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5.6 Beyond the von Kármán regime: an example . . . . . . . . . . . . . . . . . . 109
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“There is no branch of mathematics, however abstract,

which may not some day be applied to phenomena of

the real world.”

Nikolai Ivanovich Lobachevsky

Introduction

The study of shape programming and morphing of surfaces is receiving considerable atten-

tion, especially in the field of soft active (or smart) materials, i.e. materials that deform

in response to non-mechanical stimuli. Of particular interest is the problem of exploiting

material heterogeneities to induce complex shape changes – for instance, to produce curved

configurations from an initially flat state. In many natural systems [AHMD12, AD14], such

as plants [AEKS11, DVR97], shape control is usually accomplished by growth, remodelling

or swelling, in response to simple external stimuli (e.g. to a uniform change in the ambient

temperature or humidity). In order to mimic such behaviours, thin sheets made of synthetic

soft active materials appear as suitable candidates. In particular, in these systems curvature

arises from heterogeneous in-plane [dHSSB+12, KES07, KHB+12, WMG+13, PSNH15] or

through-the-thickness strains [AD15, AD17, PSNH16, SUT+10, SYU+11, SZT+12], which

are induced by heterogeneous material properties, including variable anisotropy. In this the-

sis our attention will be especially focused on thin sheets made of hydrogel, namely an active

material in which spontaneous deformations are induced by swelling due to the absorption

of a liquid.

The behaviour of soft active materials can be described in the framework of nonlinear

elasticity by exploiting models for hyperelastic materials whose response to the external stim-

uli is seen through a non-negative energy density function. More specifically, one considers a

3D hyperelastic sheet of small thickness h, occupying a domain Ωh = ω × (−h/2, h/2) ⊆ R3,

where the midplate ω ⊆ R2 is a bounded Lipschitz domain. In the sequel we shall use the

notation z = (z′, z3) for an arbitrary point in Ωh. The total energy of the above described

system associated with a deformation v : Ωh → R3, in absence of external forces, is given by

the quantity

E h(v) =

ˆ
Ωh

W h

(
z,∇v(z)

)
dz,

where W h is the mentioned non-negative energy density function, defined on Ωh ×R3×3 and

satisfying the standard frame-indifference, growth and regularity conditions in non-linear

elasticity. Non-trivial complex shapes arise as equilibrium configurations, or equivalently

as minimizers of the above elastic energy functional. The investigation of the latter re-

lies upon the understanding of the relation between the three-dimensional theory and the

lower-dimensional ones. This task has become one of the fundamental problems in nonlinear

elasticity and opened many interesting questions that lie on the interface between Mechanics,

Geometry and Analysis. Several problems arise with regard to the above proposed functional.

First, one has to determine the scaling of the infimum energy in terms of the small thickness

of the sheet. Second, to derive the “limiting” lower dimensional theories under the identi-

fied scaling. Another problem is the study (from a geometric perspective) of the obtained

dimensionally reduced models.

xi
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The lower dimensional theories (e.g. plate, shell, rod or ribbons) became a topic of interest

in both the mathematical and the physical literature – [BBN15, ASK14, BLS16, SE10, LTD16,

Mos15] and the references hereafter are some of the many examples of plate models, which

will be the main focus of this thesis.

There are various approaches to the derivation of the plate theories in the context of

nonlinear elasticity. The one that is most commonly used is the following: to make a cer-

tain ansatz for the expected form of the three dimensional deformation (based on physical

intuition) and to perform a formal expansion with respect to the small thickness parameter.

Clearly, different ansatzes may give a large variety of plate theories that on one hand are

useful for some applications but on the other hand may lead to contradicting predictions (for

a nice discussion see [DFMS17]).

A variational approach is instead ansatz-free and allows for the rigorous derivation of

lower dimensional theories. It is known as the dimension reduction technique, based on

the theory of Γ-convergence. The relevance of employing such a rigorously derived theory

is twofold: one avoids inconsistencies, which are often present in ad-hoc formally-deduced

models by computing a mathematically rigorous limit; the rigorous procedure guarantees that

the minimizers of the 2D model faithfully reproduce the true behaviour of the sufficiently thin

(yet, three-dimensional) sheets.

Up to now, using this approach, a wide class of plate models has been rigorously de-

rived from three-dimensional elasticity. The nonlinear membrane theory has been derived

in the limit of the vanishing sheet’s thickness h by H. Le Dret and A. Raoult in [LDR95],

corresponding to the asymptotic behaviour E h/h ∼ 1. The rigidity estimate proved by G.

Friesecke, R.D. James and S. Müller in [FJM02] – providing a precise quantitative version of

the idea that three-dimensional deformations with low energy should be very close to rigid

motions – constituted a key ingredient in the rigorous derivation of the bending plate theory

(under the scaling E h/h ∼ h2) provided in the same paper. The same authors rigorously

derived in [FJM06] von Kármán plate model (corresponding to the scaling order E h/h ∼ h4),

and introduced some further models corresponding to the intermediate scaling regimes. The

above mentioned models are obtained in the setting of homogeneous thin structures, char-

acterized by a z and h independent energy density function – namely, W h(z, F ) = W (F ),

with W minimized at the set of three-dimensional rotations SO(3). In this case, the energy

scaling is driven by the magnitude of the applied forces.

Recently, a growing interest in the study of thin sheets that may assume non-trivial

configurations in absence of external forces or boundary conditions motivated developments

of the plate (and other lower dimensional) theories in the context of pre-stretched elastic

bodies (also called “pre-stressed” or “pre-strained”) – in other words, elastic bodies for which

there is no natural notion of reference configuration (i.e. a configuration which is stress-

free). Within this setting, the elastic properties of a thin sheet Ωh are modeled by a density

function W h and by a positive definite, symmetric tensor field Uh : Ωh → R3×3 (referred to

as pre-stretch) satisfying

(0.1) W h(z, F ) = W
(
FUh(z)

)
,

where W is a homogeneous density function as above. Thus, the state of deformation that

minimizes the energy density is precisely its inverse Ah = U−1
h , which is referred to as spon-

taneous stretch. The field Ah typically represents an active growth, a plasticity phenomenon

or an inelastic one.
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The representation of the energy densities in (0.1) is in the spirit of the homogeneous

constitutive relation

W (x, F ) =W(FUx),

which dates back to early works of W. Noll and C.-C. Wang [Nol68, Wan66, Wan68]. There,

an elastic body is modeled as a three-dimensional manifold M with the associated energy

density function W : R3×3 → R called archetypal and a field Ux : TM → R3 called implant

map – namely, such map represents how an orthonormal frame is implanted in the tangent

space of M in each point. It clearly induces a reference metric on M .

An alternative way (discussed bellow) to the study of pre-stretched materials, due to E.

Efrati and E. Sharon [KES07, ESK09, SRS07], is that to endow the body manifold M with

an incompatible Riemannian metric, which will determine a (not necessarily unique) implant

map on M (following the above terminology).

In the context of pre-stretched materials, the techniques of [FJM02] have been extended

on one side by B. Schmidt in [Sch07a, Sch07b] to the case of heterogeneous multilayers –

namely, elastic materials characterized by a pre-stretch depending only on the transversal

variable and being h-close to the identity. The corresponding Kirchhoff plate model has been

used in the study of bending behaviour of thin sheets made of nematic elastomers by V.

Agostiniani and A. DeSimone in [AD15], [AD17] and [DeS18]. An important contribution to

the modelling of nematic elastomers has been previously given by A. DeSimone and coauthors

in [DD02, DT09, CD11, CDD02b, CDD02a, DeS99].

On the other side, models with only lateral variations of the pre-stretches, namely Uh(z) =

U(z′) (and consequently Ah(z) = A(z′)), were considered in [LP11, BLS16] and [LRR17] un-

der the Kirchhoff and the von Kármán scaling regime, respectively. These theories, often re-

ferrd to as the non-Euclidean plate theories, were inspired by experimental results in [KES07],

where it has been postulated that the complex changes detected in the experiments are due

to the attempt of the body to realize the configuration with the prescribed pull-back metric

G = A2. When such a metric is incompatible (i.e. there is no orientation preserving deforma-

tion realizing it), it is clear that the infimum of the functional E h is strictly positive, pointing

out the existence of the non-zero stress at free equilibria. Similarly, in [LMP10, LOP+15]

pre-stretches Uh with a particular asymptotic behaviour are considered. The corresponding

plate models are derived under the higher (then Kirchhoff) scaling regime and the discussion

on the energy scaling driven by the asymptotic behaviour of the difference Uh−I3 is provided.

Regarding the problem of different energy scalings in the case of pre-stretched materials

or, equivalently, those characterized by the prescription of a general Riemannian metric Gh
on Ωh, it is expected that the hierarchy of plate models should be (naturally) driven by the

scaling (in the sheet’s thickness h) of the components of the corresponding Riemann curvature

tensor, see [Lew11].

Moreover, general and strong results have been proved in the abstract setting of Rieman-

nian manifolds in [KS14, KM14, MS18], covering many of (Euclidean and non-Euclidean)

plate, shell and rod theories that have been previously derived, as well as providing a va-

riety of new ones. In [KS14] Γ-convergence statements were proved for any dimension and

codimension in the O(h2) scaling regime (generalizing the results of [LP11] and [BLS16]),

while in a work parallel to the non-oscillatory case (NO) presented in the Chapter 5 [MS18],

the authors analyze scaling orders o(h2), O(h4) and o(h4), extending the condition (5.27),

Lemma 5.4.1 for the case (NO) and condition (5.86) to arbitrary manifolds.

Other results concerning the energy scaling for materials with residual strain are derived
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in [BK14] by imposing suitable boundary data (see also [SRS07]).

Coming back to our motivation from the very beginning of this Introduction, a natural

question arises: which shapes can be taken by a thin elastic sheet with a prescribed non-

Euclidean (incompatible) metric?

For instance, in order to generate bending deformations of an initially flat thin sheet and

in this way produce curved shapes, one may employ the bilayer (or multilayer) models men-

tioned above. The corresponding 2D bending model is in this case described via a curvature

functional measuring the difference between curvature tensor associated with the limiting

deformation and a constant “target” (or “preferred”) curvature arising in the presence of a

transversal variation of the pre-stretch. It turns out that the corresponding configuration of

minimal energy is a “piece” of cylindrical surface [Sch07b]. The proof of such result heavily

relies upon the fine properties of W2,2-isometric immersions, proved by M.R. Pakzad in the

case of convex domains [Pak04] and later generalized by P. Hornung to more general domains

[Hor11b].

Then another question that is much less explored in the literature is: how to control the

curvature (and thus obtain the desired target shape) by tuning the internal growth (in view

of the prescribed metric), the material heterogeneity or the external stimuli? Some recent

results on the optimal control and the design problems related to plates and shells can be

found, for instance, in [JM15, HMVV16, HMVV17].

Without any attempt of being complete, since the literature is vast and is growing at a

very fast pace, in the above discussion we pointed out some problems (of different nature) in

non-linear elasticity related to the thin structures and to their two-dimensional counterparts

that will be subject of this thesis. The aim of this thesis, whose brief presentation is pro-

vided below, is to provide some further developments in the derivation and analysis of the

dimensionally reduced theories inspired by the modelling of thin sheets made of hydrogel.

Organization of the thesis

We shall now present an overview of the content of this thesis. In Chapter 1 and Chapter

2 we provide an introduction to the necessary background in mathematics and elasticity to

ensure good understanding of the forthcoming arguments:

• Chapter 1: Notation and mathematical preliminaries. We set up a general nota-

tion that will be used throughout. We introduce the basic notions and some important results

from Riemannian geometry and Mathematical Analysis. In particular, we will be concerned

with: the notion of Γ-convergence; existence and regularity of an isometric immersion of a

planar domain ω equipped with an arbitrary metric g into Euclidean space R3; fine properties

of W2,2-isometric immersions of the flat metric g = I2;

• Chapter 2: From three-dimensionall elasticity to nonlinear plate theory.

This chapter is decomposed in the two main parts: in the first part we present the 3D

model of a thin hyperelastic sheet, concentrating our attention on the properties of energy

density functions and on the notion of a material characterized by a spontaneous stretch.

Such material is described via energy density function W h and a symmetric, positive definite

tensor field Ah : Ωh → R3×3 satisfying

argminR3×3W h(z, ·) = SO(3)Ah(z), for a.e. z ∈ Ωh.
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More precisely, we consider a more general spontaneous stretch distribution, not necessarily

coming from the inverse of a pre-stretch. Moreover, we introduce all the physical quantities

and their rescaled versions involved in the definition of the elastic energy functional E h and

in the variational problem we will be concerned with.

The second part of the chapter is devoted to a presentation of the different energy scal-

ing regimes and some of the key ideas in the dimension reduction. We concentrate on the

Kirchhoff (bending) regime recalling the main ideas from [FJM02] – in particular, the rigidity

estimate and a truncation argument. We shall see that these ideas and their counterparts in

the non-Euclidean setting (developed in [LP11]) will be carried over Chapter 3 and Chapter

5, respectively.

We conclude this chapter by Appendix 2.A, dedicated to the properties of the quadratic

form Q3 (coming from the second differential of the homogeneous energy density function

W ) and its linearized version Q2.

The remaining three chapters contain the results that were obtained in the articles

[ALL17], [ADLL] and [LL18], respectively. Let us single out some of the major topics that

we will be concerned with. Namely, we will

– draw the attention to the materials characterized by a spontaneous stretch, motivated

by the properties of the Flory-Rehner-type model for thin sheets made of hydrogel;

– derive new plate models in the Kichhoff and von Kármán energy scaling regimes for

more general forms of the spontaneous stretch, generalizing the results of [Sch07b,

LP11, BLS16, LRR17]; we discuss as well the scaling of the elastic energy as a function

of the thickness h;

– analyze the energy minimizers of the 2D Kirchhoff model characterized by a piece-

wise constant target curvature tensor (recall that the constant case has been treated in

[Sch07b]) and employ the obtained results to study the folding structures, also address-

ing an inverse (design) problem;

– prove some coercivity inequalities for the 2D limiting models obtained in the Kirchhoff

and von Kármán regimes;

A brief presentation of these three chapters follows. We provide a more detailed intro-

duction at the beginning of each of them.

• Chapter 3: Dimension reduction for materials with a spontaneous stretch

distribution. In this chapter we present the results obtained in [ALL17] in collaboration

with V. Agostiniani and A. Lucantonio. We rigorously derive (in Theorem 3.2.2) a Kirchhoff

plate theory from a three-dimensional model that describes the finite elasticity of an elastically

heterogeneous, thin sheet. The heterogeneity in the elastic properties of the material results

in a spontaneous stretch Ah that depends on both the thickness and the plane variables z′.

At the same time, the spontaneous stretch is h-close to the identity (recall, h is the parameter

quantifying the thickness), namely it is of the form

Ah(z) = I3 + hB
(
z′,

z3

h

)
, z = (z′, z3) ∈ Ωh

where B is a bounded spontaneous strain field defined on the rescaled domain Ω := ω ×
(−1/2, 1/2) ⊆ R3. The 2D Kirchhoff limiting model is constrained to the set of isometric

immersions of the mid-plane of the plate into R3, with a corresponding energy that penalizes



Introduction xvi

deviations of the curvature tensor associated with a deformation from a z′-dependent target

curvature tensor. Moreover, we provide a discussion on the 2D energy minimizers in the

case where the target curvature tensor is piecewise constant with the eye on the further

applications in Chapter 4.

In addition to the presented results from [ALL17], in Section 3.4 we discuss the additional

condition (3.20) imposed on the spontaneous strain B in Theorem 3.2.2. We present two

different ideas that might be used to remove it.

Also, this chapter contains an appendix (Appendix 3.A) in which we provide, for the

convenience of the reader, complete proofs of the results obtained in [Sch07b] regarding

energy minimizers in the case of constant target curvature.

• Chapter 4: Application to heterogeneous thin gel sheets. The results presented

in this chapter are obtained in [ADLL] in collaboration with V. Agostiniani, A. DeSimone and

A. Lucantonio. We discuss self-folding of a thin sheet by using patterned hydrogel bilayers,

which act as hinges connecting flat faces. Folding is actuated by heterogeneous swelling due

to different cross-linking densities of the polymer network in two layers.

For our analysis we use a dimensionally reduced plate model, obtained by applying the

theory (and especially the study of pointwise minimizers) presented in Chapter 3 and further

adapted, at the beginning of this chapter, to this particular case. It provides us with an

explicit connection between material properties and the curvatures induced at the hinges –

this connection offers a recipe for the fabrication of the bilayers, by providing the values of

the cross-linking density of each layer that need to be imprinted during polymerization to

produce a desired folded shape upon swelling.

• Chapter 5: Dimension reduction for thin sheets with transversally varying

pre-stretch. This chapter is devoted to the results obtained in [LL18] in collaboration with

M. Lewicka, where we study the Γ-limits in the vanishing sheet’s thickness h of the non-

Euclidean (incompatibile) elastic energy functionals in the description of pre-streched thin

sheets. More precisely, the sheets are characterized by the incompatibility smooth tensor fields

Gh defined on Ωh (representing a Riemannian metric) and by the energy density function

having the pre-stretch form (0.1) with the corresponding spontaneous stretch Ah := U−1
h =

G
1/2
h . Moreover, we consider tensor fields Gh of the form

Gh(z) = Ḡ(z′) + hG1
(
z′,

z3

h

)
+
h2

2
G2
(
z′,

z3

h

)
, z = (z′, z3) ∈ Ωh,

where Ḡ is a positive definite symmetric matrix field, while G1 and G2 are symmetric matrix

fields and G1 satisfies
´ 1/2
−1/2 G

1(·, t) dt = 0. The above metric tensor Gh is referred to as the

“oscillatory” case. In such a case the dependence on the transversal variable at the first

order is not necessarily linear; the linear case can be seen as a subcase of the former one

and is considered within the “non-oscillatory” setting. In particular, Gh as above provides

a generalization of the tensor field Gh = A2
h considered in Chapter 3 in the sense that the

leading order metric I3 present therein is now a general z′-dependent metric tensor Ḡ.

We derive the corresponding 2D models in the Kirchhoff and the von Kármán scaling

regime and exhibit connections between the “oscillatory” and the “non-oscillatory” case. It

turns out that (under the appropriate compatibility assumptions on G1 and G2) the vanish-

ing of the additional (purely metric-related) terms in the 2D models corresponding to the

oscillatory case leads to the 2D models in the “non-oscillatory” case corresponding to the

appropriate effective metric.
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We also study the scaling of the elastic energy per unit volume (i.e. E h/h) as a power of

h and discuss the scaling regimes up to power h6 (see Theorem 5.2.7, Theorem 5.4.14 and

Theorem 5.7.1). In Section 5.3 and Section 5.5 we prove some coercivity inequalities for the

obtained Γ-limits in the “non-oscillatory” case at h2- and h4- scaling orders, respectively,

while disproving the full coercivity of the classical von Kármán energy functional at scaling

h4 (see Example 5.5.3).
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1.1 General notation

We denote by N, Z, R and R the set of natural, integer, real and extended real numbers,

respectively. For fixed n ∈ N we will denote by

• Rn the Euclidean n-dimensional vector space,

• Rn×n the vector space of real n× n matrices,

• In ∈ Rn×n the identity matrix,

• Sym(n) := {M ∈ Rn×n : MT = M} the vector space of symmetric matrices, where by

MT ∈ Rn×n we denote the transpose of the matrix M ∈ Rn×n,

• Skew(n) := {M ∈ Rn×n : MT = −M} the set of skew-symmetric matrices,

• O(n) := {M ∈ Rn×n : MTM = In} the set of all orthogonal transformations of Rn,

• SO(n) := {M ∈ Rn×n : MTM = In,det(M) = 1} the set of all rotations of Rn,

• Trs(n) := {Tv := · + v : v ∈ Rn} the set of all translations in Rn. Sometimes, to

distinguish between translations in R2 and R3, we denote by τv the elements of Trs(2),

1
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• Msym := M+MT

2 the symmetric part of the matrix M ∈ Rn×n,

• trM the trace of the matrix M and tr2M := (trM)2,

• |M | :=
√∑n

i,j=1 |mij |2 =
√

tr(MTM), Frobenius norm of M = [mij ]
n
i,j=1 ∈ Rn×n,

• M : N = tr(MTN) the scalar product between M,N ∈ Rn×n,

• v · w = vTw the scalar product between v,w ∈ Rn, sometimes also denoted by 〈v,w〉,

• v ⊗ w = vwT the tensor product between v,w ∈ Rn,

• v ∧ w the exterior product between v,w ∈ Rn,

• Ln the n-dimensional Lebesgue measure; also the notation | · | will be equivalently used,

• Hn the n-dimensional Hausdorff measure.

Functional spaces. Let X and Y be finite dimensional Banach spaces and let U ⊆ X be

an open set. We will use the following notation

• C(U , Y ) the space of continuous functions from U to Y ,

• Cm(U , Y ) the space of m-differentiable functions,

• C∞(U , Y ) the space of smooth functions,

• C∞c (U , Y ) the space of smooth functions with compact support in U ,

• Lp(U , Y ) the space of Lebesgue (p-integrable) functions, 1 ≤ p <∞,

• L∞(U , Y ) the space of essentially bounded functions,

• Lploc(U , Y ) the space of locally p-integrable functions, 1 ≤ p <∞,

• Wm,p(U , Y ) the space of Sobolev functions, 1 ≤ p ≤ ∞,

• Wm,p
loc (U , Y ) the space of locally Sobolev functions, 1 ≤ p ≤ ∞ .

We refer the reader to the book [Bre10] for some properties of Sobolev functions that will be

used throughout.

By N (U) we denote the family of all open neighbourhoods of a set U ⊆ X. The closure

of a set U ⊆ X is denoted by U . Given a compact subset K of X, we say that Φ ∈ Cm(K) if

there exists U ⊆ X open, containing K, such that Φ ∈ Cm(U). An open ball of radius r > 0

centered in x ∈ X is denoted by Br(x).

Furthermore, we give the following definitions:

• given M ∈ R2×2, the 3 × 3 matrix with principal minor equal M and all other entries

equal to 0 is denoted by M∗,

• the matrix M2×2 denotes the 2× 2 principal minor of a given matrix M ∈ R3×3,

• L (R3×3) is the space of all linear functions from R3×3 to R,

• L2(R3×3) is the space of all bilinear functions from R3×3 × R3×3 to R.

We denote by {e1, e2} the standard basis of R2 and by {f1, f2, f3} the standard basis of R3.

An open connected subset of Rn, n = 2, 3, will be called domain. Sometimes, for the sake of

brevity, an open subset of Rn with Lischitz boundary will be called a Lipschitz subset of Rn.
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1.2 The notion of Γ-convergence

In this section we shall concentrate on the remarkable notion of Γ-convergence, introduced

by E. De Georgi and T. Franzoni [DF75] in 1975. We recall the basic definition and state

some of the important properties (for instance, the compactness result and the convergence

of minimizers). For their proofs and more details about this topic we refer the reader to

[DM12] and [Bra02].

Let (X, d) be a metric space. We say that a function F : X→ R is

• lower semicontinuous provided F (x) ≤ lim infk F (xk), for every sequence (xk)k con-

verging to x as k → +∞,

• coercive if the set {x ∈ X : F (x) ≤ t} is precompact for every t ∈ R.

We recall that

Theorem 1.2.1. Let F : X → R be lower semicontinuous and coercive. Then F has a

minimum in X.

Through the rest of this section (Fk)k will be a sequence of functions Fk from X to R.

Definition 1.2.2 (The Γ-limit). Fix x ∈ X. We define the Γ-lower limit of a sequence (Fk)k
at the point x as (

Γ- lim inf
k→+∞

Fk

)
(x) := inf

{
lim inf
k→+∞

Fk(xk) : xk → x
}
,

and the Γ-upper limit of a sequence (Fk)k at the point x as(
Γ- lim sup

k→+∞
Fk

)
(x) := inf

{
lim sup
k→+∞

Fk(xk) : xk → x
}
.

If there exists a function F : X → R such that Γ- lim infk Fk = Γ- lim supk Fk = F , we

say that (Fk)k Γ-converges to F in X, as k → +∞. We write F = Γ- limk Fk.

Equivalently, the above definition is saying that (Fk)k Γ-converges to F in X if

(i) for every x ∈ X and every sequence (xk)k ⊆ X such that xk
k→ x it holds

lim inf
k→+∞

Fk(xk) ≥ F (x),

(ii) for every x ∈ X there exists a sequence (xk)k ⊆ X such that xk
k→ x and

lim sup
k→+∞

Fk(xk) ≤ F (x).

Such a sequence is usually referred to as a recovery sequence.

Since we will often deal with the family of functions {Fh}h depending on the continuous

parameter h > 0, we will say that {Fh}h Γ-converges to F as h → 0 if for every sequence

hk → 0 as k → +∞ it holds that (Fhk)k Γ-converges to F .

We now point out some properties of Γ-convergence and Γ-limits that will be important

later on. First of all, by using diagonal argument one can show that a Γ-limit is a lower

semicontinuous function. Second, by its very definition, it can be easily verified that a Γ-

limit is stable under continuous perturbations, i.e. given a continuous function G : X → R
and letting F = Γ- limk Fk, we have that F + G = Γ- limk Fk + G .
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Lemma 1.2.3 (Γ-limsup on a dense subset). Let D ⊆ X be dense in X and let F : X → R
be a continuous function. Assume that

(
Γ- lim supk Fk

)
(x) ≤ F (x) for every x ∈ D. Then(

Γ- lim supk Fk

)
(x) ≤ F (x) for every x ∈ X.

Proposition 1.2.4 (Compactness of Γ-convergence). Assume that (X, d) is a separable met-

ric space. Then there exists a subsequence (Fkj )j of (Fk)k such that Γ- limj Fkj exists at

each point x of X.

Proposition 1.2.5 (Convergence of minimizers). Assume that (Fk)k Γ-converges to F as

k → +∞ and that there exists a compact set K ⊆ X such that infX Fk = infK Fk for every

k ∈ N. Then the minimum of F is attained and it holds that

min
X

F = lim
k→+∞

inf
X

Fk.

If (xk)k ⊆ X is a precompact sequence such that limk Fk(xk) = limk infX Fk, then every

converging subsequence of (xk)k converges to a minimizer of F .

1.3 Some results from Riemannian geometry

In this section we recall some definitions and results in Riemannian geometry that will be used

throughout. We refer the reader to [HH06], [Cia06] and [Spi75] and the references appearing

hereafter for more details.

Let Ω be a simply-connected domain in R3. Let G : Ω→ R3×3 be a smooth matrix field,

with values in the set of positive definite symmetric matrices, denoted by Psym(3). Thus,

we identify the map G with a Riemannian metric defined in Ω. We will use the following

notation

G = [Gij ] and G−1 = [Gij ].

The Christoffel symbols {Γikl} corresponding to the metric G are given by

(1.1) Γikl =
1

2
Gim

(
∂lGmk + ∂kGml − ∂mGkl

)
,

while the components of the Riemann curvature tensor RiemG associated to G and its co-

variant version (fourth-order tensor field) read as

(1.2) Rsklm = ∂lΓ
s
km − ∂mΓskl + ΓsljΓ

j
km − ΓsmjΓ

j
kl and Riklm = GisR

s
klm,

respectively. Note that the second equality can be written in the following form:

(1.3) Riklm =
1

2

(
∂klGim + ∂imGkl − ∂kmGil − ∂ilGkm

)
+

3∑
n,p=1

Gnp
(
ΓnklΓ

p
im − ΓnkmΓpil

)
.

Above, the Einstein summation convention for the sum over repeated indices is adopted.

A manifold (Ω, G) is said to be flat if all the components of the Riemann curvature

tensor vanish, i.e. RiemG ≡ 0. Observe that RiemG ≡ 0 if and only if Riklm ≡ 0 for

all i, k, l,m ∈ {1, 2, 3}. It is a well-known result in Riemannian geometry that the latter

condition is equivalent to the existence of an orientation-preserving isometric immersion of

(Ω, G) into the Euclidean space R3, namely of a sufficiently smooth map u : Ω → R3 such

that

(∇u)T∇u = G and det∇u > 0.
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We remark that such a result is true in any space dimension n ≥ 2. We refer to its version

with lower regularity requirement on G given in [Mar04], where G ∈ W1,∞
loc (Ω,R3×3), and

the corresponding immersion u belongs to the space W2,∞
loc (Ω,R3). In this case, clearly, the

flatness condition RiemG = 0 is asked to be satisfied in the distributional sense.

A natural question arises in the case when (Ω, G) is not flat: is there any n > 3 and

any immersion u : Ω → Rn such that (∇u)T∇u = G? A positive answer to this question is

given by the results of Nash [Nas54] and Kuiper [Kui55], which says that any d-dimensional

Riemannian manifold can be isometrically embedded in a Euclidean space of dimension n ≥
d+ 1, with an immersion u of class C1.

Further, we recall a result regarding the existence of an isometric immersion with a

prescribed second fundamental form, restricting our attention to the following case: let ω ⊆
R2 be a simply-connected domain, let g = [gij ] : ω → Psym(2) and Π = [hij ] : ω → Sym(2)

be given C2-matrix fields. The existence of a C3-immersion y : ω → R3 satisfying

(∇y)T∇y = g and Πy = Π

is guaranteed if the coefficients of g and Π satisfy the following Gauss-Codazzi-Mainardi

systems of equations:

(1.4) ∂khij − ∂jhik = Γlikhij − Γlijhlk and Riljk = hijhlk − hljhik,

where Γlij and Riljk are related to [gij ] via the formulas (1.1), (1.3) and Πy is the pull-back of

the second fundamental form of the surface y(ω). The above compatibility result holds even

when the regularity of g and Π is reduced to the spaces W1,∞
loc

(
ω,Sym(2)

)
and L∞loc(ω,Sym(2)),

respectively, as proved in [Mar03]. The associated immersion y then belongs to the space

W2,∞
loc (ω,R3). We also recall that

(1.5) Πy = (∇y)T∇ν, where ν :=
∂1y ∧ ∂2y

|∂1y ∧ ∂2y|
.

From the fact that ∂iy · ν = 0 for i = 1, 2, we equivalently have

(1.6) (Πy)ij = −∂ijy · ν, for every i, j = 1, 2.

We conclude this section by stating two compatibility results that will be useful in the

sequel. A more general version of the first result below, for A ∈ Lp(ω,Sym(2)) with p ≥ 2

(actually, in any space dimension n ≥ 2), can be found in [MSG15].

Theorem 1.3.1 (St. Venant compatibility condition [CC05]). Let ω ⊆ R2 be a simply-

connected bounded Lipschitz domain and let A ∈ L2(ω,Sym(2)). Then

(1.7) curl
(
curlA

)
= 0 in the distributional sense ⇐⇒ A = ∇symw, w ∈W1,2(ω,R2).

Moreover, w is unique up to rigid displacements.

Theorem 1.3.2 ([CC05]). Let ω ⊆ R2 be a simply-connected bounded Lipschitz domain and

let A ∈ L2(ω,Sym(2)). Then

(1.8) curl A = 0 in the distributional sense ⇐⇒ A = −∇2v a.e. in ω, for v ∈W2,2(ω).

The function v is unique up to addition of an affine function.

Here, the symbol ∇sym stands for the symmetrized gradient, i.e. ∇sym = ∇T+∇
2 . The

symbol curlA is used to denote the differential operator which associates to A the vector-

valued map (curl a1, curl a2)T, where a1, a2 : ω → R2 are the rows of A, in symbols A =(
a1 | a2

)T
. Also, we use the convention curlw = ∂x1w

2 − ∂x2w
1, where x′ = (x1, x2) ∈ ω and

w1, w2 are the components of the vector-valued map w : ω → R2.
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1.4 The space of W2,2-isometric immersions

Given a bounded Lipschitz domain ω ⊆ R2, consider the class of the isometric immersions

(or briefly, isometries) of ω endowed with a flat metric [gij ] = [δij ] into R3

(1.9) W2,2
iso (ω,R3) :=

{
y ∈W2,2

(
ω,R3

)
: (∇y)T∇y = I2 a.e. in ω

}
.

For the sake of brevity, we equivalently use the symbol W2,2
iso (ω).

Remark 1.4.1. It is easy to verify that for any y ∈W2,2
iso (ω) it holds that

(1.10) ∂iy · ∂jy = δij and ∂ijy · ∂ky = 0, for i, j, k = 1, 2.

These identities can be used to verify that for any w ∈W1,2(ω,R2) and y ∈W2,2
iso (ω) it holds

(1.11) (∇y)T∇
(
(∇y)w

)
= ∇w, a.e. in ω.

�

As a consequence of the above remark and Lemma 1.3.1 we have the following result.

Lemma 1.4.2. Let ω ⊆ R2 be a simply connected bounded Lipschitz domain and let A ∈
L2
(
ω,Sym(2)

)
. The following two conditions are equivalent:

(i) curl(curlA) = 0 in the distributional sense;

(ii) for every y ∈W2,2
iso (ω) there exists wy ∈W1,2(ω,R3) such that A =

(
(∇y)T∇wy

)
sym

a.e.

in ω.

Proof. (i) ⇒ (ii). Note first that (i) implies that there exists w ∈ W1,2(ω,R2) such that

A = ∇symw a.e. in ω, by (1.7). Pick y ∈ W2,2
iso (ω) and let wy := (∇y)w ∈ W1,2(ω,R3). By

Remark 1.4.1 we have (
(∇y)T∇wy

)
sym

= ∇symw = A.

(ii) ⇒ (i). Let y ∈ W2,2
iso (ω) be given by y(x′) := (x1, x2, 0) for every x′ ∈ ω. By (ii),

there exists wy ∈ W1,2(ω,R3) such that A =
(
(∇y)T∇wy

)
sym

. Given that ∇y =
(

1 0
0 1
0 0

)
,

it holds A = ∇symw
tan
y , where wtan

y ∈ W1,2(ω,R2) satisfies wy = (wtan
y , w3

y)
T. Therefore,

curl(curlA) = 0, in view of (1.7).

It is a well-known result in differential geometry that every smooth y ∈W2,2
iso (ω) satisfies

det Πy = 0 in ω (see (1.4)). By an approximation argument – see [Pak04, Lemma 2.5] or

[MP05, Proposition 3] – one can deduce that the same property holds for any arbitrary

y ∈W2,2
iso (ω), a.e. in ω, namely:

Lemma 1.4.3. Let y ∈W2,2
iso (ω). Then Πy ∈ L2

(
ω,Sym(2)

)
and the following equations are

satisfied in the sense of distributions

∂2(Πy)11 = ∂1(Πy)12, ∂2(Πy)21 = ∂1(Πy)22, det Πy = 0.
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1.4.1 Fine properties of isometric immersions

We here recall some important results regarding the class W2,2
iso (ω). We will mainly use the

notation and the terminology from [MP05, Pak04, Hor11a, Hor11b]. We refer the reader to

the former references for more details about this topic. Following [Hor11a] and [Hor11b], let

us first introduce the directed distance function νω : ω × (R2 \ {0})→ [0,+∞), defined by

νω(x′, v) := inf{a > 0 : x′ + av /∈ ω}, for every (x′, v) ∈ ω × (R2 \ {0}).

Note that the open line segment with endpoints x′ ± νω(x′,±v)v is the maximal subinterval

of the line x′ + Rv contained in ω and containing the point x′. Further, given y ∈ C1(ω,R3),

we define the set

C∇y := {x′ ∈ ω : ∇y is constant in a neighbourhood of x′}.

We say that ∇y is countably developable on ω if it is developable on ω \C∇y in the following

sense: there exists a (unique) vector field q∇y : ω \C∇y → R2 of unit length such that for all

x′ ∈ ω \ C∇y the gradient ∇y is constant on the open line segment

(1.12) [x′] :=
(
x′ − νω(x′,−q∇y(x′)) q∇y(x′), x′ + νω(x′, q∇y(x

′)) q∇y(x
′)
)

and we have that

[x′] ∩ [z′] 6= Ø =⇒ [x′] = [z′] for every x′, z′ ∈ ω \ C∇y.

Denote by Ĉ∇y the union of all connected components U of C∇y whose relative boundary

ω∩∂U consists of at least three connected components. As emphasised in [Hor11a], the map

q∇y can be extended to ω \ Ĉ∇y, but this extension, in general, is not unique. We further

have the following result:

Theorem 1.4.4. If y ∈W2,2
iso (ω) then y ∈ C1(ω,R3) and ∇y is countably developable.

The proof of the first part of this result, about the regularity of y ∈ W2,2
iso (ω), can be

found in [MP05, Proposition 5]. The second part has been proved in [Hor11b]. Moreover,

from [Hor11b, Theorem 4] it follows that the domain ω can be decomposed, up to a null set,

in finitely many subdomains (touching each other on a finite union of line segments) on which

y is either a plane, or a cylinder, or a cone or tangent developable. More specifically, the affine

regions (i.e. regions on which y is a plane) are subdomains U ⊆ Ĉ∇y on which ∇y is constant,

while the regions on which y is developable are subdomains of ω of the form [Γ(0, T )], where

Γ is the line of curvature for y (see the following definitions, in particular (1.14)). The same

result in the case of convex domain ω has been previously proved in [Pak04].

Definition 1.4.5 (Line of curvature). Let y ∈W2,2
iso (ω). Then any (arclength parametrized)

curve Γ ∈W2,∞([0, T ], ω \ Ĉ∇y
)

satisfying (for some extension of q∇y to ω \ Ĉ∇y)

Γ′(t) = −q⊥∇y
(
Γ(t)

)
, for all t ∈ [0, T ], and

Γ′(t) · Γ′(t′) > 0, for all t, t′ ∈ [0, T ]

is called a line of curvature of y.
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To any curve Γ ∈W2,∞([0, T ],R2) one can associate its normal and its curvature, respec-

tively given by

(1.13) N = (Γ′)⊥ and κt = Γ
′′ ·N.

Let the functions s±Γ : [0, T ] → R be such that ±s±Γ are positive, lower semicontinuous and

bounded and define

• the bounded domain Ms±Γ
:=
{

(s, t) : t ∈ (0, T ), s ∈
(
s−Γ (t), s+

Γ (t)
)}

;

• the map ΦΓ : Ms±Γ
→ R2 by ΦΓ(s, t) := Γ(t) + sN(t), for every (s, t) ∈Ms±Γ

;

• the maps β±Γ : [0, T ]→ R2 by β±Γ (t) := Γ(t) + s±Γ (t)N(t), for every t ∈ [0, T ].

Denote further

(1.14) [Γ(t)] :=
(
β−Γ (t), β+

Γ (t)
)

and [Γ(0, T )] := ΦΓ(Ms±Γ
) =

⋃
t∈(0,T )

[Γ(t)].

We say that Γ is uniformly admissible if

(1.15)
[Γ(t1)] ∩ [Γ(t2)] = Ø, for every t1, t2 ∈ [0, T ], t1 6= t2,

1− s±Γ (t)κt(t) ≥ c > 0, for a.e. t ∈ [0, T ].

If Γ satisfies only the first condition in (1.15), then we say that Γ is admissible. It can be

shown that:

• if Γ is a line of curvature for some y ∈W2,2
iso (ω) then Γ is admissible,

• if Γ has values in ω then one can define s±Γ (t) := ±νω
(
Γ(t),±N(t)

)
for all t ∈ [0, T ].

Now let y ∈W2,2
iso (ω) and Γ ∈W2,∞([0, T ], ω \ Ĉ∇y) be its line of curvature. Denote by

γ(t) := y
(
Γ(t)

)
, v(t) := ∂N(t)y

(
Γ(t)

)
, for all t ∈ [0, T ].

Then set n := γ′ ∧ v and κn := γ
′′ · n. In [Hor11a, Proposition 1] it has been shown that

κt ∈ L∞(0, T ), κn ∈ L2(0, T ), γ ∈W2,2
(
(0, T ),R3

)
and R :=

(
γ′
∣∣v∣∣n)T ∈W1,2

(
(0, T ),R3×3

)
,

R(t) ∈ SO(3) for a.e. t ∈ (0, T ), solves the ODE

(1.16) r′ =

 0 κt κn

−κt 0 0

−κn 0 0

 r.

Moreover,

y
(
ΦΓ(s, t)

)
= γ(t) + sv(t) and ∇y

(
ΦΓ(s, t)

)
= γ′(t)⊗ Γ′(t) + v(t)⊗N(t)

for a.e. (s, t) ∈M s±Γ
. Finally, we have that (up to a sign)

(1.17) Πy

(
ΦΓ(s, t)

)
=

κn(t)

1− sκt(t)

(
Γ′(t)⊗ Γ′(t)

)
for a.e. (s, t) ∈Ms±Γ

,

with Πy given by (1.5). Another important result given in [Hor11a, Proposition 2] is telling

us how to construct an isometric immersion:
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Proposition 1.4.6. Let Γ ∈W2,∞((0, T ),R2
)
, κn ∈ L2(0, T ) and let s±Γ ∈ L∞(0, T ) be such

that ±s±Γ are lower semicontinuous and uniformly bounded from below by a positive constant.

Denote by R̃ :=
(
σ
∣∣ṽ∣∣ñ)T ∈W1,2

(
(0, T ),R3×3

)
, R̃(t) ∈ SO(3) for a.e. t ∈ (0, T ), the solution

of (1.16) with initial value R̃(0) = I3. Set γ̃(t) :=
´ t

0 σ(s) ds for every t ∈ (0, T ) and define

(Γ, κn) : [Γ(0, T )]→ R3 by

(Γ, κn)
(
Γ(t) + sN(t)

)
:= γ̃(t) + sṽ(t) for every (s, t) ∈Ms±Γ

.

If Γ is uniformly admissible, i.e. if (1.15) holds, then (Γ, κn) ∈W2,2
iso

(
[Γ(0, T )]

)
.

Finally, the above mentioned fine properties of isometric immersions have been used in

order to show the following density result.

Theorem 1.4.7 (Approximation by smooth functions [Hor11a]). Assume that ω ⊆ R2 is a

bounded Lipschitz domain which satisfies

(1.18)
there exists a closed subset Σ ⊂ ∂ω with H1(Σ) = 0 such that

the outer unit normal exists and is continuous on ∂ω \ Σ.

Then W2,2
iso (ω) ∩ C∞(ω,R3) is W2,2-strongly dense in W2,2

iso (ω).

1.4.2 Cylinders

This subsection regards the sub-class of W2,2
iso (ω) consisting of cylinders. Given r ∈ (0,+∞],

we define the map Cr : R2 → R3 as

Cr(x
′) :=


(
r
(

cos(x1/r)− 1
)
, r sin(x1/r), x2

)T

, r ∈ (0,+∞),(
0, x1, x2

)T
, r = +∞,

for every x′ = (x1, x2) ∈ R2. Then we define the family of maps

(1.19) Cyl :=
{
Tv ◦R ◦ Cr ◦ % : R2 → R3

∣∣ r ∈ (0,+∞], Tv ∈ Trs(3), R ∈ SO(3), % ∈ O(2)
}

and we call its elements cylinders. Note that the above defined family of cylinders includes

also planes - the elements of Cyl with r = +∞.

Remark 1.4.8. Observe that any cylinder y = Tv ◦R ◦Cr ◦ % maps lines parallel to %Te2 to

the lines of zero curvature - rulings. More in general, we have

(1.20) ∇y(x′) = R∇Cr
(
%(x′)

)
% = R


− sin

(
x′·%Te1

r

)
0

cos
(
x′·%Te1

r

)
0

0 1

 %, for all x′ ∈ R2,

so that

∇y(a %Te2) = R

 0 0

1 0

0 1

 %, for every a ∈ R.

�
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By direct computations one can see that a map y = Tv ◦R ◦ Cr ◦ % ∈ Cyl is an isometry

whose second fundamental form is given by

(1.21) Πy(x
′) = (det%) %T

(
1
r 0

0 0

)
%, for every x′ ∈ R2.

By Theorem 1.4.3 we have that at a.e. x′ ∈ ω the second fundamental form Πy(x
′) associated

to some isometry y ∈W2,2
iso (ω) belongs to the set

(1.22) S0 :=
{
S ∈ Sym(2) : detS = 0

}
.

Moreover, the set S0 can be characterised as follows

(1.23) S0 = R {n⊗ n : n ∈ R2, |n| = 1} = R

{
%T

(
1 0

0 0

)
% : % ∈ SO(2)

}
.

The second equality in (1.23) is trivial. To see that the first equality holds, let 0 6= S ∈ S0.

Since detS = 0 (hence rankS = 1), there exist v,w ∈ R2 \ {0} such that

S = v ⊗ w =

(
v1w1 v1w2

v2w1 v2w2

)
.

