold N ′ of M and other n−m components. By construction,
one can define the codimension 1 submanifold N , such that such that N ′ ⊂ N ,
F ⊆ TqN ∀q ∈ Oq̄ and f0(q̄) /∈ Tq̄N , and the said curve q̃(t) will cross transversally
N at q̄ .

Moreover, let us define ω the 1-form that annihilates TqN such that ω(f0)|q = 1,
for all q ∈ N . By construction, ω satisfies dω|N = 0, and denoting

N = {ω|q | q ∈ N},

it holds N ⊆ Λ ∩ H−1(1) .
All these facts imply the thesis.

Remark 6.2.7. Let us notice that, in the setting of Theorem 6.2.6, the corresponding
smooth function a , denoted in Remark 6.2.5, is such that a|N = 0 and da = ω .

Before presenting the next result let us define the Reeb vector field.

Definition 6.2.8. In a 3-dimensional manifold M let us consider a contact 1-form
ω ∈ Λ1(M) such that ω ∧ dω 6= 0 in never vanishing.
The Reeb vector field ξ ∈ Vec(M) is the unique element of the (one-dimensional)
kernel of dω such that ω(ξ) = 1.

Theorem 6.2.9. Given an affine control system (6.2.3) with n = 3 and k = 2 and
with f1, f2 analytic fields, let λ̄ ∈ Λ be a singular point such that it holds (6.1.3) and
H(λ̄) = 1.
In this setting let us consider the normal extremal λ̃(t) through λ̄, such that λ̃(0) = λ̄ .
If the distribution

∆ = span{f1, f2}
is contact in q̄ = π(λ̄), then q̃(t) = π(λ̃(t)) is locally time-optimal among all admis-
sible trajectory in a neighbourhood Oq̄ of q̄ with the same boundary conditions.

Proof. Since ∆ is a contact distribution in a neighbourhood Oq̄ of q̄ , there exists
ω ∈ Λ1(M) a 1-form such that ∆ = ker(ω) and ω∧dω 6= 0, moreover we can assume
ωq(f0(q)) ≡ 1 ∀q ∈ Oq̄ .
We can define ξ ∈ Vec(M) the Reeb field such that 〈ξ〉 = ker(dω) .
We construct a co-dimension 1 submanifold N in the following way.
Given the control ũ corresponding to the extremal trajectory q̃(t) = π(λ̃t) , let us
denote f−(q̄) and f+(q̄) at point q̄

{
f−(q̄) = ũ1(0

−)f1(q̄) + ũ2(0
−)f2(q̄)

f+(q̄) = ũ1(0
+)f1(q̄) + ũ2(0

+)f2(q̄).
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Let us give any integral curve γ̂ whose velocities belong to the distribution span{f1(q), f2(q)} ,
with q ∈ Oq̄ , as follows such that f−(q̄) and f+(q̄) appear in the same side.

span{f1(q̄), f2(q̄)}

f−(q̄)

f+(q̄)

bq̄

Figure 6.2: Curve in span{f1, f2}

Then we apply the flow generated by the Reeb field ξ . We denote this surface N .
Therefore we denote

N = {ωq ∈ T ∗M | q ∈ N}.

Let us stress the fact that we chose the curve in span{f1, f2} , as it is described at
Figure 2, because we need to assume that q̃(t) passes transversally through N .
This construction implies the thesis.

Remark 6.2.10. Let us notice that, in the setting of Theorem 6.2.9, the corresponding
smooth function a , denoted in Remark 6.2.5, is the time-function along the Reeb
curves such that a(γ̂) ≡ 0 .
Indeed, given γ(t) a curve along the Reeb flow with γ(0) ∈ γ̂ , we have

a(γ(t)) = a(γ(0))︸ ︷︷ ︸
=0

+

∫ t

0

d

dt
a(γ(τ))dτ =

∫ t

0

〈
dγ(τ)a, γ̇(τ)

〉
︸ ︷︷ ︸
〈ωγ(τ),ξ(γ(τ))〉=1

dτ = t.

6.3 Sufficient optimality, with 2-dimensional control

In this new Section we are going to present an alternative method to prove the
sufficient optimality of extremals through the singular locus defined by systems of
type (6.1.1) with 2-dimensional control.

At first we present how we reduce the problem and then the result that we were
able to gave.

