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and there is more to come”

Ulver

Introduction

One of the essential principles of modern mathematics can be informally stated as follows:

it is sometimes convenient to provide nonsmooth generalisations of smooth objects, since to

investigate the former can shed new light on the latter. A key instance of such phenomenon is

given by the theory of Sobolev spaces, which allows to study several properties of the smooth

functions by looking at the behaviour of the weakly differentiable ones.

From a geometric standpoint, in these last decades the tendency has been to generalise

different concepts of curvature from the classical Riemannian world to the realm of nonsmooth

metric structures. The very first step toward this direction is represented by the Alexandrov

geometry. This theory has been originally introduced by A. D. Alexandrov in the late ’40s

and considerably developed by Y. Burago, M. Gromov and G. Perel’man in [BGP92]. An

Alexandrov space is a metric space whose sectional curvature is bounded on one side by some

constant k ∈ R (when the curvature is bounded from above, these spaces are now commonly

referred to as CAT(k) spaces; the acronym CAT – coined by Gromov in [Gro87] – stands for

‘Cartan-Alexandrov-Toponogov’). The sectional curvature bound is imposed via comparison

of the geodesic triangles in the space with the geodesic triangles in the model Riemannian

surface having curvature constantly equal to k. We do not enter into further details about

such theory, albeit related to the topics of this thesis, but we rather refer the reader to the

monograph [BBI01] for a thorough account of it. We just mention the fact that the class of

Alexandrov spaces with curvature bounded by some k ∈ R is closed under Gromov-Hausdorff

convergence – a crucial notion of distance between metric spaces, which measures how far

two spaces are from being isometric. In particular, this grants that any Gromov-Hausdorff

limit of a sequence of Riemannian manifolds (with uniformly bounded sectional curvature) –

which might not be a Riemannian manifold – certainly has an Alexandrov space structure.

More recently, even the notion of ‘having Ricci curvature bounded from below’ has been

generalised to the nonsmooth framework. In this case, the correct setting to work in is that of

metric measure spaces, the reason being that the interplay between distance and measure is

necessary in order to encode the Ricci curvature bounds. The first proposal in this direction

is given by the theory of Ricci limits, introduced by J. Cheeger and T. Colding in [CC96]

and extensively studied – among many others – in [CC97, CC00a, CC00b, CN12]. Shortly

said, a Ricci limit is achieved as limit of a sequence of Riemannian manifolds with a uniform

lower bound on the Ricci curvature; such convergence is meant to be with respect to the

measured Gromov-Hausdorff distance, which constitutes a variant of the Gromov-Hausdorff

distance that takes also the behaviour of the reference measure into account. An alternative

to this ‘extrinsic’ approach has been independently proposed by Lott-Villani and Sturm in the

seminal papers [LV07, Stu06a, Stu06b], thus giving birth to the theory of curvature-dimension

conditions for metric measure spaces. These structures are typically called CD(K,N) spaces,

xiii
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where K ∈ R indicates the synthetic bound from below on the Ricci curvature, while the

constant N ∈ [1,∞] is the bound from above on the dimension. A key feature of these spaces

is the intrinsic nature of their definition: the above-mentioned bounds can be imposed by

requiring some form of convexity of suitable entropy functionals along Wasserstein geodesics,

by using an abstract optimal transport language that does not appeal to any smooth structure.

This represents the main novelty of the CD theory as opposed to the Ricci limits one, which

cannot overlook the smooth geometry as it is based upon the approximation with Riemannian

manifolds. Nevertheless, the class of CD(K,N) spaces does not perfectly capture the essence

of ‘being Riemannian’, as it also contains Finsler manifolds. An advantage of such fact is that

it permits the study of geometric and functional inequalities in metric structures that could

be very distant from being Euclidean-like. For instance, some of the several inequalities that

are currently available in the CD(K,N) setting are the Bishop-Gromov inequality [Stu06b],

the Bonnet-Myers diameter estimate [Stu06b], a weak local (1, 1)-Poincaré inequality [Raj12],

Laplacian comparison estimates for squared distance functions [Gig15] and the Lévy-Gromov

inequality [CM17]; we refer to [BGL12] for many other useful inequalities.

On the other hand, a more restrictive curvature-dimension condition has been proposed

in order to select those CD(K,N) spaces that resemble more a Riemannian manifold: the

so-called RCD(K,N) condition, introduced in [AGS14b, AGMR15] for the case N = ∞ and

in [Gig15] for N finite (the added letter R is the initial of ‘Riemannian’). Roughly speaking,

an RCD space is a CD space that looks like a Hilbert space at infinitesimal scales (indeed,

the precise concept expressing such property is called infinitesimal Hilbertianity). In the

RCD context, besides the formulation via optimal transport (à la Lott-Villani-Sturm, the

‘Lagrangian’ approach), it is possible to utilise the Γ-calculus language (à la Bakry-Émery,

the ‘Eulerian’ approach). The first geometric result for RCD spaces that has been obtained

is the Abresch-Gromoll inequality [GM14].