Suppose wlog that v1 6= 0. By the symmetry of S we have that

v1w2 = v2w1 =⇒ w =

(
w1,

v2

v1
w1

)
.

By wiriting w =
(

w1
v1
v1,

v2
v1
w1

)
, one can see that w = c v with c := w1/v1. Therefore S = c v⊗v.

For 0 ∈ S0 we have that 0 = 0 · n⊗ n for any n ∈ R2, |n| = 1.

Lemma 1.4.9. The set S0 defined by (3.31) is the set of (constant) second fundamental

forms of cylinders.

Proof. (⊆) : Let y : R2 → R3 be such that for every x′ ∈ R2 it holds

(1.24)
(
∇y(x′)

)T∇y(x′) = I2 and Πy(x
′) = c n⊗ n, for c ∈ R \ {0}, n ∈ R2, |n| = 1.

Our aim is to show that y ∈ Cyl. Choose % ∈ O(2) such that %e1 = n and %e2 = sgn(c)n⊥.

Then define v := ∇y(0)%e1 and w := ∇y(0)%e2 and choose R ∈ SO(3) such that

R(v ∧ w) = f1, Rv = f2 and Rw = f3.

Let T−y(0) ∈ Trs(3). Finally, define
¯
y := R ◦ T−y(0) ◦ y ◦ % and let us show that

¯
y = Cr, with

r = 1
|c| . By simple computations we get that

(1.25) ∇
¯
y(x′) = R∇y

(
%(x′)

)
% and

¯
ν(x′) = (det%)

(
R ◦ ν

)(
%(x′)

)
= sgn(c)

(
R ◦ ν

)(
%(x′)

)
,

and therefore

Π
¯
y(x
′) =

(
∇

¯
y(x′)

)T∇
¯
ν(x′) = sgn(c)%TΠy

(
%(x′)

)
% = |c|e1 ⊗ e1

for every x′ ∈ R2. Note that ∇
¯
y is constant along e2 direction, in other words that ∂2∇

¯
y ≡ 0.

Indeed, this can be seen by differentiating with respect to x1 and x2 the identities

(1.26) ∂i
¯
y · ∂j

¯
y ≡ δij and ∂i

¯
y ·

¯
ν ≡ 0, i, j = 1, 2
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and by using that, from (1.24), it holds

(1.27) ∂i
¯
y · ∂j

¯
ν ≡ |c| if i = j = 1 and ∂i

¯
y · ∂j

¯
ν ≡ 0 otherwise.

Further, note that

¯
y(0) =(R ◦ T−y(0) ◦ y ◦ %)(0) = R

(
y
(
%(0)

)
− y(0)

)
= (R ◦ y)(0)− (R ◦ y)(0) = 0

∂1
¯
y(0) =R∇y(0) %e1 = Rv = f2

∂2
¯
y(0) =R∇y(0) %e2 = Rw = f3.

Hence

¯
y(x1, x2) =

¯
y(0, x2) +

ˆ x1

0
∂1

¯
y(t, x2) dt =

¯
y(0, x2) +

ˆ x1

0
∂1

¯
y(t, 0) dt

=
¯
y(0, 0) +

ˆ x2

0
∇

¯
y(0, 0)e2 dt+ η(x1) = x2f3 + η(x1)

where η(x1) :=
´ x1

0 ∂1
¯
y(t, 0) dt ∈ R3 for every x1 ∈ R. Summarizing, we have that

¯
y(x′) = η(x1) + x2f3 and

¯
ν(x′) = η′(x1) ∧ f3, for every x′ = (x1, x2) ∈ R2.

Since η
′′
(x1) = ∂11

¯
y(x1, 0), by using (1.26) and (1.27) we get that η

′′
(x1) = −|c|̄ν(x1, 0).

Finally, it holds

(1.28) η
′′
(x1) = −|c| η′(x1) ∧ f3 for every x1 ∈ R.

Note that η′(x1) ∈ span{f1, f2}. Hence η′(x1) = η′1(x1)f1 + η′2(x1)f2 and consequently we have

that η′(x1) ∧ f3 = −η′1(x1)f2 + η′2(x1)f1. Now (1.28) becomes{
η
′′
1 (x1) =− |c|η′2(x1),

η
′′
2 (x1) =|c|η′1(x1),

for every x1 ∈ R.

It is easy to see that

η(x1) :=

(
1

|c|
(

cos(|c|x1)− 1
)
,

1

|c|
sin(|c|x1), 0

)
for every x1 ∈ R

solves the above system of ODE with initial data η′1(0) = 0 and η′2(0) = 1. By setting

r := 1/|c| we finally get that

¯
y(x′) =

(
r
(

cos
(x1

r

)
− 1
)
, r cos

(x1

r

)
, x2

)
= Cr(x

′) for all x′ ∈ R2.

Therefore

y = T−1
−y(0) ◦R

T ◦
¯
y ◦ %T = T−1

−y(0) ◦R
T ◦ Cr ◦ %T ∈ Cyl.

In the case when c = 0, we have that Πy = 0 = 0 ·n⊗n for any n ∈ R2, |n| = 1. One can apply

the same reasoning to
¯
y defined as above and deduce that

¯
y(x′) = η(x1)+x2f2 and η

′′
(x1) = 0

for every x1 ∈ R, given that c = 0. The solution of this differential equation with initial data

η′1(0) = 0, η′2(0) = 1 and η1(0) = η2(0) = 0 is η(x1) = (0, x1) for every x1 ∈ R. Hence

¯
y(x′) = (0, x1, x2) = C+∞(x′) for every x′ ∈ R2 and in turn y = T−1

−y(0) ◦R
T ◦C+∞ ◦ %T ∈ Cyl

proving this inclusion.

(⊇) : Suppose that y ∈ Cyl, i.e. y = Tv ◦ R ◦ Cr ◦ % for some Tv ∈ Trs(3), R ∈ SO(3),

% ∈ O(2) and r ∈ (0,+∞]. By straightforward computations, as above, we have that

∇y(x′) = R∇Cr
(
%(x)

)
% and ∇ν(x′) = (det%)R∇νr

(
%(x′)

)
%,
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where we denote by νr := ∂1Cr ∧ ∂2Cr. Therefore

Πy(x
′) = (det%) %T

(
∇Cr

(
%(x′)

))T
RTR∇νr

(
%(x′)

)
% = (det%) %TΠCr

(
%(x′)

)
%.

Suppose that r ∈ (0,+∞). Since

∇Cr(x′) =

− sin(x1/r) 0

cos(x1/r) 0

0 1

 and ∇νr(x′) =

−1
r sin(x1/r) 0

1
r cos

(
x1/r

)
0

0 1


we have that ΠCr(x

′) = diag
(

1
r , 0
)

= 1
r e1⊗e1. Finally, by defining n := %Te1 and c := (det%)/r,

we have Πy(x
′) = c n ⊗ n ∈ S0. In the case r = +∞, it is clear that ∇ν+∞ = 0. Hence

Πy ≡ 0 ∈ S0, proving the thesis.

The following lemma (proved in [ALL17]) will be the main ingredient for the proof of

Theorem 3.3.5. It gives a “recipe” on how two cylinders can be patched together. We refer

to Remark 1.4.12 below for the notation and the properties of roto-translations used in this

section.

Lemma 1.4.10. Let ω ⊆ R2 be a bounded Lipschitz domain. Let γ : [0, 1] → ω be a

continuous injective curve such that [γ] ∩ ∂ω = {γ(0), γ(1)} and such that two connected

components ω1 and ω2 of ω \ [γ] are Lipschitz. Let y1, y2 ∈ Cyl, say y1 = Tv1 ◦ R1 ◦ Cr1 ◦ %1

and y2 = Tv2 ◦R2 ◦Cr2 ◦%2, with r1, r2 ∈ (0,+∞) such that det%1 = −det%2 whenever r1 = r2.

The map defined as

y := y1χω1 + y2χω2 , a.e. in ω,

belongs to W2,2
iso (ω) if and only if the following conditions hold:

(i) [γ] is a line segment spanned by some e ∈ R2 \ {0} ;

(ii) %T
1e2 and %T

2e2 are parallel to e. This in particular implies that %1%
T
2 = diag(σ1, σ2), for

some σ1, σ2 ∈ {±1};

(iii) Setting wk := %k
(
γ(0)− (0, 0)

)
and θk := (wk · e1)/rk, for k = 1, 2, we have

(1.29)
(
R1R̂θ1

)T(
R2R̂θ2

)
= diag

(
σ1 σ2, σ1, σ2

)
and v1 +R1Cr1(w1) = v2 +R2Cr2(w2).

Proof. Necessity. Here, we show that if the deformation y := y1χω1 + y2χω2 is in W2,2
iso (ω),

then it complies with conditions (i), (ii) and (iii). First of all, we recall from Teorem 1.4.4

that the very condition W2,2
iso (ω) implies y ∈ C1(ω,R3). At the same time, from the specific

expression of y we have that ∇y = ∇yk in ωk for k = 1, 2, where

(1.30) ∇yk = Rk


− sin

(
x′·%T

ke1

rk

)
0

cos
(
x′·%T

ke1

rk

)
0

0 1

 %k.

This expression says in particular that ∇y is bounded and in turn that y ∈ C1(ω,R3). Let

us first prove the necessity of the conditions (i), (ii) and (iii) in the case when γ(0) = (0, 0).

The continuity of y and ∇y at the point (0, 0) gives, respectively, that v1 = v2 (obtained by

imposing y1(0, 0) = y2(0, 0)), and

(1.31)

 0 0

1 0

0 1

 %1%
T
2 = RT

1R2

 0 0

1 0

0 1

 ⇔ RT
1R2 =

 det(%1%
T
2) 0 0

0

0
%1%

T
2
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(obtained from ∇y1(0, 0) = ∇y2(0, 0) and from expression (1.30)), which proves (iii). The

continuity of ∇y gives also that ∇y1(γ(t)) = ∇y2(γ(t)) for each t ∈ [0, 1], that is
− sin

(
γ(t)·%T

1 e1

r1

)
0

cos
(
γ(t)·%T

1 e1

r1

)
0

0 1

 %1%
T
2 = RT

1R2


− sin

(
γ(t)·%T

2 e1

r2

)
0

cos
(
γ(t)·%T

2 e1

r2

)
0

0 1

 .

In turn, using the second condition in (1.31) and the notation %1%
T
2 =

(
m1 m2

m3 m4

)
, we have

(1.32)
−m1 sin

(
γ(t)·%T

1 e1

r1

)
−m2 sin

(
γ(t)·%T

1 e1

r1

)
m1 cos

(
γ(t)·%T

1 e1

r1

)
m2 cos

(
γ(t)·%T

1 e1

r1

)
m3 m4

 =


−det(%1%

T
2) sin

(
γ(t)·%T

2 e1

r2

)
0

m1 cos
(
γ(t)·%T

2 e1

r2

)
m2

m3 cos
(
γ(t)·%T

2 e1

r2

)
m4

 .

By the equality between the elements of the first row in the above expression one deduces

that %T
1e2 and %T

2e2 must be parallel. This proves one part of the statement in (ii) and implies,

in particular, that %1%
T
2 = diag(m1,m4) with m1,m4 ∈ {±1}. In order to conclude the proof

of (ii) and in the same time prove (i), we need to show that [γ] is a line segment parallel to

%T
1e2 (and to %T

2e2). Observe that %1%
T
2 = diag(m1,m4) implies %T

2e1 = m1%
T
1e1, so that the

equation (1.32) simplifies to

(1.33)


−m1 sin

(
γ(t)·%T

1 e1

r1

)
0

m1 cos
(
γ(t)·%T

1 e1

r1

)
0

0 m4

 =


−m4 sin

(
γ(t)·%T

1 e1

r2

)
0

m1 cos
(
γ(t)·%T

1 e1

r2

)
0

0 m4

 ,

for every t ∈ [0, 1]. By differentiating the above equality restricted to the first elements of

the first and second rows one gets

(1.34)

m1 cos

(
γ(t) · %T

1e1

r1

)
γ̇(t) · %T

1e1

r1
= m4 cos

(
γ(t) · %T

1e1

r2

)
γ̇(t) · %T

1e1

r2

sin

(
γ(t) · %T

1e1

r1

)
γ̇(t) · %T

1e1

r1
= sin

(
γ(t) · %T

1e1

r2

)
γ̇(t) · %T

1e1

r2

It turns out that (1.33) and (1.34) can be satisfied only if

(1.35) γ̇(t) ·
(
%T

1e1

)
= 0, for every t ∈ [0, 1],

which implies that [γ] is a line segment parallel to %T
1e2 (thus accordingly also to %T

2e2). To

prove previous assertion, we distinguish two cases:

• if r1 6= r2, call s := m1/m4 and fix t ∈ [0, 1]. Condition (1.33) grants that γ(t) · %T
1e1/r1

and sγ(t) · %T
1e1/r2 have the same sine and cosine. Then, since sine and cosine cannot

simultaneously vanish, (1.34) yields γ̇(t) · %T
1e1/r1 = sγ̇(t) · %T

1e1/r2, whence necessarily

γ̇(t) · %T
1e1 = 0.

• if r1 = r2, by hypotheses we have that det %1 = −det %2. Since %1%
T
2 = diag(m1,m4),

we conclude that m1m4 = −1, or equivalently m1 = −m4. Now the first condition in

(1.34) gives

d

dt
sin

(
γ(t) · %T

1e1

r1

)
= cos

(
γ(t) · %T

1e1

r1

)
γ̇(t) · %T

1e1

r1
= 0,
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so that the map t 7→ γ(t) · %T
1e1/r1 is constant and accordingly that γ̇(t) · %T

1e1 = 0 for

every t ∈ [0, 1].

This concludes the proof of the necessary condition of the lemma in the case where γ(0) =

(0, 0).

Considering now the case v := γ(0) − (0, 0) 6= 0, define ω̂ := ω − v and ŷk := yk ◦ τv,

k = 1, 2 (recall form Section 1.1 that τv := ·+ v ∈ Trs(2)). By Remark 1.4.12, one can easily

verify that

(1.36) ŷk = Tuk ◦Rk ◦ R̂θk ◦ Crk ◦ %k,

where θk := (wk · e1)/rk and uk := vk + Rk ◦ Crk(wk), with wk := %k
(
γ(0) − (0, 0)

)
, for

k = 1, 2. Observe that the domain ω̂ is partitioned into ω̂1 and ω̂2 by the subdivision curve

[γ]− v which satisfies the condition γ(0)− v = (0, 0). It is now clear that y ∈W2,2
iso (ω) implies

ŷ := y ◦ τv = ŷ1χω̂1 + ŷ2χω̂2 ∈W2,2
iso (ω̂), which further implies that [γ]− v (and hence [γ]) is a

line segment parallel to %T
1e2 and %T

2e2, implying %1%
T
2 = diag(σ1, σ2), for some σ1, σ2 ∈ {±1},

and that

v1 +R1 ◦ Cr1(w1) = v2 +R2 ◦ Cr2(w2) and
(
R1R̂θ1

)T(
R2R̂θ2

)
= diag

(
σ1 σ2, σ1, σ2

)
,

which are precisely conditions (i), (ii) and (iii).

Sufficiency. Let y1, y2 ∈ Cyl satisfy conditions (ii) and (iii). Let v := γ(0)− (0, 0) and

let % ∈ SO(2) be a rotation which brings the line segment [γ]− v to the vertical position. Let

¯
yk := yk ◦ τv ◦ %T. By denoting u := v1 +R1 ◦Cr1(w1) and R := R1 ◦ R̂θ1 we have by (iii) that

¯
y :=

¯
y1χω1 +

¯
y2χω2 is of the form

(1.37)
¯
y(x1, x2) =


TuR

(
r1

(
cos(x1/r1)− 1

)
, σ1

1r1 sin(x1/r1), σ1
2x2

)T

, x1 ≤ 0,

TuR
(
σ1σ2 r2

(
cos(x1/r2)− 1

)
, σ1

1r2 sin(x1/r2), σ1
2x2

)T

, x1 > 0,

where σ1
k ∈ {±1} are such that %1%

T = diag(σ1
1, σ

1
2) (which follows form the fact that %T

1e2 ‖
[γ]). By construction,

¯
y ∈ C1(

¯
ω,R3) with

¯
ω = %(ω− v). Simple computations give ∂1

¯
y, ∂2

¯
y ∈

W1,2(
¯
ω,R3), which implies that

¯
y ∈W2,2(

¯
ω,R3). Note also that ∇

¯
y(x′)T∇

¯
y(x′) = I3 for a.e.

x′ ∈
¯
ω. Therefore

¯
y ∈W2,2

iso (
¯
ω), thus accordingly y :=

¯
y ◦ % ◦ τ−v ∈W2,2

iso (ω).

Remark 1.4.11. Observe that the condition “det%1 = −det%2 whenever r1 = r2” permits

to exclude the trivial case where we patch together pieces of cylinders y1 and y2 having the

same curvatures (i.e. det %1/r1 = det %2/r2, according to formula (1.21)). Clearly, this case

does not force any condition on [γ].

Moreover, an argument similar to that in the proof of Lemma 1.4.10 allows to prove

necessary and sufficient conditions for having y ∈ W2,2
iso (ω) of the form y = y1χω1 + y2χω2

with, say, y2 affine (using our terminology, a cylinder with r2 = +∞). In this case, condition

(i) remains the same and condition (ii) reduces to %T
1e2 ‖ [γ] (while %2 ∈ O(2) can be

arbitrarily chosen). Moreover, for a chosen %2 ∈ O(2), condition (iii) becomes

(R1R̂θ1)TR2R̂θ2 =

 det(%1%
T
2) 0 0

0

0
%1%

T
2

 and v1 +R1Cr1(w1) = v2 +R2Cr2(w2)

with wk := %k
(
γ(0)− (0, 0)

)
and θk := wk · e1/rk. �
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Remark 1.4.12 (Properties of “roto-translations”). The following two properties, regarding

the composition of cylinders, translations and rotations, can be easily proved.

(i) Fix R ∈ SO(3) and Tv ∈ Trs(3). Then R ◦ Tv = TRv ◦R.

(ii) Let τw ∈ Trs(2) and R̂θ ∈ SO(3) be defined by

R̂θ :=

 cos θ − sin θ 0

sin θ cos θ 0

0 0 1

 .

Then Cr ◦ τw = TCr(w) ◦ R̂(w·e1)/r ◦ Cr, for every positive real number r.

In particular, property (ii) justifies the choice of the representation used for the elements in

Cyl and it is useful for the proof of Lemma 1.4.10. �
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2.1 The 3D model for a thin hyperelastic sheet

2.1.1 The 3D energy density function

In the general framework in which we will work in, a thin elastic sheet of small thickness

0 < h � 1 is modeled via the three-dimensional reference domain (representing the initial,

reference configuration)

(2.1) Ωh := ω ×
(
−h

2
,
h

2

)
⊆ R3,

where the mid-plane of the sheet, ω ⊆ R2, is a bounded Lipschitz domain. An arbitrary point

in Ωh will be denoted by z = (z′, z3) = (z1, z2, z3).

In particular, we will consider thin sheets made of a hyperelastic material – an elastic

material whose constitutive equations postulate the existence of an energy density function

W h, which is a non-negative scalar function defined on a product space Ωh ×R3×3. In other

words, this function depends on the point in the domain and on the deformation gradient,

17
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as well as on an accurate choice of the material parameters. In Mechanics, W h is also called

stored-energy function or strain-energy function (see [Gur82]).

In order to faithfully model the system, W h has to verify some natural physical conditions,

that we now present. Let us consider, for the time being, a homogeneous hyperelastic material

characterized by W h = W , where W : R3×3 → [0,+∞] is a homogeneous energy density – a

continuous function satisfying the following properties:

W1 Frame indifference: W (F ) = W (RF ), for every F ∈ R3×3 and R ∈ SO(3);

W2 Normalization: W (I3) = minR3×3 W = 0;

W3 Quadratic growth: there exists C > 0 such that

(2.2) W (F ) ≥ C dist2
(
F,SO(3)

)
holds for every F ∈ R3×3;

W4 Regularity near to the energy wells: there exists U ∈ N
(
SO(3)

)
such that W ∈ C2(U).

The property W1 means that the energy is invariant under the change of the observer who

uses the another orthogonal frame; the normalization condition W2 is saying that, in the

absence of the external loads, the equilibrium configuration is achieved by the deformation

v(z) = z; the quadratic growth condition W3 expresses non-degeneracy of W near its well

and grants that W is coercive. In particular, it implies that

W (F )→ +∞, |F | → +∞.

Moreover, observe that W is allowed to take the value +∞. This gives possibility to consider

only orientation preserving deformations, i.e. those whose gradient F satisfies detF > 0, by

imposing the constraint

W (F ) = +∞, detF ≤ 0.

For this reason, the growth conditions from above are not allowed.

Let us mention also the class of isotropic energy density functions, namely those satisfying

the condition

(2.3) W (QFR) = W (F ), for every F ∈ R3×3 and every Q,R ∈ SO(3),

in addition to W1 – W4. Energy densities with this property are often present in the models

for hyperelastic materials – for instance, this is the case of the model for thin sheets made of

polymer gel (see Chapter 4). We shell see in Appendix 2.A below that an isotropic density

W provide us with an explicit form of the 2D energy density Q2 in (2.7) that appears in the

description of the 2D models and as such can be better used in the analysis of the 2D energy

minimizers that we provide in Chapter 3.

A spontaneous stretch distribution. The heterogeneous materials which we are going

to discuss in Chapter 3 and Chapter 5, will be those characterised by a spontaneous stretch

distribution Ah : Ωh → Sym(3), which is generally a bounded, invertible tensor field, repre-

senting an active stretch, growth, plasticity or other inelastic phenomena.

The stretch Ah being spontaneous for the material is modeled by introducing an energy

density W h, dependent both on the domain variable and the deformation gradient, whose

minimum state is precisely Ah(z) at each point z ∈ Ωh, modulo superposed rigid body

rotations. Namely,

(2.4) W h(z, ·) is minimized precisely at SO(3)Ah(z).
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The most interesting scenarios occur when the Cauchy-Green distribution A2
h associated

with the spontaneous stretch distribution Ah is not kinematically compatible, i.e. there is no

orientation-preserving deformation v : Ωh → R3 such that (∇v)T∇v = A2
h in Ωh. We also

recall that, since A2
h(z) is a positive definite symmetric matrix, the distribution A2

h can be

interpreted as a metric on Ωh and that, in this framework, the kinematic compatibility of A2
h

is equivalent to the condition that the Riemann curvature tensor associated with A2
h vanishes

identically in Ωh (see Section 1.3).

A typical example of W h with this property is that associated to a pre-stretched material,

which fulfills

(2.5) W h(z, F ) = W
(
FA−1

h (z)
)
,

for some homogeneous energy density W satisfying W1 – W4. The inverse tensor field

A−1
h is referred to as a pre-stretch. Based on the seminal results of [FJM02, FJM06] in the

“Euclidean” case, the models for pre-stretched materials has been recently considered, on

the one side, by B. Schmidt in [Sch07a] and [Sch07b] regarding heterogeneous multilayers

characterized by the pre-stretch (and thus also the spontaneous stretch) varying only in the

vertical (thickness) direction and being at each point h-close to the identity, namely A−1
h (z) =

A−1
h (z3) = I3 + hB(z3/h), with the strain distribution B ∈ L∞

(
(−1/2, 1/2),Sym(3)

)
.

On the other side, the relevant case where the pre-stretch is only z′-dependent has been

addressed by M. Lewicka and coauthors in [LP11], [BLS16] and [LRR17] and has given rise

to the fortunate route of the mathematical treatment of the “non-Euclidean plate theories”,

introduced from a physical and mechanical view point by the pioneering work of E. Sharon

and coauthors in [ESK09] and [KES07]. Further generalizations of the non-Eucidean plate

models have been provided in [KS14] and [MS18] in the framework of Riemannian geometry,

where z-dependent pre-stretches are considered as well.

We point out that, however, not always an energy density W h associated with the material

characterized by a spontaneous stretch Ah can be expressed in the pre-stretch form (2.5) –

this is the case of the model energy densities of Flory-Rehner type (4.6) associated to a

heterogeneous thin sheet made of polymer gels presented in Chapter 4. This feature depends

on the different structure of such an energy density with respect to the models based on

the representation (2.5), which originates from physical considerations. More precisely, in

the case of pre-stretched materials W h has the physical meaning of purely elastic energy,

while in models for polymer gels W h is the sum of two energy contributions (elastic and

mixing energies) that concurrently define the energy minimum, but none of them is separately

minimized at SO(3)Ah.

This has been one of the motivations for the derivation of the plate model in Chapter

3 precisely for the materials with a spontaneous stretch, not necessarily satisfying (2.5) but

rather the assumption (iii) in Definition 3.1.1.

Let us anticipate some definitions that we will use throughout the paper that are directly

related to the homogeneous densities W .

The 2D energy densities. Given any homogeneous energy density W satisfying the prop-

erties W1 – W4, by using a standard notation we define the following quadratic form:

(2.6) Q3(F ) := D2W (I3)[F ]2, for every F ∈ R3×3.
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Moreover, we set

(2.7) Q2(G) := min
c∈R3
Q3

(
G∗ + c⊗ f3

)
, for every G ∈ R2×2,

referring to Subsection 1.1 for the notation G∗. From the properties of W , one can deduce

that Q2 is indeed a quadratic form and that Qk, for k = 2, 3, has the following properties:

• Qk is positive semi-definite on Rk×k and positive definite when restricted to Sym(k),

• Qk|Skew(k) = 0,

• Qk is strictly convex on Sym(k).

The proof of some of the listed properties can be found for instance in [BLS16, FJM02]. For

completeness, we provide detailed proofs of all of them in Appendix 2.A.

We further define the map ` : Sym(2)→ R3 by

(2.8) `(G) := argmin
c∈R3

Q3

(
G∗ + (c⊗ f3)sym

)
.

By writing down the first order necessary condition for the minimum problem defining `(G),

one can easily deduce that the map ` is linear.

Moreover, we fix r > 0 such that B2r(I3) ⊆ U and define

(2.9) ρ0(F ) := W (I3 + F )− 1

2
D2W (I3)[F ]2 and ρ(s) := sup

|F |≤s
|ρ0(F )|

for every F ∈ Br(0) and every 0 < s < r. As a direct consequence of the regularity of W , we

have that

(2.10) ρ(s)/s2 → 0, as s→ 0.

2.1.2 The variational problem

With the aim to determine the equilibrium configurations of a thin elastic sheet, in the case

of hyperelastic materials one can equivalently study (see for instance [Ped97]) the variational

problem consisting in finding the minimizers of the total energy functional given by

(2.11) F h(v) :=

ˆ
Ωh

W h

(
z,∇v(z)

)
dz −

ˆ
Ωh

f(z) · v(z) dz,

for each deformation v : Ωh → R3, where f : Ωh → R3 represents a body force acting on the

sheet. For this purpose, very often a two-dimensional approximate model is used.

Dimension reduction, based on the theory of Γ-convergence, is a natural mathematical

tool for the rigorous derivation of the lower dimensional models. The value of applying

the arguments of Γ-convergence can be seen through Theorem 1.2.5, which ensures that the

minimizers of the dimensionally reduced model faithfully describe the true behaviour of a

sufficiently thin 3D sheet.

Hereafter we concentrate on the case in which the applied body forces are null. The total

energy of the system in the absence of external loads is described through the free-energy

functional E h : W1,2(Ωh,R3)→ [0,+∞] defined by

(2.12) E h(v) :=

ˆ
Ωh

W h

(
z,∇v(z)

)
dz, for every v ∈W1,2(Ωh,R3),
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where W h : Ωh × R3×3 → [0,+∞] is a (jointly) Borel energy density function associated

with the elastic material. Additional properties will be specified separately in each of the

models we will be concerned with. As in the homogeneous case, we will deal with the energy

densities that have quadratic growth, so that the choice of W1,2(Ωh,R3) as the admissible set

of deformations in the definition of the free-energy functional is natural.

The rescaled 3D model. In order to perform a rigorous derivation of the lower dimen-

sional limiting theories in terms of Γ-convergence, it will be convenient to work with maps

defined on the fixed, rescaled domain

(2.13) Ω := Ω1 = ω ×
(
−1

2
,
1

2

)
.

We denote by x = (x′, x3) ∈ Ω an arbitrary point in Ω. Given any y ∈ W1,2(Ω,R3) and a

thickness parameter 0 < h� 1, we denote by

(2.14) ∇′y :=
(
∂1y
∣∣ ∂2y

)
and ∇hy :=

(
∇′y

∣∣∣∣ 1

h
∂3y

)
.

To any deformation v ∈ W1,2(Ωh,R3) we associate, in a bijective way, the deformation

y ∈W1,2(Ω,R3) by setting

(2.15) y(x) := v(x′, hx3), for a.e. x ∈ Ω.

Moreover, the following relation holds

(2.16) ∇hy(x) = ∇v(x′, hx3), for a.e. x ∈ Ω.

For every 0 < h � 1, we establish the notion of the rescaled energy density function and

the rescaled free-energy functional. Namely, a rescaled energy density function is a (jointly)

Borel function Wh : Ω× R3×3 → [0,+∞] defined by

(2.17) Wh(x, F ) := W h

(
(x′, hx3), F

)
, for every x ∈ Ω and every F ∈ R3×3.

A rescaled free-energy functional Eh : W1,2(Ω,R3)→ [0,+∞] is defined by

(2.18) Eh(y) :=

ˆ
Ω
Wh

(
x,∇hy(x)

)
dx, for every y ∈W1,2(Ω,R3).

It is straightforward to check that

(2.19) Ih(v) :=
1

h
E h(v) =

1

h

ˆ
Ωh

W h(z,∇v(z)) dz =

ˆ
Ω
Wh

(
x,∇hy(x)

)
dx = Eh(y),

for any v ∈W1,2(Ωh,R3) and y = v(·, h·) ∈W1,2(Ω,R3).

2.2 Plate models

2.2.1 Hierarchy of the plate models with respect to the energy scaling

Starting from the 3D models for the elastic sheets of small thickness 0 < h � 1, there

are several 2D limiting theories, obtained in the limit of vanishing thickness h. Different
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dimensionally reduced models correspond to the different scaling of the energy per unit volume

E h/h = Ih, as a function of the thickness h (see also the discussion in the Introduction).

Heuristically [FRS93], the scaling E h/h ∼ 1 leads to the membrane theory, while E h/h ∼
h2 corresponds to a bending deformation (which leaves the midplane ω unstretched) leading

to the nonlinear plate theory that has been proposed by Kirchhoff in 1850. Scaling E h/h ∼
h4 corresponds to von Kármán theory of plates. The above mentioned theories has been

rigorously derived in the setting of homogeneous materials in [LDR95], [FJM02] and [FJM06],

respectively. A detailed hierachy of those models, together with the derivation of the theories

corresponding to some intermediate scaling regimes can be found in [FJM06].

We recall that in a homogeneous case the scaling of the energy is driven by the scaling

of the applied forces. An expectation is [Lew11] that a hierarchy of limiting theories for

pre-stretched materials could be possibly derived and lead by the embeddability properties

of the target metrics, seen though the scalings of the different components of their Riemann

curvature tensors. A discussion on this topic can be found in [LOP+15] and [LMP10], regard-

ing a special case of the metric tensor (or equivalently, the spontaneous stretch Ah) being

a bifurcation from the identity, i.e. of the form Ah = I3 + hγS(z′) + hγ/2z3D(z′), z ∈ Ωh,

with γ ∈ (0, 2). It turns out that the energy scaling depends on the asymptotic behaviour of

I3 −Ah, as a function of h.

We will tackle this topic in Chapter 5, where we work in a more general non-Euclidean

setting, with zero order (with respect to h) metric non neccesarily flat. This will also give fur-

ther generalizations of the results regarding the relation between energy scaling and curvature

that have been addressed in [LP11], [BLS16] and [LRR17] in the case of thin sheets charac-

terized by an h- and z3-independent pre-stretch (arising in the prescription of a Riemannian

metric G = G(z′) on Ωh).

In [BLS16, LP11] it has been shown that inf Eh/h = O(h2) if and only if (ω,G2×2) can be

isometrically immersed into R3; in [BLS16, LRR17] it has been proved that inf E h/h = o(h2)

if and only if the Riemann curvatures R1212, R1213 and R1223 associated with the metric

G identically vanish – if this is the case, then: inf E h/h = O(h4) and further, inf E h/h =

o(h4) if and only if RiemG ≡ 0. Generalizations of these results have been provided in

[KS14] and [MS18] within the setting of Riemannian manifolds of any dimension and co-

dimension, putting the emphasis on their geometric interpretation – we shall see that the

analysis in [MS18] comprises the results about the relation between h2- and h4-energy scaling

and curvature in the case (NO) presented in Chapter 5.

2.2.2 Key tools in dimension reduction

A rigorous derivation of the 2D model corresponding to the Kirchhoff energy scaling, i.e.

E h/h ∼ h2 (or equivalently Eh ∼ h2, in terms of rescaled quantities) has been achieved in the

seminal paper [FJM02] of G. Friesecke, R. D. James and S. Müller for homogeneous materials,

i.e. those materials modeled via energy density W h = W , with W satisfying W1 – W4.

The limiting 2D functional is constrained to the set of W2,2-isometric immersions of ω

into R3 (denoted by W2,2
iso (ω)), and coincides with the one predicted by Kirchhoff, which is

given by

(2.20) E hom
0 (y) =

1

24

ˆ
ω
Q2

(
Πy(z

′)
)

dz′, for every y ∈W2,2
iso (ω),

where Πy denotes the pullback of the second fundamental form associated with the surface

y(ω) and the quadratic form Q2 is given by (2.7).



23 2.2. Plate models

The 2D model (2.20) is obtained through the compactness and the Γ-convergence results

involving the sequence of functionals { 1
h2 Eh}h, latter consisting in the Γ-lim inf and Γ-lim sup

inequalities (see 1.2.2). Hereafter, we shall point out some crucial steps in the rigorous

derivation from [FJM02] which will, together with their counterparts in non-Euclidean setting

[LP11], lead the way in the derivation of the plate models for materials with a spontaneous

stretch in Chapter 3 and Chapter 5.

The proof of the Γ-lim sup inequality – or more precisely, the construction of the recovery

sequence – is based on a heuristic idea: namely, the fact that any smooth isometric immersion

y can be approximated in W1,2-topology by a sequence of smooth deformations of the form

(2.21) yh(x) = y(x′) + hx3ν(x′) +
h2x2

3

2
d(x′), for all x ∈ Ω, where ν =

∂1y ∧ ∂2y

|∂1y ∧ ∂2y|

and satisfying 1
h2 Eh(yh) ∼= E hom

0 (y)+o(h2). With the help of a truncation argument proved in

[LT97] (see Theorem 2.2.1 below) for the approximation of y ∈W2,2
iso (ω) by W2,∞(ω,R3)-maps

or, alternatively, using the density of smooth functions in W2,2
iso (ω) (see Subsection 1.4.1), this

heuristic idea can be made into a rigorous proof of the Γ-lim sup inequality. We remark that

the presence of the smooth vector field d : ω → R3 above is important for the passage from

Q3 = D2W (I3) to the associated quadratic form Q2 and this is where the true recovery

sequence differ from the Kirchhoff-Love original ansatz containing only the first two terms in

(2.21). It is worth comparing the dependence on the variable x3 of the last term (containing

d) in (2.21) with the corresponding one in the recovery sequences (3.24) and (5.21) in Chapter

3 and Chapter 5, respectively – it turns out that the dependence on x3 is dictated by the

dependence on x3 of the present spontaneous strain.

Regarding the opposite direction, the rigidity estimate stated in Theorem 2.2.2 below

was crucial in proving that every sequence {yh}h of bounded bending energy, i.e. such

that Eh(yh)/h2 is bounded uniformly in h, is asymptotically of the form (2.21). More pre-

cisely, Theorem 2.2.2 gave the possibility to associate to any sequence {yh}h converging in

W1,2(Ω,R3) to some y and being of bounded bending energy a sequence of piecewise constant

maps Rh : ω → SO(3) with the property that

(2.22) ‖∇hyh −Rh‖L2(Ω) ≤ Ch2.

This has been further used to show that the limiting map y is an element of W2,2
iso (ω) and that

{∇hyh}h (and, in turn, also {Rh}h) converges in L2(ω,R3×3) to R = (∇y|ν) : ω → SO(3),

with ν as in (2.21). Once such a compactness result is proved, the Γ-lim inf inequality follows

by observing from (2.22) that the sequence of maps

(2.23) Sh :=
RT
h∇hyh − I3

h

is bounded in L2(Ω,R3×3), thus converges to some S ∈ L2(Ω,R3×3). It has been further

shown that the corresponding limiting strain S ∈ L2(Ω,R3×3) satisfies

(2.24) S2×2(x) = S2×2(x′, 0) + x3Πy(x
′), for a.e. x ∈ Ω.

We remark that the map S2×2(·, 0) can be better characterized when a higher than Kirch-

hoff energy scaling order is present (see [FJM06]). In the case of Kirchhoff scaling and

homogeneous materials as in [FJM02] one is allowed to simply neglect it in the derivation
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of the 2D model, thus its properties have been never discussed. It turns out that in the

setting of heterogeneous materials (characterized by a spontaneous stretch) that we consider

in Chapter 3 it will be important to detect some more properties of S2×2(·, 0) – for instance,

to understand if its symmetric part could be a symmetrized gradient of some map or equiv-

alently, a linear strain with respect to the leading order midplate metric I2. We will come

back to this issue in Chapter 3, Section 3.4.

We conclude this section recalling some of the important results mentioned above, which

form a basis for our further developments in the derivation of the dimensionally reduced

models. The following theorem can be found in [FJM06] as a special case of the truncation

result proved in [LT97].

Theorem 2.2.1 (Approximation by Wm,∞-maps). Let U ⊆ Rn be a bounded Lipschitz

domain and let 1 < p < ∞, m ∈ N and λ > 0. Let v ∈ Wm,p(U ,Rn) and define

|v|m :=
∑
|α|≤m |∇αv|. Then there exists vλ ∈Wm,∞ such that

‖vλ‖Wm,∞(U) ≤C(p,m,U)λ

Ln
(
{x ∈ U : vλ(x) 6= v(x)}

)
≤ C(p,m)

λp

ˆ
|v|m≥λ/2

|v|pm(x) dx

‖vλ‖Wm,p(U) ≤C(p,m,U)‖v‖Wm,p(U).

Observe that, in particular, it holds

lim
λ→∞

λpLn
(
{x ∈ U : vλ(x) 6= v(x)}

)
= 0 and lim

λ→∞
‖vλ − v‖Wm,p(U) = 0.

The rigidity theorem of [FJM02] (Theorem 2.2.2 below), crucial for the rigorous derivation

of the dimentionally reduced theories for thin elastic sheets, represents a quantitative version

of a classical result in geometry and mechanics, known as Liouville’s theorem, which says

that a map whose gradient coincides with a constant rotation almost everywhere is a rigid

motion.

Theorem 2.2.2 (Geometric rigidity [FJM02]). Let n ≥ 2 and let U ⊆ Rn be a bounded

Lipschitz domain. There exists a constant C(U) > 0 with the following property: for every

v ∈W1,2(U ,Rn) there is an associated rotation R ∈ SO(n) satisfying

(2.25) ‖∇v −R‖L2(U) ≤ C(U) ‖dist2(∇v,SO(n))‖L2(U).

Moreover, the constant C(U) can be chosen uniformly or a family of the domains which are

biLipschitz equivalent with controlled Lipschitz constants. C(U) is invariant under translation

and dilation.

In the non-Euclidean setting it is possible to estimate the deviation of the deformation

from an affine map only at the expense of an extra term that is proportional to the gradient

of a given metric g:

Theorem 2.2.3 (Geometric rigidity: non-Eulidean version [LP11]). Let n ≥ 2 and let U ⊆
Rn be a bounded Lipschitz domain with a given smooth Riemannian metric g. For every

y ∈W1,2(U ,Rn) there exists Q ∈ Rn×n such thatˆ
U
|∇y(x)−Q|2 dx ≤ C

(ˆ
U

dist2
(
∇y(x),SO(n)

√
g(x)

)
dx+ ‖∇g‖2L∞(U)(diamU)2Ln(U)

)
,

where the constant C depends only on ‖g‖L∞(U), ‖g−1‖L∞(U) and U and is uniform for a

family of domains which are biLipschitz equivalent with controlled Lischitz constants.
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Moreover, a generalization of the Liouville’s rigidity theorem from Euclidean to Rieman-

nian setting has been recently proved in [KMS18] by R. Kupferman and coauthors.

2.A Appendix

In this section we discuss the properties of the quadratic forms Q3 and Q2 associated to a

homogeneous density W satisfying W1 – W4 and examine more in details the case of W

isotropic.

Lemma 2.A.1. The maps Qk, k = 3, 2 defined by (2.6) and (2.7) respectively, satisfy:

(i) Qk is positive semi-definite on Rk×k and positive definite when restricted to Sym(k),

(ii) Qk|Skew(k) = 0,

(iii) Qk is strictly convex on Sym(k).

Before proving the above lemma, we recall from [DM12] the following proposition that

provides a useful characterization of quadratic forms.

Proposition 2.A.2. Let n ∈ N and let Q : Rn×n → [0,+∞] be an arbitrary function. If

(a) Q(0) = 0,

(b) Q(tM) ≤ t2Q(M) for every M ∈ Rn×n and every t > 0,

(c) Q(M +N) +Q(M −N) ≤ 2Q(M) + 2Q(N) for every M,N ∈ Rn×n

then Q is a quadratic form. Conversely, if Q is a quadratic form then (a), (b) and (c) are

satisfied and, in addition,

(b′) Q(tM) = t2Q(M) for every M ∈ Rn×n and every t > 0,

(c′) Q(M +N) +Q(M −N) = 2Q(M) + 2Q(N) for every M,N ∈ Rn×n.

Proof of Lemma 2.A.1. First of all observe that, by its very definition, Q3 is a quadratic form

on R3×3 according to Proposition 2.A.2. Let us prove that Q3 satisfies properties (i), (ii)

and (iii).

(i) Since W attains its minimum at identity, we have that

Q3(F ) = D2W (I3)[F, F ] ≥ 0 for every F ∈ R3×3.

Hence Q3 is positive semidefinite. Now let F ∈ Sym(3) and r > 0 be as in (2.9). We have

that

W (I3 + tF ) = D2W (I3)[tF , tF ] + ρ0(tF )

for every t > 0 such that tF ∈ Br(0). Recall that

(2.26) dist
(
F, SO(3)

)
≥ |
√
F TF − I3| for every F ∈ R3×3.

By super quadratic growth of W , i.e. W (I3 +F ) ≥ Cdist2(I3 +F,SO(3)) for every F ∈ Br(0)

and C > 0, we get that

D2W (I3)[tF , tF ] + ρ0(tF ) =W (I3 + tF ) ≥ Cdist2(I3 + tF ,SO(3))

(2.26)

≥ C
∣∣∣(I3 + tF )− I3

∣∣∣2 = C|tF |2.
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Therefore, by dividing the above inequality by t2 and by letting t→ 0 we obtain

Q3(F ) = D2W (I3)[F , F ] ≥ C|F |2,

proving that Q3 is positive definite on Sym(3), by arbitrariness of F .

(ii) Let F ∈ R3×3 and A ∈ Skew(3). Then etA ∈ SO(3) for every t ∈ R. By frame

indifference of W , we have that

W (I3 + tF ) =W
(
etA(I3 + tF )

)
=D2W (I3)

[
t(A+ F ) + o(t), t(A+ F ) + o(t)

]
+ ρ0

(
t(A+ F ) + o(t)

)
=t2Q3

(
(A+ F ) + o(1)

)
+ ρ0

(
t(A+ F ) + o(t)

)
and contemporary

W (I3 + tF ) = D2W (I3)[tF, tF ] + ρ0(tF ) = t2Q3(F ) + ρ0(tF ),

for every t ∈ R such that tF ∈ Br(0). Therefore∣∣Q3(F )−Q3

(
A+ F + o(1)

)∣∣ =
∣∣ρ0(tF )/t2 − ρ0

(
t(A+ F ) + o(t)

)
/t2
∣∣

≤ρ(|tF |)/t2 + ρ
(
|t(A+ F ) + o(t)|

)
/t2.

By letting t→ 0 we obtain that Q3(F ) = Q3(F + A). Moreover, since the previous equality

holds for every F ∈ R3×3, by taking F = 0 we get that Q3(A) = 0 for every A ∈ Skew(3).

(iii) Fix F ∈ Sym(3). By directly computing the second differential of Q3, one has

D2Q3(F )[F, F ] = 2Q3(F ) ≥ 2C|F |2 for every F ∈ Sym(3).