6.3.1 How we reduce the problem

Let us consider a control system of type (6.1.1) in the n-dimensional manifold M
with k = 2. We assume λ̄ ∈ Λ satisfying the condition

H0I /∈ HIJBk,
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namely there exists an extremal λ(t) that passes through λ̄ , going through the sin-
gular locus. Let us consider the perturbation of a trajectory q(t) = π(λ(t)) that is
the projection of the extremal.
With opportune rotation of the system, we may assume that λ̄ = λ(0) and the
trajectory q(t) satisfies the following system with constant piece-wise control:






q̇ = f−(q) := f0(q) + cos(θ̂)f1(q) − sin(θ̂)f2(q), t < 0

q̇ = f+(q) := f0(q) + cos(θ̂)f1(q) + sin(θ̂)f2(q), t > 0
q(0) = q̄,

with θ̂ ∈ (0, π
2 ) .

As we saw in Chapter 4, it is possible to give explicitly the jump of the control at
the switching by equation (4.2.5).

In this setting we will have at λ̄ h01 = 0, h02 > 0 and h12 ≤ 0 , and calling α := |h12|
|h02|

we have
(cos(θ̂), sin(θ̂)) =

(
α,

√
1 − α2

)
.

In order to perturb the control with admissible controls, we denote

gv(q) := v1f1(q) + v2f2(q),

where v1 and v2 are time depending function such that





∣∣∣
∣∣∣
(
α + v1(t),−

√
1 − α2 + v2(t)

)∣∣∣
∣∣∣ ≤ 1, t < 0

∣∣∣
∣∣∣
(
α + v1(t),

√
1 − α2 + v2(t)

)∣∣∣
∣∣∣ ≤ 1, t > 0.

(6.3.1)

Defining

a :=

(
α√

1 − α2

)

the condition (6.3.1) becomes





∣∣∣∣

(
v1

−v2

)∣∣∣∣
2

≤ −2

(
v1

−v2

)
· a, t < 0

∣∣∣∣

(
v1

v2

)∣∣∣∣
2

≤ −2

(
v1

v2

)
· a, t > 0.

(6.3.2)

Now, let us study the behaviour of the following path in the neighbourhood Oq̄ of q̄
at time t ∈ [−ε, ε] , with ε > 0 small, using the chronological calculus described in
[6] Chapter 2,

q̄ ◦ Fε(v(t)) = q̄ ◦ e(−ε−0)f− ◦ −→exp

∫ 0

−ε
f− + gv dt ◦ −→exp

∫ ε

0
f+ + gv dt ◦ e(0−ε)f+ .

Claim 6.3.1. In order to prove the optimality of the switched curve among all per-
turbations, it is enough to prove the following:
Statement:
There exists ε̄ > 0 such that ∀v 6= 0 and ∀ε < ε̄ the functional Fε(v) 6= Id.
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Now, let us study deeply this functional Fε(v) .
Thanks to the variational formula we simplify it in such a way

q̄ ◦ Fε(v(t)) = q̄ ◦ e−εf− ◦ eεf− ◦ −→exp
∫ 0
−ε et adf−gv dt ◦ −→exp

∫ ε
0 etadf+gv dt ◦ eεf+ ◦ e−εf+

= q̄ ◦ −→exp
∫ 0
−ε et adf−gv dt ◦ −→exp

∫ ε
0 etadf+gv dt

Rescaling the time in the integrals we have

q̄ ◦ Fε(v(t)) = q̄ ◦ −→exp
∫ 0
−1 εeε tadf−gv dt ◦ −→exp

∫ 1
0 εeεt adf+gv dt.

Hence, we can rewrite it as follows

Fε(v(t)) = −→exp

∫ 1

−1
Vt(ε) dt

where
−→exp

∫ 1

−1
Vt(ε) dt = −→exp

∫ 0

−1
ε g−εt(v) dt ◦ −→exp

∫ 1

0
εg+

εt(v) dt

and
g−εt(v) = eεt ad f−gv

g+
εt(v) = eεt ad f+gv.