We point out a fundamental feature of the CD/RCD theories, which actually justifies their

importance: given any constants K ∈ R and N ∈ [1,∞], it holds that both the family of all

CD(K,N) spaces and that of all RCD(K,N) spaces are closed under measured Gromov-

Hausdorff convergence; in particular, they contain all Ricci limits. Furthermore, many

analytic and geometric properties of CD/RCD spaces are stable under measured Gromov-

Hausdorff convergence, thus allowing to prove several rigidity results. Among them, we just

mention the Cheeger-Gromoll splitting theorem [Gig13, Gig14b], the maximal diameter theo-

rem [Ket15a], the Obata rigidity theorem [Ket15b], the ‘volume cone to metric cone’ theorem

[DPG16] and the Bochner rigidity theorem for the first cohomology group [GR17]. For a gen-

eral overview and many historical remarks about the theory of curvature-dimension conditions

on metric measure spaces, we refer the reader to the nice surveys [Amb18, Vil16, Vil17].

The purpose of the present thesis is to investigate some structural properties of finite-

dimensional RCD spaces. In a few words, the main objective has been to extract ‘concrete’

geometric properties from the ‘abstract’ theory of these spaces and therefore to deepen our

knowledge of their shape. Some of the articles that are undoubtedly important contributions

in this direction are the following ones:

• N. Gigli, A. Mondino and T. Rajala showed in [GMR15] that any RCD(K,N) space

(with N <∞) has at least one Euclidean tangent cone around almost all of its points.

• A. Mondino and A. Naber proved in [MN14] that any finite-dimensional RCD space is
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rectifiable as a metric space.

• A definition of non-collapsed RCD space has been introduced and analysed by G. De

Philippis and N. Gigli in [DPG18].

• E. Brué and D. Semola proved in [BS18a] that any RCD(K,N) space (with N < ∞)

has constant dimension, in a suitable sense.

• It has been shown by Y. Kitabeppu in [Kit18] that, calling n ∈ N the dimension of an

RCD space (X, d,m), we have that X admits no k-regular points for any k > n.

The language we shall adopt in this thesis is that of Lp-normed L∞-modules, which have been

introduced by N. Gigli in [Gig17b]. Another ingredient that plays a fundamental role in our

discussion is the notion of Sobolev space over general metric measure spaces, which allows

for the development of a differential calculus in such abstract setting. Part of the work we

shall carry out will be to provide some ‘foundational’ results (at the level of abstract metric

measure spaces, with no curvature bounds) about normed modules, Sobolev spaces and the

possible relations between them. More precisely, we pursue these plans:

• To investigate an axiomatic concept of Sobolev space – called D-structure and intro-

duced in [GT01] by V. Gol’dshtein and M. Troyanov – and combine it with the language

of normed modules (cf. Section 2.1 and Subsection 4.1.1).

• To prove that a certain class of normed modules can be represented as spaces of sections

of some notion of measurable Banach bundle (see Section 3.2).

• To show that any Sobolev map from a metric measure space to a metric space is

associated with a differential operator, which is a linear and continuous map between

suitable tangent modules (cf. Chapter 8).

On the other hand, the results we obtained concerning the structure theory of RCD spaces

can be summarised as follows:

• We prove that finite-dimensional RCD spaces (X, d,m) are rectifiable ‘as metric measure

spaces’, meaning that the maps provided by Mondino-Naber in [MN14] to display the

metric rectifiability of X keep under control the reference measure; see Section 5.2.

• We show that on any RCD(K,N) space (X, d,m) the abstract differential calculus devel-

oped by N. Gigli, which is of purely functional-analytic nature and thus a priori possibly

unrelated to the structure of the underlying space, can be actually linked (in a canon-

ical way) to the geometry of X, namely to the pointed measured Gromov-Hausdorff

rescalings of X around its points; cf. Sections 5.1 and 5.3.

• We propose a notion of parallel transport for RCD(K,∞) spaces, prove its basic prop-

erties (such as uniqueness, norm-preservation and geometric consequences) and show

its existence under suitable assumptions on the space; see Chapter 6.

• We explain in which sense any Sobolev vector field (in the language of [Gig17b]) over an

RCD(K,∞) space admits a unique quasi-continuous representative, much like Sobolev

functions do; cf. Chapter 7.

We now briefly describe the structure of the thesis. However, any chapter will begin with an

introductory part, which will explain more in details the material contained therein.
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Structure of the thesis

The contents of the thesis are subdivided into the various chapters in the following way:

Chapter 1: Prolegomena. In this chapter we collect – for the usefulness of the reader

– the main well-known definitions and results about geometric analysis on metric measure

spaces, which will be needed later on in the thesis.