Hence Q3 is strictly convex on Sym(3), since its second differential is positive definite.

Now observe that Q2 defined by (2.7) satisfies (a), (b) and (c) of Proposition 2.A.2:

(a) Q2(0) = 0 is satisfied by the definition of Q2.

(b) Fix G ∈ R2×2 and t > 0. Then, recalling the definition of the map ` form (2.8), we

have

Q2(tG) = Q3(tG∗ + t`(G)⊗ f3) = t2Q2(G).

(c) Note that, by the linearity of the map `, it holds

Q2(G1 ±G2) = Q3

(
G1 ±G2 + (`(G1)± `(G2))⊗ f3

)
and thus,

Q2(G1 +G2) +Q2(G1 −G2) = 2Q3(G1 + `(G1)⊗ f3)

+ 2Q3(G2 + `(G2)⊗ f3) = 2Q2(G1) + 2Q2(G2).

Hence Q2 is a quadratic form. Then it is straightforward to check that also Q2 satisfies (i),

(ii) and (iii), as claimed.
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Isotropic energy density function. Suppose that the energy density W is isotropic, i.e.

satisfies the condition (2.3). Then (see [Gur82]) there exist constants G > 0 and λ ∈ R such

that

Q3(F ) = D2W (I3)[F, F ] = 2G|Fsym|2 + λtr2(F )

for every F ∈ R3×3. Then we have

Q2(G) = min
c∈R3
Q3(G∗ + c⊗ f3) = min

b∈R2,a∈R

{
2G
(
|Gsym |2 + |b|2/2 + a2

)
+ λ

(
(trG+ a)2

)}
=2G|Gsym |2 + λtr2G+ min

a∈R

{
(µ+ λ)a2 + 2(trG)λ a

}
=2G|Gsym |2 +

λG

G + λ/2
tr2G = 2G|Gsym |2 +

2Gλ

2G + λ
tr2G,

for every G ∈ R2×2. By denoting

(2.27) Λ :=
2Gλ

2G + λ
,

we finally have

(2.28) Q2(G) = 2G|Gsym |2 + Λtr2G, for all G ∈ R2×2.

The positiveness of G is implied by the positive definiteness of Q3 – this can be easily seen by

plugging F = diag(1,−1, 0) into the expression for Q3. For the same reason, by computing

Q3(I3) we get that 2G + 3λ > 0. The latter further implies that Λ > −1/2, which provides

an explicit verification that also Q2 is positive definite. The constants G and Λ are called

non-dimensional Lamé constants.
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In this chapter we provide a dimensionally reduced model describing the bending behavior

of heterogeneous thin elastic sheets with in-plane modulation of the through-the-thickness

variation of the spontaneous strain.

More precisely, we are interested in thin elastic sheets occupying the reference domain

Ωh = ω × (−h/2, h/2) with 0 < h� 1, of a material characterized by a spontaneous stretch

distribution Ah (cfr. Section 2.1.1, formula (2.4)) of the form

(3.1) Ah(z) = I3 + hB
(
z′,

z3

h

)
, z = (z′, z3) ∈ Ωh.

Here, B is a given strain field defined on the rescaled domain Ω = Ω1, with values in the

space Sym(3) of the 3×3 symmetric matrices.

Apart from the energy-well structure (2.4), we make standard assumptions on the family

of densities W h modeling the 3D system such as frame indifference and quadratic growth,

and we suppose that the rescaled family {Wh}h converges uniformly, as h→ 0, to a limiting

homogeneous density function W . We refer the reader to Section 3.1 for details on the

assumptions on the 3D model. Thin gel sheets provide an interesting example of material

which can be described through a family of densities of Flory-Rehner type (given in (4.6))

fulfilling precisely the mentioned assumptions, as we shall see in Chapter 4.

29
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In Section 3.2 the same arguments as in [Sch07b] (which are in turn a slight variant of

those employed in the seminal work [FJM02], presented in Subsection 2.2.2) has been used

to find the corresponding limiting Kirchhoff plate model, under the assumption that

(3.2) curl
(
curlB0

2×2

)
= 0, with B0

2×2(z′) :=

ˆ 1/2

−1/2
B2×2(z′, t) dt for a.e. z′ ∈ ω.

We recall from Lemma 1.7 that the condition (3.2) guarantees that B0
2×2 is a symmetrized

gradient, and in turn allows for the construction of a “standard” ansatz for the recovery se-

quence. When instead condition (3.2) is violated, usual arguments such as local modifications

or perturbation arguments seem insufficient to prove the same Γ-limit, while a heuristic ar-

gument make us believe that the general Γ-limit has to include a nonlocal term, which can

be interpreted as a “first order stretching term”. A more detailed discussion is provided in

Section 3.4.

The Kirchhoff-like model resulting from the dimension reduction is constrained to the

set of isometric immersions of the mid-plane of the plate into R3, with a corresponding

energy that penalizes deviations of the curvature tensor associated with a deformation from

a x′-dependent target curvature tensor B1
2×2 below. Namely, it is governed by the energy

functional

(3.3) E0(y) =
1

24

ˆ
ω
Q2

(
Πy(z

′)− B1
2×2(z′)

)
dz′+ ad.t., with B1

2×2 := 12

ˆ 1/2

−1/2
tB2×2(·, t) dt,

on each W2,2-isometry y, where ad.t. stays for “additional terms” not depending on y. In the

above formula, Q2 is the 2D density related to the limiting, homogeneous density W via (2.7),

while Πy is the pull-back of the second fundamental form of the surface y(ω). Let us observe

that this plate theory stands between those of [Sch07b], on one hand, and of [LP11] and

[BLS16], on the other hand, and represents (to the best of our knowledge) the first attempt to

considering Kirchhoff plate theories (within the framework of Friesecke-James-Müller theory)

originated in 3D energies characterized by pre-stretches or, more in general, spontaneous

stretches which are heterogeneous in plane as well as along the thickness. Both in-plane and

through-the-thickness variation of pre-stretch has been considered also in [KS14], within the

framework of Riemannian geometry. Pre-stretches of the form (3.1) have been very recently

treated in [CRS17] and [KO17] to derive corresponding rod models with misfit. Moreover,

similar pre-stretches have been considered in [LOP+15] to obtain 2D models in the case of

scaling orders higher than the Kirchhoff one.

It is worth mentioning that beam theories derived from 2D energies of the form (3.3), in

the limit as ε→ 0 when ω = (−`/2, `/2)× (ε/2× ε/2), can be found in [ADK16] for the case

B1
2×2 constant and in [FHMP16] in the case B1

2×2 = B1
2×2(z1). To use a common terminology,

these 1D theories may describe narrow ribbons of soft active materials.

Apart from the derivation of the 2D model, we will give some insight on the minimizers

of the derived 2D model (3.3) and, keeping eye on the further application to the modeling of

Figure 3.1: Example of a 2D minimum energy configuration.
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foldable structures in Chapter 4, we focus on the case where the spontaneous strain B is an

odd function of the thickness variable (which trivially fulfills condition (3.2)), being at the

same time a piecewise constant function of the planar variable. This case leads in turn to a

piecewise constant target curvature tensor.

In Section 3.3, we recall that in the case where B1
2×2 is constant, then a minimizer of

the 2D energy E0 actually minimizes the integrand function pointwise – indeed, in this case

both 2D target metric and curvature satisfy Gaus-Codazzi-Mainardi compatibility equations

(1.4) – and the corresponding deformed configuration is a piece of cylindrical surface (see

Lemma 3.3.2 and the discussion preceding it). In the case of a piecewise constant B1
2×2,

some conditions (specified in Theorem 3.3.5) under which cylindrical surfaces can be patched

together resulting into an isometry must be fulfilled for the pointwise minimizer to exist.

When these conditions hold, an example of minimum energy configuration – a patchwork of

cylindrical surfaces – is sketched in Figure 3.1.

3.1 Setting

Throughout this chapter ω ⊆ R2 will be a simply-connected, bounded Lipschitz domain

satisfying the condition

(3.4)
there exists a closed subset Σ ⊂ ∂ω with H1(Σ) = 0 such that

the outer unit normal exists and is continuous on ∂ω \ Σ.

The requirement that ω is a simply-connected domain has to do with the “compatibility”

condition of Theorem 1.3.1, which is imposed on the 2× 2 part of the tensor-valued map B0

defined by (3.5) and (3.9). The condition (3.4) is a standard requirement on the domain in

order to have the density results for the space of W2,2-isometric immersions of ω into R3 (see

Theorem 1.4.7).

We are interested in a thin sheet Ωh := ω × (−h/2, h/2), with 0 < h � 1, of a material

characterized by a spontaneous stretch given at each point of Ωh in the form Ah(z) = I3 +

hB
(
z′, z3h

)
, for a suitable spontaneous strain B ∈ L∞(Ω,Sym(3)).

More in general, we consider a family B = {Bh}h≥0 of spontaneous strains such that

(3.5) Bh → B0 =: B in L∞(Ω,Sym(3)), as h→ 0,

the corresponding family {Ah}h≥0 of spontaneous stretches defined as

(3.6) Ah(x′, hx3) := I3 + hBh(x) for a.e. x ∈ Ω and for every h ≥ 0,

and the associated family {Wh}h>0 of (rescaled; see Section 2.1) energy densities Wh : Ω ×
R3×3 → [0,+∞], which we suppose to be Borel functions satisfying the following properties:

(i) for a.e. x ∈ Ω, the map Wh(x, ·) is frame indifferent, i.e.

Wh(x, F ) = Wh(x,RF ) for every F ∈ R3×3 and every R ∈ SO(3);

(ii) for a.e. x ∈ Ω, Wh(x, ·) is minimized precisely at SO(3)Ah(x′, hx3);

(iii) there exists an open neighbourhood U of SO(3) and W ∈ C2(U) such that

(3.7) ess sup
x∈Ω

∥∥Wh(x, ·)−W
∥∥
C2(U)

→ 0, as h→ 0;
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(iv) there exists a constant C > 0, independent of h, such that for a.e. x ∈ Ω it holds that

(3.8) Wh(x, F ) ≥ Cdist2
(
F,SO(3)Ah(x′, hx3)

)
, for every F ∈ R3×3.

Definition 3.1.1 (Admissible family of free-energy densities). Given B = {Bh}h≥0 satisfying

(3.5) and the associated family {Ah}h≥0 defined in (3.6), we call B-admissible a family

{Wh}h>0 of Borel functions from Ω× R3×3 to [0,+∞] fulfilling (i) - (iv).

Let {Wh}h>0 be a given B-admissible family of free-energy densities, with associated

limiting density function W . Observe that the limiting density W inherits properties (i),

(ii) and (iv) from convergence (3.7). Thus we can associate to W the quadratic forms Qk,
k = 2, 3 via (2.6) and (2.7).

We also introduce the following notation:

(3.9) B0(x′) :=

ˆ 1/2

−1/2
B(x′, t)dt and B1(x′) := 12

ˆ 1/2

−1/2
tB(x′, t)dt,

for a.e. x′ ∈ ω. Above defined maps will play the crucial role in our derivation and analysis

of the 2D model. Note also from hypothesis (3.5) that B0,B1 ∈ L∞(ω,Sym(2)). Our limiting

2D model will be related to the 2D density function Q2 : ω × R2×2 → [0,+∞) defined as

Q2(x′, G) := min
D∈R2×2

ˆ 1/2

−1/2
Q2

(
D + tG−B2×2(x′, t)

)
dt,

for a.e. x′ ∈ ω and every G ∈ R2×2, where B2×2 is related to the 3D model through (3.5), using

the notation introduced in Subsection 1.1. Since Q2 does not depend on the skew-symmetric

part of its argument, we can think of Q2 to be defined only on ω × Sym(2) as

(3.10) Q2(x′, G) = min
D∈Sym(2)

ˆ 1/2

−1/2
Q2

(
D + tG−B2×2(x′, t)

)
dt.

This minimum problem can be solved explicitly, as stated by the following lemma.

Lemma 3.1.2. For a.e. x′ ∈ ω and every G ∈ Sym(2), the minimizer in (3.10) is unique

and coincides with B0
2×2(x′). In other words, we have that

(3.11) Q2(x′, G) =

ˆ 1/2

−1/2
Q2

(
B0

2×2(x′) + tG−B2×2(x′, t)
)

dt

for a.e. x′ ∈ ω and every G ∈ Sym(2).

Proof. By using the bilinear form L2 associated with Q2 it is easy to see that for a.e. x′ ∈ ω
and every G ∈ Sym(2) it holds

min
D∈Sym(2)

ˆ 1/2

−1/2
Q2(D + tG−B2×2(x′, t)) dt

= min
D∈Sym(2)

ˆ 1/2

−1/2

(
Q2(D) +Q2

(
tG−B2×2(x′, t)

)
+ 2L2

(
D, tG−B2×2(x′, t)

))
dt

= min
D∈Sym(2)

ˆ 1/2

−1/2

(
Q2(D) +Q2

(
tG−B2×2(x′, t)

)
+ 2tL2

(
D,G

)
+ 2L2

(
D,−B2×2(x′, t)

))
dt

=

ˆ 1/2

−1/2
Q2

(
tG−B2×2(x′, t)

)
dt+ min

D∈Sym(2)

(
Q2(D) + 2L2

(
D,−

ˆ 1/2

−1/2
B2×2(x′, t) dt

))

=

ˆ 1/2

−1/2
Q2

(
tG−B2×2(x′, t)

)
dt−Q2

(
B0

2×2(x′)
)

+ min
D∈Sym(2)

Q2

(
D − B0

2×2(x′)
)
.
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From this equality, the thesis trivially follows.

Note that the minimizer in (3.10), which is in principle dependent on G from its definition,

turns out to be independent of G in the end. This is not the case when, e.g., the limiting

density function W depends explicitly on x3, not just through its spontaneous stretch, see

[Sch07b]. Finally, observe for future reference that from (3.11) one can rewrite Q2 in the

more explicit form

(3.12) Q2(x′, G) =
1

12
Q2

(
G− B1

2×2(x′)
)

+

ˆ 1/2

−1/2
Q2

(
B2×2(x′, t)− B0

2×2(x′)
)

dt− 1

12
Q2

(
B1

2×2(x′)
)
,

for a.e. x′ ∈ ω and every G ∈ Sym(2). We will better use this expression for Q2 more than

(3.11) when we look for pointwise minimizers in Section 3.3. In fact, the only relevant part

of Q2 for our minimization purposes is the first summand on the right hand side of (3.12).

Before passing to the rigorous derivation of the 2D model, we provide a technical lemma

consisting in two estimates for the family {Wh}h>0 of energy densities and for its uniform limit

W defined in a neighbourhood U of SO(3). They are elementary consequences of properties

(ii) and (iii) of Definition 3.1.1. These estimates will be used in the proof of the Γ- lim inf

and the Γ- lim sup.

Lemma 3.1.3. Let r > 0 be related to the limiting energy density W by (2.9). For every

ε > 0 there exists hε > 0 and Cε > 0 such that for a.e. x ∈ Ω, every F ∈ Br(0) and every

h ∈ (0, hε] it holds that

(3.13)

∣∣∣∣Wh

(
x,Ah(x′, hx3) + F

)
−W

(
I3 + F

)∣∣∣∣ ≤ ε|F |2,
(3.14)

∣∣∣Wh

(
x,Ah(x′, hx3) + F

)∣∣∣ ≤ Cε|F |2.
Proof. Fix ε > 0 and choose hε > 0 such that for a.e. x ∈ Ω, every h ∈ [0, hε] and every

F ∈ Br(0) we have that Ah(x′, hx3) + F ∈ B2r(I3). Define Hh : Br(0) → [0,+∞) by

Hh(F ) := Wh

(
x,Ah(x′, hx3) +F

)
for every h ∈ (0, hε] and H0(F ) := W

(
I3 +F

)
, F ∈ Br(0).

Fix F ∈ Br(0) and h ∈ [0, hε]. We have the following estimate:∣∣Hh(F )−H0(F )
∣∣ ≤ sup

t∈[0,1]

∣∣DHh(tF )F −DH0(tF )F
∣∣

≤|F | sup
t∈[0,1]

∥∥DHh(tF )−DH0(tF )
∥∥

L (R3×3)
.

Similarly,∥∥DHh(tF )−DH0(tF )
∥∥

L (R3×3)
≤ sup
s∈[0,1]

sup
|M |≤1

∣∣D2Hh(stF )[tF,M ]−D2H0(stF )[tF,M ]
∣∣

≤ sup
Br(0)

∥∥D2Hh −D2H0

∥∥
L2(R3×3)

|t||F |.

By putting together the above estimates we have (after possibly shrinking hε) that (3.13)

holds. By using (2.9) and the estimate (3.13) we obtain∣∣∣Wh

(
x,Ah(x′, hx3) + F

)∣∣∣ ≤ ∣∣∣W (I3 + F
)∣∣∣+ ε|F |2 ≤

∣∣∣D2W
(
I3

)
[F ]2

∣∣∣+ ρ(|F |) + ε|F |2,
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for a.e. x ∈ Ω, every F ∈ Br(0) and every h ∈ (0, hε]. It is now clear, by regularity of W and

(2.10) that the right hand side above divided by |F |2 is bounded by a constant independent

of F (after possibly shrinking r), proving (3.14).

3.2 Rigorous derivation of the Kirchhoff-like plate model

Given a B-admissible family
{
Wh

}
h>0

of energy densities in the sense of Definition 3.1.1, for

every h > 0 we recall from (2.18) that the rescaled free energy functional Eh : W1,2(Ω,R3)→
[0,+∞] is given by

(3.15) Eh(y) =

ˆ
Ω
Wh

(
x,∇hy(x)

)
dx, for every y ∈W1,2(Ω,R3).

The following compactness result says in particular that if the rescaled energy Eh/h
2 is

bounded on yh, uniformly in h, then the sequence {yh}h converges to a deformation y which

belongs to the class of isometries W2,2
iso (ω).

Theorem 3.2.1 (Compactness). Let
{
yh
}
h
⊆W1,2

(
Ω,R3

)
be a sequence which satisfies

(3.16) lim sup
h→0

1

h2
Eh(yh) < +∞.

Then
{
∇hyh

}
h

is precompact in L2
(
Ω,R3×3

)
, that is: there exists a (not relabeled) subse-

quence such that ∇hyh →
(
∇′y

∣∣ν) in L2
(
Ω,R3×3

)
, where ν(x) := ∂1y(x)∧∂2y(x). Moreover,

the limit
(
∇′y

∣∣ν) has the following properties:

(i)
(
∇′y

∣∣ν) (x) ∈ SO(3) for a.e. x ∈ Ω,

(ii)
(
∇′y

∣∣ν) ∈W1,2
(
Ω,R3×3

)
and

(iii)
(
∇′y

∣∣ν) is independent of x3.

In other words, the limiting deformation y (identified up to additive constants) belongs to the

class W2,2
iso (ω) defined as in (1.9).

To prove this compactness result, we can use the same argument as in the proof of the

corresponding result in [FJM02] where the spontaneous stretch is I3 in place of our I3 + hB.

Note that the same argument holds in the case of spontaneous stretch of the form I3 + hαB

with α ≥ 1.

Proof of Theorem 3.2.1. We will show that the sequence
{
∇hyh

}
h
⊆ L2

(
Ω,R3×3

)
satisfies

(3.17) lim sup
h→0

1

h2

ˆ
Ω

dist2
(
∇hyh(x),SO(3)

)
dx < +∞.

The thesis then directly follows by applying Theorem 4.1 from [FJM02]. Fix h > 0 and

F ∈ R3×3. For a.e. x ∈ Ω there exists Rh,F (x) ∈ SO(3) such that

dist
(
F,SO(3)

(
I3 + hBh(x)

))
=
∣∣F −Rh,F (x)(I3 + hBh

(
x)
)∣∣.

We have the following estimate:

(3.18)
dist2(F,SO(3)) ≤2

∣∣∣F −Rh,F (x)
(
I3 + hBh(x)

)∣∣∣2 + 2
∣∣∣hRh,F (x)Bh(x)

∣∣∣2
(3.8)

≤ 2

C
Wh(x, F ) + 6h2

∣∣Bh(x)
∣∣2

for a.e. x ∈ Ω. By (3.16) and (3.18) we have that (3.17) holds true.
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Before stating the following convergence theorem, let us anticipate that our limiting 2D

model will be described by the energy functional E0 : W1,2(Ω,R3)→ [0,+∞] defined as

(3.19) E0(y) :=


1

2

ˆ
ω
Q2

(
x′,Πy(x

′)
)

dx′,

+∞,

for y ∈W2,2
iso (ω),

otherwise,

whereQ2 is defined through (3.5) and (3.11) and Πy is the pull-back of the second fundamental

form of the surface y(ω) given by (1.5).

Theorem 3.2.2 (Γ-limit). The following convergence results hold true:

(i) Γ- lim inf: for every sequence {yh}h and every y such that yh ⇀ y weakly in W1,2(Ω,R3)

it holds

E0(y) ≤ lim inf
h→0

1

h2
Eh(yh),

(ii) Γ- lim sup: under the hypothesis

(3.20) curl
(
curlB0

2×2

)
= 0 in the distributional sense,

with B0 defined by (3.5) and (3.9), we have that for every y ∈ W1,2(Ω,R3) there exists a

sequence {yh}h such that yh → y in W1,2(Ω,R3), fulfilling

E0(y) = lim
h→0

1

h2
Eh(yh).

The convergence results of the previous theorem amount to saying that the sequence of

energy functionals 1
h2 Eh Γ-converge to E0, as h → 0, in the strong and weak topology of

W1,2(Ω,R3). We postpone the proof of the theorem after the following example.

Example 3.2.3. Note that when B0
2×2 is constant, condition (3.20) is trivially satisfied. In

particular, recalling definition (3.9), condition (3.20) is trivially satisfied whenever the map

x 7→ B2×2 is constant in x′. At the same time, the same condition is satisfied with B0
2×2 ≡ 0

by every map x 7→ B2×2(x) which is nothing but odd in x3. We also note that it is possible to

realize B0
2×2 ≡ C 6= 0 through a map x 7→ B2×2(x) which is not constant in x′. To construct

such an example, we fix B0 ∈ Sym(2) \ {0} and define B ∈ L∞
(
Ω,Sym(3)

)
by setting

B2×2(x) :=
n∑
i=1

Bi(x3)χωi(x
′), for a.e. x ∈ Ω,

where {ωi}ni=1 is a partition of ω and {Bi}ni=1 ⊆ L∞
(
(−1/2, 1/2), Sym(2)

)
is a family of tensor

valued maps satisfying

ˆ 1/2

−1/2
Bi(x3) dx3 = B0, for every i = 1, . . . , n,

while all the remaining entries of the matrix B(x) are set to be zero for a.e. x ∈ Ω. This

gives rise to B2×2 which is piecewise constant in x′ (but, in general, not constant in the same

variable), and in turn to

B0
2×2(x′) =

n∑
i=1

χωi(x
′)

ˆ 1/2

−1/2
Bi(x3) dx3 = B0.
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Note also that the above defined map B2×2 can give rise to a non-constant tensor valued

map x′ 7→ B1
2×2(x′), with B1 given by (3.9), which is interpreted in Section 3.3 (in each point

x′) as the target curvature tensor which appears in the 2D limiting model. Indeed, in the case

of n = 2, by choosing B1(x3) := (x3 + 1)I2 and B2(x3) := (x3
3 + 1)I2 for all x3 ∈ (−1/2, 1/2),

we obtain a simple example of B2×2 for which B0
2×2 is constant, while the tensor-valued map

x′ 7→ B1
2×2(x′) is piecewise constant. 4

The proof of the Γ- lim inf is a straightforward adaptation to the case of a family of

energy densities {Wh}h>0 with wells SO(3)
(
I3 +hBh

)
, of the corresponding result in [FJM02]

pertaining the case of a homogeneous W (minimized at SO(3)). For the construction of the

recovery sequence in the proof of the Γ- lim sup one has instead to add an additional term

with respect to the classical construction (see the third summand on the right-hand side of

(3.24)). Such additional term gives rise, in the limit as h → 0, to a symmetrized gradient

(see formula (3.27)), in a position where the map B0
2×2 should appear in order to match

the Γ-limit (cfr. (3.10) and (3.19)). For this purpose, condition (3.20) guarantees that the

map B0
2×2 is a symmetrized gradient, thanks to Theorem 1.3.1. Throughout the following

proof C is a generic positive constant, varying form line to line and independent of all other

quantities.

Proof of Theorem 3.2.2. (i) Γ- lim inf: Let y ∈ W1,2(Ω,R3) and {yh}h be such that yh ⇀ y

weakly in W1,2(Ω,R3). Assume that lim infh→0 Eh
(
yh
)
/h2 < +∞, otherwise the proof is

trivial. Then, as shown in [FJM02] and up to a (not relabeled) subsequence, there exists a

family of piecewise constant maps Rh : Qh → SO(3) such that

(3.21)

ˆ
Qh×(−1/2,1/2)

∣∣∇hyh(x)−Rh(x′)
∣∣2 dx ≤ Ch2,

and Rh → (∇y|ν) in L2(Ω,R3) as h → 0, where Qh :=
⋃

Qa,3h⊆ω Qa,h and Qa,h := a +

(−h/2, h/2)2 for every h > 0 and a ∈ hZ2. Moreover, the sequence Sh : Ω→ R3×3 defined by

(3.22) Sh(x′, x3) :=


RT
h(x′)∇hyh(x′, x3)− I3

h

0

for x ∈ Qh × (−1/2, 1/2),

elswhere in Ω,

converges weakly in L2(Ω,R3×3), as h→ 0, to some S ∈ L2(Ω,R3×3) such that

(3.23) S2×2(x) = S2×2(x′, 0) + x3Πy(x
′), for a.e. x ∈ Ω.

Letting χh be the characteristic function of the set Qh ∩
{
|Sh(x)| ≤ 1/

√
h
}

we also have that

χhSh ⇀ S in L2(Ω,R3×3) as h→ 0. Now, by using also the convergence in (3.5) we have

Sh −Bh ⇀ S −B in L2(Ω,R3×3) and ‖h(Sh −Bh)‖
L∞
(

Qh∩{|Sh(x)|≤1/
√
h}
) → 0.

By using frame indifference of Wh, (2.9) and the estimate (3.13) from Lemma 3.1.3, we have

that for a fixed ε > 0, there exists h̄ > 0 so that for all h ∈ (0, h̄) the following estimates
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hold:

1

h2

ˆ
Ω
Wh(x,∇hyh(x)) dx

≥ 1

h2

ˆ
Ω
χhW

h(x,RT
h(x′)∇hyh(x)) dx

=
1

h2

ˆ
Ω
χhW

h
(
x,
(
I3 + hBh(x)

)
+ h(Sh −Bh)(x)

)
dx

≥ 1

h2

ˆ
Ω
χh

1

2
D2W (I3)

[
h(Sh −Bh)(x)

]2 − χhε|h(Sh −Bh)(x)|2 + χhρ
0
(
h(Sh −Bh)(x)

)
dx

≥
ˆ

Ω
χh

1

2
Q3

(
(Sh −Bh)(x)

)
− χhε|(Sh −Bh)(x)|2 − χhρ

(∣∣h(Sh −Bh)(x)
∣∣) dx,

where ρ0 and ρ are defined in (2.9). Since Q3 is lower semicontinuous in the weak topology

of L2(Ω,R3×3) and since (2.10) holds, passing to lim inf as h→ 0 in the above inequality we

obtain

lim inf
h→0

1

h2

ˆ
Ω
Wh(x,∇hyh(x)) dx ≥

ˆ
Ω

1

2
Q3

(
S(x)−B(x)

)
dx− Cε,

where C > 0 is such that ||Sh − Bh||L2(Ω) ≤ C. Finally, by letting ε → 0 and by using the

fact that Q3(F ) ≥ Q2(F2×2) for every F ∈ R3×3 we get that

lim inf
h→0

1

h2

ˆ
Ω
Wh(x,∇hyh(x)) dx ≥1

2

ˆ
Ω
Q2

(
S2×2(x′, 0) + x3Πy(x

′)−B2×2(x′, x3)
)

dx

≥1

2

ˆ
ω
Q2

(
x′,Πy(x

′)
)

dx′,

which proves Γ- lim inf inequality.

(ii) Γ- lim sup: Let us prove Γ- lim sup inequality for a given y ∈ W2,2
iso (ω) ∩ C∞(ω,R3).

Once we have proved it, Γ-lim sup inequality will follow for any y ∈ W2,2
iso (ω) by the density

result of Theorem 1.4.7 and the continuity of the limiting functional E0 with respect to W2,2

convergence. Suppose that E0(y) < +∞ (otherwise the proof is trivial). Let d ∈ C∞c (Ω,R3)

and define d̃ : Ω→ R3 by

d̃(x′, x3) :=

ˆ x3

0
d(x′, t) dt, for every (x′, x3) ∈ ω × (−1/2, 1/2) = Ω.

Let w̃ ∈ C∞c (R2,R2). We consider the family of functions yh of the form

(3.24) yh(x) := y(x′) + h
[
x3ν(x′) +∇y(x′)w̃(x′)

]
+ h2d̃(x′, x3),

for every x ∈ Ω and every h > 0, whose (h-rescaled) gradient ∇hyh reads as

∇hyh(x) = (∇y(x′)
∣∣ν(x′)) + h

(
∇′
[
x3ν(x′) +∇y(x′)w̃(x′)

]∣∣d(x)
)

+ h2
(
∇′d̃(x)

∣∣0),
for every x ∈ Ω and every h > 0. One can easily verify that {yh}h ⊆W2,∞(Ω,R3) and that it

converges in W1,2(Ω,R3) to y, as h→ 0. Denote by R(x′) :=
(
∇y(x′)

∣∣ν(x′)
)

for every x′ ∈ ω.

Set

Ph(x) := RT(x′)
((
∇′
[
x3ν(x′) +∇y(x′)w̃(x′)

]∣∣d(x)
)

+ h
(
∇′d̃(x)

∣∣0))−Bh(x), for a.e. x ∈ Ω,

and note that Ph converges in L∞(Ω,R3×3) to the function

Ω 3 x 7→ RT(x′)
(
∇′
[
x3ν(x′) +∇y(x′)w̃(x′)

]∣∣d(x)
)
−B(x) ∈ R3×3.
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With this notation, we have that RT(x′)∇hyh(x) = Ah(x′, hx3) + hPh(x) for a.e. x ∈ Ω

with Ah given by (3.6). By the frame indifference of Wh(x, ·), boundedness of Ph and Bh in

L∞-norm and the estimate (3.14) from Lemma 3.1.3, there exists C, h̄ > 0 such that

1

h2
Wh

(
x,∇hyh(x)

)
=

1

h2
Wh

(
x,RT(x′)∇hyh(x)

)
=

1

h2
Wh

(
x,Ah(x′, hx3) + hPh(x)

)
≤ C,

for a.e. x ∈ Ω and every 0 < h ≤ h̄. Moreover, by using the estimate (3.13) from Lemma

3.1.3 and the regularity of W , we get that

1

h2
Wh

(
x,∇hyh(x)

)
→ 1

2
Q3

(
RT(x′)

(
∇′
[
x3ν(x′) +∇y(x′)w̃(x′)

]∣∣d(x)
)
−B(x)

)
pointwise almost everywhere in Ω, as h → 0. Then, by dominated convergence theorem we

have

1

h2

ˆ
Ω
Wh

(
x,∇hyh(x)

)
dx→ 1

2

ˆ
Ω
Q3

(
RT(x′)

(
∇′
[
x3ν(x′) +∇y(x′)w̃(x′)

]∣∣d(x)
)
−B(x)

)
dx

as h → 0. To proceed, for a.e. x ∈ Ω we denote by F (x) the 2 × 2 part of the argument of

Q3 in the above integral. Define d̄ : Ω→ R3 as

d̄(x) := R(x′)

`(F sym (x)
)

+

2B13

2B23

B33

 (x)−

((
∇
(
∇y(x′)w̃(x′)

))T

ν(x′)

0

) ,

for a.e. x ∈ Ω, where `(F sym ) is given by (2.8) and B = (Bij)
3
i,j=1. Given that F sym ∈

L∞(Ω,Sym(2)), B ∈ L∞(Ω,Sym(3)) and y and w̃ are smooth vector fields, d̄ belongs to

L2(Ω,R3). By choosing d to be equal to d̄, one can readily check that

(3.25)
(
RT(x′)

(
∇′
[
x3ν(x′) +∇y(x′)w̃(x′)

]∣∣d̄(x)
)
−B(x)

)
sym

=

 F sym (x)
0

0

0 0 0

+
(
`
(
F sym (x)

)
⊗ f3

)
sym

.

Recall from Remark 1.4.1 that (∇y)T∇
(
(∇y)w̃

)
= ∇w̃. Now, by direct computation we

obtain

(3.26) F sym (x) = x3Πy(x
′) +∇sym w̃(x′)−B2×2(x), for a.e. x ∈ Ω.

Finally, by definition of Q2, (3.25) and (3.26) it holds thatˆ
Ω
Q3

(
RT(x′)

(
∇′
[
x3ν(x′) +∇y(x′)w̃(x′)

]∣∣d̄(x)
)
−B(x)

)
dx

=

ˆ
Ω
Q2

(
x3Πy(x

′) +∇symw̃(x′)−B2×2(x)
)

dx.

Therefore, the density of C∞c (Ω,R3) in L2(Ω,R3) and a diagonal argument give us that

(3.27)

lim sup
h→0

1

h2

ˆ
Ω
Wh(x,∇hyh(x)) dx =

1

2

ˆ
ω

ˆ 1/2

−1/2
Q2

(
x3Πy(x

′) +∇sym w̃(x′)−B2×2(x)
)

dx3 dx′.

The compatibility assumption (3.20) on B0
2×2 and Theorem 1.3.1 guarantee the existence of

the map w ∈ W1,2(ω,R2) such that B0
2×2(x′) = ∇symw(x′) for a.e. x′ ∈ ω. Thus, by using

the density of C∞c (R2,R2) (when restricted to ω) in W1,2(ω,R2) and a diagonal argument

one more time, we prove Γ-lim sup inequality for a given y ∈W2,2
iso (ω) ∩ C∞(ω,R3).
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Remark 3.2.4. By standard arguments of Γ-convergence it can be shown that the above

analysis holds also in the case when the appropriate body forces are present. More precisely,

the above results can be applied to the sequence of functionals {Fh}h>0 defined by

Fh(y) := Eh(y)−
ˆ

Ω
fh(x) · y(x) dx, for every y ∈W1,2(Ω,R3),

where {fh}h≥0 ⊆ L2(Ω,R3) is the family of body forces such that

fh
h2

⇀ f0 weakly in L2(Ω,R3) and

ˆ
Ω
fh(x) dx = 0 for every h ≥ 0.

The sequence {Fh} Γ−converges, as h→ 0, to

F0(y) :=

E0(y)−
ˆ
ω
f(x′) · y(x′) dx′,

+∞,

for y ∈W2,2
iso (ω),

otherwise.

where f(x′) :=
´ 1/2
−1/2 f0(x′, t) dt for a.e. x′ ∈ ω. �

3.3 2D energy minimizers

In this section, we discuss the minimizers of the derived 2D model in some special cases.

Recall that the 2D limiting energy functional E0 is given by

E0(y) =


1

2

ˆ
ω
Q2

(
x′,Πy(x

′)
)

dx′,

+∞,

for y ∈W2,2
iso (ω),

otherwise,

where W2,2
iso (ω) is the set of W2,2-isometric immersions of ω into R3, defined by (1.9). From

formula (3.12), we have that

(3.28) E0(y) =
1

24

ˆ
ω
Q2

(
Πy(x

′)− B1
2×2(x′)

)
dx′ + ad.t.

for every y ∈ W2,2
iso (ω), where ad.t. stays for “additional term” (not depending on y) and is

given by

(3.29) ad.t. :=
1

2

ˆ
ω

ˆ 1/2

−1/2
Q2

(
B2×2(x′, t)− B0

2×2(x′)
)

dt− 1

12
Q2

(
B1

2×2(x′)
)
dx′.

Observe that this term is irrelevant in the present discussion on the energy minimizers and

will be discussed more in details in Chapter 5. We shall see that this term is non negative

and vanishes if and only if the map B2×2 is affine in x3. More precisely, we have (up to a

multiplicative constant) that

ad.t. = dist2(B2×2,E1),

with E1 given in (5.12) – (5.13) and dist2(B2×2,E1) determined in Lemma 5.2.2 with Q2(x′, ·)
being independent on x′.

Recall that Πy is the pull-back of the second fundamental form associated with y(ω) (see

(1.5)), hence it gives information on the curvature realized by the deformation y. On the

other hand, when reading the expression for E0, it is natural to think of B1
2×2 as the target
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curvature tensor, which encodes the spontaneous curvature of the system. For the later use,

we recall that

(3.30) B1
2×2(x′) = 12

ˆ 1/2

−1/2
tB2×2(x′, t) dt, for a.e. x′ ∈ ω.

While, for a.e. x′, the tensor B1
2×2(x′) is a given 2×2 symmetric matrix with possibly nonzero

determinat, we know by Lemma 1.4.3 that det Πy = 0 a.e. in ω.

Our aim is to determine explicitly some classes of minimizers. More precisely, recalling

the definition of the set S0 from Section 1.4.2, namely

(3.31) S0 =
{
S ∈ Sym(2) : detS = 0

}
and having in mind the inequality

min
W2,2

iso (ω)
E0 ≥

1

24

ˆ
ω

min
S∈S0

Q2

(
S − B1

2×2(x′)
)

dx′ + ad.t.,

we will focus our attention on pointwise minimizers of E0. Namely, on those y ∈ W2,2
iso (ω)

such that

(3.32) E0(y) =
1

24

ˆ
ω

min
S∈S0

Q2

(
S − B1

2×2(x′)
)

dx′ + ad.t. = min
W2,2

iso (ω)
E0.

To go on, let us consider the set

(3.33) N (x′) := argmin
S∈S0

Q2

(
S − B1

2×2(x′)
)
,

for a.e. x′ ∈ ω. Note thatN (x′) 6= Ø for a.e. x′ ∈ ω, becauseQ2 is a positive definite quadratic

form (when restricted to Sym(2)) and S0 is a closed subset of Sym(2). To accomplish our

program, we would like to have some explicit representation of the elements of N (x′), for

a.e. x′ ∈ ω, also in view of the application which motivates our analysis (see Chapter 4.).

Therefore, we restrict our attention to case of W isotropic (see Appendix 2.A), so that

(3.34) Q2(G) = min
c∈R3
Q3

(
G∗ + c⊗ f3

)
= 2G

(
|Gsym|2 + Λ tr2G

)
, for every G ∈ R2×2,

referring to (2.28) and the subsequent discussion on the properties of G and Λ. In particular,

Λ > −1/2 and this fact guarantees that the quantities appearing in the statement of Lemma

3.3.1 below are well defined.

Note that in the case when B1
2×2 is constant in ω, pointwise minimizers of E0 always exist.

More precisely, as noticed in [Sch07a] and [Sch07b] (see Lemma 3.3.2 below), any minimizer

y of E0 with B1
2×2 constant is characterised by the property Πy(x

′) ≡ const. ∈ N for a.e.

x′ ∈ ω, where

(3.35) N := argmin
S∈S0

Q2

(
S − B1

2×2

)
.

Clearly, in the case of nonconstant B1
2×2, this is not always true. Now, while the analysis of

the minimizers of E0, with an arbitrary nonconstant B1
2×2, is behind the scope of the present

paper, it is natural in our context to try to understand under which conditions the existence

of pointwise minimizers of E0 is guaranteed. In Subsection 3.3.1 we answer this question in

the case when B1
2×2 is piecewise constant. To do this, we need a structure result for the set

N in the case of constant B1
2×2. This is the content of the following lemma.



41 3.3. 2D energy minimizers

Lemma 3.3.1. Let a and b be two real numbers and let Λ be given by (3.34). The following

implications hold:

(i) If B1
2×2 ≡

(
a 0

0 a

)
then N =

{
%T

(
r 0

0 0

)
% : % ∈ SO(2)

}
with r = a1+2Λ

1+Λ .

(ii) If B1
2×2 ≡

(
a 0

0 −a

)
then N =

{(
r 0

0 0

)
,

(
0 0

0 −r

)}
with r = a

1+Λ .

(iii) If B1
2×2 ≡

(
a 0

0 b

)
, |a| > |b| then N =

{(
r 0

0 0

)}
with r = a+ bΛ

1+Λ .

(iv) If B1
2×2 ≡

(
a 0

0 b

)
, |b| > |a| then N =

{(
0 0

0 r

)}
with r = b+ aΛ

1+Λ .

Before giving the proof of the above statement, let us make a couple of comments. First,

note that the lemma, though restricted to the case of B1
2×2 diagonal, covers all the interesting

cases, from the simple observation that, with abuse of notation, NB1
2×2

= %̄ND %̄T, where

ρ̄ ∈ O(2) is such that %̄T B1
2×2 %̄ coincides with the diagonal matrix D. Moreover, interpreting

the elements of N as second fundamental forms of cylinders (see the discussion below), the

parameter r, when different from zero, corresponds to the nonzero principal curvature. In

this case, observe also that, with abuse of notation, the set N(ii) is never a subset of N(i) and

that, as for the (two) elements of N(ii), the elements of N(i) are pairwise linearly independent.

This can be easily read off from the simple fact that

N(i) = r
{
n⊗ n : n ∈ R2 with |n| = 1

}
.

Finally, the set of the directions corresponding to ±r in the cases (i), (ii), (iii), and (iv)

is given by {% e1 : %∈ SO(2)}, {e1, e2}, {e1}, {e2}, respectively. This fact can be interpreted

saying that, in order to reduce the energy, while in case (i) rolling up along all the possible

directions is equally favorable, in the remaining cases the system rolls up along the direction

corresponding to the greater (in modulus) eigenvalue of the target curvature tensor B1
2×2.

Proof of Lemma 3.3.1. Let a, b ∈ R and let B1
2×2 ≡ diag(a, b). By representing any S ∈

Sym(2) by
(
ξ ζ
ζ υ

)
, ζ, ξ, υ ∈ R and recalling that Q2 is of the form (3.34), the minimization

problem to be solved is:

(3.36) min
S∈S0

{∣∣S − B1
2×2

∣∣2 + Λ tr2
(
S − B1

2×2

)}
= min

(ξ,υ)∈R2, ζ∈R
ξυ=ζ2

{∣∣∣∣
(
ξ − a ζ

ζ υ − b

)∣∣∣∣2 + Λ tr2

(
ξ − a ζ

ζ υ − b

)}

Denote P :=
{

(ξ, υ) ∈ R2
∣∣ ξυ ≥ 0

}
and define for every (ξ, υ) ∈ P the function

f(ξ, υ) := (1 + Λ)(ξ + υ)2 − 2
(
a(1 + Λ) + bΛ

)
ξ − 2

(
b(1 + Λ) + aΛ

)
υ + a2 + b2 + Λ(a+ b)2,

so that the minimization problem becomes min(ξ,υ)∈P f(ξ, υ). Let us consider first the case

when a 6= b. Observe that in this case f attains its minimum on ∂P =
{

(ξ, υ) ∈ R2 | ξυ = 0
}

.
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Indeed, supposing by contradiction that the minimum is attained at a point (ξ̄, ῡ) ∈ int(P ) ={
(ξ, υ) ∈ R2 : ξυ > 0

}
would give

∂ξf(ξ̄, ῡ) = 2(1 + Λ)(ξ̄ + ῡ)− 2
(
a(1 + Λ) + βb

)
= 0,

∂υf(ξ̄, ῡ) = 2(1 + Λ)(ξ̄ + ῡ)− 2
(
b(1 + Λ) + Λa

)
= 0,

and in turn a = b, leading to a contradiction. Now (ii), (iii) and (iv) follow by straightforward

computations. To prove (i), we first note that the set of stationary points of f in int(P ) is

given by {(
η±ζ , η

∓
ζ

)
∈ R2 : ζ ∈

[
−|r|

2
,
|r|
2

]
\ {0}

}
,

where

r =
a(1 + 2β)

(1 + β)
and η±ζ :=

r

2
±
√
r2 − 4ζ2

2
, for every ζ ∈

[
−|r|

2
,
|r|
2

]
\ {0}.

Moreover, the value of f at these stationary points is f(η+
ζ , η

−
ζ ) = f(η−ζ , η

+
ζ ) = ar. At the

same time, we have that argmin
(ξ,υ)∈∂P

f(ξ, υ) =
{

(r, 0), (0, r)
}

, and that f(r, 0) = f(0, r) = ar.