Notation 6.3.2. We will use the following notation

Fε(v)|[t→1] = −→exp

∫ 1

t
Vτ (ε) dτ

and

Fε(v)|[1→t] = −→exp

∫ t

1
Vτ (ε) dτ.

In order to verify what we state in Claim 6.3.1, we are going to study the Taylor
expansion of Fε(v)

Fε(v) = Id + ∂εFε(v)|ε=0 ε +
1

2
∂2

εFε(v)|ε=0 ε2 + O(ε3)

then the first derivative is

∂εFε(v) = Fε(v) ◦
∫ 1

−1
Fε(v)|[t→1] ◦ ∂εVt(ε) ◦ Fε(v)|[1→t]dt

and the second

∂2
εFε(v) = ∂εFε(v) ◦

∫ 1
−1 Fε(v)|[t→1] ◦ ∂εVt(ε) ◦ Fε(v)|[1→t]dt+

+Fε(v) ◦
∫ 1
−1 ∂εFε(v)|[t→1] ◦ ∂εVt(ε) ◦ Fε(v)|[1→t]dt+

+Fε(v) ◦
∫ 1
−1 Fε(v)|[t→1] ◦ ∂2

εVt(ε) ◦ Fε(v)|[1→t]dt+

+Fε(v) ◦
∫ 1
−1 Fε(v)|[t→1] ◦ ∂εVt(ε) ◦ ∂εFε(v)|[1→t]dt.
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Since by construction

Fε(v)|ε=0 = Id ∂εVt(ε)|ε=0 = gv

and ∫ 1

−1
∂2

εVt(ε)|ε=0 =

∫ 0

−1
2t[f−, gv]dt +

∫ 1

0
2t[f+, gv ]dt

it holds

∂εFε(v)|ǫ=0 =

∫ 1

−1
gvdt,

and
∂2

εFε(v)|ε=0 =
[∫ 0

−1 2t[f−, gv]dt +
∫ 1
0 2t[f+, gv ]dt

]
+

+
∫ 1
−1

∫ 1
t [gv(θ), gv ]dθdt +

∫ 1
−1 gv ◦

∫ 1
−1 gv

Remark 6.3.3. Given the Taylor expansion

Fε(v) = Id + ∂εFε(v)|ε=0 ε +
1

2
∂2

εFε(v)|ε=0 ε2 + O(ε3),

if ∂εFε(v)|ε=0 + 1
2ε ∂2

ε Fε(v)|ε=0 6= 0 then the statement of Claim 6.3.1 is proved.

Thus, we are interested in proving if the statement of Claim 6.3.1 can be proved
even in the worst case. So, let us assume that

∂εFε(v)|ε=0 +
1

2
ε ∂2

εFε(v)|ε=0 = 0,

then

∂εFε(v)|ε=0 =

∫ 1

−1
gv(t)dt ∈ O(ε),

and ∫ 1

−1
gv ◦

∫ 1

−1
gv ∈ O(ε2),

and finally we rewrite the functional in the following way

1
ε (Fε(v) − Id) =

∫ 1
−1 gv(t)dt + 1

2ε
(∫ 0

−1 2t[f−, gv ]dt +
∫ 1
0 2t[f+, gv ]dt

+
∫ 1
−1

∫ 1
t [gv(τ), gv(t)]dτ dt

)
+ O(ε2).

At this point we calculate and study the scalar product
〈
λ̄, 1

ε (Fε(v) − Id)
〉
, with

λ̄ ∈ Λ , because if we show that it is strictly negative, the statement is proven and
the projection of the extremal that we are analysing is optimal.

Thus, we have

〈
λ̄, 1

ε2 (Fε(v) − Id)
〉

= 1
2

(∫ 0
−1 2t

〈
λ̄, [f−, gv ]

〉
dt +

∫ 1
0 2t

〈
λ̄, [f+, gv]

〉
dt+

+
∫ 1
−1

∫ 1
t

〈
λ̄, [gv(τ), gv(t)]

〉
dτ dt

)
+ O(ε).

(6.3.3)
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One can give the following estimate for O(ε)

O(ε) ≤ ε const

∫ 1

−1
|t||v|2dt.

Hence let us give the following Claim

Claim 6.3.4. In order to prove the optimality of the switched curve among all per-
turbations, denoting

J(v) =
∫ 0
−1 2t

〈
λ̄, [f−, gv]

〉
dt +

∫ 1
0 2t

〈
λ̄, [f+, gv ]

〉
dt+

+
∫ 1
−1

∫ 1
t

〈
λ̄, [gv(τ), gv(t)]

〉
dτ dt + ε const

∫ 1
−1 |t||v|2dt.