Hence,

argmin
(ξ,υ)∈P

f(ξ, υ) =

{(
η±ζ , η

∓
ζ

)
∈ R2 : ζ ∈

[
−|r|

2
,
|r|
2

]}
.

In turn, the elements of N are all the matrices of the form

S±ζ :=

(
η±ζ ζ

ζ η∓ζ

)
with |ζ| ≤ |r|

2
.

The proof of the lemma, point (i), can be finished by observing that the following identity

holds {
%T

(
r 0

0 0

)
% : % ∈ SO(2)

}
=

{
S±ζ : |ζ| ≤ |r|

2

}
.

Now, let us go back to the set S0 defined in (3.31). The fact that the set S0 coincides

with the set of (constant) second fundamental forms of cylinders, proved in Lemma 3.31, can

be used to show, in the case where the target curvature tensor B1
2×2 is constant, that

(3.37) y ∈W2,2
iso (ω) is a minimizer of E0 if and only if y is a pointwise minimizer.

This is the first step of the proof of Lemma 3.3.2 below. The second part of the proof

consists then in showing that

(3.38) Πy(x
′) ∈ N for a.e. x′ ∈ ω =⇒ Πy ≡ const..

This property is at the core of our investigations in the following subsection and can be

proved using some fine properties of isometric immersions (see Section 1.4.1 and [Hor11a],

[Hor11b] and [Pak04] for more details). The proof of the following lemma can be found in

[Sch07b, Proposition 4.2]. For completeness, in Appendix 3.A we provide a detailed proof of

this result.

Lemma 3.3.2. Let B1
2×2 be constant (cfr. (3.28)–(3.30)) and let y ∈W2,2

iso (ω) be a minimizer

of E0. Then y = u|ω for some u ∈ Cyl. In particular, y has constant second fundamental

form.
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3.3.1 The case of piecewise constant target curvature tensor

In this subsection, we consider the case where the target curvature is a piecewise constant

tensor valued map x′ 7→ B1
2×2(x′). More precisely, given n ∈ N, n ≥ 2, we say that the map

B1
2×2 ∈ L∞

(
ω,Sym(2)

)
is piecewise constant if it is of the form

(3.39) B1
2×2 =

n∑
k=1

Bk χωk a.e. in ω, with Bk =

(
ak 0

0 bk

)
, ak, bk ∈ R,

where {ωk}nk=1 is a partition of ω made of Lipschitz subdomains ωk according to Definition

3.3.3. Clearly, it is convenient distinguishing between two different neighboring subdomain

only when the corresponding spontaneous curvature are different from each other. Namely,

we suppose that Bk 6= Bj for every k 6= j such that ∂ωj ∩ ∂ωk 6= Ø. With such target

curvature, our 2D energy functional takes the form

E0(y) =
1

24

n∑
k=1

ˆ
ωk

Q2

(
Πy(x

′)−Bk

)
dx′ + ad.t., for every y ∈W2,2

iso (ω).

We want to determine the conditions the map x′ 7→ B1
2×2(x′) has to satisfy in order to

guarantee the existence of pointwise minimizers of E0, i.e. to guarantee that there exists

y ∈ W2,2
iso (ω) such that Πy(x

′) ∈ N (x′) for a.e. x′ ∈ ω, where N (x′) is defined by (3.33). In

view of (3.39), we equivalently look for the necessary and sufficient conditions such that

(3.40) exists y ∈W2,2
iso (ω) such that Πy(x

′) ∈ Nk for a.e. x′ ∈ ωk, for all k = 1, . . . , n,

where

(3.41) Nk := argminS∈S0
Q2

(
S −Bk

)
, for every k = 1, . . . , n.

Note from (3.38) that a deformation satisfying (3.40) is, roughly speaking, a “patchwork” of

cylinders. Therefore, conditions on B1
2×2 guaranteeing (3.40) translates into conditions under

which cylinders can be patched together resulting into an isometry. This is the content of

the main result of the present section, namely of Theorem 3.3.5 below. In order to state and

prove it, we need the following definition.

Definition 3.3.3 (Lipschitz n-subdivision). Fix n ∈N, n ≥ 2. A family {ωk}nk=1 of open,

bounded and connected subsets of R2 is said to be a Lipschitz n-subdivision of ω provided it

can be obtained via the following procedure:

• Call ω′1 := ω.

• Suppose that for every k = 1, . . . , n − 1 there exists a continuous injective curve γk :

[0, 1]→ ω′k such that ∂ω′k ∩ [γk] =
{
γk(0), γk(1)

}
(note that γk(0) 6= γk(1)) and the two

connected components of ω′k \ [γk] are Lipschitz. Then call ω′k+1 one of such connected

components.

• Once the domains ω′1, . . . , ω
′
n are defined, let ωk := ω′k \ω′k+1 for every k = 1, . . . , n− 1

and let ωn := ω′n.

In particular, the subdomains ω1, . . . , ωn of ω are Lipschitz domains such that

ω =
n⋃
k=1

ωk ∪
n−1⋃
k=1

γk
(
(0, 1)

)
.
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Remark 3.3.4. Since each ωk is a Lipschitz domain, one has that its boundary ∂ωk has null

L2-measure. In particular, we deduce that L2
(
ω \

⋃n
k=1 ωk

)
= 0. �

Given a piecewise constant B1
2×2 and referring to Lemma 3.3.1 (see also the discussion

after its statement), we set

(3.42) rk :=



ak(1 + 2Λ)

1 + Λ
, if bk = ak,

ak
1 + Λ

, if bk = −ak,

ak +
bk Λ

1 + Λ
, if |ak| > |bk|,

bk +
akΛ

1 + Λ
, if |bk| > |ak|,

for every k = 1, . . . , n.

Recall that {0,±rk} are the eigenvalues (principal curvatures) of the (constant) curvature

tensors ranging in Nk.

Theorem 3.3.5. Let B1
2×2 be of the form (3.39). Assume that rk 6= rj for all 1 ≤ k < j ≤ n

such that H1
(
∂ωk ∩ ∂ωj

)
> 0. Then there exists a pointwise minimizer y ∈W2,2

iso (ω) of E 0 if

and only if the following conditions are satisfied:

(a) [γk] is a line segment with γk(0), γk(1) ∈ ∂ω, for every k = 1, . . . , n− 1;

(b) γk
(
(0, 1)

)
∩ γj

(
(0, 1)

)
= Ø for all k 6= j = 1, . . . , n− 1;

(c) every non flat region ωk, i.e. ωk with corresponding rk 6= 0, satisfies: ∂ωk ∩ ω consists

of connected components which are orthogonal to some eigenvector (principal curvature

direction) of the matrices of Nk corresponding to rk.

Proof. The sufficiency part of the statement follows by straightforward computations, as in

the proof of Lemma 1.4.10. In order to prove necessity, we focus on the case n = 2, when ω

is subdivided into two Lipschitz subdomains ω1 and ω2 by a curve γ := γ1 as in Definition

3.3.3, since the general case can be achieved by an induction argument as a consequence of

our definition of Lipschitz subdivision of the domain ω.

Let y ∈ W2,2
iso (ω) be a pointwise minimizer of E0. Note that on both subdomains ω1

and ω2 the target curvature tensor B1
2×2 is constant. Then by the definition of pointwise

minimizers, by Lemma 3.3.2 and Lemma 3.3.1 we deduce that y = y1χω1 + y2χω2 , with

yk = Tvk ◦ Rk ◦ C1/|rk| ◦ %k ∈ Cyl, k = 1, 2, where rk is given by (3.42) and %k is such that

Πyk ≡ (det %k) %
T
k diag

(
|rk|, 0

)
%k ∈ Nk. Since r1 6= r2, by Lemma 1.4.10 and Remark 1.4.11 we

obtain that [γ] must be a line segment and that %T
ke2 must be parallel to [γ] (or equivalently

that the eigenvector %T
ke1 of Πyk is orthogonal to [γ]) whenever rk 6= 0, k = 1, 2, which is

precisely the statement of (a) and (c) in the case in which n = 2.

Remark 3.3.6. Let k and j be such that H1(∂ωk ∩ ∂ωj) > 0. Observe that when rk = rj
(this may happen, though Bk 6= Bj), this condition does not impose that ∂ωk ∩ ∂ωj is a line

segment. Indeed, when rk = rj , a pointwise minimizer y, when restricted to ωk and ωj , will

be given by some cylinders yk and yj with rk = 1/|rk| and rj = 1/|rj |, respectively, which

have the same curvatures det %k|rk| = rk = rj = det %j |rj |. This fact, as observed in Remark

1.4.11, does not impose any further conditions on ∂ωk ∩ ∂ωj . �
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Note that, if the target curvature does not induce any flat region, the presence of a

pointwise minimizer forces the subdivision lines [γk] to be all parallel (see Figure 3.2, (a) and

(b)). When instead a flat region is present in the subdivision, this can give rise to a pointwise

minimizer, even if the [γk] are not mutually parallel (see Figure 3.2, (c) and (d)). Finally,

observe that in this case a subdomain of type (iii) and (iv) can coexist (tough they cannot

be neighbors).

(a)

(b)

(c) (d)

Figure 3.2: Examples of reference domains with given target curvature B1
2×2 =

∑3
k=1Bkχωk ,

which guarantees the existence of a pointwise minimizer y in the case when there are no

flat regions induced (figure (a)) and in the case when a flat regions are present (figure (c)).

Corresponding examples of y(ω) are illustrated in pictures (b) and (d), respectively.

Point (c) above implies that for every k and j such that ωk and ωj are neighbor (i.e. share

a piece of boundary, in symbols H1(∂ωk ∩ ∂ωj) > 0) it cannot be that Bk is of type (iii) (see

Lemma 3.3.1) and Bj is of type (iv) at the same time. This is because, if not so, from point

(c) above it would follow that the line segment [γ] = ∂ωk ∩ ∂ωj is simultaneously parallel to

e2 and to e1, which is absurd. Hence, a reference domain endowed with target curvature as

in Figure 3.3 does not admit a pointwise minimizer.
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Figure 3.3: An example of reference domain with given target curvature B1
2×2 = B1χω1 +

B2χω2 which does not allow for a pointwise minimizer y. This is because B1 of type (iv)

forces [γ1] to be parallel to e1, while B2 of type (iii) forces [γ1] to be parallel to e2.

3.4 A discussion on the “curl curl” condition

In this section we discuss the case in which the spontaneous strain B0
2×2 does not satisfy the

condition (3.20) (that we will refer to as the “curl curl” condition), i.e. it is not a symmetrized

gradient of some map. We present two different conjectures: the first one favorizes the

existence of an additional term in the corresponding 2D model, while the second one leads

to the “old” limiting 2D model derived in Theorem 3.2.2.

Idea 1: An additional “stretching” term. Let us suppose here, for simplicity, that the

energy densities W h can be written in the pre-stretch form, namely

W h(z, F ) = W
(
FA−1

h (z)
)
, for a.e. z ∈ Ωh,

with the spontaneous stretch Ah given by

Ah(z) = I3 + hB
(
z′,

z3

h

)
, with B ∈ L∞

(
Ω, Sym(3)

)
.

Observe also that A−1
h (x′, hx3) = I3 − hB(x) + o(h) for a.e. x ∈ Ω. In order to study the

limiting behaviour of the bending energy functionals

1

h3
E h(vh) =

1

h3

ˆ
Ωh

W
(
∇vh(z)A−1

h (z)
)

dz, vh : Ωh → R3

and in order to give an ansatz for the limiting model, we shall suppose that vh is sufficiently

smooth to justify the following passages: first, Taylor’s expansion at each fixed z′ (and h)

with respect to z3:

(3.43) vh(z′, z3) = wh(z′) + z3b
h(z′) +

z2
3

2
dh(z′) + o(z2

3), for every z ∈ Ωh.

Then, Taylor’s expansion at each fixed z′ with respect to h:

wh(z′) =w(z′) + hw̃(z′) + o(h),

bh(z′) =b(z′) + hb̃(z′) + o(h),

∇wh(z′) =∇w(z′) + h∇w̃(z′) + o(h),

∇bh(z′) =∇b(z′) + h∇b̃(z′) + o(h).
(3.44)
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Setting S := ∇vhA−1
h , we have that

(3.45) STS =

 (∇w)T∇w (∇w)Tb(
(∇w)Tb

)T
bT b

+ hS

with

S :=

 2
(
(∇w)T∇w̃

)
sym

(∇w)Tb̃+ (∇w̃)Tb(
(∇w)Tb̃+ (∇w̃)Tb

)T
bTb̃+ b̃Tb

+O(h)

+ 2

 z3
h

(
(∇w)T∇b

)
sym

z3
h (∇b)Tb

z3
h

(
(∇b)Tb

)T
0

− 2

B
 (∇w)T∇w (∇w)Tb(

(∇w)Tb
)T

bTb


sym

.

By the frame indifference of W , using the above notation we have

W h

(
z,∇vh(z)) =W

(
∇vh(z)A−1

h (z)
)

= W (S) = W
(√
STS

)
=

1

8
Q3 ((∇w|b)T(∇w|b)− I3 + hS) + o(|STS − I3|2)

In turn, the bending energy 1
h3 E

h
(vh) associated with vh, can be expressed as follows:

E h(vh)

h3
=

1

8h3

ˆ
Ωh

Q3 ((∇w|b)T(∇w|b)− I3 + hS) + o(|STS − I3|2) dz

=
1

8

ˆ
Ω
Q3

(
(∇w|b)T(∇w|b)− I3

h
+ S

)
+ o(|STS − I3|2) dx.

Now it is clear that 1
h3 E h(vh) ≤ C for some constant C > 0, leads to

(3.46) (∇w|b)T(∇w|b) = I3 ;

{
w ∈W2,2

iso (ω)

b = ∂1w × ∂2w

Finally, by using that Q3(F ) ≥ Q2(F2×2) for all F ∈ Sym(3), we have that

(3.47)

E h(vh)

h3
=

1

8

ˆ
Ω
Q3(S) + o(|STS − I3|2) dx

≥ 1

8

ˆ
Ω
Q2(S2×2) + o(|STS − I3|2) dx

'
1

2

ˆ
Ω
Q2

((
(∇w)T∇w̃

)
sym

(x′) + x3 Πw(x′)−B2×2(x)︸ ︷︷ ︸
1
2
S2×2

)
dx.

By adding and subtracting B0
2×2 in the argument of Q2 and using the fact that, by

definition of B0
2×2 in (3.9), it holds

ˆ 1/2

−1/2

(
B2×2(x′, t)− B0

2×2(x′)
)

dt = 0,

for a.e. x′ ∈ ω, we have that

E h(vh)

h3
'

1

2

ˆ
Ω
Q2

((
(∇w)T∇w̃

)
sym
− B0

2×2

)
+Q2

(
x3Πw − (B2×2 − B0

2×2)
)

dx

+

ˆ
ω
L2

((
(∇w)T∇w̃

)
sym
− B0

2×2,

ˆ 1/2

−1/2

(
x3Πw − (B2×2 − B0

2×2)
)

dx3

)
dx′

=
1

2

ˆ
Ω
Q2

((
(∇w)T∇w̃

)
sym
− B0

2×2

)
+Q2

(
x3Πw − (B2×2 − B0

2×2)
)

dx.
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Now, as in Lemma 3.1.2, one can easily see that

1

2

ˆ
Ω
Q2

(
x3Πw − (B2×2 − B0

2×2)
)

dx3 dx′ =
1

24

ˆ
ω
Q2

(
Πw − B1

2×2

)
+ ad.t.,

with B1 given by the second formula in (3.9) and

ad.t. =
1

2

ˆ
ω

(ˆ 1/2

−1/2
Q2

(
B2×2(x′, t)

)
dt−Q2

(
B0

2×2(x′, t)
)
− 1

12
Q2

(
B1

2×2(x′)
))

dx′.

Hence, we are left with

E h(vh)

h3
'

1

2

ˆ
ω
Q2

((
(∇w)T∇w̃

)
sym
− B0

2×2

)
dx′ +

1

24

ˆ
ω
Q2

(
Πw − B1

2×2

)
dx′ + ad.t.

The above inequality suggests the following ansatz for the limiting energy in place of E0 in

Theorem 3.2.2, in the case the condition (3.20) is violated:

(3.48) E new
0 (y) :=

1

2
inf

w̃∈W1,2(ω,R3)

ˆ
ω
Q2

((
(∇y)T∇w̃

)
sym
− B0

2×2

)
dx′

+
1

24

ˆ
ω
Q2

(
Πy − B1

2×2

)
dx′ + ad.t.

for y ∈W2,2
iso (ω). Indeed, when B0

2×2 satisfies the compatibility condition (3.20), Lemma 1.4.2

grants that the first term in E new
0 (y) is minimized at zero and thus E new

0 (y) reduces to our

“old” quantity E0(y).

In other words, the above heuristic argument make us believe that the Γ-limit in the

general case (without additional assumptions on B) has to be “higher”, i.e. to include one

more term, which can be interpreted as a “first order stretching term”. The proof of the

Γ-lim sup inequality is standard in this case, since, as we have seen in Section 3.2, one can

always produce terms of the form “(∇y)T∇w̃” in the recovery sequence. The difficulty in

making this argument rigorous lies in proving the Γ-lim inf inequality.

An idea would be to prove, in addition to the compactness result of Theorem 3.2.1, that

the sequence of deformations {yh}h with bounded bending energy also satisfies the following:

(3.49) ‖∇hyh − (∇y|ν)‖L2(Ω,R3×3) ≤ Ch2.

Assume for the moment that (3.49) holds in Theorem 3.2.1. Let us now repeat the key steps

in the proof of Γ-lim inf inequality in Theorem 3.2.2. Let {Sh}h be as in (3.22) and observe

that

ˆ 1/2

−1/2
Sh(·, t) dt =

ˆ 1/2

−1/2

RT
h∇hyh(·, t)− I3

h
dt

=

ˆ 1/2

−1/2

RT
h

(
∇hyh(·, t)− (∇y|ν)

)
h

dt+
RT
h(∇y|ν)− I3

h
.

Due to (3.21) and (3.49), the second summand on the right hand side in the above formula

converges weakly in L2(ω,R3×3). Moreover, its L2-weak limit is a skew-symmetric matrix

field. To verify the latter, denote Qh := RT
h(∇y|ν) : ω → SO(3) and observe that

(Qh − I3)sym

h
= h

(Qh − I3)

h

(QT
h − I3)

h
.
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Thus ∥∥∥∥(Qh − I3)sym

h

∥∥∥∥
L1(ω,R3×3)

≤ h
∥∥∥∥Qh − I3

h

∥∥∥∥2

L2(ω,R3×3)

(3.49)

≤ Ch→ 0, as h→ 0.

This grants that (up to passing to a further subsequence) the pointwise (and thus also the

L2-weak) limit of
(Qh−I3)sym

h equals to 0. Therefore, the L2-weak limit S of the sequence

{Sh}h satisfy

S2×2,sym (·, 0) = L2-weak limit of

ˆ 1/2

−1/2

1

h

(
(RT

h)2×3

(
∇′yh(·, t)−∇y

))
sym

dt =
(
(∇y)T∇w̃

)
sym

,

which is precisely the term that appears in the heuristic argument presented above. The last

equality follows from (3.49), which guarantees in particular the existence of w̃ ∈W1,2(ω,R3)

such that

(3.50)

ˆ 1/2

−1/2

∇′yh(·, x3)−∇y
h

dx3 ⇀ ∇w̃, weakly in L2(ω,R3×2).

Thus the validity of (3.49) would allow us to obtain the same lower bound as in (3.47), by

performing the rigorous procedure as in the proof of Γ-lim inf inequality in Theorem 3.2.2.

One may observe that the validity of (3.49) has nothing to do with the presence of the

strain field B – namely, if this convergence result holds, it should hold even as a part of

the compatness result in [FJM02]. However, from the rigidity estimate in [FJM02] the only

thing we know is that to any sequence {yh}h of bounded bending energy one can associate a

sequence of rotation-valued matrix fields Rh satisfying

‖∇hyh −Rh‖L2(Ω,R3×3) ≤ Ch2 and Rh
L2

−→ (∇y|ν),

as observed in Section 2.2.2, and there is, in general, no reason for (3.49) to hold.

Idea 2: A “patchwork” of the recovery sequences. Since it is not clear if one can

prove (3.49) or make the above heuristics rigorous in some other way, we here discuss the

possibility to reach the “old” Γ-limit E0 even in the absence of the assumption (3.20) on the

spontaneous strain B.

Let us also add at this point a trivial but important observation: the difficulties one

encounter in removing the compatibility assumption (3.20) on the matrix field B0
2×2 do not

originate from the dependence of the spontaneous strain B on the thickness variable, since

they persist even in the case where such a dependence is absent.

To start with, let us observe that the constant matrix field B trivially satisfy (3.20) and

that in this case the limit functional E0, derived in Theorem 3.2.2, reads as

E0(y, ω) := E0(y) =
1

24

ˆ
ω
Q2

(
Πy(x

′)
)

dx′, y ∈W2,2
iso (ω).

For the purposes of this argument we adopt a new notation for the energy functionals, in-

dicating explicitly the planar domain of integration. We further suppose that B is only

x′-dependent and is piecewise constant, namely

B = B1χω1 +B2χω2 ,
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where B1, B2 are constant 3 × 3 matrices and {ω1, ω2} form a Lipschitz partition of ω. We

aim to show that

(Γ- lim
h

1

h2
Eh)(y, ω) = E0(y, ω1) + E0(y, ω2), for every y ∈W1,2(Ω,R3),

where Eh is as in (3.15). Proving the additivity of the limiting functional and approximating

any B ∈ L∞
(
ω,Sym(3)

)
by a sequence of piecewise constant maps would lead us to the

conclusion that the “old” Γ-limit is the “right one” also in the general case. In this case the

proof of the Γ-lim inf inequality in Theorem 3.2.2 yields (Γ- lim infh
1
h2 Eh)(y, ω) ≥ E0(y, ω1)+

E0(y, ω2). Thus it remains to show that

(3.51) (Γ- lim sup
h

1

h2
Eh)(y, ω) ≤ E0(y, ω1) + E0(y, ω2).

An idea for proving (3.51) is to construct a recovery sequence {yh}h by “patching together”

the recovery sequences that we know how to construct on ω1 and ω2 where B is constant.

Behind this idea lies the fundamental estimate, which plays a central role in proving that the

Γ-limit of a sequence of increasing functionals is a measure. We do not enter into details

about this topic, refering the reader to [DM12] for a thorough account on the notion of Γ

convergence.

In the present case, let us consider the following: let ω′1 ⊆ R2 be an open set such that

ω1 b ω′1 and let {yhi }, i = 1, 2 be the recovery sequence as in (3.24), namely

yhi (x) = y(x′)+h
[
x3ν(x′)+∇′y(x′)w̃i(x

′)
]
+h2d̃(x), for every x ∈ (ω′1∪ω2)× (−1/2, 1/2),

with w̃i(x
′) = (Bi)2×2 x

′. Denote P := ω′1 ∩ ω2 and (re)define B := B1χω′1 + B2χω\ω′1 . We

would like to find a sequence of cut-off functions ϕh ∈ C∞c (ω′1) between ω1 and ω′1 (in the

sense of [DM12, Definition 18.1]), so that the convex combinations

yh = ϕhyh1 + (1− ϕh)yh2 , a.e. in (ω′1 ∪ ω2)× (−1/2, 1/2),

satisfy

(3.52)
1

h2
Eh(yh, ω) ≤ 1

h2
Eh(yh1 , ω

′
1) +

1

h2
Eh(yh2 , ω2) +

1

h2
Eh
(
yh, P

)
,

with lim|P |→0 lim suph→0 Eh
(
yh, P

)
= 0. Relaying on the proof of [DM12, Theorem 19.1] and

on the strategy of choosing cut-off functions that has been used therein, we are able to arrive

to the following bound:

1

h2
Eh
(
yh, P

)
≤ C1

(
|P |
)

+ C2

(
|P |
)‖yh1 − yh2‖2L2(P )

h2
,

where C1 → 0 and C2 → ∞, as |P | → 0. The fact that C2(|P |) → ∞ as |P | → 0 suggest

that the second term in the above expression must be canceled out by firstly passing to the

limit as h → 0. This is where the argument fails, since the L2-norm of the difference of the

recovery sequences is precisely of order h. This guarantees only the boundedness of the last

term in the latter expression, but not its convergence to zero as h→ 0.

Clearly, this attempt does not exclude completely the possibility of patching together the

recovery sequences (and, more in general, the possibility that the family of functionals 1
h2 Eh

satisfy the fundamental estimate uniformly), since one can still try to argue in the same way

but, for instance: with a different choice of the cut-off functions used in the construction of

convex combinations of the known recovery sequences; or by modifying the recovery sequences

themselves.
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3.A Appendix

For completeness and better understanding of the analysis of the pointwise minimizers of E0

in the case of a piecewise constant target curvature B1
2×2, we here provide a detailed proof

(through the two lemmas below) of [Sch07b, Proposition 4.2], where the minimizers of E0

have been determined in the case of constant B1
2×2.

Let E0 be given by (3.28) and suppose that B1
2×2 ≡ B ∈ Sym(2). Then the set N (x′) in

(3.33) at each point x′ ∈ ω equals

NB := argmin
S∈S0

Q2

(
S −B

)
,

where the set S0 is given by (1.22).

Lemma 3.A.1. Every two distinct elements of the set NB are linearly independent. In

particular, if cardNB ≥ 2 then 0 /∈ NB.

Proof. Suppose that S1, S2 ∈ N are two distinct elements. Note that the function Q2

(
· −B

)
is strictly convex on Sym(2), being composition of a linear function with the strictly convex

function Q2. This implies that

(3.53) tS1 + (1− t)S2 /∈ S0 for every t ∈ (0, 1).

Indeed, if tS1 + (1− t)S2 ∈ S0 for some t ∈ (0, 1) then

Q2

(
tS1 + (1− t)S2 −B

)
< tQ2

(
S1 −B

)
+ (1− t)Q2

(
S2 −B

)
= min
S0

Q2

(
· −B

)
,

which leads to a contradiction, proving (3.53). Finally, we claim that S1, S2 are linearly

independent: if not, there exists c ∈ R such that S1 = c S2 (up to possibly interchanging S1

and S2). Hence, for any t ∈ (0, 1), we have that

0
(3.53)

6= det
(
tS1 + (1− t)S2

)
= det

(
(ct+ 1− t)S2

)
= 0,

which is a contradiction.

Lemma 3.A.2. Let y ∈ M := argmin
W2,2

iso (ω)
E0. Then y = u|ω for some u ∈ Cyl. In

particular, the second fundamental form of y is constant.

Proof. To simplify notation, we call Q := Q2(· −B). First, we will show that

(3.54) y ∈W2,2
iso (ω) is a minimizer of E0 if and only if y is a pointwise minimizer.

Let y ∈M and fix Smin ∈ NB. By Theorem 1.4.3, we know that det
(
Πy(x

′)
)

= 0 for a.e.

x′ ∈ ω. Therefore we have that

(3.55) Q
(
Πy(x

′)
)
≥ Q(Smin) for a.e. x′ ∈ ω.

Suppose that there exists a Borel set P ⊆ ω, with L2(P ) > 0, such that Q
(
Πy(x

′)
)
> Q(Smin)

for a.e. x′ ∈ P . As shown in Section 1.4.2, S0 is the set of (constant) second fundamental

forms of cylinders, thus there exists u ∈W2,2
iso (ω) such that Πu(x′) = Smin for a.e. x′ ∈ ω. By

integrating the inequality (3.55) over ω we getˆ
ω
Q
(
Πy(x

′)
)
dx′ =

ˆ
ω\P
Q
(
Πy(x

′)
)
dx′ +

ˆ
P
Q
(
Πy(x

′)
)
dx′

>

ˆ
ω\P
Q
(
Πu(x′)

)
dx′ +

ˆ
P
Q
(
Πu(x′)

)
dx′ =

ˆ
ω
Q
(
Πu(x′)

)
dx′,
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which contradicts the fact that y ∈M. Therefore Πy(x
′) ∈ NB for a.e. x′ ∈ ω.

For the converse implication, let y ∈ W2,2
iso (ω) and suppose that Πy(x

′) ∈ NB for a.e.

x′ ∈ ω. Then

(3.56) Q
(
Πy(x

′)
)
≤ Q

(
Πu(x′)

)
for a.e. x′ ∈ ω,

since Πu(x′) ∈ S0 for every u ∈ W2,2
iso (ω) and a.e. x′ ∈ ω. By integrating (3.56) over ω, we

get that y ∈ M. Hence (3.54) is proved. In particular, some cylinders are contained in M.

It remains to show that M contains only cylinders.

Let y ∈ M. This implies that Πy(x
′) ∈ NB for a.e. x′ ∈ ω. If NB is a singleton,

then Πy is constant a.e. in ω, thus accordingly y = u|ω for some u ∈ Cyl. If cardNB ≥ 2

then every two elements of NB are linearly independent, by Lemma 3.A.1, and therefore

0 /∈ NB. This implies that y cannot be affine on any region. Hence, following the notation

from Section 1.4.1, let us consider a subdomain of ω parametrized by a line of curvature

Γ ∈ W2,∞((0, T ), ω
)
. For a.e. t ∈ (0, T ) and s0, s1 ∈

(
s−Γ (t), s+

Γ (t)
)
, s0 6= s1, we have, by

(1.17), that

Πy

(
Γ(t) + s1N(t)

)
=

κn(t)

1− s1κt(t)
Γ′(t)⊗ Γ′(t) =

1− s0 κt(t)

1− s1κt(t)
Πy

(
Γ(t) + s0N(t)

)
.

Since the elements of NB are linearly independent we deuce that κt(t) = 0 for a.e. t ∈ (0, T ).

Therefore Γ′ is constant on (0, T ). It remains to show that also κn is constant a.e. in (0, T ).

For a.e. t0, t1 ∈ (0, T ) and s ∈
(
s−Γ (t0), s+

Γ (t0)
)
∩
(
s−Γ (t1), s+

Γ (t1)
)

it holds that

Πy

(
Γ(t0) + sN(t0)

)
=

κn(t0)

1− sκt(t0)
Γ′(t0)⊗ Γ′(t0) =

κn(t0)

κn(t1)
Πy

(
Γ(t1) + sN(t1)

)
.

Again by linear independence of the elements in NB, we deduce that κn is constant a.e. in

(0, T ). Hence we showed that Πy is locally constant in ω. By connectedness of ω, we conclude

that Πy is constant a.e. in ω.
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This chapter is devoted to the analysis of hydrogel -based folding sheets exploiting the

two-dimensional (nonlinear) plate model presented in Section 4.2, obtained by applying the

rigorously derived theory in Chapter 3 for heterogeneous thin elastic plates.

Self-folding is a widespread phenomenon that occurs in natural systems, such as in the

opening and closing of flowers. The understanding of such mechanisms offers interesting

challenges and opportunities, not only from the point of view of biology, but also from

the point of view of applications, for instance, in the fabrication of actuation systems and

origami-like structures [Ion11]. Self-folding results from spatially heterogeneous deformations

that are (in most cases) either induced by a spatial variation of the external stimulus or by

modulations of the material properties imprinted during the fabrication process. We refer to

[GLZ13, MYI+15, NEB+, LSDG17, HAB+10, YXP+14] for some examples of the approaches

to folding and the numerical models that might be used in the study of folding mechanisms.

Hydrogel (a network of cross-linked polymer chains swollen with a liquid solvent) is exam-

ple of an active material where spontaneous deformations are induced by swelling due to the

absorption of a liquid. In the form of bilayers, hidrogels can be employed to produce curved

shapes [HZL95]. In turn, hydrogel bilayers can be used in creating folding mechanisms – for

instance, acting as hinges connecting flat faces (hydrogel monolayers), as we shall see below.

For concreteness, in Section 4.1 we consider heterogeneous thin sheets Ωh made of hy-
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drogel, by imprinting a heterogeneous density Nh of polymer chains, which corresponds to a

heterogeneous shear modulus of the polymer network. Moreover, Nh is a (small) perturbation

of order h of the average value N , that is,

(4.1) Nh(z) = N + hb
(
z′,

z3

h

)
, z = (z′, z3) ∈ Ωh = ω × (−h/2, h/2),

for some bounded function b : ω × (−1/2, 1/2)→ R. Referring to the classical Flory-Rehner

model [Doi09] for isotropic polymer gels, we obtain as a consequence of the above assumption

on Nh that the free energy density W h associated with the system is minimized at

(4.2)
(
α+ hβ b(z′, z3/h) + o(h)

)
SO(3),

where the (dimensionless) constants α and β are functions of the material parameters appear-

ing in the expression of W h, including N . Thus after performing an appropriate change of

variable (in Section 4.2) in order to pass from the energy wells that are h-close to αI3 to those

h-close to I3, we can apply the theory derived in Chapter 3 and obtain the corresponding 2D

model given in (4.23).

In Section 4.3 we discuss self-folding of thin sheets by using hydrogel bilayers, which act

as hinges connecting flat faces. Folding is actuated by the heterogeneous swelling due to

different stiffness (i.e. cross-linking density) of the polymer network across two layers. More

precisely, we will focus on the case where the cross-linking density is different in the top and

the bottom layers (see formula (4.5)) – a particular example of the heterogeneity presented

in (4.1). We show that this structure allows to endow a thin gel sheet with a controlled

curvature localized at the hinges (see Figure 4.1), which can be realized, upon swelling, at

low energy cost. Furthermore, such a curvature can be expressed as a function of the material

parameters of the layers. Specifically, we demonstrate the feasibility of the proposed folding

mechanism with two examples, corresponding to specific patterns of flat faces and hinges (see

Figure 4.2).

In Subsection 4.3.2 we consider the pointwise energy minimizers of the plate theory, which

describe the configurations of a plate with bilayer-like hinges and thus provide a theoretical

justification for the effectiveness of the folding mechanism. This is based on the previous

study of the energy minimizers in Section 3.3.

In Subsection 4.3.3, with reference to an appropriate approximate variant of our Flory-

Rehner-type model, we provide the explicit relation between the target curvature and the

material parameters (see (4.40)). Such relation is then used in the design of folding bilayer

sheets that morph into a cubes or pyramids.

In the last section of this chapter we provide a detailed analysis of Flory-Rehner-type

energy densities, justifying the fact that the theory developed in Chapter 3 is the right one to

apply in this case. An interesting fact that we notice regarding hydrogels is that their physics

results in the following feature of the model: the energy densities (4.6) cannot be written in

the “pre-stretched” form (2.5) reflecting that (4.6) is the sum of two energy contributions

(elastic and mixing energies) that concurrently define the energy minimum.

4.1 Heterogeneous thin gel sheets: the 3D model

In the present context, a hydorgel (or, more in general, a polymer gel) is a network of cross-

linked polymer chains swollen with a liquid solvent. We denote by N the density of polymer
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chains in the reference volume and we set R3×3
1 := {F ∈ R3×3 : detF ≥ 1}. The dimensionless

free-energy density for isotropic and homogeneous polymer gels is of Flory-Rehner type (see

[Doi09]) and is given by the function W FR : R3×3
1 → R defined as

(4.3) W FR(F ) :=
vN

2

(
|F |2 − 3

)
︸ ︷︷ ︸

elastic energy

+Wχ
vol(detF )− µ

kBT
(detF − 1)︸ ︷︷ ︸

due-to-mixing energy

, for every F ∈ R3×3
1 ,

where the mixing energy Wχ
vol : (1,+∞)→ (−∞, 0] is given by

(4.4) Wχ
vol(t) := (1− t) log

(
t

t− 1

)
− χ

t
+ χ, for every t > 1.

The physical parameters that appear in the above formula are

• kB - Boltzmann’s constant;

• T - absolute temperature;

• v - the volume per solvent molecule;

• χ ∈ (0, 1/2] - dimensionless measure of the enthalpy of mixing;

• µ ≤ 0 - the chemical potential of the solvent molecules.

We remark that the ranges χ ∈ (0, 1/2] and µ ≤ 0 correspond, respectively, to having a good

solvent and a gel in contact with an external fluid that is either a vapor (µ < 0) or a pure

liquid (µ = 0) in equilibrium with its own vapor. In particular, χ ∈ (0, 1/2] implies that the

function Wχ
vol it is strictly decreasing and it fulfills

Wχ
vol(1

+) = 0 and lim
t→+∞

Wχ
vol(t) = χ− 1 < 0.

3D model for heterogeneous gel sheet. Our attention will be focused on a heterogeneous

thin gel sheet occupying the reference configuration Ωh. More precisely, we consider a sheet

characterized by a z-dependent cross-linking density, which in turn determines a z-dependent

density N
h

of polymer chains. At the same time, we suppose that Nh is a perturbation of a

constant value N , namely

(4.5) Nh(z) := N + hb
(
z′,

z3

h

)
and

 h/2

−h/2
Nh(z′, z3) dz3 = N,

for a.e. z′ ∈ ω and every h > 0, with b ∈ L∞(Ω). Observe that the condition (4.5) is equivalent

to
´ 1/2
−1/2 b(z

′, t) dt = 0 for a.e. z′ ∈ ω.

Remark 4.1.1. More in general, one can replace b in (4.5) by some bh ∈ L∞(Ω) such that

the sequence {bh}h ⊆ L∞(Ω) satisfies bh → b in L∞(Ω) as h→ 0. �

The energy of such heterogeneous system is described, by using the model densities (4.3),

via the family of free-energy density functions W
FR

h : Ωh × R3×3 → R ∪ {+∞} defined as

(4.6) W
FR

h (z, F ) :=
v

2

(
N + hb

(
z′,

z3

h

)) (
|F |2 − 3

)
+Wχ

vol(detF )− µ

kBT
(detF − 1)

for a.e. z ∈ Ωh and every F ∈ R3×3
1 and set to be +∞ elsewhere in R3×3, for every h > 0.

Functions W
FR

h are clearly isotropic (and thus frame indifferent). In Section 4.4 we provide
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a detailed analysis of the energy densities of Flory-Rehner type and, in particular, we show

that each W
FR

h satisfies the following properties:

Regularity: W
FR

h is a (jointly) Borel function. Moreover, the function W
FR

h (z, ·) is of class

C∞ on the set {F ∈ R3×3 : detF > 1}.
Energy wells: there exist two constants

(4.7) α > 1 and β 6= 0,

which depend only on kB, on the (fixed) material parameters of the gel (v, N , χ) and the

environmental conditions (µ,T), such that

W
FR

h (z, ·) is minimized precisely on the set SO(3)Ah(z),

where

(4.8) Ah(z) = α I3 + hβb
(
z′,

z3

h

)
I3 + o(h), for a.e. z ∈ Ωh.

Uniform convergence: There exists U ∈ N
(
αSO(3)

)
such that the rescaled energy den-

sities W FR
h (x, F ) := W

FR

h

(
(x′, hx3), F

)
, defined on Ω× R3×3, satisfy

(4.9) esssup
x∈Ω

‖W FR
h (x, ·)−W FR‖C2(U) → 0, as h→ 0.

Quadratic growth: There exists a constant C > 0 (independent of h) such that

(4.10) W
FR

h (z, F ) ≥ C dist2
(
F,SO(3)Ah(z)

)
, for a.e. z ∈ Ωh, every F ∈ R3×3.

Due to (4.8), hereafter we may suppose (without loss of generality) that W
FR

h are non-

negative. We recall that the free-energy functional E
gel
h : W1,2(Ωh,R3)→ [0,+∞] associated

to the above described system is given by

(4.11) E
gel
h (v) :=

ˆ
Ωh

W
FR

h

(
z,∇v(z)

)
dz, for every v ∈W1,2(Ωh,R3).

4.2 The corresponding Kirchhoff-like plate model

In this section we will show that the properties of W
FR

h listed above and a suitable change of

variables will allow us to apply the general theory developed in Chapter 3 to the case of the

heterogeneous thin gel sheets and to derive the corresponding plate model in the Kirchhoff

regime. The corresponding rescaled version of the functional E
gel
h is denoted by E gel

h and is

given by

E gel
h (y) :=

ˆ
Ω
W FR
h

(
x,∇hy(x)

)
dx, y ∈W1,2(Ω,R3),

following the rescaling procedure presented in Section 2.1.2.

The α-rescaled model. Let α be given by (4.7) and (4.8). We define, for each 0 < h� 1

the energy density functions Wαh : Ωα
αh × R3×3 → R ∪ {+∞} by setting

(4.12) Wαh

(
η, F

)
:= W

FR

h

( η
α
, αF

)
, for a.e. η ∈ Ωαh and every F ∈ R3×3,
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where Ωα
αh := αω×(−αh/2, αh/2). By considering as a small thickness parameter αh instead

of h, it can be readily checked that the family {Wαh}αh>0 of the rescaled densities

Wαh

(
(η′, x3), F

)
:= Wαh

(
(η′, αhx3), F

)
, (η′, x3) ∈ Ωα := αω × (−1/2, 1/2)

is a B-admissible family (according to Definition 3.1.1) with

(4.13) B = {Bαh}αh≥0 and Bαh = B :=
β

α2
b
( ·
α

)
I3.

Observe that the corresponding limiting density function W satisfy

(4.14) W = W FR(α ·).

Then, given y ∈W1,2(Ω,R3) we set u := y( ·α , ·) : Ωα → R3 and note that

(4.15)

1

h2
E gel
h (y) =

1

h2

ˆ
Ω
W FR
h

(
x,∇hy(x)

)
dx =

1

h2

ˆ
Ω
Wαh

(
(αx′, x3),

1

α
∇hy(x)

)
dx

=
1

(αh)2

ˆ
αω

ˆ 1/2

−1/2
Wαh

(
(η′, x3),∇αhu(η′, x3)

)
dη′ dx3 =:

1

(αh)2
Eαh(u).

We can apply Theorem 3.2.2 to the sequence of functionals 1
(αh)2 Eαh, getting that it Γ-

converges in the weak and the strong topology of W1,2
(
Ωα,R3

)
, as αh→ 0, to the functional

E0 given by

E0(u) :=
1

24

ˆ
αω
Q2

(
η′,Πu(η′)

)
dη′, u ∈W2,2

iso (αω),

and +∞ elsewhere in W1,2(Ωα,R3). More explicitly, by the definition ofQ2 andQ2 associated

to the limiting density W via (2.7) and (3.10), respectively, we have that given u ∈W2,2
iso (αω)

it holds

(4.16) E0(u) =
1

24

ˆ
αω
Q2

(
Πu(η′)− B1

2×2(η′/α)

)
dη′

+
1

2

ˆ
αω

ˆ 1/2

−1/2
Q2

(
B2×2(η′/α, t)

)
dt dη′ − 1

24

ˆ
αω
Q2

(
B1

2×2(η′/α)
)

dη′,

with B1 being associated to B defined in (4.13) via the second formula in (3.9), namely

(4.17) B1 = 12
β

α2

ˆ 1/2

−1/2
t b(·, t) dt I3, a.e. in ω.

The corresponding 2D model. Let us define

(4.18) W2,2
α,iso(ω,R3) :=

{
y ∈W1,2(ω,R3) : (∇y)T∇y = α2 I2 a.e. in ω

}
.

We will refer to any y ∈ W2,2
α,iso(ω,R3) as to an α-isometry. For the sake of brevity, we will

use the notation W2,2
α,iso(ω) instead of W2,2

α,iso(ω,R3). Observe that given y ∈ W2,2
α,iso(ω), the

map

(4.19) u(η′) := y

(
η′

α

)
, η′ ∈ αω, belongs to W2,2

iso (αω).

The second fundamental forms associated with y and u are related via

(4.20) Πy(x
′) =

1

α2
Πu(αx′), for a.e. x′ ∈ ω.
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Let the quadratic form QFR
2 be defined by

QFR
2 (G) := min

c∈R3
D2W FR(αI3)[G∗ + c⊗ f3]2, for every G ∈ R2×2.

Since W FR is isotropic and coincides with W1 defined in (4.52), we have by (4.60) and (4.61)

with θ = 1 and by (2.28) that QFR
2 reads as

(4.21) QFR
2 (G) = 2G|Gsym|2 + Λ(α) tr2G, for every G ∈ R2×2.

In the latter formula, G and Λ(α) are non-dimensional, positive Lamé constants, which are

given by

(4.22) G := vN and Λ(α) :=
2Gλ(α)

2G + λ(α)
, with λ(α) = −vN− 1

α2
+

α

α3 − 1
− 2χ

α5
> 0.

The positivity of the constant λ(α), which is not self-evident, follows from (4.62). Observe

that

D2W (I3) = α2D2W FR(αI3) and consequently Q2 = α2QFR
2 ,

where W is given by (4.14). Let the functional E gel
0 : W1,2(Ω,R3)→ [0,+∞] be defined by

(4.23) E gel
0 (y) :=

1

24

ˆ
ω
QFR

2

(
Πy(x

′)− Bgel(x
′)
)

dx′

+
1

2

ˆ
Ω
QFR

2

(
β b(x)I2

)
dx− 1

24

ˆ
ω
QFR

2

(
Bgel(x

′)
)

dx′,

for every y ∈W2,2
α,iso(ω,R3) and +∞ elsewhere in W1,2(Ω,R3). In the expression (4.23), Bgel

(the target curvature tensor) is given by

(4.24) Bgel := 12β

ˆ 1/2

−1/2
t b(·, t) dt I2, a.e. in ω and we have B1

2×2 =
1

α2
Bgel.

Due to (4.15), Γ-convergence of the α-rescaled functionals 1
(αh)2 Eαh and the above listed

relations between α-rescaled and original quantities it follows that the sequence of functionals
1
h2 E gel

h Γ-converges to E gel
0 , in the strong and the weak topology of W1,2(Ω,R3), as h→ 0.

Let us define a fourth-order tensor C by

(4.25) C := 2G I2 + Λ(α)I2 ⊗ I2,

where I2 stands for the identity tensor of rank 4. From now on, we will use the following

(equivalent) expression for the 2D energy functional E gel
0 , which is more appropriate from the

point of view of applications. By the very definition of the tensor C it is clear that E gel
0 can

be written in the following equivalent form:

(4.26) E gel
0 (y) =

1

24

ˆ
ω
C
(
Πy(x

′)−Bgel(x
′)
)

:
(
Πy(x

′)−Bgel(x
′)
)

dx′+ad.t., y ∈W2,2
α,iso(ω),

where ad.t. stands for “additional term” independent on y and given by

ad.t. =
1

2

ˆ
Ω
C
(
β b(x)I2

)
:
(
β b(x)I2

)
dx− 1

24

ˆ
ω
C
(
Bgel(x

′)
)

:
(
Bgel(x

′)
)

dx′.

This non-negative term tells that the 2D energy, in general, cannot be minimized at zero: this

fact originates in the incompatibility of the spontaneous strain distribution and the presence
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of residual stresses in the 3D reference configuration – it will be discussed in more details

in Chapter 5. Clearly, the presence of such constant terms will be irrelevant for the further

study of the energy minimizing maps.

As a direct consequence of the above rigorous derivation via Γ-convergence of the 2D

model, we have the following:

Theorem 4.2.1. Denote mh := infW1,2(Ω,R3) E gel
h and suppose that {yh}h ⊆W1,2(Ω,R3) is

a low-energy sequence, i.e.

lim
h→0

E gel
h (yh)

h2
= lim

h→0

mh

h2
.

Then, up to a (not relabeled) subsequence, yh → y in W1,2(Ω,R3) as h→ 0, where

y ∈W2,2
α,iso(ω) solves m0 = min

W2,2
α,iso(ω)

E gel
0 .

Moreover,
mh

h2
→ m0, as h→ 0.

In terms of the physical quantities and the finite thickness h0 (small with respect to the

in-plane characteristic size of the plate), the following asymptotic approximate identity for

the low-energy values E
gel
h0

(
vh0
)

= inf E
gel
h0

+ o(1):

(4.27) E
gel
h0

(
vh0
) ∼= h3

0

24

ˆ
ω
C
(
Πy(x

′)− Bgel(x
′)
)

:
(
Πy(x

′)− Bgel(x
′)
)

dx′ + h3
0 ad.t..

Hence, the minimizers of the 2D bending model (4.26) provide reliable estimates for the

“almost minimal” values of the 3D energy given by (4.6) and (4.11).

4.3 Foldable structures made of hydrogel bilayer

4.3.1 Self-folding using bilayer gels

Let us call Ωh0 = ω × (−h0/2, h0/2) the reference configuration of our foldable structure,

where the reference thickness h0 is much smaller than the in-plane dimensions. The planar

domain ω, which represents the mid-plane of the plate, is hereafter assumed to be a union

ω =
⋃n
i=1 ωi of polygons. We say that the interfaces which delimit the polygons form a

pattern on ω.

A thin sheet Ωh = ω × (−h/2, h/2) with ideal small thickness h is supposed to be a

heterogeneous system where the heterogeneity, both lateral and vertical, is due to a patterned

bilayer structure made of hydrogels. This structure is engineered through an z-dependent

density of cross-links in the polymer network, which in turn determines an z-dependent

density Nh(z) of polymer chains that is of the form

(4.28) Nh(z) =


N − h

h0
Mi, for z ∈ ωi × (−h/2, 0],

N +
h

h0
Mi, for z ∈ ωi × (0, h/2),

where N is the average density along the thickness and each Mi, for i = 1, . . . , n, is a non-

negative constant. This Nh corresponds to a particular choice of piecewise constant function

b in (4.5). The system is a composite of flat faces (where Mi = 0) connected by hinges (where
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Mi > 0). Starting from an initially dry state, folding will be accomplished by putting the

gel in contact with a solvent. Upon swelling, the difference in Nh in the two layers of the

hinges will induce bending. The prototype of this actuation mechanism is presented in Figure

4.1, where the larger (resp. lower) number of dots in the hinge (red patch) corresponds to a

higher (resp. lower) cross-linking density in each layer.

Figure 4.1: Sketch of the proposed folding mechanism. The hydrogel bilayer acts as a hinge

that bends upon swelling. The number of red dots in each of the two layers is proportional

to the amount of cross-links in the polymer network.

As a consequence of the “piecewise constant heterogeneity” in the density of polymer

chains Nh, for each 0 < h � 1 the energy densities W
FR

h given in (4.6) that models our

system, satisfy (modulo rigid-body rotations)

(4.29) argmin
R3×3

1

W
FR

h (z, ·) = Ah(z) =


αI3 −

h

h0
βMiI3 + o(h), z ∈ ωi × (−h/2, 0],

αI3 +
h

h0
βMiI3 + o(h), z ∈ ωi × (0, h/2).

We recall that W
FR

h0
represents the actual energy density corresponding to the finite (small)

thickness system.

4.3.2 Minimal energy configurations: connection between shape parame-

ters and gel properties

In this section, we study the minimizers of the limiting bending energy E gel
0 given by (4.26).

More precisely, we focus our attention on the class of pointwise minimizers, namely, on

those deformations y ∈ W2,2
α,iso(ω) whose second fundamental form Πy minimizes pointwise

the integrand in (4.26). Importantly, this analysis employs a simple structure from the

fabrication viewpoint and provides the theoretical basis for successful and robust actuation

using the proposed folding mechanism.

Recalling the relation between an isometry u on αω and an α-isometry y on ω, as well as

the relation between their second fundamental forms given in formula (4.19), we have that

(4.30) min
y∈W2,2

α,iso(ω)

ˆ
ω
C
(
Πy(x

′)− Bgel(x
′)
)

:
(
Πy(x

′)− Bgel(x
′)
)

dx′

= min
u∈W2,2

iso (αω)

1

α2

ˆ
αω

C
(
α2Πu(η′)− Bgel(η

′/α)
)

:
(
α2Πu(η′)− Bgel(η

′/α)
)

dη′.
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Observe that the target curvature tensor Bgel defined in (4.24) is in this case a piecewise

constant map, which on each subdomain ωi of ω reads as

(4.31) Bgel = ai I2 with ai :=
3β

h0
Mi, i = 1, . . . n.

According to (4.30) and (4.31) and recalling that each isometry u is such that det Πu = 0

a.e. in αω, our minimization problem reduces to finding those isometries u whose second

fundamental form fulfills

(4.32) Πu(η′) ∈ Ni := argmin
S∈Sym(2)
detS=0

C
(
α2S − ai I2

)
:
(
α2S − ai I2

)
,

for a.e. η′ in the i-th subdomain of αω and for every i = 1, . . . , n. A necessary and sufficient

condition for (4.32) to hold is that Πu is actually equal to a constant matrix Ai ∈ Ni on each

i-th subdomain of αω (see Lemma 3.3.2).

The solution of the (finite dimensional) minimization problem in (4.32), as shown in

Lemma 3.3.1 point (i), yields the following explicit representation for the set Ni:

(4.33) Ni =
{ κi
α2

n⊗ n : n ∈ R2, with |n| = 1
}
, with κi := 2 ai

G + Λ(α)

2G + Λ(α)
,

for each i = 1, . . . , n. In other words, the second fundamental form Πu of an energy mini-

mizing isometry u, when restricted to the i-th subdomain of αω (that we refer to as the i-th

patch) with κi 6= 0 , corresponds to the second fundamental form of a cylindrical surface

whose non-zero principal curvature equals κi/α
2, while the associated principal curvature

direction might be (a-priori) given by any unit vector in R2.

However, the isometry constraint forces a precise choice of the principal curvature di-

rection associated with the non-zero principal curvature κi/α
2 – it must be orthogonal to

the interfaces between i-th patch and all the neighbouring ones. Equivalently, a cylindrical

surface with κi 6= 0 can be glued to all the nighbouring cylindrical surface patches (or even

plane patches) only if its rulings are parallel to the interface between them. It is thus clear

that the existence of an isometry with the above described properties heavily depends on

the compatibility between the pattern on ω and the target curvature, as proved in Theorem

3.3.5.

The theoretical results that we have just discussed provide the foundations for a successful

self-folding strategy in patterned, bilayer thin sheets made of hydrogels (or other active ma-

terials). In particular, the planar domain ω is patterned in such a way that the heterogeneity

in swelling of the gel due to variations in the cross-linking density induces piecewise constant

target curvatures. Many interesting and feasible patterns on ω along with the induced target

curvatures at the hinges satisfy the previously mentioned compatibility property, thus guar-

anteeing the existence of a pointwise minimizer of the 2D bending energy. To be concrete,

we now consider the pyramid -type and the cube-type domains, sketched in the Figure 4.2

(A) and (B), respectively. Both of these two patterned domains consist of two different types

of patches: hinges and flat faces. Each hinge, denoted by ωhinge, has a nontrivial bilayer

structure, characterized by

(4.34) Nh(z) =


N − h

h0
M, for z ∈ ωhinge × (−h/2, 0],

N +
h

h0
M, for z ∈ ωhinge × (0, h/2),
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Figure 4.2: Cube-type domain (A) and pyramid-type domain (B) in the unfolded flat state.

Folded cube shape (C) and pyramid shape (D) obtained as images of the corresponding pat-

terned domains (A) and (B) under the pointwise minimizing deformation of the corresponding

2D bending energies.

with M > 0. On each flat face, denoted by ωflat, the density of polymer chains Nh is

constantly equal to N , i.e. M = 0. Note that both in the pyramid and the cube case the

interfaces between an ωhinge and the (at most two) neighbouring ωflat are mutually parallel

(recall that the set of the nonzero principal curvature directions of a pointwise minimizer

restricted to ωhinge may be any unit vector of R2, see (4.33)). Hence the existence of a

pointwise minimizer of E gel
0 is guaranteed. More in details, such minimizer deforms the mid-

plane ω in the following way: it dilates the domain ω by the factor α and maps each α-dilated

hinge into a cylindrical surface with radius r = α2/|κ|, where

(4.35) κ =
6βM

h0

vN + Λ(α)

2vN + Λ(α)
;

the cylinder’s rulings are parallel to the interfaces which delimit the hinge from the flat faces.

At the same time, each α-dilated flat face remains flat.

Looking at the expression (4.35) for the curvature κ that arises on hinges, it is clear that,

maintaining the other physical constants fixed, an appropriate choice of the values N and M

(recall that the N - dependence is present in the term Λ(α) as well) of the bilayer’s structure

at the hinges is needed to induce precise self-folding as in Figure 4.2 (C) and (D). We address

the problem of designing the structure of each bilayer to produce the desired shape upon

folding in the following section.
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4.3.3 Bilayer design problem

In this section we address the “inverse” problem of finding the physical properties of a hy-

dorgel that allow us to realize a given target shape upon self-folding. First, we introduce

an approximate variant of the Flory-Rehner energies W
FR

h , for which the dependence of the

target curvature Bgel on the fixed physical parameters of the 3D system becomes explicit.

Further, we restrict our attention to gels characterized by

• µ = 0

• v, N and χ satisfy the relation N < 1−2χ
2v .

The first of these two conditions means that the gel is in contact with a pure liquid in

equilibrium with its own vapor. The second condition is always satisfied whenever a hydrogel

with a large swelling ratio is considered, as it occurs for the typical values Nv ∼ 10−3 and

χ ∼ 10−1.

To present the approximate model we work with, let us go back to the general setting of a

thin gel sheet occupying the domain Ωh = ω× (−h/2, h/2) with ω =
⋃n
i=1 ωi being a general

patchwork of polygons. First of all, in the case µ = 0 the Flory-Rehner energy density (4.6)

reduces to

W
FR

h (z, F ) =
vNh(z)

2

(
|F |2 − 3

)
+Wχ

vol(detF ), z ∈ Ωh and F ∈ R3×3
1 .

Then, by Taylor’s expansion, Wχ
vol(t) = 1−2χ

2t + o
(

1
t

)
+ χ − 1, for every t � 1. Thus, when

deformation gradients with large determinants are considered, one may approximate W
FR

h

(discarding the constant term χ− 1) by the function Ŵ FR
h

(4.36) Ŵ FR
h (z, F ) :=

vNh(z)

2

(
|F |2 − 3

)
+

1− 2χ

2 detF
, z ∈ Ωh and F ∈ R3×3

1 .

This approximate model is adequate from the point of view of applications. It has been

considered for the first time in [Doi09], and afterward used, for instance, in [LNS14, DS11].

The functional form of the energy densities Ŵ FR
h allow to determine the spontaneous

stretch distribution (and therefore the set of minimizers) explicitly in terms of the fixed

physical parameters of the model. Indeed, by Lemma 4.4.4 and Remark 4.4.5 in Section 4.4,

for every z ∈ ωi × (−h/2, h/2), i = 1, . . . , n, it holds

(4.37) argmin
R3×3

1

Ŵ FR
h (z, ·) = SO(3)Âh(z)

with Âh(z), z ∈ Ωh, being (as in (4.29)) the scalar multiple of the identity matrix:

(4.38) Âh(z) =


αI3 −

h

h0
βMiI3 + o(h), z ∈ ωi × (−h/2, 0],

αI3 +
h

h0
βMiI3 + o(h), z ∈ ωi × (0, h/2),

where the constants α and β are explicitly given by

(4.39) α =

(
1− 2χ

2vN

)1/5

and β = − 1

5N

(
1− 2χ

2vN

)1/5

.
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In this case, the constant Λ(α) appearing in (4.22) can be explicitly derived, as well. Thus,

we obtain that the tensor C in (4.26), within this approximate 2D model (obtained via an

analogous procedure presented in Section 4.2 for the general case, taking into account Remark

4.4.10 below), reads

C = 2vN

(
I2 +

1

3
I2 ⊗ I2

)
.

Finally, as a consequence of (4.39), the target curvature Bgel is given on each subdomain ωi
of ω by

(4.40) Bgel = ai I2, with ai := − 3

5N

(
1− 2χ

2vN

)1/5 Mi

h0
, i = 1, . . . , n.

Summarizing, the total energy (4.26) in this case is

(4.41) E gel
0 (y) =

vN

12

n∑
i=1

ˆ
ωi

|Πy(x
′)− āiI2|2 +

1

3
tr2
(
Πy(x

′)− āiI2

)
dx′ + ad.t.,

for every y ∈W2,2
α,iso(ω). In particular, whenever a compatible pattern is considered, from the

discussion at the end of Section 4.3.2 and from formula (4.33), it follows that the isometry u

associated with a pointwise minimizer y of E gel
0 via (4.19), maps each i-th subdomain of αω

into a cylindrical surface of radius

(4.42) ri :=
4αh0

3Mi
=

4h0

3Mi

(
1− 2χ

2vN

)1/5

and with rulings parallel to the interface with each neighbouring patch.

We are now ready to design a bilayer structure on each ωhinge (i.e. to determine the values

of N and M on such subdomain, see (4.34)) in order to induce precise self-folding of a pyramid

and a cube (Figure 4.2 (C) and (D)), at low energy cost.

Pyramid The target shape that we refer to as a (precisely) folded pyramid is characterized

by the following set of parameters (see Figure 4.3):

• ` – initial length of the pyramid basis,

• φ ∈ (0, π2 ) – vertex angle,

• H – height of the pyramid,

• α > 1 – in-plane swelling factor.

By ‘precisely folded pyramid’ we mean that the four external vertices of the unfolded pyramid

meet at a single point in the folded configuration. The above four parameters completely

determine a (unique) ‘precisely folded pyramid’ shape, since from them one can derive

• r – radius of curvature of the deformed (α-dilated) hinges,

• `1 – initial hinge width,

• `2 – initial height of the pyramid side.
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The following relations hold among these geometric paramters and the former set of param-

eters:

r =
sinφ

1 + sinφ

(
H − α `

2tg φ

)
, `1 =

r

α

(
π

2
+ φ

)
, `2 =

H − r(1 + sinφ)

α cosφ
.

Figure 4.3: Unfolded pyramid (left) and geometry of the precisely folded pyramid (right).

By using the first formula in (4.39) and the expression (4.42), we deduce that the correct

material properties (N and M) to be imprinted on the hinges in order to accomplish the

desired self-folding are determined in terms of the swelling factor α and the curvature radius

r by

(4.43) N =
1− 2χ

2vα5
and M =

4αh0

3r
.

Cube We consider as the target shape the (precisely) folded cube characterized by the

following parameters (see Figure 4.4):

• `1 – initial hinge width,

• α > 1 – swelling factor,

• φ = π/2 – hinge closing angle.

The radius r of a cylindrical surface representing a deformed hinge, which is needed to obtain

the desired folded cube from a flat, cube-type pattern, must satisfy the relation r = 2α`1
π . As

in the pyramid case, formulas (4.39) and (4.42) allows us to design the hinges in order to get

a (precisely) folded cube. Namely, the material parameters that determine the cross-linking

density in the bilayers that constitute the hinges are

(4.44) N =
1− 2χ

2vα5
and M =

4αh0

3r
=

2πh0

3`1
.
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Figure 4.4: Unfolded cube on the left, geometry of the precisely folded cube on the right.

As it is clear from the above results, the final “size” of a folded cube or pyramid is

controlled by the parameter N through its relation with the swelling factor α. Specifically, in

order to produce larger folded cubes or pyramids, which correspond to a bigger value of α, a

smaller value of N is needed. The curvature of the hinges 1/r is controlled by the parameter

M , in such a way that, as one might expect, the value of r increases as the value of M

decreases. This means that, on one side, flat plates (seen as cylindrical surfaces with radius

r = +∞) correspond to the isometric deformation of flat faces with no through-the-thickness

variation of the cross linking density, i.e. M = 0. On the other side, shapes with sharp folds

(i.e. with r → 0) require large variations M in the cross-linking density along the bilayer

that constitutes the hinge. In turn, since r and `1 are proportional, manufacturing a folded

structure with a small hinge width `1 requires a large value of M .

4.4 Analysis of energy density functions of Flory-Rehner type

This section is dedicated to the analysis of the Flory-Rehenr energy density functions W
FR

h

introduced in (4.6). Let us recall that, given a small thickness parameter 0 < h� 1,

W
FR

h (z, F ) =
vNh(z)

2
(|F |2 − 3) +Wχ

vol(detF )− µ

kBT
(detF − 1),

for a.e. z ∈ Ωh and F ∈ R3×3
1 . For the forthcoming analysis we will use the following

normalized representation of the density function Nh:

(4.45) Nh(z) = N fh

(
z′,

z3

h

)
, where fh

(
z′,

z3

h

)
:= 1 + h

b
(
z′, z3h

)
N

, for a.e. z ∈ Ωh.

From the very definition of fh, we have that fh → 1 in L∞(Ω).

Now, set R3×3
+ := {F ∈ R3×3 : detF > 0}. By the standard algebraic inequality, one has

for every F ∈ R3×3
+ that

(4.46) |F |2 = λ2
1 + λ2

2 + λ2
3 ≥ 3

(
λ2

1λ
2
2λ

2
3

)1/3
= 3
(
det(F TF )

)1/3
= 3(detF )2/3,

where λ2
1, λ

2
2, λ

2
3 are the eigenvalues of the matrix F TF . Recall that the equality in (4.46)

holds if and only if λ2
1 = λ2

2 = λ2
3.
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The inequality (4.46) allows us to switch the analysis of the energy densities defined in

(4.6) to the analysis of the function p : (0,+∞)× [1,+∞)→ R defined by

(4.47) p(θ, t) :=
3vNθ

2

(
t2/3 − 1

)
+Wχ

vol(t)−
µ

kBT
(t− 1)

for every θ ∈ (0,+∞) and every t ∈ [1,+∞). Note that p ∈ C∞
(
(0,+∞) × (1,+∞)

)
and

that p(θ, ·) ∈ C
(
[1,+∞)

)
for every θ ∈ (0,+∞).

In particular, observe that from (4.46) it follows that

W
FR

h

(
(x′, hx3), F

)
≥ p
(
fh(x), detF

)
, x ∈ Ω.

This inequality, and the related rigidity characterizing the equality case, says in particular

that Fmin is a minimizer of W
FR

h

(
(x′, hx3), ·

)
if and only if Fmin = t

1/3
minR, for some R ∈ SO(3),

where tmin is a minimizer of p
(
fh(x), ·

)
, x ∈ Ω. This argument is detailed in the proof of

Lemma 4.4.4 below.

In view of the previous discussion and since fh(x) is uniformly close to 1 for every h

sufficiently small, in what follows we analyze the minimizers of p(θ, ·), for θ varying in some

interval I containing 1. To do this, it is useful to recall the following sharp logarithmic

estimate (which can be found in [Top06])

(4.48) log(1 + t) ≥ t2 + 2t

2(1 + t)
, for every − 1 < t ≤ 0.

This can be checked just observing that the function defined as the left-hand side minus the

right-hand side of (4.48) is null at zero and has a nonpositive derivative. We also recall the

following 1-dimensional real analysis result, which will be useful as well.

Lemma 4.4.1. Let I ⊆ R be an open interval. Let f ∈ C1(I) and assume that

f ′(t) = 0, t ∈ I =⇒ ∃ f ′′(t) > 0.

Then the function f has at most one stationary point, which is a global minimum.

Proof. First, we show the following:

Claim: For every t1, t2 ∈ I, t1 < t2, such that f ′(t1) = f ′(t2) = 0 there exists t0 ∈ (t1, t2)

such that f ′(t0) = 0.

Indeed, since f
′′
(t1) and f

′′
(t2) are strictly positive, there exists t′1 in the right neighbour-

hood of t1 such that f ′(t′1) > 0 and t′2 in the left neighbourhood of t2 such that f ′(t′2) < 0.

Hence there exist t0 ∈ (t′1, t
′
2) ⊆ (t1, t2) such that f ′(t0) = 0, by continuity of f ′.

To prove Lemma, suppose by contradiction that there exist t1, t2 ∈ I, t1 < t2 such that

f ′(t1) = f ′(t2) = 0. By Claim we have that there exists τ0 ∈ (t1, t2) such that f ′(τ0) = 0. But

there exists also τ1 ∈ (t1, τ0) such that f ′(τ1) = 0, again by Claim. In this way we construct

a decreasing sequence {τk}k≥0 ⊆ (t1, t2). Let τ = limk→+∞ τk. Consequently f ′(τ) = 0 and

f
′′
(τ) > 0. On the other hand

f
′′
(τ) = lim

k→+∞

f ′(τk)− f ′(τ)

τk − τ
= 0,

which is a contradiction. Therefore, if exists, stationary point t of f is unique and by hy-

pothesis we have that f
′′
(t) > 0, so it is a point of a global minimum.

With the following lemma we show that p(θ, ·) has a unique global minimum in [1,+∞).
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Lemma 4.4.2. There exists an open neighbourhood I of 1 and a unique smooth function

ϕ : I → (1,+∞) such that

argmin
t∈[1,+∞)

p(θ, t) = ϕ(θ), for every θ ∈ I.

Proof. Denote by p := p(1, ·). First, note that the derivative of p reads as

p′(t) =
vN

t1/3
+
d

dt
Wχ
vol(t)−

µ

kBT
=

vN

t1/3
+ log

(
1− 1

t

)
+

1

t
+
χ

t2
− µ

kBT
, for every t > 1.

Let h(t) := log
(

t
t−1

)
− 1
t−

1
2t2

for every t ∈ (1,+∞). Note that h(t) ≥ 0 for every t ∈ (1,+∞)

and that t2h(t) → 0 as t → +∞. It is straightforward to check that limt→1 p
′(t) = −∞ and

limt→+∞ p
′(t) = − µ

kBT ≥ 0. Moreover, one has that

p′(t) ≥ 0 ⇔ t2p′(t) ≥ 0 ⇔ vNt5/3 − (1/2− χ)− t2h(t)− µ

kBT
t2 ≥ 0.

Since limt→+∞ vNt5/3 − (1/2− χ)− t2h(t)− µ
kBT t

2 = +∞, the existence of t ∈ (1,+∞) such

that p′(t) = 0 is guaranteed. The uniqueness of such t ∈ (1,+∞) follows from Lemma 4.4.1

above. More precisely, by using (4.48), one finds that (t2p′(t))′ > 0 for every t ∈ (1,+∞).

Since (t2p′(t))′ = 2tp′(t) + t2p
′′
(t), we get that p′(t) = 0 implies p

′′
(t) > 0. Therefore there

is a unique stationary point tmin ∈ (1,+∞) and it is the point of the global minimum of p.

Recall that

0 = p′(tmin) = pt(1, tmin) and 0 < p
′′
(tmin) = ptt(1, tmin).

By applying the Implicit Function Theorem we get that there exist an open neighbourhood

I ⊆ (0,+∞) of 1, an open neighbourhood J ⊆ (1,+∞) of t1 and a unique smooth function

ϕ : I → J , such that{(
θ, ϕ(θ)

)
: θ ∈ I

}
=
{

(θ, t) ∈ I × J : pt(θ, t) = 0
}
.

It easy to check (by using the same argument as in the case of p above) that pt
(
θ, ϕ(θ)

)
= 0

implies ptt
(
θ, ϕ(θ)

)
> 0 for every θ ∈ I. Hence we obtained a smooth map

(4.49) (0,+∞) ⊇ I 3 θ 7→ ϕ(θ) = argmin
[1,+∞)

p(θ, ·) ∈ (1,+∞).

Remark 4.4.3. We recall that the derivative of the function ϕ defined in (4.49) is given by

(4.50) ϕ′(θ) = −ptθ
(
θ, ϕ(θ)

) (
ptt
(
θ, ϕ(θ)

))−1
, for every θ ∈ I.

In particular, by direct computations and by using the fact that ptt
(
θ, ϕ(θ)

)
> 0 for every

θ ∈ I, we have that ϕ′(θ) < 0 for all θ ∈ I. �

Hereafter, we let I ⊆ R and the function ϕ be given by Lemma 4.4.2. For the sake of

brevity, let us introduce the following notation. Given θ ∈ I we denote

(4.51) αθ := 3
√
ϕ(θ) > 1 and we set α := α1.

For every θ ∈ I, we define the function Wθ : R3×3 → R ∪ {+∞} by

(4.52) Wθ(F ) :=
vNθ

2

(
|F |2 − 3

)
+Wχ

vol(detF )− µ

kBT
(detF − 1), for every F ∈ R3×3

1 ,
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and declare it to be equal to +∞ elsewhere in R3×3. Observe that W1 = W FR on R3×3
1 .

Moreover, there exists h̄ > 0 such that

(4.53) W
FR

h (z, F ) = Wfh(z′,
z3
h

)(F ), for a.e. z ∈ Ωh, every F ∈ R3×3 and every h ≤ h.

We now show that the family of 3D energy densities {W FR

h }h enjoys the properties announced

in Section 4.1. The very same arguments used in the analysis of the original densities W
FR

h

below can be employed in the study of the properties of the approximate densities Ŵ FR
h that

we use in Subsection 4.3.3 (we shall indicate some important points in Remark 4.4.5 and

Remark 4.4.10 ).

Regularity. For every θ ∈ I the function Wθ is of class C∞ on {F ∈ R3×3 : detF > 1} and

continuous on R3×3. Then, by (4.53), for a.e. z ∈ Ωh the function W
FR

h (z, ·) shares the same

regularity properties. Furthermore, the function W
FR

h (·, F ) is measurable for every F ∈ R3×3,

by its very definition. In particular, W
FR

h is a Carathéodory function and thus jointly Borel

(see, for instance, [AB99]).

Energy wells.

Lemma 4.4.4. For every θ ∈ I the function Wθ is minimized precisely on the set αθ SO(3).

Proof. Fix θ ∈ I and denote mθ := min[1,+∞) p(θ, ·) = p(θ, α3
θ). It follows by inequality

in (4.46) that Wθ(F ) − mθ ≥ p(θ,detF ) − mθ ≥ 0 for every F ∈ R3×3
1 . Suppose that

Wθ(F ) −mθ = 0 for some F ∈ R3×3
1 . By the definition of p given by (4.47), F must satisfy

|F |2 = 3(detF )2/3. This implies that all eigenvalues of the positive symmetric matrix F TF

are equal to some λ2 ∈ R \ {0}, by (4.46), and accordingly F ∈ λSO(3). On the other

hand, it must be satisfied λ3 = detF = α3
θ (by uniqueness of the minimum point of the

function p(θ, ·)), implying that λ = αθ. Conversely, let F = αθR for some R ∈ SO(3). Then

|F |2 = 3α2
θ = 3(α3

θ)
2/3 = 3(detF )2/3 and thus Wθ(F )−mθ = 0.

The above lemma, translated in the language of Flory-Rehner energies, says that

(4.54) W
FR

h (z, ·) attains its minimum precisely on αfh(z′,
z3
h

)SO(3).

It only remains to understand the form of αfh(z′,
z3
h

) for our particular choice of fh(z′, z3h )

given in (4.45). By Taylor’s expansion of the function ϕ around 1, we have, as claimed in

(4.8), that

(4.55) αfh(z′,
z3
h

) = 3

√
ϕ

(
1 + h

b(z′, z3h )

N

)
= α+ hβb

(
z′,

z3

h

)
+ o(h), with β :=

ϕ′(1)

3N
.

This gives the energy well Ah(x′, hx3)SO(3) defined in (4.7)–(4.8). Let us stress the fact

that a crucial property of Ah which allows us to use Theorem 3.2.2 in Chapter 3 is that

such spontaneous stretch field has the structure Ah(x′, hx3) = αI3 + hC(x) + o(h), with´ 1/2
−1/2 C(x′, x3) dx3 = 0. Note that this fact is connected with the structure of the chosen

density Nh of polymer chains (see (4.5) and the subsequent sentence).

Remark 4.4.5. The above analysis of the energy wells can be applied also to the approximate

version of Flory-Rehner energy densities given by the family of functions Ŵ FR
h introduced in

Section 4.3.3 (see (4.36)). In this case, the auxiliary functions p (given in (4.47)) and Wθ

(given in (4.52)) might be replaced by the function p̂ and Ŵθ, respectively, where

(4.56) p̂(θ, t) :=
3vNθ

2

(
t2/3 − 1

)
+

1− 2χ

2t
and Ŵθ(F ) :=

vNθ

2

(
|F |2 − 1

)
+

1− 2χ

2 detF
,
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for t ∈ [1,+∞), θ ∈ (0,+∞) and F ∈ R3×3
1 . The set of minimizers of p̂(θ, ·) can be explicitly

found, by directly computing the first and the second derivative of p̂(θ, ·). Namely, we have

that

argmin
t∈[1,+∞)

p̂(θ, t) =

(
1− 2χ

2vNθ

)3/5

, for every θ ∈ (0,+∞).

Then, by applying the same argument as in the proof of Lemma 4.4.4 to Ŵθ and p̂ in place

of Wθ and p, we can prove that

(4.57) argmin
R3×3

1

Ŵθ =

(
1− 2χ

2vNθ

)1/5

SO(3).

By observing also that Ŵ FR
h (z, ·) = Ŵfh(z′,

z3
h

) and by using Taylor’s expansion, (4.37) – (4.38)

follows. �

In order to prove uniform convergence and quadratic growth of Wθ, we should compute

its first and second differentials. Observe that the convergence and growth properties of W
FR

h ,

announced in (4.9) and (4.10), respectively, will follow by using the identification W
FR

h (z, F ) =

Wfh(z′,
z3
h

)(F ) and the fact that fh → 1 in L∞(Ω) as h→ 0.

By straightforward computations, for all F ∈ R3×3 with detF > 1 and M,N ∈ R3×3, we
have that

DWθ(F )[M ] = vNθF : M +

(
1− detF log

(
detF

detF − 1

)
+

χ

detF
− µ

kT
detF

)
F−T : M,(4.58)

and

(4.59) D2Wθ(F )[M,N ] = vNθN : M

+

(
−1 + detF log

(
detF

detF − 1

)
− χ

detF
+

µ

kT
detF

)
F−TN TF−T : M

+

(
− detF log

(
detF

detF − 1

)
+

detF

detF − 1
− χ

detF
− µ

kT
detF

)
(F−T : N) (F−T : M).

Let us also notice that by plugging F = αθI3 into the expression (4.59), we get

(4.60) D2Wθ(αθI3)[M ]2 = D2Wθ(αθI3)[Msym]2 = 2Gθ|Msym|2 + λ(αθ) tr2M,

for every M ∈ R3×3, where

(4.61) Gθ := vNθ > 0 and λ(αθ) := −vNθ − 1

α2
θ

+
αθ

α3
θ − 1

− 2χ

α5
θ

.

The estimate (4.48) grants that also λ(αθ) > 0. Indeed, from the definition of αθ in (4.51) it

directly follows that

vNθ + αθ log

(
1− 1

α3
θ

)
+

1

α2
θ

+
χ

α5
θ

− αθµ

kBT
= 0.

Observe that the above equality is equivalent to pt(θ, α
3
θ) = 0. As a consequence, λ(αθ) can

be equivalently written as

λ(αθ) =
αθ

α3
θ − 1

+ αθ log

(
1− 1

α3
θ

)
− χ

α5
θ

− αθµ

kBT
.
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Then (4.48) yields

(4.62) λ(αθ) ≥
(1− 2χ)α3

θ + 2χ

2α5
θ(α

3
θ − 1)

− µαθ
kBT

> 0,

where the last strict inequality is due to the fact that αθ > 1, χ ∈ (0, 1/2] and µ ≤ 0.

Uniform convergence.

Lemma 4.4.6. Let (θk)k ⊆ I, θk → 1 as k → +∞. The sequence (Wθk)k satisfies

(4.63) ‖Wθk −W
FR‖C(K) → 0, as k →∞,

for every K compact subset of R3×3
1 and there exists U ∈ N

(
αSO(3)

)
such that

(4.64) ||Wθk −W
FR||C2(U) → 0, as k →∞.

Proof. Pick K ⊆ R3×3
1 and note that supF∈K |Wθk(F )−W FR(F )| ≤ vN

2 |θk − 1|
∣∣C − 3

∣∣, where

C > 0 is such that |F |2 ≤ C for every F ∈ K. This grants the convergence in (4.63). To show

(4.64), we first observe that, by continuity of the determinant, there exists U ∈ N (αSO(3))

such that detF > 1 for every F ∈ U . Up to shrinking U , we have that Wθk and W FR are of

class C2 in U . By (4.58) and (4.59), one can easily see that

||DWθk −DW
FR||C(U ,L (R3×3)) ≤ sup

|M |≤1
sup
F∈U

{
vN |θk − 1||F ||M |

}
≤ vN C|θk − 1|

||D2Wθk −D
2W FR||C(U ,L 2(R3×3)) ≤ sup

|M |≤1,|N |≤1
vN |θk − 1||M ||N | ≤ vN |θk − 1|.

with C > 0 such that |F | ≤ C for every F ∈ U . By the last two inequalities and by (4.63)

with K = U , we conclude the convergence result in (4.64).

Taking into account (4.53), the above lemma implies that the uniform convergence in

(4.9) holds.

Remark 4.4.7. In this remark we emphasize the fact that the (rescaled) energy densities

W FR
h (x, ·) defined by (4.6) are minimized on

SO(3)Ah(x′, hx3), for every h > 0 and a.e. x ∈ Ω,

where Ah given by (4.7) – (4.8) and that they uniformly converge to W FR given by (4.3),

which is minimized at α SO(3), α > 1 as in (4.7). However, by directly confronting formulas

(4.3) and (4.6), one can check that the densities W FR
h cannot be rewritten in the pre-stretch

form (see the discussion in Section 2.1.1)

W FR
h (x, F ) = W

(
FA−1

h (x′, hx3)
)
,

where W = W FR(α ·). This is instead the case, for instance, in [AD15, AD17, DeS18] or

[Sch07b]. �

Quadratic growth.

Lemma 4.4.8. Let (θk)k ⊆ I, θk → 1 as k → +∞. There exists C > 0 and k̄ ∈ N such that

Wθk(F ) ≥ C dist2
(
F, αθk SO(3)

)
, for every F ∈ R3×3

1 and every k ≥ k̄,(4.65)

W FR(F ) ≥ C dist2
(
F, α SO(3)

)
, for every F ∈ R3×3

1 .(4.66)
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Proof. We divide the proof of lemma into three cases. For the sake of brevity we denote

αk := αθk , k ∈ N and recall that α = α1.

Case 1. There exists k1 ∈ N, r1 > 0 and C1 > 0 such that for all F ∈ R3×3
1 it holds

dist(F, αSO(3)) < r1 =⇒ Wθk(F ) ≥ C1dist2(F, αkSO(3)), for every k ≥ k1.

Proof of Case 1. Let r1 > 0 be such that every F with dist
(
F, αSO(3)

)
≤ r1 satisfies

detF > 1. Clearly, dist
(
F, αSO(3)

)
< r1 implies that

√
F TF ∈ Br1(αI3). Given that αk → α

as k → +∞, there exists k1 ∈ N such that αkI3 ∈ Br1(αI3) for every k ≥ k1. Then, by frame

indifference of the function Wθk , its regularity and the fact that it vanishes at αkI3, we have

that for every k ≥ k1 there exists Hk ∈ Br1(αI3) laying on the segment between
√
F TF and

αkI3 such that

Wθk(F ) = Wθk(
√
F TF ) =

1

2
D2Wθk(αkI3)[

√
F TF − αkI3]2 +

D3Wθk(Hk)

3!
[
√
F TF − αkI3]3

for every F with dist
(
F, αSO(3)

)
< r1. Observe from (4.59) that all differentials of order

greater or equal to 3 of Wθk are independent on k, for every k ≥ k1. Therefore, by denoting

C := supBr1 (αI3) |D3Wθk | and recalling (4.60) we have that

Wθk(F ) ≥ vN |
√
F TF − αkI3|2

(
1− C

vN
|
√
F TF − αkI3|

)
for every k ≥ k1 and every F with dist

(
F, αSO(3)

)
< r1. Pick r1 > 0 so that 2r1C/vN < 1/2.

Then for all F satisfying dist
(
F, αSO(3)

)
< r1 we have that

Wθk(F ) ≥ vN

2
|
√
F TF − αkI3|2 =

vN

2
dist2(F, αkSO(3)),

proving the implication in Case 1, with C1 = vN
2 . Observe also that, up to shrinking r1, by

passing to the limit as k → +∞ in the above inequality, we also have that

W FR(F ) ≥ C1dist2
(
F, αSO(3)

)
, whenever dist

(
F, αSO(3)

)
< r1.

Case 2. There exists k2 ∈ N, r2 > 0 and C2 > 0 such that for every F ∈ R3×3
1 it holds that

dist(F, αSO(3)) > r2 =⇒ Wθk(F ) ≥ C2 dist2(F, αkSO(3)), for every k ≥ k2.

Proof of Case 2. First observe that there exists k2 ∈ N such that

|F |2 ≥ 1

2
dist2

(
F, αkSO(3)

)
− 3(α2 + 1)

for every k ≥ k2 and every F ∈ R3×3. Hence, for every k ≥ k2 and every F ∈ R3×3
1 it holds

Wθk(F ) ≥ vN

4
|F |2 − C ≥ vN

8
dist2

(
F, αkSO(3)

)
− C,

with C being a positive constant depending only on the fixed physical parameters. Moreover,

for every F ∈ R3×3 we have that

dist2
(
F, αkSO(3)

)
≥ 1

2
dist2

(
F, αSO(3)

)
− 3|αk − α|2.

Thus, by choosing r2 > 0 big enough, the inequality in Case 2 holds with C2 = vN
16 − 1.
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Before proceeding to Case 3. we observe that, by using the same argument as above,

one can show (up to increasing r2) that

W FR(F ) ≥ C2 dist2(F, αSO(3)), whenever dist
(
F, αSO(3)

)
> r2,

for some C2 > 0. Since W FR > 0 on the set {F ∈ R3×3
1 : r1 ≤ dist(F, αSO(3)) ≤ r2}, there

exists C3 > 0 such that W FR(F ) ≥ C3 on {F ∈ R3×3
1 : r1 ≤ dist(F, αSO(3)) ≤ r2}, by the

continuity of W FR. By setting C0 := min{C1, C2, C3/r
2
1}, we prove that W FR satisfies

W FR(F ) ≥ C0 dist2
(
F, αSO(3)

)
, for every F ∈ R3×3

1 .

Case 3. There exists k3 ∈ N and C3 > 0 such that for every F ∈ R3×3
1

r1 ≤ dist(F, αSO(3)) ≤ r2 =⇒ Wθk(F ) ≥ C3, for every k ≥ k3.

Proof of Case 3. Note that there exists k3 ∈ N such that for every k ≥ k3

Wθk(F ) ≥ |Wθk(F )−W FR(F )|+ C0 dist2
(
F, αSO(3)

)
≥ C0r

2
1

2
=: C3,

by the uniform convergence of Wθk to W FR on the set {F ∈ R3×3
1 : r1 ≤ dist

(
F, αSO(3)

)
≤ r2}

and the quadratic growth of the W FR. This concludes the proof of Case 3.

Now set k̄ := min{k1, k2, k3} and C := min{C1, C2, C3/4r
2
1}. The above three cases yield

Wθk(F ) ≥ C dist2
(
F, αkSO(3)

)
, for every k ≥ k̄ and every F ∈ R3×3

1 ,

concluding the proof of the lemma.

We remark that the quadratic growth of W FR in a neighbourhood of αSO(3) is deduced

by passing to the limit as k → +∞ in (4.65). In the following simple example we show that

the converse is not necessarily true, i.e. the quadratic growth of the limiting function W FR

near to its well does not implies, in general, the same property of the sequence Wθk .

Example 4.4.9. Consider the sequence (ψk)k of functions ψk : (−1, 1)→ R defined by

ψk(t) :=

∣∣∣∣t− 1

k

∣∣∣∣2+ 1
k

, for every t ∈ (−1, 1).

Note that for every k ∈ N the function ψk is non negative, minimized precisely at 1
k and

ψk → ψ∞ in C2-norm on [−1, 1], as k →∞, with ψ∞(t) := t2, for every t ∈ [−1, 1]. Clearly,

the limiting function ψ∞ is non negative, minmized at 0 and has quadratic growth. However,

there is no k̄ ∈ N, no constant C > 0 and no ε > 0 such that

ψk(t) ≥ C
(
t− 1

k

)2

, for every t ∈ (−ε, ε) ⊆ (−1, 1) and every k ≥ k̄.

4

Remark 4.4.10. Here, we make a couple of comments about the properties of the approx-

imate energy densities Ŵ FR
h given in (4.36). Recall also that Ŵ FR

h (z, ·) = Ŵfh(z′,
z3
h

) for a.e.

z ∈ Ωh and h small enough, with Ŵfh(z′,
z3
h

) given in (4.56) for θ = fh(z′, z3h ).

We start with the simple observation that the dependence on the thickness variable z3 and

the thickness parameter h in the approximate model energies Ŵ FR
h remains unchanged with
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respect to the original W
FR

h . Thus, taking into account the energy well structure presented

in Remark 4.4.5, it is straightforward to verify that Ŵ FR
h shares the same regularity, uniform

convergence and quadratic growth properties as W
FR

h . In particular, the 2D model (obtained

by repeating the same procedure as in the general case provided in Section 4.2) will be gov-

erned by the functional E gel
0 as in (4.23), with the corresponding quadratic form QFR

2 obtained

via the standard minimization process involving the second differential of the (approximate)

homogeneous density Ŵ FR := Ŵ1 having the energy well αSO(3) with α = (1−2χ

2vN
)1/5 explicitly

determined in (4.57) with θ = 1. Namely, in this case QFR
2 in (4.23) is given by

QFR
2 (G) = min

c∈R3
D2Ŵ FR(αI3)[G∗ + c⊗ f3]2, for every G ∈ R2×2.