(6.3.4)

it is enough to prove the following:
Statement:
There exists ε̄ > 0 such that ∀v 6= 0 and ∀ε < ε̄ the following inequality holds

J(v) < 0.

6.3.2 Result

The reduction of the problem that we explained in the previous subsection, permits
to show the following result.

Theorem 6.3.5. Given an affine control system of type (6.1.1) with any n and
k = 2, and λ̄ ∈ Λ that satisfies (6.1.3), if

[f1, f2](q̄) ∈ span{f1(q̄), f2(q̄)},

then the projection on M of the extremal through λ̄ is time-optimal.

Proof. Let us compute explicitly equation (6.3.4), in particular it holds

〈
λ̄, [f−, gv]

〉
= −|h02|

√
1 − α2

[(
v1

−v2

)
· a

]

〈
λ̄, [f+, gv]

〉
= |h02|

√
1 − α2

[(
v1

v2

)
· a

]

〈
λ̄, [gv(τ), gv(t)]

〉
= −|h12| (v1(τ)v2(t) − v1(t)v2(τ))

For simplicity let us denote






V − :=

(
v1

−v2

)
t < 0

V + :=

(
v1

v2

)
t > 0,
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and (6.3.4) becomes

J(V −, V +) = 2|h02|
√

1 − α2
(∫ 0

−1 −t V − · adt +
∫ 1
0 t V + · adt

)
+

+
∫ 1
−1

∫ 1
t

〈
λ̄, [gv(τ), gv(t)]

〉
dτ dt + ε const

(∫ 1
0 |t||V +|2dt +

∫ 0
−1 |t||V −|2dt

)
.

Moreover, we can consider for t > 0






Ṽ −(t) := V −(−t)

Ṽ +(t) := V +(t),

then we have

J(Ṽ +, Ṽ −) = 2|h02|
√

1 − α2
(∫ 1

0 t Ṽ − · adt +
∫ 1
0 t Ṽ + · adt

)
+

+
∫ 1
−1

∫ 1
t

〈
λ̄, [gv(τ), gv(t)]

〉
dτ dt + ε const

(∫ 1
0 t|Ṽ +|2dt +

∫ 1
0 t|Ṽ −|2dt

)
.

(6.3.5)

From equation (6.3.2) we have
∣∣∣Ṽ ±

∣∣∣
2
≤ −2Ṽ ± · a , thus, assuming const = |h02| it

holds

J(Ṽ +, Ṽ −) ≤ 2|h02|
(√

1 − α2 − ε
) (∫ 1

0 t |Ṽ −|2 dt +
∫ 1
0 t |Ṽ +|2 dt

)
+

+
∫ 1
−1

∫ 1
t

〈
λ̄, [gv(τ), gv(t)]

〉
dτ dt.

Thus, we prove that it holds the statement of Claim 6.3.4, if [f1, f2](q̄) ∈ span{f1(q̄), f2(q̄)} ,
indeed we will have h12 = 0, α = 0 and

J(Ṽ +, Ṽ −) ≤ −|h02|
(√

1 − α2 − ε
) (∫ 1

0 t |Ṽ −|2 dt +
∫ 1
0 t |Ṽ +|2 dt

)
(6.3.6)

is strictly negative if the perturbation v is not null.

6.4 Open problem

Let us describe what we have already seen if [f1, f2](q̄) /∈ span{f1(q̄), f2(q̄)} .
At first let us calculate

∫ 1
−1

∫ 1
t

〈
λ̄, [gv(τ), gv(t)]

〉
dt = |h12|

(∫ 1
0

∫ 1
t −Ṽ +(t) · AṼ +(θ)dθ dt+

+
∫ 1
0

∫ 1
0 Ṽ −(t) · BṼ +(θ)dθ dt+

+
∫ 1
0

∫ t
0 Ṽ −(t) · AṼ −(θ)dθ dt

)

with

A =

(
0 −1
1 0

)
B =

(
0 1
1 0

)
.
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Then we can rewrite (6.3.5) as follows

J(Ṽ +, Ṽ −) = |h02|
√

1 − α2
(∫ 1

0 2t Ṽ − · adt +
∫ 1
0 2t Ṽ + · adt

)
+

+|h12|
(∫ 1

0

∫ 1
t −Ṽ +(t) · AṼ +(θ)dθ dt+

∫ 1
0

∫ 1
0 Ṽ −(t) · BṼ +(θ)dθ dt+

+
∫ 1
0

∫ t
0 Ṽ −(t) · AṼ −(θ)dθ dt

)
+ ε const

(∫ 1
0 t|Ṽ +|2dt +

∫ 1
0 t|Ṽ −|2dt

)
.