By a straightforward computation one can find that

D2Ŵ FR(αI3)[F ]2 = 2vN |Fsym |2 + vN tr2F, F ∈ R3×3

and thus (see Appendix 2.A) that

QFR
2 (G) = 2vN

(
|Gsym |2 +

1

3
tr2G

)
, G ∈ R2×2.

�
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In this chapter we will be concerned with the derivation of plate models under different

energy scaling regimes, in the description of thin hyperelastic sheets Ωh of small thickness h

characterized by a spontaneous stretch Ah, which is precisely the inverse of a given pre-stretch

(see Section 2.1.1). The pre-stretch is introduced via a smooth incompatibility tensor field

Gh, representing a Riemannian metric on Ωh. In particular, the leading order metric, which

in Chapter 3 equals I3 (viewing A2
h(z) = I3 +h2Bh(z′, z3h ) +O(h2) as a metric on Ωh), is here

extended to an arbitrary metric on Ωh depending on the planar variable only.

We start by giving (in Section 5.1) a precise description of the setting in which we will

work throughout this chapter. Moreover, we provide a brief overview of the obtained results.

75
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5.1 The set-up of the problem

We consider a family of thin hyperelastic sheets occupying the reference domains Ωh :=

ω × (−h/2, h/2) ⊆ R3, where ω ⊆ R2 is a bounded, simply-connected, Lipschitz domain and

0 < h� 1. We recall the referential rescaling of each Ωh via: Ωh 3 (z′, z3) 7→ (z′, z3/h) ∈ Ω,

referring to Section 2.1.2 for the relation between the physical and the rescaled quantities.

In particular, recall that a point in the rescaled domain Ω is denoted by x = (x′, x3).

Further, we suppose that the sheets are characterized by the incompatibility (Riemann

metric) tensor fields Gh ∈ C∞
(
Ωh,Sym(3)

)
, satisfying Gh(z) ∈ Psym(3) for every z ∈ Ωh

and the energy density function having the pre-stretch form

W h(z, F ) := W
(
FG

−1/2
h (z)

)
, z ∈ Ωh and F ∈ R3×3.

The energy density W is the homogeneous density satisfying the properties W1 – W4 listed

in Section 2.1.1. In view of (2.4), note that Ah := G
1/2
h has the role of a spontaneous stretch.

It explicit form is given in (5.4) below.

Moreover, we assume that Gh satisfy the following structure expansion assumption:

(O)



Oscillatory case :

Gh(z) = Gh
(
z′,

z3

h

)
, for all z = (z′, z3) ∈ Ωh,

Gh(x′, t) = Ḡ(x′) + hG1(x′, x3) +
h2

2
G2(x′, x3) + o(h2), for all (x′, x3) ∈ Ω

where Ḡ ∈ C∞
(
ω,Sym(3)

)
, Ḡ(x′) ∈ Psym(3) and G1,G2 ∈ C∞

(
Ω,Sym(3)

)
and

(5.1)

ˆ 1/2

−1/2
G1(x′, t) dt = 0, for all x′ ∈ ω.

The above requirement of Ḡ being independent of the transversal variable t ∈ (−1/2, 1/2) is

essential for treating the energy order inf Ih ≤ Ch2 (see (5.3) below).

The zero mean requirement on G1 can be relaxed to requesting that
´ 1/2
−1/2 G

1(x′, t)2×2 dt be

a linear strain with respect to the leading order midplate metric Ḡ2×2, as it has been shown

in Chapter 3 in the case Ḡ2×2 = I2. In the latter case the sufficient and necessary condition

for this to happen is that curl
(
curl

´ 1/2
−1/2 G

1
2×2(x′, t) dt

)
= 0 (see Lemma 1.4.2). As it can be

seen from the discussion provided in Section 3.4, the question how to remove the “curl curl”

condition above still remained open. We assume (5.1) here, in light of the special case (NO)

below.

We refer to the family of thin sheets Ωh pre-stretched by metrics in (O) as the “oscillatory”

case:

(5.2) Gh(z) = Ḡ(z′) + hG1
(
z′,

z3

h

)
+
h2

2
G2
(
z′,

z3

h

)
+ o(h2) for all z = (z′, z3) ∈ Ωh,

and note that it includes a subcase of a single metric independent of h (to which we refer as

the “non-oscillatory” case), upon taking:

G1(x′, x3) = x3Ḡ1(x′), G2(x′, x3) = x2
3Ḡ2(x′).
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Formula (5.2) becomes then Taylor’s expansion, with Ḡ = G|ω×{0}, Ḡi =
(
(∂3)iG

)
|ω×{0},

i = 1, 2 in:

(NO)


Non-oscillatory case :

Gh = G|Ωh for some G ∈ C∞(Ω,Sym(3)), with values in Psym(3),

Gh(z) = Ḡ(z′) + z3∂3G(z′, 0) +
z2

3

2
∂33G(z′, 0) + o(z2

3), for all z = (z′, z3) ∈ Ωh.

Mechanically, the assumption (NO) describes thin sheets that have been cut out of a single

specimen block Ω, pre-stretched according to a fixed (though arbitrary) tensor A = G1/2. In

practice, the pre-stretch in the energetical description (5.3) may be due to a variety of phe-

nomena, such as: growth of leaves, differential swelling in gels or electrodes in electrochemical

cells, tearing of plastic sheets or actuation of micro-mechanical devices, to name a few.

As we shall see, the general case (O) can be reduced to (NO) via the following effective metric:

(EF)



Effective oscillatory case :

Ḡh(z) = Ḡ(z) = Ḡ(z′) + z3Ḡ1(z′) +
z2

3

2
Ḡ2(z′), for all z = (z′, z3) ∈ Ωh,

with: Ḡ1
2×2 = 12

ˆ 1/2

−1/2
tG1

2×2(·, t) dt, Ḡ1f3 = −60

ˆ 1/2

−1/2
(2t3 − 1

2
t)G1(·, t)f3 dt

and: Ḡ2
2×2 = 30

ˆ 1/2

−1/2
(6t2 − 1

2
)G2

2×2(·, t) dt.

In this chapter we are interested in studying the limit behaviour of the nonnegative free-

energy functionals (recall the relation (2.19)):

(5.3) Ih(u) =
1

h
E h(u) =

1

h

ˆ
Ωh

W h

(
z,∇u(z)

)
dz,

defined on vector fields u ∈W1,2(Ωh,R3) that we interpret as deformations of Ωh. We will be

concerned with the regimes of curvatures of Gh in (O) which yield the incompatibility rate,

quantified by inf Ih, of order higher than h2 in the plate’s thickness h.

5.1.1 A brief overview of the obtained results

With respect to the prior works in the context of pre-stretched materials, we propose the

following new contributions.

The 2D model in the non-oscillatory case. We start by deriving (in Section 5.2), the

Γ-limit of the rescaled energies 1
h2 Ih. In the setting of (NO), we obtain:

I2(y) =
1

2

∥∥Tensor2

∥∥2

Q2
=

1

2

∥∥∥x3

(
(∇y)T∇~b

)
sym
− 1

2
x3∂3G(x′, 0)

∥∥∥2

Q2

=
1

24

∥∥∥((∇y)T∇~b
)

sym
− 1

2
∂3G(x′, 0)

∥∥∥2

Q2

.

We now explain the notation above. Firstly, ‖ · ‖Q2 is a weighted L2 norm in (5.12) on the

space E of Sym(2)-valued tensor fields on Ω. The weights in (5.10) are determined by the
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elastic energy W together with the leading order metric coefficient Ḡ. The functional I2

is defined on the set of isometric immersions {y ∈ W2,2(ω,R3); (∇y)T∇y = Ḡ2×2}; each

such immersion generates the corresponding Cosserat vector ~b, uniquely given by requesting:[
∂1y, ∂2y, ~b

]
∈ SO(3)Ḡ1/2 in ω.

The energy I2 measures then the bending quantity Tensor2, which is linear in x3, resulting

in its reduction to the single nonlinear bending term, that coincides with the difference of the

curvature form
(
(∇y)T∇~b

)
sym

from the preferred (target) curvature tensor 1
2∂3G(·, 0) on the

midplate ω. The same energy has been derived in [LP11, BLS16] under the assumption that

G is independent of z3 and in [KS14] for a general manifold (Mn, g) with any codimension

submanifold (Nk, g|N ) replacing the midplate ω × {0}. The derivation of I2 can be seen as

particular case of [KS14] (with n = 3 and k = 2), but also as a particular case of the result

in case (O), as we shall see below.

In Subsection 5.2.2 we identify the necessary and sufficient conditions for min I2 = 0,

in terms of the vanishing of the Riemann curvatures R1212, R1213, R1223 of G at z3 = 0. In

this case, it follows that inf Ih ≤ Ch4. For the discussed case (NO), the recent work [MS18]

generalized the same statements for arbitrary dimension and codimension.

In Section 5.4 we then derive the Γ-limit of the rescaled energies 1
h4 Ih, which is given by:

I4(V,S) =
1

2

∥∥Tensor4

∥∥2

Q2
,

defined on the spaces of: first order infinitesimal isometries

Vy0 = {V ∈W2,2(ω,R3) :
(
(∇y0)T∇V

)
sym

= 0}

and finite strains

Sy0 =
{
S = L2- lim

n→∞

(
(∇y0)T∇wn

)
sym

: wn ∈W1,2(ω,R3)
}

on the deformed midplate y0(ω) ⊆ R3. Here, y0 is the unique smooth isometric immersion of

Ḡ2×2 for which I2(y0) = 0; recall that it generates the corresponding Cosserat’s vector ~b0.

The expression in Tensor4 is quite complicated but it has the structure of a quadratic

polynomial in variable x3 ∈ (−1/2, 1/2). A key tool for identifying this expression, also in

the general case (O), involves the subspaces {En ⊂ E}n≥1 in (5.13), consisting of the tensorial

polynomials in x3 of order n. The bases of {En} are then naturally given in terms of the

Legendre polynomials {pn}n≥0 on
(
− 1

2 ,
1
2

)
. Since Tensor4 ∈ E2, we write the decomposition:

Tensor4 = p0(x3)Stretching4 + p1(x3)Bending4 + p2(x3)Curvature4,

which, as shown in Subsection 5.4.2, results in:

I4(V,S) =
1

2

(∥∥Stretching4

∥∥2

Q2
+
∥∥Bending4

∥∥2

Q2
+
∥∥Curvature4

∥∥2

Q2

)
=

1

2

∥∥∥S +
1

2
(∇V )T∇V +

1

24
(∇~b0)T∇~b0 −

1

48
∂33G(x′, 0)2×2

∥∥∥2

Q2

+
1

24

∥∥[〈∇i∇jV,~b0〉]i,j=1,2

∥∥2

Q2
+

1

1440

∥∥[Ri3j3]i,j=1,2

∥∥2

Q2
.

Above, ∇i denotes the covariant differentiation with respect to the metric Ḡ and Ri3j3 are

the potentially non-zero curvatures of G on ω at z3 = 0. When y0 = id2 (which occurs

automatically when Ḡ = I3), then ~b0 = f3 and the first two terms in I4 reduce to the
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stretching and the linear bending contents of the classical von Kármán energy. The third

term is purely metric-related and measures the non-immersability of G relative to the present

quartic scaling. These findings generalize the results of [BLS16] valid for x3-independent G in

(NO). We also point out that, following the same general principle in the h2- scaling regime,

one may readily decompose:

Tensor2 = p0(x3)Stretching2 + p1(x3)Bending2;

since Tensor2 is already a multiple of x3, then Stretching2 = 0 in the ultimate form of I2.

It is not hard to deduce (see Subsection 5.4.3) that the necessary and sufficient conditions

for having min I4 = 0 are precisely that Rijkl ≡ 0 on ω×{0}, for all i, j, k, l = 1 . . . 3. In that

case, we show in Section 5.7 that inf Ih ≤ Ch6. We also identify the curvature term that

will be present in the corresponding decomposition of Tensor6. It turns out to be precisely[
∂3Ri3j3(x′, 0)

]
i,j=1,2

=
[
∇3Ri3j3(x′, 0)

]
i,j=1,2

. which in view of the second Bianchi identity

carries the only potentially non-vanishing components of the covariant gradient ∇Riem(x′, 0).

This finding is consistent with results of Section 5.6, analyzing the conformal non-oscillatory

metric G = e2φ(z3)I3. Namely, we show that different orders of vanishing of φ at z3 = 0

correspond to different even orders of scaling of Ih as h→ 0:

φ(k)(0) = 0 for k = 1, . . . , n− 1 and φ(n)(0) 6= 0 ⇔ ch2n ≤ inf Ih ≤ Ch2n

with the lower bound: inf Ih ≥ cnhn
∥∥∥[∂(n−2)

3 Ri3j3(x′, 0)
]
i,j=1,2

∥∥∥2

Q2

.

The 2D model in the oscillatory case. We show that the analysis in the general case

(O) may follow a similar procedure, where we first project the limiting quantity TensorO

on an appropriate polynomial space and then decompose the projection along the respective

Legendre basis. For the Γ-limit of 1
h2 Ih in Section 5.2, we show that:

TensorO2 = x3

(
(∇y)T∇~b

)
sym
− 1

2
G1

2×2 = p0(x3)StretchingO2 + p1(x3)BendingO2 + Excess2,

with Excess2 = TensorO2 − P1(TensorO2 ).

Consequently:

I O
2 (y) =

1

2

(∥∥StretchingO2
∥∥2

Q2
+
∥∥BendingO2

∥∥2

Q2
+
∥∥Excess2

∥∥2

Q2

)
=

1

24

∥∥((∇y)T∇~b
)

sym
− 1

2
Ḡ1

2×2

∥∥2

Q2
+

1

8
dist2

Q2

(
G1

2×2,E1

)
,

where again StretchingO2 = 0 in view of the assumed
´ 1/2
−1/2 G1 dx3 = 0. For the same reason:

Excess2 = −1

2

(
G1

2×2 − P1

(
G1

2×2

))
= −1

2

(
G1

2×2 − 12

ˆ 1/2

−1/2
x3G1

2×2 dx3

)
and also: P1

(
G1

2×2

)
= x3Ḡ1

2×2 with Ḡ1
2×2 defined in (EF). The limiting oscillatory energy I O

2

consists thus of the bending term that coincides with I2 for the effective metric Ḡ, plus

the purely metric-related excess term. Observe that in the case when Ḡ = I3 the limiting

functional I O
2 reduces to the functional E0 derived in Chapter 3 in the special case of the

spontaneous strain B given in (3.5) satisfying
´ 1/2
−1/2 B(·, t) dt = 0.

It is easy to observe that: min I O
2 = 0 if and only if G1

2×2 = x3Ḡ1
2×2 on ω × {0} and

BendingO2 = 0. We show in Section 5.4 that this automatically implies: inf Ih ≤ Ch4. The
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Γ-limit of 1
h4 Ih is further derived in Subsection 5.4.1 and Subsection 5.4.2, by considering

the decomposition:

TensorO4 = p0(x3)StretchingO4 + p1(x3)BendingO4 + p2(x3)CurvatureO4 + Excess4,

with Excess4 = TensorO4 − P2(TensorO4 ).

It follows that:

I O
4 (V,S) =

1

2

(∥∥StretchingO4
∥∥2

Q2
+
∥∥BendingO4

∥∥2

Q2
+
∥∥CurvatureO4

∥∥2

Q2
+
∥∥Excess4

∥∥2

Q2

)
=

1

2

∥∥S +
1

2
(∇V )T∇V +B0

∥∥2

Q2
+

1

24

∥∥[〈∇i∇jV,~b0〉]i,j=1,2
+B1

∥∥2

Q2

+
1

1440

∥∥[Ri3j3]i,j=1,2

∥∥2

Q2

+
1

2
dist2

Q2

(1

4
G2

2×2 −
ˆ x3

0

[
∇i
(
(G1e3)− 1

2
G1

33e3

)]
i,j=1,2,sym

dt,E2

)
,

where R1313, R1323, R2323 are the respective Riemann curvatures of the effective metric Ḡ

in (EF) at z3 = 0. The corrections B0 and B1 coincide with the same expressions written

for Ḡ under two extra constraints (see Theorem 5.4.12), that can be seen as the h4-order

counterparts of the h2-order condition
´ 1/2
−1/2 G

1 dt = 0 that has been assumed throughout.

In case these conditions are valid, the functional I O
4 is the sum of the effective stretching,

bending and curvature in I4 for Ḡ, plus the additional purely metric-related excess term.

Coercivity of I2 and I4. We additionally analyze the derived limiting functionals by

identifying their kernels, when nonempty. In Section 5.3 we show that the kernel of I2

consists of the rigid motions of a single smooth deformation y0 that solves:

(∇y0)T∇y0 = Ḡ2×2,
(
(∇y0)T∇~b0

)
sym

=
1

2
∂3G(x′, 0)2×2.

Further, I2(y) bounds from above the squared distance of an arbitrary W2,2 isometric im-

mersion y of the midplate metric Ḡ2×2, from the indicated kernel of I2.

In Section 5.5 we consider the case of I4. We first identify (see Theorem 5.5.1) the

zero-energy displacement-strain couples (V,S). In particular, we show that the minimizing

displacements are exactly the linearised rigid motions of the referential y0. We then prove

that the bending term in I4, which is solely a function of V , boundes from above the squared

distance of an arbitrary W2,2 displacement obeying
(
(∇y0)T∇V

)
sym

= 0, from the indicated

minimizing set in V . On the other hand, the full coercivity result involving minimization in

both V and S is false. In Remark 5.5.3 we exhibit an example in the setting of the classical

von Kármán functional, where I4(Vn,Sn) → 0 as n → ∞, but the distance of (Vn,Sn) from

the kernel of I4 remains uniformly bounded away from 0. We note that this lack of coercivity

is not prevented by the fact that the kernel is finite dimensional.
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5.2 Rigorous derivation of Kirchhoff-like plate models

I O
2 and I2

5.2.1 Compactness and Γ-limit under Ch2 energy bound

Define the matrix fields Ā ∈ C∞(ω,Sym(3)) and Ah, A1, A2 ∈ C∞(Ω,Sym(3)) such that

Ā(z′) ∈ Psym(3) and, uniformly for all (z′, z3) ∈ Ωh, there holds:

(5.4) Ah(z′, z3) = G
1/2
h (z′, z3) = Ā(z′) + hA1

(
z′,

z3

h

)
+
h2

2
A2

(
z′,

z3

h

)
+ o(h2).

Equivalently, Ā, A1, A2 solve the following system of equations:

(5.5) Ā2 = Ḡ, 2(ĀA1)sym = G1, 2A2
1 + 2(ĀA2)sym = G2 in Ω.

Observe that under the assumption (O), condition W3 on W easily implies:

1

h

ˆ
Ωh

dist2
(
∇uh(z)Ā−1(z′),SO(3)

)
dz ≤ C

h

ˆ
Ωh

dist2
(
∇uh(z)A−1

h (z),SO(3)
)

+ h2 dz

≤ C
(
Ih(uh) + h2

)
.

Consequently, the results of [BLS16] automatically yield the following compactness properties

of any sequence of deformations with the quadratic energy scaling:

Theorem 5.2.1. Assume (O). Let {uh}h ⊆ W1,2(Ωh,R3) be a sequence of deformations

satisfying:

(5.6) Ih(uh) ≤ Ch2.

Then the following properties hold for the rescalings yh ∈W1,2(Ω,R3) given by

yh(x′, x3) = uh(x′, hx3)−
 

Ωh

uh(z) dz :

(i) There exist y ∈W2,2(ω,R3) and ~b ∈W1,2 ∩ L∞(ω,R3) such that, up to a subsequence:

yh → y in W1,2(Ω,R3) and
1

h
∂3y

h → ~b in L2(Ω,R3), as h→ 0.

(ii) The limit deformation y realizes the reduced midplate metric on ω:

(5.7) (∇y)T∇y = Ḡ2×2.

In particular ∂1y, ∂2y ∈ L∞(ω,R3) and the unit normal ν = ∂1y∧∂2y
|∂1y∧∂2y| to the surface

y(ω) satisfies: ν ∈ W1,2 ∩ L∞(ω,R3). The limit displacement ~b is the Cosserat field

defined via:

(5.8) ~b = (∇y)(Ḡ2×2)−1

[
Ḡ13

Ḡ23

]
+

√
det Ḡ√

det Ḡ2×2

ν.

Recall that the results in [BLS16] also give:

(5.9) lim inf
h→0

1

h2

1

h

ˆ
Ωh

W
(
∇uh(z)Ḡ−1/2(z′)

)
dz ≥ 1

24

ˆ
ω
Q2

(
x′,∇y(x′)T∇~b(x′)

)
dx′,
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with the curvature integrand (∇y)T∇~b quantified by the quadratic forms:

Q2(x′, F2×2) = min
{
Q3

(
Ā−1(x′)F̃ Ā−1(x′)

)
; F̃ ∈ R3×3 with F̃2×2 = F2×2

}
,

Q3(F ) = D2W (I3)[F ]2.
(5.10)

The form Q3 is defined for all F ∈ R3×3, while Q2(x′, ·) are defined on F2×2 ∈ R2×2. We

remark that we will in this chapter, with abuse of notation, denote by F2×2 also an arbitrary

matrix in R2×2, not necessarily being a 2× 2 minor of a given 3× 3 matrix as in Section 1.1.

Both forms Q3 and all Q2(x′, ·) are nonnegative definite and depend only on the symmetric

parts of their arguments, in view of the assumptions on the elastic energy density W , as it

has been shown in Appendix 2.A. Recall also that, the minimization problem in (5.10) has a

unique solution among symmetric matrices F̃ satisfying F̃2×2 = F2×2, which is now for each

x′ ∈ ω described by the linear function F2×2 7→ `(x′, F2×2) ∈ R3 in:

(5.11) Q2(x′, F2×2) = min
{
Q3

(
Ā−1(x′)(F ∗2×2 + c⊗ f3)sym Ā

−1(x′)
)

: c ∈ R3
}
.

Recall form Section 1.1 that for a given F2×2 ∈ R2×2, the 3× 3 matrix with principal minor

equal F2×2 and all other entries equal to 0, is denoted by F ∗2×2.

The energy in the right hand side of (5.9) is a Kirchhoff-like fully nonlinear bending, which

in case of Āf3 = f3 reduces to the classical bending content quantifying the second fundamental

form (∇y)T∇~b = (∇y)T∇ν on the deformed surface y(ω). Observe that the vector field ~b in

general contains also the shear direction, apart from the normal one. Namely, it determines

the preferred direction of “stacking” copies of surfaces y(ω) on top of each other, in order to

obtain the deformed three dimensional shell u(Ωh) with minimal energy in (5.3) (see [LP16]).

We now proceed with the derivation of the new Kirchhoff-like plate model corresponding

to a more general incompatibility metric Gh, as proposed in the following results.

We start with an observation about projections on polynomial subspaces of L2. Consider

the following Hilbert space, with its norm:

(5.12) E :=
(

L2
(
Ω, Sym(2)

)
, ‖ · ‖Q2

)
, ‖F‖Q2 =

( ˆ
Ω
Q2(x′, F (x)) dx

)1/2
,

associated to the scalar product:

〈F1, F2〉Q2 =

ˆ
Ω
L2,x′

(
F1(x), F2(x)

)
dx,

where L2,x′ is a bilinear form associated to the quadratic form Q2(x′, ·).
We define P1 and P2, respectively, as the orthogonal projections onto the following sub-

spaces of E:

E1 =
{
x3F1(x′) + F0(x′); F1,F0 ∈ L2

(
ω,Sym(2)

)}
,

E2 =
{
x2

3F2(x′) + x3F1(x′) + F0(x′); F2,F1,F0 ∈ L2
(
ω,Sym(2)

)}
,

(5.13)

obtained by projecting each F (x′, ·) on the appropriate polynomial subspaces of the space

L2
(
(−1/2, 1/2),Sym(2)

)
whose orthonormal bases is given in terms of the Legendre polyno-

mials {pi}∞i=0 in L2(−1/2, 1/2). The first three polynomials are:

p0(t) = 1, p1(t) =
√

12t, p2(t) =
√

5
(
6t2 − 1

2

)
.
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Lemma 5.2.2. For every F ∈ E, we have:

P1(F ) = 12
(ˆ 1/2

−1/2
tF (x′, t) dt

)
x3 +

ˆ 1/2

−1/2
F (x′, t) dt,

P2(F ) =
(ˆ 1/2

−1/2
(180t2 − 15)F (x′, t) dt

)
x2

3 + 12
(ˆ 1/2

−1/2
tF (x′, t) dt

)
x3

+
( ˆ 1/2

−1/2
(−15t2 +

9

4
)F (x′, t) dt

)
Moreover, the distances from spaces E1 and E2 are:

dist2(F,E1) =

ˆ
ω

[ˆ 1/2

−1/2
Q2

(
x′, F (x′, t)

)
dt− 12Q2

(
x′,

ˆ 1/2

−1/2
tF (x′, t) dt

)
−Q2

(
x′,

ˆ 1/2

−1/2
F (x′, t) dt

)]
dx′,

dist2(F,E2) =

ˆ
ω

[ˆ 1/2

−1/2
Q2

(
x′, F (x′, t)

)
dt− 180Q2

(
x′,

ˆ 1/2

−1/2

(
t2 − 1

12

)
F (x′, t) dt

)
− 12Q2

(
x′,

ˆ 1/2

−1/2
tF (x′, t) dt

)
−Q2

(
x′,

ˆ 1/2

−1/2
F (x′, t) dt

)]
dx′.

Proof. Observe that:

P1(F ) = p1(x3)

ˆ 1/2

−1/2
p1(t)F (x′, t) dt+

ˆ 1/2

−1/2
p0(t)F (x′, t) dt,

and similarly:

P2(F ) = p2(x3)

ˆ 1/2

−1/2
p2(t)F (x′, t) dt+ p1(x3)

ˆ 1/2

−1/2
p1(t)F (x′, t) dt+

ˆ 1/2

−1/2
p0(t)F (x′, t) dt,

whereas:

dist2(F,E1) = ‖F‖2Q2
− ‖P1(F )‖2Q2

= ‖F‖2Q2
−
(∥∥ˆ 1/2

−1/2
p1F dt

∥∥2

Q2
+
∥∥ˆ 1/2

−1/2
p0F dt

∥∥2

Q2

)
,

dist2(F,E2) = ‖F‖2Q2
− ‖P2(F )‖2Q2

= ‖F‖2Q2
−
(∥∥ˆ 1/2

−1/2
p2F dt

∥∥2

Q2
+
∥∥ˆ 1/2

−1/2
p1F dt

∥∥2

Q2
+
∥∥ˆ 1/2

−1/2
p0F dt

∥∥2

Q2

)
.

The Lemma results then by a straightforward calculation.

Theorem 5.2.3. In the setting of Theorem 5.2.1, lim infh→0
1
h2 Ih(uh) is bounded from below

by:

I O
2 (y) =

1

2

ˆ
Ω
Q2

(
x′, x3∇y(x′)T∇~b(x′)− 1

2
G1

2×2(x)
)

dx

=
1

24

ˆ
ω
Q2

(
x′,
(
∇y(x′)T∇~b(x′)

)
sym
− 1

2
Ḡ1

2×2(x′)
)

dx′ +
1

8
dist2

(
G1

2×2,E1

)
,

where Ḡ1 is as in (EF). In the non-oscillatory case (NO) this formula becomes:

I2(y) =
1

24

ˆ
ω
Q2

(
x′,
(
∇y(x′)T∇~b(x′)

)
sym
− 1

2
∂3G2×2(x′, 0)

)
dx′.

The first term in I O
2 coincides with I2 for the effective metric Ḡ in (EF).
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Proof. The argument follows the proof of [BLS16, Theorem 2.1] and thus we only indicate

its new ingredients. Applying the compactness analysis for the z3-independent metric Ḡ, one

obtains the sequence {Rh}h ⊆ L2(ω,R3×3) of approximating rotation-valued fields, satisfying:

(5.14)
1

h

ˆ
Ωh

|∇uh(z)Ā−1(z′)−Rh(z′)|2 dz ≤ Ch2.

Recall yh = uh(·, h·) and define now the family {Sh}h ⊆ L2(Ω,R3×3) by:

Sh(x′, x3) =
1

h

(
RT
h(x′)∇hyh(x)A−1

h (x′, hx3)− I3

)
, x = (x′, x3) ∈ Ω.

According to [BLS16], the same quantities, written for the metric Ḡ rather than Gh:

S̄h(x′, x3) =
1

h

(
RT
h(x′)∇hyh(x)Ā−1(x′)− I3

)
, x = (x′, x3) ∈ Ω,

converge weakly in L2(Ω,R3×3) to S̄, such that:

(5.15)
(
Ā(x′)S̄(x′, x3)Ā(x′)

)
2×2

= s̄(x′) + x3∇y(x′)T∇~b(x′),

with some appropriate s̄ ∈ L2(ω,R2×2). Observe that:

Sh(x′, x3) = S̄h(x′, x3) +RT
h(x′)∇hyh(x′)

A−1
h (x′, hx3)− Ā−1(x′)

h

and that the term RT
h(x′)∇hyh(x) converges strongly in L2(Ω,R3×3) to Ā(x′). On the other

hand, the remaining factor converges uniformly on Ω as h→ 0, because:

(5.16)
1

h

(
A−1
h (x′, hx3)− Ā−1(x′)

)
= −Ā−1(x′)A1(x′, x3)Ā−1(x′) +O(h)

Concluding, Sh converge weakly in L2(Ω,R3×3) to S, satisfying by (5.15):

(5.17)
(
Ā(x′)S(x′, x3)Ā(x′)

)
2×2

= s̄(x′) + x3∇y(x′)T∇~b(x′)− Ā(x′)A1(x′, x3).

Consequently, using the definition of Sh and frame invariance of W and Taylor expanding

W at I3 on the set {|Sh|2 ≤ 1/h}, we obtain:

lim inf
h→0

1

h2
Ih(uh) = lim inf

h→0

1

h2

ˆ
Ω
W
(
I3 + hSh(x)

)
dx

≥ lim inf
h→0

1

2

ˆ
{|Sh|2≤1/h}

Q3(Sh(x)) + o(|Sh|2) dx

≥ 1

2

ˆ
Ω
Q3(S(x)) dx =

1

2

ˆ
Ω
Q2

(
x′,
(
Ā(x′)S(x)Ā(x′)

)
2×2

)
dx

≥ 1

2

ˆ
Ω
Q2

(
x′,
(
Ā(x′)S(x)Ā(x′)

)
2×2
− s̄(x′)

)
dx.

The last inequality follows since the effective integrand
(
ĀSĀ

)
2×2

is the sum of an x3-

independent term s̄(x′) and the remaining term with zero x3-average. We call the right

hand side functional above I O
2 and recall (5.17) and (5.5) to get:

I O
2 (y) =

1

2

ˆ
Ω
Q2

(
x′, x3∇y(x′)T∇~b(x′)− 1

2
G1

2×2(x)
)

dx =
1

2

∥∥x3(∇y)T∇~b− 1

2
G1

2×2

∥∥2

Q2

=
1

2

∥∥P1

(
x3(∇y)T∇~b− 1

2
G1

2×2

)∥∥2

Q2
+

1

8

∥∥G1
2×2 − P1(G1

2×2)
∥∥2

Q2

=
1

24

ˆ
ω
Q2

(
x′,∇y(x′)T∇~b(x′)− 6

ˆ 1/2

−1/2
tG1

2×2(x′, t) dt
)

dx′ +
1

8
dist2

(
G1

2×2,E1

)
,

where we have used the fact that Q2(x′, ·) is a function of its symmetrized argument and

Lemma 5.2.2. The formula for I2 in case (NO) is immediate.
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Our next result is the upper bound, parallel to the lower bound in Theorem 5.2.3:

Theorem 5.2.4. Assume (O). For every isometric immersion y ∈W2,2(ω,R3) of the reduced

midplate metric Ḡ2×2 as in (5.7), there exists a sequence {uh}h ⊆W1,2(Ωh,R3) such that the

sequence {yh = uh(·, h·)}h converges in W1,2(Ω,R3) to y and:

(5.18) lim
h→0

1

h2
Ih(uh) = I O

2 (y)

Automatically, 1
h∂3y

h converges in L2(Ω,R3) to ~b ∈W1,2 ∩ L∞(ω,R3) as in (5.8).

Proof. Given an admissible y, we define ~b by (5.8) and also define the matrix field:

(5.19) Q =
[
∂1y, ∂2y, ~b

]
∈W1,2 ∩ L∞(ω,R3×3).

It follows that Q(x′)Ā−1(x′) ∈ SO(3) on ω. The recovery sequence {yh = uh(·, h·)} satisfying

(5.18) is then constructed via a diagonal argument, applied to the explicit deformation fields

below. Again, we only indicate the new ingredients with respect to the proof in [BLS16,

Theorem 3.1].

We define the vector field ~d ∈ L2(Ω,R3) by:

~d(x′, x3) = Q(x′)T,−1

(
x2

3

2

(
`
(
x′,∇y(x′)T∇~b(x′)

)
− 1

2

[
∇|~b|2(x′)

0

])
− 1

2
`
(
x′,

ˆ x3

0
G1(x′, t)2×2 dt

)
+

ˆ x3

0
G1(x′, t) dt f3 −

1

2

ˆ x3

0
G1(x′, t)33 dt f3

)
.

(5.20)

In view of definition (5.11), the formula in (5.20) is equivalent to the vector field ∂3
~d ∈

L2(Ω,R3) being, for each (x′, x3) ∈ Ω, the unique solution to:

Q2

(
x′, x3∇y(x′)T∇~b(x′)− 1

2
G1

2×2(x′, x3)
)

= Q3

(
Ā−1(x′)

(
QT(x′)

[
x3∂1

~b(x′), x3∂2
~b(x′), ∂3

~d(x′, x3)
]
− 1

2
G1(x′, x3)

)
Ā−1(x′)

)
.

One then approximates y,~b by sequences {ỹh}h ⊆ W 2,∞(ω,R3), {b̃h}h ⊆ W 1,∞(ω,R3) re-

spectively, and request them to satisfy conditions exactly as in the proof of [BLS16, Theorem

3.1]. The warping field ~d is approximated by dh(x′, x3) =
´ x3

0 d̄h(x′, t) dt, where:

d̄h → d̄ = ∂3
~d strongly in L2(Ω,R3) and h‖d̄h‖W1,∞(Ω,R3) → 0 as h→ 0.

Finally, we define:

(5.21) uh(x′, hx3) = ỹh(x′) + hx3b̃
h(x′) + h2dh

(
x′, x3

)
, x = (x′, x3) ∈ Ω,

so that, with the right approximation error, there holds:

∇uh(x′, hx3) ≈ Q(x′) + h
[
x3∂1

~b(x′), x3∂2
~b(x′), ∂3

~d(x′, x3)
]
.

Using Taylor’s expansion of W , the definition (5.20) and the controlled blow-up rates of the

approximating sequences, we conclude the construction.
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We conclude this section by noting the following easy direct consequence of Theorems

5.2.3 and 5.2.4:

Corollary 5.2.5. If the set of W2,2(ω,R3) isometric immersions of Ḡ2×2 is nonempty, then

the functional I O
2 attains its infimum and:

lim
h→0

1

h2
inf Ih = min I O

2 .

The infima in the left hand side are taken over the set W1,2(Ωh,R3), whereas the minima in

the right hand side are taken over W2,2(ω,R3) isometric immersions y of Ḡ2×2.

5.2.2 Identification of the Ch2 scaling regime

In this section, we identify the equivalent conditions for inf Ih ∼ h2 in terms of curvatures of

the metric tensor Ḡ in case (NO). We begin by expressing the integrand tensor in the residual

energy I2 in terms of the shape operator on the deformed midplate. Recall that we always

use the Einstein summation convention over repeated indices running from 1 to 3.

Lemma 5.2.6. In the the non-oscillatory setting (NO), let y ∈W2,2(ω,R3) be an isometric

immersion of the metric Ḡ2×2, so that (5.7) holds on ω. Define the Cosserat vector ~b according

to (5.8). Then:

(5.22)
(
(∇y)T∇~b

)
sym
− 1

2
∂3G2×2(x′, 0) =

1√
Ḡ33

Πy +
1

Ḡ33

[
Γ3

11 Γ3
12

Γ3
12 Γ3

22

]
(x′, 0),

for all x′ ∈ ω. Above, Ḡ33 = 〈Ḡ−1f3, f3〉, whereas Πy = (∇y)T∇ν ∈ L2
(
ω,Sym(2)

)
is the

second fundamental form of the surface y(ω) ⊆ R3, and {Γikl}i,k,l=1...3 are the Christofel

symbols of G, as in (1.1).

Proof. The proof is an extension of the arguments in [BLS16, Theorem 5.3], which we modify

for the case of x3-dependent metric G. Firstly, the fact that QTQ = Ḡ with Q defined in

(5.19), yields:

(5.23)
(
(∇y)T∇~b

)
sym

=
([
∂iḠj3

]
i,j=1,2

)
sym
−
[
〈∂ijy,~b〉

]
i,j=1,2

.

Also, ∂iḠ = 2
(
(∂iQ)TQ

)
sym

for i = 1, 2, results in:

(5.24) 〈∂ijy, ∂ky〉 =
1

2

(
∂iGkj − ∂jGkl − ∂kGij

)
and:

(∇y)T∂ijy = Γmij (x
′, 0)

[
Ḡm1

Ḡm2

]
for i, j = 1, 2.

Consequently, we obtain the formula:

[
Ḡ13, Ḡ23

]
(Ḡ2×2)−1(∇y)T∂ijy =

[
Ḡ13, Ḡ23,

[
Ḡ13, Ḡ23

]
(Ḡ2×2)−1

[
Ḡ13

Ḡ23

]] Γ1
ij

Γ2
ij

Γ3
ij

 (x′, 0)

= Ḡm3Γmij (x
′, 0)− 1

Ḡ33
Γ3
ij(x

′, 0).
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Computing the normal vector ν from (5.8) and noting that det Ḡ2×2/ det Ḡ = Ḡ33, we get:

Πij = −〈∂ijy, ν〉 = −
√
Ḡ33
(
〈∂ijy,~b〉 −

[
Ḡ13, Ḡ23

]
(Ḡ2×2)−1(∇y)T∂ijy

)
=
√
Ḡ33
(
(∇y)T∇~b

)
sym ,ij

− 1√
Ḡ33

Γ3
ij(x

′, 0)−
√
Ḡ33

2
∂3Gij(x

′, 0), for i, j = 1, 2,

which completes the proof of (5.22).

The key result of this section is the following:

Theorem 5.2.7. The energy scaling beyond the Kirchhoff regime:

lim
h→0

1

h2
inf Ih = 0

is equivalent to the following conditions:

(i) in the oscillatory case (O)

(5.25)



G1
2×2 ∈ E1 or equivalently there holds:

G1
2×2(x′, x3) = x3Ḡ1

2×2(x′) for all (x′, x3) ∈ Ω.

Moreover, condition (5.26) below must be satisfied with G replaced by

the effective metric Ḡ in (EF). This condition involves only Ḡ and Ḡ1
2×2

terms of Ḡ.

(ii) in the non-oscillatory case (NO)

(5.26)



There exists y0 ∈W2,2(ω,R3) satisfying (5.7) and such that:

Πy0(x′) = − 1√
Ḡ33

[
Γ3

11 Γ3
12

Γ3
12 Γ3

22

]
(x′, 0) for all x′ ∈ ω,

where Πy0 is the second fundamental form of the surface y0(ω) and {Γijk}
are the Christoffel symbols of the metric G.

The isometric immersion y0 in (5.26) is automatically smooth (up to the boundary) and it is

unique up to rigid motions. Further, condition (5.26) is equivalent to:

(5.27)

 The following Riemann curvatures of the metric G vanish on ω × {0}:

R1212(x′, 0) = R1213(x′, 0) = R1223(x′, 0) = 0 for all x′ ∈ ω.

The Riemann curvatures of a given metric G are given by (1.3).

Proof. By Corollary 5.2.5, it suffices to determine the equivalent conditions for min I O
2 = 0

and min I2 = 0. In case (O), the linearity of x3 7→ G1
2×2(x′, x3) is immediate, while condition

(5.26) follows in both cases (O) and (NO) by Lemma 5.2.6. Note that the Christoffel symbols

{Γijk} depend only on Ḡ and ∂3G2×2(x′, 0) in the Taylor expansion of G. This completes the

proof of (i) and (ii).
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Regularity of y0 is an easy consequence, via the bootstrap argument, of the continuity

equation:

(5.28) ∂ijy0 =

2∑
m=1

γmij ∂my0 − (Πy0)ijν0 for i, j = 1, 2,

where {γmij }i,j,m=1...2 denote the Christoffel symbols of Ḡ2×2 on ω. Uniqueness of y0 is a

consequence of (5.26), due to uniqueness of isometric immersion with prescribed second fun-

damental form.

To show (iv), we argue as in the proof of [BLS16, Theorem 5.5]. The compatibility of Ḡ2×2

and Πy0 is equivalent to the satisfaction of the related Gauss-Codazzi-Mainardi equations (see

(1.4)). By an explicit calculation, we see that the two Codazzi-Mainardi equations become:

(
∂2Γ3

11 − ∂1Γ3
12

)
− 1

2

(
∂2G

33

G33
Γ3

11 −
∂1G

33

G33
Γ3

12

)
+

1

G33
Gm3

(
Γ3

2mΓ3
11 − Γ3

1mΓ3
12

)
=

(
2∑

m=1

Γ3
1mΓm12 −

2∑
m=1

Γ3
2mΓm11

)
+
G32

G33
(Γ3

11Γ3
22 − (Γ3

12)2),

(
∂2Γ3

12 − ∂1Γ3
22

)
− 1

2

(
∂2G

33

G33
Γ3

12 −
∂1G

33

G33
Γ3

22

)
+

1

G33
Gm3

(
Γ3

2mΓ3
12 − Γ3

1mΓ3
22

)
=

(
2∑

m=1

Γ3
1mΓm22 −

2∑
m=1

Γ3
2mΓm12

)
− G31

G33
(Γ3

11Γ3
22 − (Γ3

12)2),

and are equivalent to R3
121 = R3

221 = 0 on ω × {0}. The Gauss equation is, in turn, equiva-

lent to R1212 = 0 exactly as in [BLS16]. The simultaneous vanishing of R3
121, R

3
221, R1212 is

equivalent with the vanishing of R1212, R1213 and R1223, which proves the claim in (5.27).

5.3 Coercivity of the limiting energy I2

In this section we quantify the statement in Theorem 5.2.7 and prove that in case when

either of the limiting energies I2 or I O
2 can be minimized to zero, the effective energy

I2(y) measures the distance of a given isometric immersion y from the kernel: ker I2 ={
Qy0 + c; Q ∈ SO(3), c ∈ R3

}
.

Assume that the set of W2,2(ω,R3) isometric immersions y of Ḡ2×2 is nonempty, which in

view of Theorem 5.2.3 and Theorem 5.2.4 is equivalent to: inf Ih ≤ Ch2. For each such y,

the continuity equation (5.28) combined with Lemma 5.2.6 gives the following formula, valid

for all i, j = 1, 2:

(5.29) ∂ijy =
∑
m=1,2

γmij ∂my −
√
Ḡ33
((

(∇y)T∇~b
)

sym
− 1

2
∂3G2×2(x′, 0)

)
ij
ν +

Γ3
ij√
Ḡ33

ν on ω,

and resulting in:

|∇2y|2 = |Πy|2 +
∑
i,j=1,2

Ḡ2×2 : [γ1
ij , γ

2
ij ]
⊗2 on ω.

By Lemma 5.2.6 and since |∇y|2 = tr
(
(∇y)T∇y

)
= tr Ḡ2×2, this yields the bound:

(5.30)
∥∥y −  

ω
y
∥∥2

W2,2(ω,R3)
≤ C

(
I2(y) + 1

)
,
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where C is a constant independent of y. Clearly, when condition (5.27) does not hold, so that

min I2 > 0, the right hand side C
(
I2(y) + 1

)
above may be replaced by CI2(y). On the

other hand, in presence of (5.27), the bound (5.30) can be refined to the following coercivity

result:

Theorem 5.3.1. Assume the curvature condition (5.27) on a metric G as in (NO), and let

y0 be the unique (up to rigid motions in R3) isometric immersion of Ḡ2×2 satisfying (5.26).

Then, for all y ∈W2,2(ω,R3) such that (∇y)T∇y = Ḡ2×2, there holds:

(5.31) dist2
W2,2(ω,R3)

(
y,
{
Ry0 + c : R ∈ SO(3), c ∈ R3

})
≤ CI2(y),

with a constant C > 0 that depends on G,ω and W but it is independent of y.

Proof. Without loss of generality, we set
ffl
ω y =

ffl
ω y0 = 0. For any R ∈ SO(3), identity (5.29)

implies:
ˆ
ω

∣∣∇2y −∇2(Ry0)
∣∣2 dx′

≤C
(ˆ

ω

∣∣∇y −∇(Ry0)
∣∣2 dx′ +

ˆ
ω

∣∣((∇y)T∇~b
)

sym
− 1

2
∂3G2×2(x′, 0)

∣∣2 dx′

+

ˆ
ω
|ν −R~ν0|2 dx′

)
≤C
(ˆ

ω

∣∣∇y −∇(Ry0)
∣∣2 dx′ +

ˆ
ω

∣∣((∇y)T∇~b
)

sym
− 1

2
∂3G2×2(x′, 0)

∣∣2 dx′
)
,

where we used I2(Ry0) = 0 and the fact that
´
ω |ν − R~ν0|2 dx′ ≤ C

´
ω

∣∣∇y − ∇(Ry0)
∣∣2 dx′

following, in particular, from |∂1y × ∂2y| = |∂1(Ry0) × ∂2(Ry0)| =
√

det Ḡ2×2. Also, the

non-degeneracy of quadratic forms Q2(x′, ·) in (5.10), implies the uniform bound:
ˆ
ω

∣∣((∇y)T∇~b
)

sym
− 1

2
∂3G2×2(x′, 0)

∣∣2 dx′ ≤ CI2(y).

Taking R ∈ SO(3) as in Lemma 5.3.2 below, (5.31) directly follows in view of (5.32).

The next weak coercivity estimate has been the essential part of Theorem 5.3.1:

Lemma 5.3.2. Let y and y0 be as in Theorem 5.3.1. Then there exists R ∈ SO(3) such that:

(5.32)

ˆ
ω
|∇y −R∇y0|2 dx′ ≤ C

ˆ
ω

∣∣((∇y)T∇~b
)

sym
− 1

2
∂3G2×2(x′, 0)

∣∣2 dx′,

with a constant C > 0 that depends on G,ω but it is independent of y.

Proof. Consider the natural extensions u and u0 of y and y0, namely:

u(z′, z3) = y(z′) + z3
~b(z′), u0(z′, z3) = y0(z′) + z3

~b0(z′) for all (z′, z3) ∈ Ωh.

Clearly, u ∈W1,2(Ωh,R3) and u0 ∈ C1(Ωh,R3) satisfies det∇u0 > 0 for h sufficiently small.

Write:

ω =

N⋃
k=1

ωk, Ωh =

N⋃
k=1

Ωk
h

as the union of N ≥ 1 open, bounded, connected domains with Lipschitz boundary, such

that on each {Ωk
h = ωk× (−h

2 ,
h
2 )}Nk=1, the deformation u0|Ωkh

is a C1 diffeomorphism onto its

image Ukh ⊆ R3.
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Step 1. We first prove (5.32) under the assumption N = 1. Call v = u ◦ u−1
0 ∈

W1,2(Uh,R3) and apply the geometric rigidity estimate [FJM02] (see Theorem 2.2.2) for

the existence of R ∈ SO(3) satisfying:

(5.33)

ˆ
Uh
|∇v −R|2 dη ≤ C

ˆ
Uh

dist2
(
∇v,SO(3)

)
dη,

with a constant C depending on a particular choice of h (and ultimately k, when N > 1),

but independent of v. Since ∇v(u0(z)) = ∇u(z)
(
∇u0(z)

)−1
for all z ∈ Ωh, we get:

ˆ
Uh
|∇v −R|2 dη =

ˆ
Ωh

(det∇u0)
∣∣(∇u−R∇u0)(∇u0)−1

∣∣2 dz

≥ C
ˆ

Ωh

|∇u−R∇u0|2 dz

= C

ˆ
Ωh

∣∣∣ [∂1y, ∂2y, ~b
]
−R

[
∂1y0, ∂2y0, ~b0

] ∣∣∣2 + z2
3 |∇~b−R∇~b0|2 dz

≥ Ch
ˆ
ω
|∇y −R∇y0|2 dz′.

(5.34)

Likewise, the change of variables in the right hand side of (5.33) gives:

(5.35)

ˆ
Uh

dist2
(
∇v,SO(3)

)
dη ≤ C

ˆ
Ωh

dist2
(
(∇u)(∇u0)−1, SO(3)

)
dz.

Since (∇u)T∇u(z′, 0) = (∇u0)T∇u0(z′, 0) = Ḡ(z′), by polar decomposition it follows that:

∇u(z′, 0) = Q(z′) = R̄Ḡ1/2(z′) and ∇u0(z′, 0) = Q0(z′) = R̄0Ḡ1/2(z′) for some R̄, R̄0 ∈ SO(3).

The notation Q, Q0 is consistent with that introduced in (5.19). Observe further:

∇u(z′, z3) = Q+ z3

[
∂1
~b, ∂2

~b, 0
]

= R̄Ḡ1/2
(

I3 + z3Ḡ−1QT

[
∂1
~b, ∂2

~b, 0
] )

= R̄Ḡ1/2
(

I3 + z3Ḡ−1
(

(∇y)T∇~b)∗ + f3 ⊗ (∇~b|0)T~b
))
,

and similarly:

∇u0(z′, z3) = R̄0Ḡ1/2
(

I3 + z3Ḡ−1
(

(∇y0)T∇~b0)∗ + f3 ⊗ (∇~b0|0)T~b0

))
.

Consequently, the integrand in the right hand side of (5.35) becomes:

(5.36) (∇u)(∇u0)−1 = R̄Ḡ1/2

(
I3 + z3Ḡ−1S

(
I3 + z3Ḡ−1

(
(∇y0)T∇~b0)∗

+ f3 ⊗ (∇~b0|0)T~b0
))−1

)
Ḡ−1/2R̄T

0,

where:

S =
(

(∇y)T∇~b− (∇y0)T∇~b0
)∗

+ f3 ⊗ (∇~b|0)T~b− f3 ⊗ (∇~b0|0)T~b0

=
(

(∇y)T∇~b− (∇y0)T∇~b0
)∗

sym
.

The last equality follows from the easy facts that, for i, j = 1, 2, we have:

〈∂i~b,~b〉 = 〈∂i~b0,~b0〉 =
1

2
∂iḠ33

〈∂iy, ∂j~b〉 − 〈∂jy, ∂i~b〉 = 〈∂iy0, ∂j~b0〉 − 〈∂jy0, ∂i~b0〉 = ∂jḠi3 − ∂iḠj3.
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Thus, (5.35) and (5.36) imply:
ˆ
Uh

dist2
(
∇v,SO(3)

)
dη ≤ C

ˆ
Ωh

∣∣(∇u)(∇u0)−1 − R̄R̄T
0

∣∣2 dz

≤ C
ˆ

Ωh

∣∣z3S(z′, z3)
∣∣2 dz

≤ C
ˆ
ω

∣∣∣((∇y)T∇~b
)

sym
−
(
(∇y0)T∇~b0

)
sym

∣∣∣2 dz′

= Ch

ˆ
ω

∣∣∣((∇y)T∇~b
)

sym
− 1

2
∂3G2×2(z′, 0)

∣∣∣2 dz′

(5.37)

with a constant C that depends on G,ω and h, but not on y. We conclude (5.32) in view of

(5.33), (5.34) and (5.37).

Step 2. To prove (5.32) in case N > 1, let k, s : 1, . . . , N be such that ωk ∩ ωs 6= Ø.

Define:

F =
(ˆ

Ωkh∩Ωsh

det∇u0 dz
)−1

ˆ
Ωkh∩Ωsh

(det∇u0)(∇u)(∇u0)−1 dz ∈ R3×3.

Denote by Rk, Rs ∈ SO(3) the corresponding rotations in (5.32) on ωk, ωs. For i ∈ {k, s} we

have:

|F −Ri|2 =
∣∣∣(ˆ

Ωkh∩Ωsh

det∇u0 dz
)−1

ˆ
Ωkh∩Ωsh

(det∇u0)
(
∇u−Ri∇u0

)
(∇u0)−1 dz

∣∣∣2
≤ C

ˆ
Ωkh∩Ωsh

|∇u−Ri∇u0|2 dz ≤ C
ˆ

Ωih

|∇u−Ri∇u0|2 dz

≤
ˆ
ωi

∣∣((∇y)T∇~b
)

sym
− 1

2
∂3G2×2(z′, 0)

∣∣∣2 dz′,

where for the sake of the last bound we applied the intermediate estimate in (5.34) to the

left hand side of (5.33), as discussed in the previous step. Consequently:

|Rk −Rs|2 ≤ C
ˆ
ω

∣∣((∇y)T∇~b
)

sym
− 1

2
∂3G2×2(z′, 0)

∣∣∣2 dz′,

and thus:ˆ
ωk

|∇y −Rs∇y0|2 dz′ ≤ 2
(ˆ

ωk

|∇y −Rk∇y0|2 dz′ +

ˆ
ωk

|Rk −Rs|2|∇y0|2 dz′
)

≤ C
ˆ
ω

∣∣((∇y)T∇~b
)

sym
− 1

2
∂3G2×2(z′, 0)

∣∣∣2 dz′.

This shows that one can take one and the same R = R1 on each {ωk}Nk=1, at the expense of

possibly increasing the constant C by a controlled factor depending only on N . The proof of

(5.32) is done.

Remark 5.3.3. A similar reasoning as in the proof of Lemma 5.3.2, yields a quantitative

version of the uniqueness of isometric immersion with a prescribed second fundamental form

compatible to the metric by the Gauss-Codazzi-Mainardi equations. More precisely, given a

smooth metric g in ω ⊆ R2, for every two isometric immersions y1, y2 ∈ W2,2(ω,R3) of g,

there holds:

min
R∈SO(3)

ˆ
ω
|∇y1 −R∇y2|2 dx′ ≤ C

ˆ
ω
|Πy1 −Πy2 |2 dx′,

with a constant C > 0, depending on g and ω but independent of y1 and y2. �
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5.4 Rigorous derivation of von Kármán-like plate models

I O
4 and I4

In this and the next sections we assume that:

(5.38) lim
h→0

1

h2
inf Ih = 0.

Recall that by Theorem 5.2.7 this condition is equivalent to the existence of a (automatically

smooth and unique up to rigid motions) vector field y0 : ω → R3 satisfying:

(5.39) (∇y0)T∇y0 = Ḡ2×2 and
(
(∇y0)T∇~b0

)
sym

=
1

2
Ḡ1

2×2 on ω,

where in the oscillatory case (O) the symmetric x′-dependent matrix G1 is given in (EF)

and there must be G1
2×2 = x3Ḡ1

2×2, whereas in the non-oscillatory (NO) case Ḡ1(x′) is simply

∂3G(x′, 0). The (smooth) Cosserat field ~b0 : ω → R3 in (5.8) is uniquely given by requesting

that:

Q0 :=
[
∂1y0, ∂2y0, ~b0

]
satisfies: QT

0Q0 = Ḡ, detQ0 > 0 on ω,

with notation similar to (5.19). We now introduce the new vector field ~d0 : Ω→ R3 through:

(5.40) QT
0

[
x3∂1

~b0(x′), x3∂2
~b0(x′), ∂3

~d0(x′, x3)
]
− 1

2
G1(x′, x3) ∈ Skew(3),

justified by (5.39) and in agreement with the construction (5.20) of second order terms in the

recovery sequence for the Kirchhoff limiting energies. Explicitly, we have:

~d0(x′, x3) = Q−T

0 (x′)
(ˆ x3

0
G1(x′, t) dt f3 −

1

2

ˆ x3

0
G1(x′, t)33 dt f3 −

x2
3

2

[
(∇~b0)T~b0(x′)

0

])
.

In what follows, the smooth matrix field in (5.40) will be referred to as P0 : Ω → R3×3,

namely:

(5.41) P0(x′, x3) =
[
x3∂1

~b0(x′), x3∂2
~b0(x′), ∂3

~d0(x′, x3)
]
.

In the non-oscillatory case (NO), the above formulas become:

~d0 =
x2

3

2
d̃0(x′), P0(x′, x3) = x3

[
∂1
~b0, ∂2

~b0, d̃0

]
(x′),

where: d̃0(x′) = QT,−1

0 (x′)
(
∂3G(x′, 0)f3 −

1

2
∂3G(x′, 0)33f3 −

[
(∇~b0)T~b0(x′)

0

])
.

(5.42)

We also note that the assumption
´ 1/2
−1/2 G

1(x′, t) dt = 0 implies:

(5.43)

ˆ 1/2

−1/2
P0(x′, x3) dx3 = 0 for all x′ ∈ ω.

With the aid of ~d0 we now construct the sequence of deformations with low energy:

Lemma 5.4.1. Assume (O). Then (5.38) implies:

inf Ih ≤ Ch4.
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Proof. Define the sequence of smooth maps uh : Ωh → R3 by:

(5.44) uh(z′, z3) = y0(z′) + z3
~b0(x′) + h2~d0

(
z′,

z3

h

)
, z = (z′, z3) ∈ Ωh.

In order to compute ∇uhA−1
h , recall the expansion of A−1

h , so that:

(5.45) ∇uh(z)A−1
h (z) = Q0(z′)Ā−1(z′)

(
I3 + hSh(z) +O(h2)

)
,

where for every z ∈ Ωh:

Sh(z) = Ā−1(z′)
(
QT

0(z′)P0

(
z′,

z3

h

)
− Ā(z′)A1

(
z′,

z3

h

))
Ā−1(z′).

By frame invariance of the energy density W and since Q0(z′)Ā−1(z′) ∈ SO(3), we obtain:

W
(
∇uh(z)A−1

h (z)
)

= W
(
I3 + hSh(z) +O(h2)

)
= W

(
I3 + h(Sh)sym (z) +O(h2)

)
= W

(
I3 +O(h2)

)
= O(h4),

where we also used the fact that (Sh)sym (z) = 0 following directly from the definition (5.40).

This implies that Ih(uh) = O(h4) as well, proving the claim.

Lemma 5.4.2. Assume (O) and (5.38). For an open, Lipschitz subset V ⊆ ω, denote:

Vh = V ×
(
−h

2
,
h

2

)
, Ih(uh,Vh) =

1

h

ˆ
Vh
W
(
∇uh(z)A−1

h (z)
)

dz.

If y0 is injective on V, then for every uh ∈W1,2(Vh,R3) there exists R̄h ∈ SO(3) such that:

(5.46)
1

h

ˆ
Vh

∣∣∣∇uh(z)− R̄h
(
Q0(z′) + hP0

(
z′,

z3

h

))∣∣∣2 dz ≤ C
(
Ih(uh,Vh) + h3|Vh|

)
,

with the smooth correction matrix field P0 in (5.41). The constant C in (5.46) is uniform for

all subdomains Vh ⊆ Ωh which are bi-Lipschitz equivalent with controlled Lipschitz constants.

Proof. The proof, similar to [LRR17, Lemma 2.2], is a combination of the change of variable

argument in Lemma 5.3.2 and the low energy deformation construction in Lemma 5.4.1.

Observe first that:

Q0(z′) + hP0

(
z′,

z3

h

)
= ∇Y h(z′, z3) +O(h2),

where by Y h : Ω̄h → R3 we denote the smooth vector fields in (5.44). It is clear that for

sufficiently small h > 0, each Y h
|Vh is a smooth diffeomorphism onto its image Uh ⊆ R3,

satisfying uniformly: det∇Y h > c > 0. We now consider vh = uh ◦ (Y h)−1 ∈ W1,2(Uh,R3).

By the rigidity estimate [FJM02]:

(5.47)

ˆ
Uh
|∇vh − R̄h|2 dη ≤ C

ˆ
Uh

dist2
(
∇vh,SO(3)

)
dη,

for some rotation R̄h ∈ SO(3). Noting that: (∇vh) ◦ Y h = (∇uh)(∇Y h)−1 in the set Vh, the

change of variable formula yields for the left hand side in (5.47):
ˆ
Uh
|∇vh − R̄h|2 dη =

ˆ
Vh

(det∇Y h)
∣∣(∇uh)(∇Y h)−1 − R̄h

∣∣2 dz

≥ c
ˆ
Vh

∣∣∣∇uh − R̄h(Q0(z′) + hP0

(
z′,

z3

h

)
+O(h2)

)∣∣∣2 dz

≥ c
ˆ
Vh

∣∣∣∇uh − R̄h(Q0(z′) + hP0

(
z′,

z3

h

))∣∣∣2 dz − c
ˆ
Vh
O(h4) dz.
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Similarly, the right hand side in (5.47) can be estimated by:
ˆ
Uh

dist2
(
∇vh, SO(3)

)
dη =

ˆ
Vh

(det∇Y h) dist2
(
(∇uh)(∇Y h)−1,SO(3)

)
dz

≤ C
ˆ
Vh

dist2
(
(∇uh)A−1

h Ah(∇Y h)−1, SO(3)
)

dz

≤ C
ˆ
Vh

dist2
(

(∇uh)A−1
h , SO(3)(∇Y h)A−1

h

)
dz.

Recall that from (5.45) we have: (∇Y h)A−1
h ∈ SO(3)

(
I3 +hSh+O(h2)

)
⊆ SO(3)

(
I3 +O(h2)

)
,

since Sh ∈ Skew(3). Consequently, the above bound becomes:
ˆ
Uh

dist2
(
∇vh, SO(3)

)
dη ≤ C

ˆ
Vh

dist2
(

(∇uh)A−1
h ,SO(3)(I3 +O(h2))

)
dz

≤ C
ˆ
Vh

dist2
(

(∇uh)A−1
h ,SO(3)

)
+O(h4) dz.

The estimate (5.46) follows now in view of (5.47) and by the lower bound on energy density

W .

The well-known approximation technique [FJM02] in a combination with the arguments

in [LRR17, Corollary 2.3], yield the following approximation result that can be seen as a

higher order counterpart of (5.14):

Corollary 5.4.3. Assume (O) and (5.38). Then, for any {uh}h ⊆W1,2(Ωh,R3) satisfying:

Ih(uh) ≤ Ch4, there exists a sequence of rotation-valued maps Rh ∈ W1,2(ω,R3×3), such

that with P0 defined in (5.41) we have:

1

h

ˆ
Ωh

∣∣∣∇uh(z)−Rh(z′)
(
Q0(z′) + hP0

(
z′,

z3

h

))∣∣∣2 dz ≤ Ch4,

ˆ
ω
|∇Rh(z′)|2 dz′ ≤ Ch2.

(5.48)

5.4.1 Compactness and Γ-limit under Ch4 energy bound

In this section, we derive the Γ-convergence result for the energy functionals Ih in the von

Karman scaling regime. The general form of the limiting energy I O
4 will be further discussed

and split into the stretching, bending, curvature and excess components in Section 5.4.2. We

begin by stating the compactness result, that is the higher order version of Theorem 5.2.1.

Theorem 5.4.4. Assume (O) and (5.38). Fix y0 solving (5.39) and normalize it to have:´
ω y0(x′) dx′ = 0. Then, for any sequence of deformations {uh}h ⊆W1,2(Ωh,R3) satisfying:

(5.49) Ih(uh) ≤ Ch4,

there exists a sequence {R̄h}h ⊆ SO(3) such that the following convergences (up to a subse-

quence) below, hold for yh ∈W1,2(Ω,R3):

yh(x′, x3) = R̄T
h

(
uh(x′, hx3)−

 
Ωh

uh dx
)
.

(i) yh → y0 strongly in W1,2(Ω,R3) and
1

h
∂3y

h → ~b0 strongly in L2(Ω,R3), as h→ 0.
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4 and I4

(ii) There exists V ∈W2,2(ω,R3) and S ∈ L2(ω,Sym(2)) such that, as h→ 0:

V h(x′) =
1

h

ˆ 1/2

−1/2
yh(x′, x3)−

(
y0(x′) + hx3

~b0(x′)
)

dx3 → V strongly in W1,2(ω,R3)

1

h

(
(∇y0)T∇V h

)
sym

⇀ S weakly in L2(ω,R2×2).

(iii) The limiting displacement V satisfies:
(
(∇y0)T∇V

)
sym

= 0 in ω.

We omit the proof because it follows as in [LRR17, Theorem 3.1] in view of condition

(5.43). We only recall the definitions used in the sequel. The rotations R̄h are given by:

R̄h = PSO(3)

 
Ωh

∇uh(z)Q−1
0 (z′) dz

and (5.48) implies that they satisfy, for some limiting rotation R̄:

(5.50)

ˆ
ω
|Rh(x′)− R̄h|2 dx′ ≤ Ch2 and R̄h → R̄ ∈ SO(3).

Consequently:

(5.51) Sh =
1

h

(
R̄T
hRh − I3

)
⇀ S weakly in W1,2(ω,R3×3)

The field S ∈ W1,2
(
ω,Skew(3)

)
is such that (∇y0)T∇V =

(
QT

0SQ0

)
2×2
∈ Skew(2), which

allows for defining a new vector field ~p ∈W1,2(ω,R3) through:

(5.52) [∇V, ~p] = SQ0 or equivalently: ~p(x′) = −Q−T

0

[
∇V T~b0

0

]
(x′) for all x′ ∈ ω.

Finally, by (5.48) we note the uniform boundedness of the fields {Zh}h ⊆ L2(Ω,R3×3) below,

together with their convergence (up to as subsequence) as h→ 0:

(5.53)

Zh(x) =
1

h2

(
∇uh(x′, hx3)−Rh(x′)

(
Q0(x′) + hP0(x′, x3)

))
⇀ Z(x) weakly in L2(Ω,R3×3).

Rearranging terms and using the previously established convergences, it can be shown that:

(5.54)

S(x′) =

(
QT

0(x′)R̄T

ˆ 1/2

−1/2
Z(x′, x3) dx3

)
2×2,sym

− 1

2
∇V (x′)T∇V (x′) for all x′ ∈ ω.

Theorem 5.4.5. In the setting of Theorem 5.4.4, lim infh→0
1
h4 Ih(uh) is bounded below by:

I O
4 (V,S) =

1

2

ˆ
Ω
Q2

(
x′, I(x′) + x3III(x′) + II(x)

)
dx =

1

2
‖I + x3III + II‖2Q2

,

where:

I(x′) = S(x′) +
1

2
∇V (x′)T∇V (x′)−∇y0(x′)T∇

ˆ 1/2

−1/2

~d0(x) dx3,

III(x′) = ∇y0(x′)T∇~p(x′) +∇V (x′)T∇~b0,

II(x) =
x2

3

2
∇~b0(x′)T∇~b0(x′) +∇y0(x′)T∇′~d0(x)− 1

4
G2

2×2(x).

(5.55)
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Proof. Step 1. Towards estimating Ih(uh), we replace the argument ∇uh(z)A−1
h (z) of the

frame invariant density W by:

(5.56)
(
Q0Ā

−1
)T

(z′)RT
h(z′)∇uh(z)A−1

h (z) =
(
Q0Ā

−1
)T

(z′)Q0(z′)A−1
h (z)

+ hĀ−1(z′)QT
0(z′)P0

(
z′,

z3

h

)
A−1
h (z) + h2Ih3

(
z′,

z3

h

)
, for all z ∈ Ωh,

where Ih3 is given in (5.59). Calculating the higher order expansion of (5.16) and writing it

in terms of the rescaled variable (x′, x3) ∈ Ω:

(5.57) A−1
h (x′, hx3) = Ā−1(x′) + Ā−1(x′)

(
− hA1(x′, x3)

+ h2A1(x′, x3)Ā−1(x′)A1(x′, x3)− h2

2
A2(x′, x3)

)
Ā−1(x′) + o(h2),

the expressions in (5.56) can be written as:(
Q0Ā

−1
)T

(x′)RT
h(x′)∇uh(x′, hx3)A−1

h (x′, hx3)

= I3 + hI1(x′, x3) + h2
(
I2(x′, x3) + Ih3 (x′, x3)

)
+ o(h2),

(5.58)

for all x ∈ Ω, where I1 : Ω→ Skew(3) and I2 : Ω→ R3×3 are smooth matrix fields, given by:

I1(x) =Ā−1(x′)
(
QT

0(x′)P0(x)− Ā(x′)A1(x)
)
Ā−1(x′)

I2(x) =Ā−1(x′)
(
Ā(x′)A1(x)Ā−1(x′)A1(x)− 1

2
Ā(x′)A2(x)

−QT
0(x′)P0(x)Ā−1(x′)A1(x)

)
Ā−1(x′).

The fact that I1(x) ∈ Skew(3) follows from (5.40). Also, we have:

Ih3 (x) = Ā−1(x′)QT
0(x′)RT

h(x′)Zh(x)A−1
h (x′, hx3)

⇀ I3(x) = Ā−1(x′)QT
0(x′)R̄TZ(x)Ā−1(x) weakly in L2(Ω,R3×3),

(5.59)

where we used (5.56) and (5.50) to pass to the limit with (Rh)T. As in the proof of Theorem

5.2.3, we now identify the “good” sets {|Ih3 |2 ≤ 1/h} ⊆ Ω and employ (5.58) to write there

the following Taylor’s expansion of W (∇uhA−1
h ):

W
(
∇uh(x′, hx3)A−1

h (x′, hx3)
)

= W
(

I3 + hI1(x) + h2(I2(x) + Ih3 (x)) + o(h2)
)

= W
(
e−hI1(x)

(
I3 + hI1(x) + h2(I2(x) + Ih3 (x))

)
+ o(h2)

)
= W

(
I3 + h2

(
I2 −

1

2
I2

1 + Ih3
)

+ o(h2)
)

=
h4

2
Q3

((
I2 −

1

2
I2

1 + Ih3
)

sym

)
+ o(h4).

(5.60)

Above, we repeatedly used the frame invariance of W and the exponential formula:

e−hI1 = I3 − hI1 +
h2

2
I2

1 +O(h3).

Since the weak convergence in (5.59) implies convergence of measures L3
(
Ω\{|Ih3 |2 ≤ 1/h}

)
→

0 as h→ 0, with the help of (5.60) we finally arrive at:

lim inf
h→0

1

h4

1

h

ˆ
Ωh

W
(
∇uh(z)A−1

h (z)
)

dz ≥ lim inf
h→0

1

2

ˆ
{|Ih3 |2≤1/h}

Q3

(
I2 −

1

2
I2

1 + Ih3

)
dx

≥ 1

2

ˆ
Ω
Q3

(
I2 −

1

2
I2

1 + I3

)
dx =

1

2

ˆ
Ω
Q2

(
x′,
(
Ā
(
I2 −

1

2
I2

1 + I3

)
Ā
)

2×2

)
dx.

(5.61)
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Step 2. We now compute the effective integrand in (5.61). Firstly, by (5.5) a direct

calculation yields:

(5.62)
(
I2(x)− 1

2
I2

1 (x)
)

sym
=
(
I2

)
sym

+
1

2
IT

1 I1 =
1

2
Ā−1(x′)

(
P T

0 P0(x)− 1

2
G2(x)

)
Ā−1(x′)

Secondly, to address the symmetric part of the limit I3 in (5.59), consider functions

fs,h : Ω→ R3:

fs,h(x) =

 s

0

(
hR̄T

hZh(x′, x3 + t) + Sh(x′)
(
Q0(x′) + hP0(x′, x3 + t)

))
f3 dt.

By (5.51) it easily follows that:

(5.63) fs,h → S~b0 = ~p and ∂3f
s,h → 0 strongly in L2(Ω,R3), as h→ 0.

On the other hand, we write an equivalent form of f s,h and compute the tangential derivatives:

fs,h(x) =
1

h2s

(
yh(x′, x3 + s)− yh(x′, x3)

)
− 1

h
~b0(x′)− 1

s

(
~d0(x′, x3 + s)− ~d0(x′, x3)

)
,

∂if
s,h(x) =

1

s
R̄T
h

(
Zh(x′, x3 + s)− Zh(x′, x3)

)
fi + Sh(x′)∂i~b0(x′)

− 1

s

(
∂i~d0(x′, x3 + s)− ∂i~d0(x′, x3)

)
for i = 1, 2. In view of (5.50) and (5.51), convergence in (5.63) can thus be improved to:

fs,h ⇀ ~p weakly in W1,2(Ω,R3) as h→ 0. Equating the derivatives ∂1, ∂2, results in:

R̄T
(
Z(x′, x3)− Z(x′, 0)

)
fi = x3

(
∂i~p(x

′)− S(x′)∂i~b0(x′)
)

+ ∂i~d0(x′, x3)− ∂i~d0(x′, 0).

Further, by (5.59), (5.52) and since S ∈ Skew(3), it follows that:(
Ā(x′)I3(x)Ā(x′)

)
2×2,sym

=
(
QT

0(x′)R̄TZ(x)
)

2×2,sym

=
(
QT

0(x′)R̄TZ(x′, 0)
)

2×2,sym
+ x3

(
∇y0(x′)T∇~p(x′)

)
sym

+ x3

(
∇V (x′)T∇~b0(x′)

)
sym

+
(
QT

0(x′)∇~d0(x)
)

2×2,sym

(5.64)

On the other hand, taking the x3-average and recalling (5.54), we get:

(
QT

0(x′)R̄TZ(x′, 0)
)

2×2,sym
= S(x′) +

1

2
∇V (x′)T∇V (x′)−

(
∇y0(x′)T∇

ˆ 1/2

−1/2

~d0(x) dx3

)
sym

(5.65)

Step 3. We now finish the proof of Theorem 5.4.5. Combining (5.62), (5.64) and (5.65),

we see that:(
Ā(x′)(I2 −

1

2
I2

1 + I3)Ā(x′)
)

2×2,sym
=
(
I(x′) + x3III(x′) + II(x)

)
sym

on Ω,

where I, II, III are as in (5.55). In virtue of (5.61), we obtain:

lim inf
h→0

1

h4

1

h

ˆ
Ωh

W
(
∇uh(z)A−1

h (z)
)

dz ≥ 1

2

ˆ
Ω
Q2

(
x′, I(x′) + x3III(x′) + II(x)

)
dx.

This yields the claimed lower bound by I O
4 (V,S).
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For the upper bound statement, define the linear spaces:

V :=
{
V ∈W2,2(ω,R3) :

(
∇y0(x′)T∇V (x′)

)
sym

= 0 for all x′ ∈ ω
}
,

S := clL2(ω,R2×2)

{(
(∇y0)T∇w

)
sym

: w ∈W1,2(ω,R3)
}
.

(5.66)

We see that the limiting quantities V and S in Theorem 5.4.5 satisfy: V ∈ V , S ∈ S .

The space V consists of the first order infinitesimal isometries on the smooth minimizing

immersion surface y0(ω), i.e. those Sobolev-regular displacements V that preserve the metric

on y0(ω) up to first order. The tensor fields S ∈ S are the finite strains on y0(ω), eventually

forcing the stretching term in the von Karman energy I O
4 to be of second order.

Theorem 5.4.6. Assume that y0 solves (5.39). Then, for every (V,S) ∈ V ×S there exists

a sequence {uh}h ⊆ W1,2(Ωh,R3) such that the rescaled sequence {yh := uh(·, h·)}h satisfies

(i) and (ii) of Theorem 5.4.4, together with:

(5.67) lim
h→0

1

h4
Ih(uh) = I O

4 (V,S).

Proof. Step 1. Given admissible V and S, we first define the ε-recovery sequence {uh}h ⊆
W1,∞(Ωh,R3). The ultimate argument for (5.67) will be obtained via a diagonal argument.

We set:

uh(z′, z3) = y0(z′) + hvh(z′) + h2wh(z′) + z3
~b0(z′) + h2~d0

(
z′,

z3

h

)
+ h3~k0

(
z′,

z3

h

)
+ hz3~p

h(z′) + h2z3~q
h(z′) + h3~rh

(
z′,

z3

h

)
for all (z′, z3) ∈ Ωh.

The smooth vector fields ~b0 and ~d0 are as in (5.39), (5.40). We now introduce other terms in

the above expansion. The sequence {wh}h ⊆ C∞(ω,R3) is such that:

(
(∇y0)T∇

(
wh +

ˆ 1/2

−1/2

~d0(·, t) dt
))

sym
→ S strongly in L2(ω,R2×2) as h→ 0,

lim
h→0

√
h‖wh‖W2,∞(ω,R3) = 0.

(5.68)

Existence of such a sequence is guaranteed by the fact that S ∈ S , where we “slow down”

the approximations {wh} to guarantee the blow-up rate of order less that h−1/2. Further, for

a fixed small ε > 0, the truncated sequence {vh}h ⊆W2,∞(ω,R3) is chosen according to the

standard construction in [FJM02] (see Theorem 2.2.1 with λ = λh = c
h , for some c > 0), in a

way that:

vh → V strongly in W2,2(ω,R3) as h→ 0,

h‖vh‖W 2,∞(ω,R3) ≤ ε and lim
h→0

1

h2
L2
(
{x′ ∈ ω : vh(x′) 6= V (x′)}

)
= 0.

(5.69)

The vector field ~k0 ∈ C∞(Ω̄,R3) and sequences {~ph}h, {~qh}h ⊆ W1,∞(ω,R3) and {rh}h ⊆
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L∞(Ω,R3) are defined by:

(5.70)

QT
0~p
h =

[
−(∇vh)T~b0

0

]
,

QT
0~q
h = `

(
x′,
(
(∇y0)T∇wh

)
sym

+
1

2
(∇vh)T∇vh

)
−

[
(∇vh)T~ph

1
2 |~p

h|2

]
−

[
(∇wh)T~b0

0

]
,

QT
0∂3

~k0 = `
(
x′,
(
(∇y0)T∇′~d0

)
sym

+
x2

3

2
(∇~b0)T∇~b0 −

1

4
(G2)2×2

)
−

[
x3(∇~b0)T∂3

~d0
1
2 |∂3

~d0|2

]
+

[
(∇′~d0)T~b0

0

]
+

1

2
G2e3 −

1

4
(G2)33e3,

QT
0r̃
h =x3`

(
x′,
(
(∇y0)T∇~ph + (∇vh)T∇~b0

)
sym

)
−

[
(∇vh)T∂3

~d0

〈~ph, ∂3
~d0〉

]
.

Finally, we choose {~rh}h ⊆W1,∞(Ω,R3) to satisfy:

(5.71) lim
h→0
‖∂3~r

h − r̃h‖L2(Ω,R3) = 0 and lim
h→0

√
h‖~rh‖W1,∞(Ω,R3) = 0.

Step 2. Observe that for all (x′, x3) ∈ Ω there holds::

∇uh(x′, hx3) =Q0 + h
([
∇vh, ~ph

]
+ P0

)
+ h2

([
∇wh, ~qh

]
+
[
x3∇~ph, ∂3r

h
]

+
(
∇′~d0, ∂3

~k0

])
+O(h3)

(
|∇~k0|+ |∇~qh|+ |∇~rh|

)
.

Consequently, by (5.57) it follows that:(
(∇uh)A−1

h

)
(x′, hx3) = Q0Ā

−1
(

I3 + hĀ−1Jh1 Ā
−1 + h2Ā−1Jh2 Ā

−1 + J3
h

)
,

where:

Jh1 = QT
0

([
∇vh, ~ph

]
+ P0

)
− ĀA1,

Jh2 = QT
0

([
∇wh, ~qh

]
+
[
x3∇~ph, ∂3~r

h
]

+
[
∇~d0, ∂3

~k0

])
− Jh1 Ā−1A1 −

1

2
ĀA2,

and where Jh1 , Jh2 , Jh3 satisfy the uniform bounds (independent of ε):

|Jh1 | ≤ C
(
1 + |∇vh|

)
,

|Jh2 | ≤ C
(
1 + |∇wh|+ |∇vh|2 + |∇2vh|+ |∇~rh|

)
,

|Jh3 | ≤ Ch3
(
1 + |∇wh|+ |∇2wh|+ |∇vh|2 + |∇2vh|+ |∇vh| · |∇2vh|+ |∇~rh|

)
+ o(h2).

In particular, the distance dist
(
(∇uh)A−1

h , SO(3)
)
≤ |(∇uh)A−1

h −Q0Ā
−1| is as small as one

wishes, uniformly in x ∈ Ω, for h sufficiently small. Thus, the argument (∇uh)A−1
h of the

frame invariant density W in Ih(uh) may be replaced by its polar decomposition factor:√(
∇uhA−1

h

)T(∇uhA−1
h

)
=

√
I3 + 2h2Ā−1

(
(Jh2 )sym +

1

2
(Jh1 )TĀ−2Jh1

)
Ā−1 +Rh

= I3 + h2Ā−1
(
(Jh2 )sym +

1

2
(Jh1 )TĀ−2Jh1

)
Ā−1 +Rh,
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where Rh stands for any quantity obeying the following bound:

Rh = O(h)|(Jh1 )sym |+O(h3)
(
1 + |∇vh|

)(
1 + |∇wh|+ |∇vh|2 + |∇2vh|+ |∇~rh|

)
+O(h3)|∇2wh|+ o(h2).

In conclusion, Taylor’s expansion of W at I3 gives:

(5.72)

1

h4

ˆ
Ω
W
(

(∇uh)A−1
h (x′, hx3)

)
dx

=
1

h4

ˆ
Ω
W
(√(

∇uhA−1
h

)T(∇uhA−1
h

)
(x′, hx3)

)
dx

≤ 1

2

ˆ
Ω
Q3

(
Ā−1

(
(Jh2 )sym +

1

2
(Jh1 )TĀ−2Jh1

)
Ā−1 +

1

h2
Rh
)

dx

+O(h2)

ˆ
Ω
|Jh2 |3 + |Jh1 |6 dx+

O(1)

h4

ˆ
Ω
|Rh|3 dx.

The residual terms above are estimated as in [LRR17], using (5.68), (5.69), (5.71). We have:

h2

ˆ
Ω
|Jh2 |3 + |Jh1 |6 dx ≤ h2

ˆ
Ω

1 + |∇wh|3 + |∇vh|6 + |∇2vh|3 + |∇~rh|3 dx ≤ o(1),

since

h2

ˆ
Ω
|∇vh|6 dx ≤ Ch2‖∇vh‖6W1,2(ω) = o(1), h2

ˆ
Ω
|∇2vh|3 dx ≤ εh

ˆ
Ω
|∇2vh|2 dx = o(1).

Further:

1

h4

ˆ
Ω
|Rh|2 dx ≤ 1

h2

ˆ
Ω

∣∣((∇y0)T∇vh
)

sym

∣∣2 dx

+O(h2)

ˆ
Ω

(
1 + |∇vh|2

)(
1 + |∇wh|2 + |∇vh|4 + |∇2vh|2 + |∇~rh|2

)
dx

+O(h2)

ˆ
Ω
|∇2wh|2 dx+ o(1)

= o(1) +O(h2)

ˆ
Ω
|∇vh| · |∇2vh|2 ≤ Cε,

because the last condition in (5.69) implies:

1

h2

ˆ
Ω

∣∣((∇y0)T∇vh
)

sym

∣∣2 dx ≤ C

h2
‖∇2vh‖L∞(ω)

ˆ
{vh 6=V }

dist2(x′, {vh = V }) dx′

≤ Cε2

h4

ˆ
{vh 6=V }

dist2(x′, {vh = V }) dx′ ≤ Cε2 1

h2

∣∣{vh 6= V }
∣∣ = o(1).

(5.73)

From the two estimates above it also follows that 1
h4

´
Ω |R

h|3 dx = o(1). Consequently, (5.72)

yields:

(5.74) lim sup
h→0

1

h4
Ih(uh) ≤ Cε+ lim sup

h→0

1

2

ˆ
Ω
Q3

(
Ā−1

(
(Jh2 )sym +

1

2
(Jh1 )T

)
Ā−2Jh1

)
Ā−1

)
dx.

Step 3. Observe now that:

(Jh2 )sym +
1

2
(Jh1 )TĀ−2Jh1 =−

((
(∇y0)T∇vh

)∗
sym

Ā−1A1

)
sym

+
(
QT

0

[
∇wh, ~qh

]
+QT

0

[
x3∇~ph, ∂3~r

h
]

+QT
0

[
∇~d0, ∂3

~k0

])
sym

+
1

2

[
∇vh, ~ph

]T[∇vh, ~ph]+
([
∇vh, ~ph

]T
P0

)
sym

+
1

2
P T

0 P0 −
1

4
G2.
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Replacing ∂3~r
h by r̃h and using (5.70), it follows that:( ˆ

Ω
Q3

(
Ā−1

(
(Jh2 )sym +

1

2
(Jh1 )TĀ−2Jh1

)
Ā−1

)
dx

)1/2

≤
(ˆ

Ω
Q2

(
x′,
(
(∇y0)T∇wh

)
sym

+
1

2
(∇vh)T∇vh + x3

(
(∇y0)T∇~ph + (∇vh)T∇~b0

)
sym

+
x2

3

2
(∇~b0)T∇~b0 −

1

4
G2

2×2

)
dx

)1/2

+ ‖
(
(∇y0)T∇vh

)
sym
‖L2(Ω) + ‖∂3~r

h − r̃h‖L2(Ω).

The second term above converges to 0 by (5.73) and the third term also converges to 0, by

(5.71). On the other hand, the first term can be split into the integral on the set {vh = V },
whose limit as h→ 0 is estimated by I O

4 (V,S), and the remaining integral that is bounded

by:

C

ˆ
{vh 6=V }×(− 1

2
, 1
2

)
1 + |∇wh|2 + |∇vh|4 + |∇2vh|2 + |∇~rh|3 dx

≤ Cε2 1

h2
|{vh 6= V }|+ C

ˆ
{vh 6=V }

|∇vh|4 dx′ ≤ o(1) + C|{vh 6= V }|1/2‖∇vh‖4L8 = o(1).

In conclusion, (5.74) becomes (with a uniform constant C that does not depend on ε):

lim sup
h→0

1

h4
Ih(uh) ≤ Cε+ I O

4 (V,S).

A diagonal argument applied to the indicated ε-recovery sequence {uh}h completes the proof.

Corollary 5.4.7. The functional I O
4 attains its infimum and there holds:

lim
h→0

1

h4
inf Ih = min I O

4 .

The infima in the left hand side are taken over the set W1,2(Ωh,R3), whereas the minimum

in the right hand side is taken over admissible displacement-strain couples (V,S) ∈ V ×S

in (5.66).

5.4.2 Discussion on I O
4 and reduction to the non-oscillatory case

In this section, we identify the appropriate components of the integrand in the energy I O
4 as:

stretching, bending, curvature and the order-4 excess, the latter quantity being the projection

of the entire integrand on the orthogonal complement of E2 in E. This superposition is in

the same spirit, as the integrand of I O
2 in Theorem 5.2.3 decoupling into bending and the

order-2 excess, defined as the projection on the orthogonal complement of E1. There, the

assumed condition
´ 1/2
−1/2 G

1(·, t) dt = 0 served as the compatibility criterion, assuring that

the 2-excess being null results in I O
4 coinciding with the non-oscillatory limiting energy I4,

written for the effective metric Ḡ in (EF). Below, we likewise derive the parallel version

I4 of I O
4 , corresponding to the non-oscillatory case, and show that the vanishing of the 4-

excess reduces I O
4 to I4 (for the effective metric (EF)), under two new further compatibility

conditions (5.83) on G2
2×2.

The following formulas will be useful in the sequel:
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Lemma 5.4.8. In the non-oscillatory setting (NO), let y0, ~b0 be as in (5.39) and d̃0 as in

(5.42). Then for i, j = 1, 2 it holds:

(5.75)
[
∂ijy0, ∂i~b0, d̃0

]
(x′) =

[
∂1y0, ∂2y0, ~b0

]
(x′) ·

 Γ1
ij Γ1

i3 Γ1
33

Γ2
ij Γ2

i3 Γ2
33

Γ3
ij Γ3

i3 Γ3
33

 (x′, 0),

for all x′ ∈ ω. Consequently, for any smooth vector field ~q : ω → R3 there holds:[
∇y0(x′)T∇

(
Q0(x′)−T~q(x′)

)]
i,j=1,2

=
(
∇~q
)

2×2
(x′)−

[〈
~q(x′), [Γ1

ij , Γ2
ij , Γ3

ij ](x
′, 0)

〉]
i,j=1,2

.

Above, {Γkij} are the Christoffel symbols of the metric G and the expression in the right and

side represents the tangential part of the covariant derivative of the (0, 1) tensor field ~q with

respect to G.