If we define
Ẋ± = Ṽ ±

and multiply the expression by 1
|h02|

, it holds

1
|h02|

J(Ṽ +, Ṽ −) =
√

1 − α2
(∫ 1

0 2t Ṽ − · adt +
∫ 1
0 2t Ṽ + · adt

)
+

α
(∫ 1

0 −Ṽ +(t) · A
[
X+

1 − X+(t),
]

dt+
[
X−

1 − X−
0

]
· B

[
X+

1 − X+
0

]
+

+
∫ 1
0 Ṽ −(t) · A

[
X−

1 − X−
0

]
dt −

∫ 1
0 Ṽ −(t) · A

[
X−

1 − X−(t)
]

dt
)

+

+ε const
∫ 1
0 t|Ṽ +|2dt +

∫ 1
0 t|Ṽ −|2dt,

namely

1
|h02|

J(Ṽ +, Ṽ −) =
√

1 − α2
(∫ 1

0 2t Ṽ − · adt +
∫ 1
0 2t Ṽ + · adt

)
+

+α
∫ 1
0 −Ṽ +(t) · A

[
X+

1 − X+(t),
]

dt + α
∫ 1
0 −Ṽ −(t) · A

[
X−

1 − X−(t)
]

dt+

+α
[
X−

1 − X−
0

]
· B

[
X+

1 − X+
0

]
+ ε const

(∫ 1
0 t|Ṽ +|2dt +

∫ 1
0 t|Ṽ −|2dt

)
.

Now, assuming {
v± = −V ±

x±(t) = X±
1 − X±(t),

the constraint become
||v± − a|| ≤ 1,

hence we are going to study the following control system

ẋ± = v±

and we want to minimize

I(v+, v−) = −J(v+, v−) =
∫ 1
0 2t

√
1 − α2(v− + v+) · a dt

−
∫ 1
0 αv+ · Ax+dt −

∫ 1
0 αv− · Ax−dt

−αx−
0 · Bx+

0 − ε const
∫ 1
0 t(|v−|2 + |v+|2)dt,
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and see that it remains greater that 0.
From equation (6.3.2) we have |v±|2 ≤ 2v± ·a , then − |v±|2 ≥ −2v± ·a , and assuming
const = 1 we have

I(v+, v−) ≥
∫ 1
0 2t

(√
1 − α2 − ε

)
(v− + v+) · a dt

−
∫ 1
0 αv+ · Ax+dt −

∫ 1
0 αv− · Ax−dt − αx−

0 · Bx+
0 .

Calling β̂ =
√

1 − α2 − ε , let us redenote

I(v+, v−) :=
∫ 1
0 2tβ̂(v− + v+) · a dt

−
∫ 1
0 αv+ · Ax+dt −

∫ 1
0 αv− · Ax−dt − αx−

0 · Bx+
0 .

Now, we rewrite it in complex coordinates instead of R2 coordinates

I(v+, v−) =
∫ 1
0 tβ̂ 〈v− + v+, a〉 dt

+
∫ 1
0 α 〈v+, ix+〉 dt −

∫ 1
0 α {v−, ix−〉 dt − α

〈
x−

0 , ix+
0

〉
,

then we obtain

I(v+, v−) =

∫ 1

0

〈
v+, 2β̂t a + α i x+

〉
dt

︸ ︷︷ ︸
I+

+

∫ 1

0

〈
v−, 2β̂t a + α i x−

〉
dt

︸ ︷︷ ︸
I−

+
〈
x̄−

0 , ix+
0

〉
.

Remark 6.4.1. If we consider the system

q̇ = f(q, u)

and we minimize

a(q0) +

∫ t

0
φ(q(t))dt,

we want to investigate if at time 0 at q0 the covector is λ0 = +dq0a .
Let us add a further variable y

{
ẏ = 0
q̇ = f(q, u)

and assume y0 = a(q0) , and apply the Pontryagin maximum principle with the
transversality condition, then ν̇ = 0, y0 − a(q0) = 0 and

(ν, λ0) = const(−1, dq0a);

since ν < 0 then

(ν, λ0) = (−1, dq0a)

and we have the thesis.
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Hence we can consider directly the system





ẋ+ = v+

x+
1 = 0

I+ =
∫ 1
0

〈
v+, 2β̂t a + α i x+

〉
dt → min

or 




ẋ− = v−

x−
1 = 0

I− =
∫ 1
0

〈
v−, 2β̂t a + α i x−

〉
dt → min

and prove that the minimum of I± is strictly positive.

Let us consider directly the system





ẋ = v
x1 = 0
||v − a|| ≤ 1

I =
∫ 1
0

〈
v, 2β̂t a + α i x

〉
dt → min

and apply the Pontryagin maximum principle.
The family of Hamiltonian function parametrized by the control v is

hv(p, x) = 〈p, v〉
if we analyse abnormal extremal, and

hv(p, x) = 〈p, v〉 −
〈
v, 2β̂t a + α i x

〉
,

namely,

hv(p, x) =
〈
v, p − 2β̂t a − α i x

〉

if we consider normal extremal.
We are going to study normal extremals.
Denoting

y = p − 2β̂t a − α i x,

since ||v − a|| ≤ 1 , the maximized Hamiltonian is

H = 〈a, y〉 + ||y||
with

vmax = a +
y

||y|| .

Moreover, the normal extremals, thus, in T ∗M they satisfy the following Hamiltonian
system {

ẋ = a + y
||y||

ṗ = i α
(
a + y

||y||

)
,

and

ẏ = −2α i

(
a +

y

||y||

)
− 2β̂a. (6.4.1)
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Claim 6.4.2. If we denote
a = eiφ

y = reiθ

we can see that the phase portrait of any curve y(t) is well define.

Proof. By equation (6.4.1) we can see that

(
ṙ + i r θ̇

)
eiθ = −2β̂eiφ − i

[
2α

(
eiφ + eiθ

)]

then

ṙ + i r θ̇ = −2β̂ei(φ−θ) − i
[
2α

(
ei(φ−θ) + 1

)]
.

In order to give a smarter notation let us define r̄eiφ̄ = α + iβ̂ , then

ṙ + i r θ̇ = −2r̄ sin(φ̄)ei(φ−θ) − i
[
2r̄ cos(φ̄)

(
ei(φ−θ) + 1

)]

namely

ṙ + i r θ̇ = −2r̄ei((φ−φ̄)−θ) − i2r̄ cos(φ̄)

thus, 




ṙ = −2r̄ cos
(
(φ − φ̄) − θ

)

θ̇ = −2r̄
r

[
cos(φ̄) + sin

(
(φ − φ̄) − θ

)]
.

We can see that

r
[
cos(φ̄) + sin

(
(φ − φ̄) + θ

)]
= const

is constant, indeed,

ṙ
[
cos(φ̄) + sin

(
(φ − φ̄) − θ

)]
+ r d

dt

[
cos(φ̄) + sin

(
(φ − φ̄) − θ

)]
=

= −2r̄ cos
(
(φ − φ̄) − θ

) [
cos(φ̄) + sin

(
(φ − φ̄) − θ

)]
+

+ cos
(
(φ − φ̄) − θ

) (
2r̄

[
cos(φ̄) + sin

(
(φ − φ̄) − θ

)])
= 0

6.5 Sufficient optimality condition with n=3 and k=2

Finally, let us summarise sufficient optimality results for a system (6.2.3) when n = 3
and k = 2.

We proved the optimality of broken extremals, that passes through λ̄ ∈ Λ such
that q̄ ∈ π(λ̄) , if

• f0 ∧ f1 ∧ f2 6= 0 at q̄ , namely f0, f1, f2 are linearly independent at point q̄ ,

or
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• f1 ∧ f2 ∧ [f1, f2] = 0 at q̄ , namely those fields are linearly dependent at point
q̄ .

It means that each normal extremal that projects in Oq̄ , a neighbourhood of q̄ small
enough, is optimal. On the other hand, if at point q̄ the distribution span{f1(q), f2(q)}
is not contact, any broken extremal (even abnormal) passing through λ̄ is optimal.

Among all settings, it remains the case in which

• f0 ∧ f1 ∧ f2 = 0 and f1 ∧ f2 ∧ [f1, f2] 6= 0 at point q̄ ,

namely, we have a broken abnormal extremal passing through λ̄ and the fields f1

and f2 generate a contact distribution at q̄ .
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