Proof. In view of
(
(∇y0)T∇~b0

)
sym

= 1
2∂3G2×2(x′, 0) in (5.39) and recalling (5.23), we get:

〈∂ijy0,~b0〉 =
1

2

(
∂iGj3 + ∂jGi3 − ∂3Gij

)
(x′, 0) for all i, j = 1, 2,

which easily results in:

〈∂i~b0, ∂jy0〉 =
1

2

(
∂iGj3 − ∂jGi3 + ∂3Gij

)
(x′, 0) and 〈∂i~b0,~b0〉 =

1

2
∂iG33(x′, 0).

Thus (5.24) and the above allow for computing the coordinates in the basis ∂1y0, ∂2y0,~b0 as

claimed in (5.75); see also [LRR17, Theorem 6.2] for more details. The second formula results

from: 〈
∂iy0, ∂j

(
Q−T

0 ~q
)〉

=
〈
∂iy0, ∂j

(
Q−T

0

)
~q
〉

+
〈
∂iy0, Q

−T

0 ∂j~q
〉

= −
〈
∂iy0, Q

−T

0 ∂j
(
QT

0

)
Q−T

0 ~q
〉

+
〈
Q−1

0 ∂iy0, ∂j~q
〉

= −
〈
Q−1

0 ∂j
(
Q0

)
fi, ~q
〉

+
〈
fi, ∂j~q

〉
,

which together with (5.75) yields the Lemma.

Lemma 5.4.9. In the non-oscilaltory setting (NO), let y0, ~b0 be as in (5.39) and d̃0 as in

(5.42). Then the metric-related term II in (5.55) has the form II =
x2

3
2

¯II(x′) and for all

x′ ∈ ω we have:

(5.76) ¯II = (∇~b0)T∇~b0 +
(
(∇y0)T∇d̃0

)
sym
− 1

2
∂33G2×2(x′, 0) =

[
R1313 R1323

R1323 R2323

]
(x′, 0).

Above, Rijkl are the Riemann curvatures of the metric G, evaluated at the midplate points

(x′, 0) ∈ ω × {0}.

Proof. We argue as in the proof of [LRR17, Theorem 6.2]. Using (5.40) we arrive at:(
(∇y0)T∇d̃0

)
sym

=−
[
〈∂ijy0, ~d0〉

]
i,j=1,2

+
1

2
∂33G2×2(x′, 0)

+
[
Ri2j3 −Gnp

(
Γni3Γpj3 − ΓnijΓ

p
33

)]
i,j=1,2

(x′, 0).
(5.77)

Directly from (5.75) we hence obtain:

(5.78) 〈∂ij~y0, d̃0〉 = GnpΓ
n
ijΓ

p
33, 〈∂i~b0, ∂j~b0〉 = GnpΓ

n
i3Γpj3,

which together with (5.77) yields (5.76).
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With the use of Lemma 5.4.9, it is quite straightforward to derive the ultimate form of

the energy I O
4 in the non-oscillatory setting. In particular, the proof of the following result

is a special case of the proof of Theorem 5.4.12 below.

Theorem 5.4.10. Assume (NO) and (5.38). The expression (5.80) becomes:

I4(V,S) =
1

2

ˆ
ω
Q2

(
x′, S(x′) +

1

2
∇V T∇V (x′) +

1

24
∇~bT

0∇~b0(x′)− 1

48
∂33G2×2(x′, 0)

)
dx′

+
1

24

ˆ
ω
Q2

(
x′,∇y0(x′)T∇~p(x′) +∇V (x′)T∇~b0(x′)

)
dx′

+
1

1440

ˆ
ω
Q2

(
x′,

[
R1313 R1323

R1323 R2323

]
(x′, 0)

)
dx′,

where Rijkl stand for the Riemann curvatures of the metric G.

Remark 5.4.11. In the particular, “flat” case of G = I3 the functional I4 reduces to the

classical von Kármán energy below. Indeed, the unique solution to (5.39) is: y0 = id, ~b0 = f3
and further:

V =
{
V (x) = (αx⊥ + ~β, v(x)) : α ∈ R, ~β ∈ R2, v ∈W2,2(ω)

}
,

S =
{
∇symw : w ∈W1,2(ω,R2)

}
.

Given V ∈ V , we have ~p = (−∇v, 0) and thus:

I4(V,S) =
1

2

ˆ
ω
Q2

(
x′,∇symw +

1

2
(α2I2 +∇v ⊗∇v)

)
dx′ +

1

24

ˆ
ω
Q2

(
x′,∇2v

)
dx′.

Absorbing the stretching α2I2 into ∇symw, the above energy can be expressed in a familiar

form:

(5.79) I4(v, w) =
1

2

ˆ
ω
Q2

(
x′,∇symw +

1

2
∇v ⊗∇v

)
dx′ +

1

24

ˆ
ω
Q2

(
x′,∇2v

)
dx′,

as a function of the out-of-plane scalar displacement v and the in-plane vector displacement

w. �

As done for the Kirchhoff energy I O
2 in Theorem 5.2.3, we now identify conditions allow-

ing I O
4 to coincide with I4 of the effective metric Ḡ, modulo the introduced below order-4

excess term.

Theorem 5.4.12. In the setting of Theorem 5.4.5, we have:

I O
4 (V,S) =

1

2

ˆ
ω
Q2

(
x′, S +

1

2
(∇V )T∇V +B0

)
dx′

+
1

24

ˆ
ω
Q2

(
x′, (∇V )T∇~b0 + (∇y0)T∇~p+ 12B1

)
dx′

+
1

1440

ˆ
ω
Q2

(
x′, (∇~b0)T∇~b0 + (∇y0)T∇d̃0 −

1

2
Ḡ2

2×2

)
dx′ + dist2

(
IIsym ,E2

)
,

(5.80)

where Ḡ1 and Ḡ2 are given in (EF), inducing d̃0 via (5.42) for ∂3G = Ḡ1, and where we
introduce the following purely metric-related quantities:

dist2
(
IIsym ,E2

)
= dist2

(ˆ x3

0

∇(G1f3)2×2,sym dt−
[〈 ˆ x3

0

G1f3 dt, [Γ1
ij , Γ2

ij , Γ3
ij ](x

′, 0)
〉]

i,j=1,2

+
1

2

ˆ x3

0

(G1)33 dt
[
Γ3
ij(x

′, 0)
]
i,j=1,2

− 1

4
G22×2, E2

)
.

(5.81)
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B0 =
1

24
(∇~b0)T∇~b0 −

1

4

ˆ 1/2

−1/2
G2

2×2 dx3

=
1

24

[ ∑
n,p=1...3

ḠnpΓni3Γpj3

]
i,j=1,2

− 1

4

ˆ 1/2

−1/2
G2

2×2 dx3

B1 = (∇y0)T∇
( ˆ 1/2

−1/2
x3
~d0 dx3

)
− 1

4

ˆ 1/2

−1/2
x3(G2)2×2 dx3

= −∇
( ˆ 1/2

−1/2

x2
3

2
G1f3 dx3

)
2×2

+
[〈 ˆ 1/2

−1/2

x2
3

2
G1f3 dx3, [Γ

1
ij , Γ2

ij , Γ3
ij ](x

′, 0)
〉]

i,j=1,2

− 1

2

ˆ 1/2

−1/2

x2
3

2
G1

33 dx3

[
Γ3
ij(x

′, 0)
]
i,j=1,2

− 1

4

ˆ 1/2

−1/2
x3G2

2×2 dx3,

(5.82)

By {Γkij} we denote the Christoffel symbols of the metric Ḡ in (EF). The third term in (5.80)

equals the scaled norm of the Riemann curvatures of the effective metric G:

1

1440

ˆ
ω
Q2

(
x′,

[
R1313 R1323

R1323 R2323

]
(x′, 0)

)
dx′.

The first three terms in I O
4 coincide with I4 in Theorem 5.4.10 for the effective metric Ḡ

in (EF), provided that the following compatibility conditions hold:

ˆ 1/2

−1/2

(
15x2

3 −
9

4

)
G2

2×2(x′, x3) dx3 = 0,

1

4

ˆ 1/2

−1/2
x3G2

2×2(x′, x3) dx3 +∇
( ˆ 1/2

−1/2

x2
3

2
G1f3 dx3

)
2×2,sym

−
[〈ˆ 1/2

−1/2

x2
3

2
G1f3 dx3, [Γ

1
ij , Γ2

ij , Γ3
ij ](x

′, 0)
〉]

i,j=1,2

+
1

2

ˆ 1/2

−1/2

x2
3

2
G1

33 dx3

[
Γ3
ij(x

′, 0)
]
i,j=1,2

= 0.

(5.83)

Proof. We write:

I O
4 (V,S) =

1

2
‖I + x3III + II‖2Q2

=
1

2
‖I + x3III + P2(II)‖2Q2

+
1

2
dist2

(
IIsym ,E2

)
,

and further decompose the first term above along the Legendre projections:

‖I + x3III + P2(II)‖2Q2
=
∥∥ˆ 1/2

−1/2
(I + x3III + II)p0(x3) dx3

∥∥2

Q2

+
∥∥ˆ 1/2

−1/2
(I + x3III + II)p1(x3) dx3

∥∥2

Q2
+
∥∥ˆ 1/2

−1/2
(I + x3III + II)p2(x3) dx3

∥∥2

Q2

=
∥∥I +

ˆ 1/2

−1/2
II dx3

∥∥2

Q2︸ ︷︷ ︸
Stretching

+
1

12

∥∥III + 12

ˆ 1/2

−1/2
x3II dx3

∥∥2

Q2︸ ︷︷ ︸
Bending

+
∥∥ˆ 1/2

−1/2
p2(x3)II dx3

∥∥2

Q2︸ ︷︷ ︸
Curvature

.

To identify the four indicated terms in I O
4 , observe that

ˆ 1/2

−1/2
x3

ˆ x3

0
G1 dx3 = −

ˆ 1/2

−1/2

x2
3

2
G1 dx3
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and that:

dist2
(
IIsym ,E2

)
= dist2

((
(∇y0)T∇′

(
Q−T

0

ˆ x3

0

G1f3 dt− 1

2
Q−T

0

ˆ x3

0

G133 dt f3
))

sym
− 1

4
G22×2,E2

)
.

Thus the formulas in (5.81) and (5.82) follow directly from Lemma 5.4.8 and (5.78). There

also holds:

Stretching =

ˆ
ω
Q2

(
x′, S +

1

2
(∇V )T∇V +

1

24
(∇~b0)T∇~b0 −

1

4

ˆ 1/2

−1/2
G2

2×2 dx3

)
dx′,

Bending =
1

12

ˆ
ω
Q2

(
x′, (∇V )T∇~b0 + (∇y0)T∇~p

+ 12(∇y0)T∇
( ˆ 1/2

−1/2
x3
~d0 dx3

)
− 3

ˆ 1/2

−1/2
x3G2

2×2 dx3

)
, dx′

Curvature =
1

720

ˆ
ω
Q2

(
x′, (∇~b0)T∇~b0 + 60(∇y0)T∇

( ˆ 1/2

−1/2
(6x2

3 −
1

2
)~d0 dx3

)
− 15

ˆ 1/2

−1/2
(6x2

3 −
1

2
)G2

2×2 dx3

)
dx′.

It is easy to check that with the choice of the effective metric components Ḡ1f3 and Ḡ2
2×2 and

denoting d̃0 the corresponding vector in (5.42), we have:

Curvature =
1

720

ˆ
ω
Q2

(
x′, (∇~b0)T∇~b0 + (∇y0)T∇d̃0 −

1

2
Ḡ2

2×2

)
dx′.

This proves (5.80). Equivalence of the constraints (5.83) with:

ˆ 1/2

−1/2
G2

2×2 dx3 =
1

12
Ḡ2

2×2 and (B1)sym = 0 in ω,

follows by a direct inspection. We now invoke Lemma 5.4.9 to complete the proof.

Remark 5.4.13. Observe that the vanishing of the 4-excess and curvature terms in I O
4 :

IIsym ∈ E2 and Curvature = 0,

are the necessary conditions for min I O
4 = 0 and they are equivalent to IIsym ∈ E1. Consider

now a particular case scenario of Ḡ = I3 and G1 = 0, where the spaces V and S are given

in Remark 5.4.11, together with ~d0 = 0. Then, the above necessary condition reduces to:

G2
2×2 ∈ E1, namely:

G2
2×2(x′, x3) = x3F1(x′) + F0(x′) for all x = (x′, x3) ∈ Ω.

It is straightforward that, on a simply connected midplate ω, both terms:

Stretching =

ˆ
ω
Q2

(
x′,∇symw +

1

2
∇v ⊗∇v − 1

4
F0

)
dx′,

Bending =

ˆ
ω
Q2

(
x′,∇2v +

1

4
F1

)
dx′,

can be equated to 0 by choosing appropriate displacements v and w, if and only if there holds:

(5.84) curlF1 = 0, curlTcurlF0 +
1

4
detF1 = 0 in ω.



Chapter 5. Dimension reduction for thin sheets with transversally varying pre-stretch 106

Note that these are precisely the linearised Gauss-Codazzi-Mainardi (see (1.4) and Lemma

1.7) equations corresponding to the metric I2 + 2h2F0 and shape operator 1
2hF1 on ω. We

see that these conditions are automatically satisfied in presence of (5.83), when G2
2×2 ∈ E1

actually results in G2
2×2 = 0. An integrability criterion similar to (5.84) can be derived also

in the general case, under IIsym ∈ E1 and again it automatically holds with (5.83). This last

statement will be pursued in the next section. �

5.4.3 Identification of the Ch4 scaling regime

Theorem 5.4.14. The energy scaling beyond the von Kármán regime:

lim
h→0

1

h4
inf Ih = 0

is equivalent to the following condition:

(i) in the oscillatory case (O), in presence of the compatibility conditions (5.83)

(5.85)

[
IIsym ∈ E1 and (5.86) holds with G replaced by the effective metric Ḡ in

(EF). This condition involves Ḡ, Ḡ1 and Ḡ2
2×2 terms of Ḡ.

(ii) in the non-oscillatory case (NO)

(5.86)

 All the Riemann curvatures of the metric G vanish on ω × {0}:

Rijkl(x
′, 0) = 0, for all x′ ∈ ω and all i, j, k, l = 1, . . . , 3.

Proof. By Corollary 5.4.7, it suffices to determine the equivalent conditions for min I4 = 0.

Clearly, min I4 = 0 implies (5.86). Vice versa, if (5.86) holds, then:

1

24
(∇~b0)T∇~b0 −

1

48
∂33G(x′, 0) = − 1

24

(
(∇y0)T∇d̃0

)
sym

,

by Lemma 5.4.9. Taking V = ~p = 0 and S = 1
24

(
(∇y0)T∇d̃0

)
sym
∈ S , we get I4(V,S) =

0.

5.5 Coercivity of the limiting energy I4

We further have the following counterpart of the essential uniqueness of the minimizing

isometric immersion y0 statement in Theorem 5.2.7:

Theorem 5.5.1. In the non-oscillatory setting (NO), assume (5.86). Then I4(V,S) = 0 if

and only if:

(5.87) V = Sy0 + c and S =
1

2

(
(∇y0)T∇

(
S2y0 +

1

12
d̃0

))
sym

on ω,

for some skew-symmetrix matrix S ∈ Skew(3) and a vector c ∈ R3.

Proof. We first observe that the bending term III in (5.55) is already symmetric, because:[
〈∂iy0, ∂j~p〉+〈∂iV, ∂j~b0〉

]
i,j=1,2

=
[
∂j
(
〈∂iy0, ~p〉+ 〈∂iV,~b0〉

)]
i,j=1,2

−
[
〈∂ijy0, ~p〉+ 〈∂ijV,~b0〉

]
i,j=1,2

=−
[
〈∂ijy0, ~p〉+ 〈∂ijV,~b0〉

]
i,j=1,2

∈ Sym(2),
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where we used the definition of ~p in (5.52). Recalling (5.76), we see that I4(V,S) = 0 if and

only if:

S +
1

2
(∇V )T∇V − 1

24

(
(∇y0)T∇d̃0

)
sym

= 0,

(∇y0)T∇~p+ (∇V )T∇~b0 = 0.
(5.88)

Consider the matrix field S =
[
∇V, ~p

]
Q−1

0 ∈W1,2(ω,Skew(3)) as in (5.52). Note that:

∂iS =
[
∇∂iV, ∂i~p

]
Q−1

0 −
[
∇V, ~p

]
Q−1

0 (∂iQ0)Q−1
0 = Q−1,T

0 S̄iQ−1
0 for i = 1, 2

where S̄i = QT
0

[
∇∂iV, ∂i~p

]
+
[
∇V, ~p

]T
(∂iQ0) ∈ L2(ω,Skew(3)).

(5.89)

Then we have:

〈S̄ie1, e2〉 = ∂i
(
〈∂2y0, ∂iV 〉+ 〈∂2V, ∂iy0〉

)
−
(
〈∂12y0, ∂iV 〉+ 〈∂12V, ∂iy0〉

)
= 0,

because the first term in the right hand side above equals 0 in view of V ∈ V , whereas the

second term equals ∂2〈∂1y0, ∂1V 〉 for i = 1 and ∂1〈∂2y0, ∂2V 〉 for i = 2, both expression being

null again in view of V ∈ V . We now claim that {S̄i}i=1,2 = 0 is actually equivalent to the

second condition in (5.88). It suffices to examine the only possibly nonzero components:

(5.90) 〈S̄if3, fj〉 = 〈∂jy0, ∂i~p〉+ 〈∂jV, ∂i~b0〉 =
(
(∇y0)T∇~p+ (∇V )T∇~b0

)
ij
, for i, j = 1, 2,

proving the claim.

Consequently, the second condition in (5.88) is equivalent to S being constant, to the

effect that ∇V = ∇(Sy0), or equivalently that V − Sy0 is a constant vector. In this case:

S =
1

2
(∇y0)T∇

(
S2y0) +

1

24

(
(∇y0)T∇d̃0

)
sym

=
1

2

(
(∇y0)T∇

(
S2y0 +

1

12
d̃0

))
sym

is equivalent to the first condition in (5.88), as (∇V )T∇V = −(∇y0)TS2∇y0. The proof is

done.

From Theorem 5.5.1 we deduce its quantitative version, that is a counterpart of Theorem

5.3.1 in the present von Kármán regime:

Theorem 5.5.2. In the non-oscillatory setting (NO), assume (5.86). Then for all V ∈ V

there holds:

(5.91) dist2
W2,2(ω,R3)

(
V,
{
Sy0 + c : S ∈ Skew(3), c ∈ R3

})
≤ C

ˆ
ω
Q2

(
x′, (∇y0)T∇~p+ (∇V )T∇~b0

)
dx′

with a constant C > 0 that depends on G,ω and W but it is independent of V .

Proof. We argue by contradiction. Since Vlin := {Sy0 + c : S ∈ Skew(3), c ∈ R3} is a linear

subspace of V and likewise the expression III in (5.55) is linear in V , with its kernel equal

to Vlin in virtue of Theorem 5.5.1, it suffices to take a sequence {Vn ∈ V }n→∞ such that:

‖Vn‖W2,2(ω,R3) = 1, Vn ⊥W2,2(ω,R3) Vlin for all n,

and: (∇y0)T∇~pn + (∇Vn)T∇~b0 → 0 strongly in L2(ω,R2×2), as n→∞.
(5.92)
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Passing to a subsequence if necessary and using the definition of ~p in (5.52), it follows that:

(5.93) Vn ⇀ V weakly in W2,2(ω,R3), ~pn ⇀ ~p weakly in W1,2(ω,R3).

Clearly, QT
0

[
∇V, ~p

]
∈ L2(ω,Skew(3)) so that V ∈ V , but also (∇y0)T∇~p + (∇V )T∇~b0 = 0.

Thus, Theorem 5.5.1 and the perpendicularity assumption in (5.92) imply: V = ~p = 0. We

will now prove:

(5.94) Vn → 0 strongly in W2,2(ω,R3),

which will contradict the first (normalisation) condition in (5.91).

As in (5.89), the assumption Vn ∈ V implies that for each x′ ∈ ω and i = 1, 2, the

following matrix (denoted previously by S̄i) is skew-symmetric:

QT
0

[
∇∂iVn, ∂~pn

]
+
[
∇Vn, ~pn

]T
(∂iQ0) ∈ Skew(3).

Equating tangential entries and observing (5.92), yields for every i, j, k = 1, 2:

〈∂jy0, ∂ikVn〉+ 〈∂ky0, ∂ijVn〉 = −
(
〈∂jVn, ∂iky0〉+ 〈∂kVn, ∂ijy0〉

)
→ 0 strongly in L2(ω).

Permuting i, j, k we eventually get:

〈∂jy0, ∂ikVn〉 → 0 strongly in L2(ω) for all i, j, k = 1, 2.

On the other hand, equating off-tangential entries, we get by (5.92) and (5.93) that for each

i = 1, 2:

〈~b0, ∂ijVn〉 = −
(
(∇y0)T∇~pn + (∇Vn)T∇~b0

)
ij
− 〈~pn, ∂ijy0〉 → 0 strongly in L2(ω).

Consequently, {QT
0∂ijVn → 0}i,j=1,2 in L2(ω,R3), which implies convergence (5.94) as claimed.

This ends the proof of (5.91).

Remark 5.5.3. Although the kernel of the (nonlinear) energy I4, displayed in Theorem

5.5.1, is finite dimensional, the full coercivity estimate of the form below is false:

min
S∈Skew(3),c∈R3

(
‖V − (Sy0 + c)‖2W2,2(ω,R3) + ‖S− 1

2

(
(∇y0)T∇

(
S2y0 −

1

12
d̃0

))
sym
‖2L2(ω,R2×2)

)
≤ CI4(V,S), for all (V,S) ∈ V ×S .

(5.95)

For a counterexample, consider the particular case of classical von Kármán functional (5.79),

specified in Remark 5.4.11. Clearly, I4(v, w) = 0 if an only if v(x) = 〈v, x〉+ α and w(x) =

βx⊥ − 1
2〈v, x〉v + γ, for some v ∈ R2 and α, β, γ ∈ R. Note that (5.91) reflects then the

Poincaré inequality:
´
ω |∇v −

ffl
ω∇v|

2 dx′ ≤ C
´
ω |∇

2v|2 dx′, whereas (5.95) takes the form:

(5.96) min
v∈R2

(ˆ
ω
|∇v − v|2 dx′ +

ˆ
ω
|∇symw −

1

2
v ⊗ v|2 dx′

)
≤ CI4(v, w).

Let ω = B1(0). Given v ∈W2,2(ω) such that det∇2v = 0, let w satisfy: ∇symw = −1
2∇v ⊗

∇v, which results in vanishing of the first term in (5.79). Neglecting the first term in the

left hand side of (5.96), leads in this context to the following weaker form, which we below

disprove:

(5.97) min
a∈R2

ˆ
ω
|∇v ⊗∇v − v ⊗ v|2 dx′ ≤ C

ˆ
ω
|∇2v|2 dx′.
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Define vn(x) = n(x1 + x2) + 1
2(x1 + x2)2 for all x = (x1, x2) ∈ ω. Then we have that

∇vn = (n+ x1 + x2)(1, 1) and det∇2vn = 0. Minimization in (5.97) becomes:

min
v∈R2

ˆ
ω
|(n+ x1 + x2)2(1, 1)T ⊗ (1, 1)T − v ⊗ v|2 dx′

and an easy explict calculation yields the necessary form of the minimizer: v = δ(1, 1)T.

Thus, the same minimization can be equivalently written and estimated in:

4 ·min
δ∈R

ˆ
ω

∣∣(n+ x1 + x2)2 − δ2
∣∣2 dx′ ∼ 4n2 →∞ as n→∞.

On the other hand, |∇2vn|2 = 4 at each x′ ∈ ω. Therefore, the estimate (5.97) cannot hold.

�

5.6 Beyond the von Kármán regime: an example

Given a function φ ∈ C∞
(
(−1

2 ,
1
2)
)
, consider the conformal metric:

G(z′, z3) = e2φ(z3)I3 for all z = (z′, z3) ∈ Ωh.

The midplate metric Ḡ2×2 = e2φ(0)I2 has a smooth isometric immersion y0 = eφ(0)id2 : ω → R2

and thus by Theorem 5.2.4 there must be:

inf Ih ≤ Ch2.

By a computation, we get that the only possibly non-zero Christoffel symbols of G are:

Γ3
11 = Γ3

22 = −φ′(z3) and Γ1
13 = Γ2

23 = Γ3
33 = φ′(z3), while the only possibly nonzero Riemann

curvatures are:

(5.98) R1212 = −φ′(z3)2e2φ(z3), R1313 = R2323 = −φ′′(z3)e2φ(z3).

Consequently, the results of this paper provide the following hierarchy of possible energy

scalings:

(a) {ch2 ≤ inf Ih ≤ Ch2}h→0 with c, C > 0. This scenario is equivalent to φ′(0) 6= 0. The

functionals 1
h2 Ih as in Theorems 5.2.1, 5.2.3 and 5.2.4 exhibit the indicated compactness

properties and Γ-converge to the following energy I2 defined on the set of deformations

y ∈W2,2
iso (ω):

I2(y) =
1

24

ˆ
ω
Q2

(
Πy − φ′(0)I2

)
dx′.

Here Q2(F2×2) = min
{
D2W (I3)[F̃ ]2; F̃ ∈ R3×3 with F̃2×2 = F2×2

}
.

(b) {ch4 ≤ inf Ih ≤ Ch4}h→0 with c, C > 0. This scenario is equivalent to φ′(0) = 0 and

φ′′(0) 6= 0. The unique (up to rigid motions) minimizing isometric immersion is then

id2 : ω → R2 and the functionals 1
h4 Ih have the compactness and Γ-convergence prop-

erties as in Theorem 5.4.4, Theorem 5.4.5 and Theorem 5.4.6. The following limiting

functional I4 is defined on the set of displacements {(v, w) ∈W2,2(ω,R)×W1,2(ω,R2)}
as in Remark 5.4.11:

I4(v, w) =
1

2

ˆ
ω
Q2

(
∇symw +

1

2
∇v ⊗∇v − 1

24
φ′′(0)I2

)
dx′

+
1

24

ˆ
ω
Q2

(
∇2v

)
dx′ +

1

1440
φ′′(0)2|ω|Q2

(
I2

)
.



Chapter 5. Dimension reduction for thin sheets with transversally varying pre-stretch 110

(c) {inf Ih ≤ Ch6}h→0 with C > 0. This scenario is equivalent to φ′(0) = 0 and φ′′(0) = 0

(in agreement with Lemma 5.7.1) and in fact we have the following more precise result

below.

Theorem 5.6.1. Let G(z′, z3) = e2φ(z3)I3, where φ(k)(0) = 0 for k = 1 . . . n − 1 up to some

n > 2. Then: inf Ih ≤ Ch2n and:

(5.99) lim
h→0

1

h2n
inf Ih ≥ cn φ(n)(0)2|ω|Q2(I2),

where cn > 0. In particular, if φ(n)(0) 6= 0 then we have: ch2n ≤ inf Ih ≤ Ch2n with c, C > 0.

Proof. Step 1. For the upper bound, we compute:

Ih

(
eφ(0)id3

)
=

1

h

ˆ
Ωh
W
(
eφ(0)−φ(z3)I3

)
dz =

1

2h

ˆ
Ωh
Q3

(
φ(n)(0)

zn3
n!

I3

)
+O(h2n+2) dz

= h2n

(
φ(n)(0)2

(n!)2

1

(2n+ 1)22n+1
|ω|Q3(I3) + o(1)

)
≤ Ch2n,

where we used the fact that eφ(0)−φ(z3) = 1− φ(n)(0)
zn3
n! +O(|z3|n+1).

Step 2. To prove the lower bound (5.99), let {uh}h ⊆ W1,2(Ωh,R3) be such that

Ih(uh) ≤ Ch2n. Then:

Ih(uh) ≥ c

h

ˆ
Ωh

dist2
(
∇uh, eφ(z3)SO(3)

)
dz

≥ c

h

ˆ
Ωh

dist2
(
∇uh, eφ(0)SO(3)

)
dz − c̄

h

ˆ
Ωh

∣∣φ(n)(0)
zn3
n!

+O(hn+1)
∣∣2 dz,

which results in: 1
h

´
Ωh dist2

(
e−φ(0)∇uh,SO(3)

)
dx ≤ Ch2n. Similarly as in Lemma 5.4.2

and Corollary 5.4.3, it follows that there exist a sequence of approximating rotation fields

{Rh}h ⊆W1,2(ω,R3×3) such that:

(5.100)
1

h

ˆ
Ωh
|∇uh − eφ(0)Rh|2 dz ≤ Ch2n,

ˆ
ω
|∇Rh|2 dx′ ≤ Ch2n−2.

As in sections 5.2 and 5.4, we define the following displacement and deformation fields:

yh(x′, x3) = (R̄h)T
(
uh(x′, hx3)−

 
Ωh
uh dz

)
∈W1,2(Ω,R3), R̄h = P

 
Ωh
e−φ(0)∇uh(z) dz,

V h(x′) =
1

hn−1

ˆ 1/2

−1/2
yh(x′, x3)− eφ(0)

(
id2 + hx3f3

)
dx3 ∈W1,2(ω,R3).

In view of (5.100), we obtain then the following convergences (up to a not relabelled subse-

quence):

yh → eφ(0)id2 in W1,2(ω,R3),
1

h
∂3y

h → eφ(0)f3 in L2(ω,R3),

V h → V ∈W2,2(ω,R3) in W1,2(ω,R3),

1

h
(∇V h)2×2,sym ⇀ ∇symw weakly in L2(ω,R2×2).

This allows to conclude the claimed lower bound:

lim inf
h→0

1

h2n
Ih(uh) ≥ 1

2

∥∥e−φ(0)∇symw − x3e
−φ(0)∇2V 3 − φ(n)(0)

xn3
n!

I2

∥∥2

Q2

≥ 1

2

∥∥∥φ(n)(0)
xn3
n!

I2 − P1

(
φ(n)(0)

xn3
n!

I2

)∥∥∥2

Q2

=
1

2

φ(n)(0)2

(n!)2
·
ˆ 1/2

−1/2

(
xn3 − P1(xn3 )

)2
dx3 · |ω|Q2(I2),
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as in(5.99), with the following constant cn:

cn =
1

22n+1(n!)2

{
(n−1)2

(2n+1)(n+2)2 for n odd
n2

(2n+1)(n+1)2 for n even.

Observe that c2 = 1
1440 , consistently with the previous direct application of Theorem 5.4.5.

5.7 Beyond the von Kármán regime: preliminary results for

the Ch6 scaling regime

In this section, we focus on the non-oscillatory case in the general setting (NO) and derive

the equivalent of Lemma 5.4.9 at the next order scaling, which turns out to be Ch6. Our

findings are consistent with those of the example in Section 5.6. Similarly to Lemma 5.4.1

we first construct the recovery sequence with energy smaller than that in the von Kármán

regime:

Lemma 5.7.1. Assume (NO) and write:

G(z) = G(z′, 0) + z3∂3G(z′, 0) +
z2

3

2
∂33G(z′, 0) +O(|z3|3) for all z = (z′, z3) ∈ Ωh.

If there holds: lim
h→0

1

h4
Ih = 0, then we automatically have:

inf Ih ≤ Ch6.

Proof. Under the assumption (5.86) we set the sequence of deformations uh : Ωh → R3 to be:

uh(z′, z3) = y0(z′) + z3
~b0(z′) +

z2
3

2
d̃0(z′) +

z3
3

6
ẽ0(z′), z = (z′, z3) ∈ Ωh,

where y0,~b0 are as in (5.39) and d̃0 as in (5.42). The new vector field ẽ0 : ω̄ → R3 is defined

through the last formula below, in view of ¯II = 0 in (5.76):

QT
0Q0 = G(z′, 0),

(
QT

0P̃0

)
sym

=
1

2
∂3G(z′, 0),

P̃ T
0 P̃0 +

(
QT

0D̃0

)
sym

=
1

2
∂33G(z′, 0).

(5.101)

We will use the following matrix fields definitions:

(5.102) Q0 =
[
∂1y0, ∂2y0, ~b0

]
, P̃0 =

[
∂1
~b0, ∂2

~b0, d̃0

]
, D̃0 =

[
∂1d̃0, ∂2d̃0, ẽ0

]
.

Consequently:

∇uh = Q0 + z3P̃0 +
z2

3

2
D̃0 +

z3
3

6

[
∂1ẽ0, ∂2ẽ0, 0

]
,

whereas writing A = G1/2, the expansion (5.57) becomes:

A−1(z) = Ā(z′)−1

+ Ā−1(z′)
(
− z3∂̄3A(z′, 0)+ z2

3∂3A(z′, 0)Ā−1(z′)∂3A(z′, 0)− z2
3

2
∂33A(z′, 0)

)
Ā−1(z′)

+O(|z3|3) for all z = (z′, z3) ∈ Ωh.
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We thus obtain the following expression:

(5.103) ∇uh(z)A−1(z) = (Q0Ā
−1)(z′)

(
I3 + z3S1(z′) +

z2
3

2
S2(z′)

)
+O(|z3|3),

with:

S1 = Ā−1
(
QT

0P̃0 − Ā∂3A
)
Ā−1,

S2 = Ā−1
(
QT

0D̃0 − 2QT
0P̃0Ā

−1∂3A+ 2Ā(∂3A)Ā−1∂3A− Ā∂33A
)
Ā−1.

As in the proof of Lemma 5.4.1, we now get:

W
(
∇uh(z)A−1(z)

)
= W

(
I3 + z3S1(z′)sym +

z2
3

2

(
S2(z′)sym + S1(z′)TS1(z′)

)
+O(|z3|3)

)
= W

(
I3 +O(|z3|3)

)
= O(h6).

(5.104)

The final equality follows from:

(S1)sym = Ā−1
(

(QT
0P̃0)sym − (Ā∂3A)sym

)
Ā−1 = Ā−1

(
(QT

0D̃0)sym −
1

2
∂3G

)
Ā−1 = 0,

(S2)sym + ST
1S1 = Ā−1

(
(QT

0P̃0)sym + 2
(
Ā(∂3A)Ā−1∂3A

)
sym
−
(
Ā∂33A

)
sym

− 2
(
QT

0P̃0Ā
−1∂3A

)
sym

+
(
QT

0P̃0 − Ā∂3A
)T
Ā−2

(
QT

0P̃0 − Ā∂3A
))
Ā−1,

so that:

(S2)sym + ST
1S1 = Ā−1

(
(QT

0D̃0)sym + P̃ T
0 P̃0 −

1

2
∂33G+ (∂3A)2 − 2

(
QT

0P̃0

)
sym

Ā−1∂3A

− 2(∂3A)Ā−1
(
QT

0P̃0

)
sym

+ 2
(
Ā(∂3A)Ā−1∂3A

)
sym

)
Ā−1

= Ā−1
(

(∂3A)2 − 2
(
(∂3G)Ā−1∂3A+ Ā(∂3A)Ā−1(∂3A)

)
sym

)
Ā−1 = 0,

where we have repeatedly used the assumption (5.101).

As in Section 5.4, using the change of variable by the smooth deformation Y = uh in the

proof of Theorem 5.7.1, one obtains the following approximations, by adjusting the proofs of

Lemma 5.4.2 and Corollary 5.4.3:

Lemma 5.7.2. Assume (NO) and (5.86). If y0 is injective on an open, Lipschitz subset

V ⊆ ω, then for every uh ∈W1,2(Vh,R3) there exists R̄h ∈ SO(3) such that:

1

h

ˆ
Vh

∣∣∣∇uh(z)− R̄h
(
Q0(z′) + z3P̃0(z′) +

x2
3

2
D̃0(z′)

)∣∣∣2 dz ≤ C
(
Ih(uh,Vh) + h5|Vh|

)
,

with the smooth correction matrix fields P̃0, D̃0 in (5.102). The constant C above is uni-

form for all subdomains Vh ⊂ Ωh which are bi-Lipschitz equivalent with controlled Lipschitz

constants.

Corollary 5.7.3. Assume (NO). Then, for any sequence {uh}h ⊆ W 1,2(Ωh,R3) satisfying

Ih(uh) ≤ Ch6, there exists a sequence of rotation-valued maps Rh ∈ W1,2(ω,R3×3), such

that:

1

h

ˆ
Ωh

∣∣∣∇uh(z)−Rh(z′)
(
Q0(z′) + z3P̃0(z′) +

z2
3

2
D̃0(z′)

)∣∣∣2 dz ≤ Ch6,

ˆ
ω
|∇Rh(z′)|2 dz′ ≤ Ch4.
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We now make the following observation. Writing the non-oscillatory metric G in its proper

third order Taylor’s expansion:

G(z) = G(z′, 0) + z3∂3G(z′, 0) +
z2

3

2
∂33G(z′, 0) +

z3
3

6
∂333G(z′, 0) + o(z4

3),

one can readily check that the term O(|z3|3) in the right hand side of the formula (5.103) can

be explicitly written as: (Q0Ā
−1)(z)

z3
3
6 S3(z′) + o(|z3|3), where:

S3 = Ā−1
(
QT

0 [∂1ẽ0, ∂2ẽ2, 0]− 3QT
0D̃0Ā

−1∂3A− 3QT
0P̃0Ā

−1∂33A

+ 6QT
0P̃0Ā

−1(∂3A)Ā−1∂3A
)
Ā−1 + Ā∂333A

−1(x′, 0).

Consequently, (5.104) becomes:

W
(
∇uh(z)A(z)−1

)
= W

(
I3 +

z3
3

6

(
S3(z′) + 3S1(z′)TS2(z′)

)
sym

+ o(|z3|3)
)
.(5.105)

A tedious but direct inspection shows now that:(
S3 + 3(S1)TS2

)
sym

= Ā−1
(
QT

0 [∂1ẽ0, ∂2ẽ0, 0] + 3P̃ T
0 D̃0 −

1

2
∂333G(x′, 0)

)
sym

Ā−1,

and we see that the tensor playing the role similar to the curvature term ¯IIsym , at the present

h6 scaling regime, which equals the 2× 2 minor of the right hand side above after discarding

the external multiplying factors Ā−1, has the form:(
(∇y0)T∇ẽ0 + 3(∇~b0)T∇d̃0

)
sym
− 1

2
∂333G(x′, 0)2×2

With the eye on future applications, we now identify this tensor in terms of the components

Rijkl. Recall that in Section 5.6, the relevant curvature quantity corresponding to n = 3 was:

−φ′′′(0)e2φ(0)I2, equal to ∂3

[
Ri3j3

]
i,j=1,2

(x′, 0) in view of (5.98). We have:

Theorem 5.7.4. Assume (NO) and (5.86). Let y0,~b0, d̃0, ẽ0 be as in (5.101), (5.102). Then

for all x′ ∈ ω we have: ẽ0 = Q0

[
∂3Γi33 + Γip3Γp33

]
i=1...3

(x′, 0) and:

(
(∇y0)T∇ẽ0 + 3(∇~b0)T∇d̃0

)
sym

(x′)− 1

2
∂333G(x′, 0)2×2 = ∂3

[
R1313 R1323

R1323 R2323

]
(x′, 0).

Proof. Step 1. Recall that existence of smooth vector fields y0,~b0, d̃0, ẽ0 satisfying condition

(5.101) is equivalent to the vanishing of the entire Riemann curvature tensor of the metric

G on ω × {0}. Below, all equalities are valid at points (x′, 0). Using (5.75) and the third

identity in (5.101), we obtain:(
QT

0ẽ0

)
i

= ∂33Gi3 −
1

2
∂i3G33 −GpqΓp33Γqi3 = ∂3

(
GpiΓ

p
33

)
−GpqΓp33Γqi3

= Gpi∂3Γp33 +
(
∂3Gpi −GpqΓqi3

)
Γp33 = Gpi∂3Γp33 +GqiΓ

q
p3Γp33 for i = 1 . . . 3,

by the Levi-Civita connection’s compatibility in: ∇3Gpi = 0. Consequently, it follows that:

QT
0ẽ0 = G

[
∂3Γi33 + Γip3Γp33

]
i=1...3

.

By the first equation in (5.101), we deduce the claimed formula for ẽ0.
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Step 2. Similarly, by (5.75), we obtain for all i, j = 1, 2:

〈∂iy0, ∂j ẽ0〉 = ∂j〈∂iy0, ẽ0〉 − 〈∂ijy0, ẽ0〉
= ∂j

(
Gpi∂3Γp33 +GqiΓ

q
p3Γp33

)
−GpqΓpij

(
∂3Γq33 + Γqt3Γt33

)
= Gis

(
∂j3Γs33 + Γsjq∂3Γq33 + ∂j

(
Γsp3Γp33

)
+ ΓstjΓ

t
q3Γq33

)
= Gis

(
∂3

(
∂jΓ

s
33 + ΓsjpΓ

p
33

)
+
(
∂jΓ

p
33 + ΓpqjΓ

q
33

)
Γs3p − Γq33R

s
q3j

)
= Gis

(
∂3

(
∂jΓ

s
33 + ΓsjpΓ

p
33

)
+
(
∂jΓ

p
33 + ΓpqjΓ

q
33

)
Γs3p

)
where we have used ∇jGpi = 0 and the assumed condition Rsq3j = 0. Further:

〈∂i~b0, ∂j d̃0〉 = GpsΓ
p
i3

(
∂jΓ

s
33 + ΓsjqΓ

q
33

)
.

Consequently, it follows that:(
(∇y0)T∇ẽ0 + 3(∇~b0)T∇d̃0

)
ij

=Gis∂3

(
∂jΓ

s
33 + ΓsjqΓ

q
33

)
+
(
∂jΓ

p
33 + ΓpjqΓ

q
33

)(
GisΓ

s
3p + 3GpsΓ

s
i3

)
=Gis∂3

(
∂jΓ

s
33 + ΓsjqΓ

q
33

)
+
(
∂3Γpj3 + Γqj3Γpq3

)(
2∂3Gip + ∂iG3p − ∂pG3i

)
,

by Rp3j3 = 0. Observe also that: 1
2∂333Gij = 1

2∂33

(
GsiΓ

s
3j +GsjΓ

s
3i

)
. Expanding:

∂33

(
GsiΓ

s
3j

)
= ∂3

(
Gsi∂3Γs3j +GsiΓ

s
p3Γpsj +GspΓ

p
i3Γs3j

)
= Gsi∂3

(
∂3Γs3j + Γs3pΓ

p
3j

)
+ (∂3Gsi)

(
∂3Γsj3 + Γs3pΓ

p
3j

)
+ ∂3

(
GspΓ

p
i3Γsj3

)
we finally obtain:(

(∇y0)T∇ẽ0 + 3(∇~b0)T∇d̃0

)
ij
− ∂33

(
GsiΓ

s
3j

)
= Gsi∂3

(
∂jΓ

s
33 + ΓsjqΓ

q
33 − ∂3Γs3j − Γs3pΓ

p
3j

)
+
(
∂3Γpj3 + Γqj3Γp3q

)(
∂3Gpi + ∂iGp3 − ∂pGsi

)
− ∂3

(
GspΓ

p
i3Γsj3

)
= Gis∂3R

s
3j3 + Sij ,

(5.106)

It now follows that:

Sij + Sji = 2
(
∂3Γsj3 + Γqj3Γs3q

)
GpsΓ

p
3i − ∂3

(
GspΓ

p
i3Γsj3

)
+ 2
(
∂3Γsi3 + Γqi3Γs3q

)
GpsΓ

p
3j − ∂3

(
GspΓ

p
i3Γsj3

)
= 2Gps

(
∂3

(
Γsj3Γpi3

)
+
(
Γqj3Γpi3 + Γqi3Γpj3

)
Γs3q

)
− 2∂3

(
GspΓ

p
i3Γsj3

)
= 2GpsΓ

s
3q

(
Γqj3Γpi3 + Γqi3Γpj3

)
− 2Γpi3Γsj3∂3Gsp = 0.

Hence, (5.106) results in:(
(∇y0)T∇ẽ0 + 3(∇~b0)T∇d̃0

)
sym ,ij

− 1

2
∂333Gij

=
1

2

(
Gis∂3R

s
3j3 +Gjs∂3R

s
3i3

)
=

1

2
∂3

(
GisR

s
3j3 +GjsR

s
3i3

)
=

1

2
∂3

(
Ri3j3 +Rj3i3

)
= ∂3Ri3j3,

by Rs3js = Rs3i3 = 0. This completes the proof.
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bending energy. Journal de mathématiques pures et appliquées, 88(1):107–122,

2007.

[SE10] Eran Sharon and Efi Efrati. The mechanics of non-Euclidean plates. Soft Matter,

6(22):5693, 2010.

[Spi75] Michael Spivak. A Comprehensive Introduction to Differential Geometry. Num-

ber v. 3 in A Comprehensive Introduction to Differential Geometry. Publish or

Perish, Incorporated, 1975.
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