Chapter 2: Sobolev calculus on metric measure spaces. First of all, we present (in

Section 2.1) the axiomatic approach of [GT01] to the Sobolev calculus on metric measure

spaces, which aims at unifying several different variants of Sobolev space that appeared in

the literature throughout the last twenty years. We also suggest some new notions of locality

for these axiomatic Sobolev spaces and we show the consequent calculus rules. Finally, in

Section 2.2 we focus our attention on a precise notion of Sobolev space: the one obtained

via weak upper gradients, cf. [Che99, Sha00, AGS14a]. This is the approach we will follow in

order to develop a differential calculus in our metric measure context.

Chapter 3. The language of normed modules. From this point forward the whole

thesis will be based upon the terminology of Lp-normed L∞-modules, which constitute a

convenient abstraction of the notion of ‘space of p-integrable vector fields’ over a given Rie-

mannian manifold. Section 3.1 is devoted to an exhaustive description of such objects, along

the lines of the presentation in [Gig17b] and [Gig17a]; more specifically, besides the definition

of normed module and its basic properties, we discuss a natural concept of local dimension

that arises in this context and explain how to construct new normed modules out of the

old ones (by taking duals, pullbacks and tensor products). On the other hand, Section 3.2

contains a new result – called Serre-Swan theorem – about the representation of normed

modules. It says that any ‘locally finitely-generated’ normed module is isomorphic to the

space of sections of a suitable measurable Banach bundle, whose fibers have finite dimension.

Moreover, such module-bundle correspondence is also observed from a categorical viewpoint.

Chapter 4. Differential calculus on RCD spaces. A combination of Sobolev calculus

and normed modules theory yields a first-order differential structure over any abstract metric

measure space, to which the whole Section 4.1 is dedicated. In this regard, the most important

objects are tangent module and cotangent module, which generalise the concepts of vector field

and 1-form, respectively. Another fundamental tool is the differential operator that can be

associated to any morphism of metric measure spaces. The new contributions that can be

found in this section are Subsection 4.1.3 (where we examine the tangent module over Rd

endowed with a generic Radon measure) and Subsection 4.1.5 (where a special notion of

differential for maps with Euclidean target is built). Furthermore, in presence of curvature

bounds even a second-order differentiable calculus is possible, as described in Section 4.2.

To begin with, we recall the definition of RCD(K,N) space and the path that led to it.

Then we explain how to define Hessian and covariant derivative on RCD spaces via suitable

integration-by-parts formulae; their well-posedness is granted by the presence of a sufficiently

vast class of test functions, which is produced by exploiting the regularising effects of the

heat flow on RCD spaces.
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Chapter 5. Structure of strongly m-rectifiable spaces. We focus on a special class

of metric measure spaces, which are said to be strongly m-rectifiable. Shortly said, these are

spaces that are ‘almost isometrically’ rectifiable via maps under which the reference measure

behaves well. In Section 5.2 we prove that any RCD(K,N) space (with N < ∞) is strongly

m-rectifiable, thus motivating our interest in such a class of spaces. In Section 5.3 we show

that the abstract tangent module associated to a strongly m-rectifiable space can be actually

realised as the space of sections of the Gromov-Hausdorff tangent bundle, which is obtained

by glueing together (in a canonical way) the blow-ups of the space around its points. This

result raises a bridge between the analytic machinery of tangent/cotangent modules and the

geometric aspects of the spaces under consideration.

Chapter 6. A notion of parallel transport for RCD spaces. We introduce a notion of

parallel transport for the class of RCD(K,∞) spaces. In view of some technical issues due to

the nature of our spaces, we do not speak about parallel transport along a simple Lipschitz

curve, but rather we consider a ‘weighted selection’ of curves at the same time. In Section

6.1 we set up the theory of those functional spaces wherein the parallel transport lives. In

Subsection 6.2.1 we give the definition of parallel transport and we show that it is well-posed,

it preserves the norm and it forces the constant dimension of the underlying space. However,

in the current state of the art we are not able to prove existence of the parallel transport on

any RCD(K,∞) space; we just show (in Subsection 6.2.2) its existence for a special class of

finite-dimensional spaces admitting a ‘good Sobolev basis’ of the tangent module.

Chapter 7. Quasi-continuous vector fields on RCD spaces. Since a second-order

differential calculus is available in the RCD setting, we might wonder whether (and in which

sense) it is possible to take quasi-continuous representatives of Sobolev vector fields. This is

the problem we address in this chapter. It amounts to solving the following tasks: to build

up a new notion of ‘capacitary’ tangent module (with the variational capacity in place of

the usual reference measure), to declare what a quasi-continuous capacitary vector field is

and to show that any Sobolev vector field admits a unique quasi-continuous representative.

Nonetheless, the geometric consequences of such theory have not been investigated yet.

Chapter 8. Differential of metric-valued Sobolev maps. One of the several possible

ways to define Sobolev maps from a metric measure space to a metric space is via post-

composition with Lipschitz functions. In this chapter we explain how to associate a differential

to any such map, which ought to be a linear and continuous operator between appropriate

normed modules. Moreover, we prove its consistency with some previously known notions

of differential, such as Kirchheim’s differential for metric-valued Lipschitz maps defined on

the Euclidean space. Finally, we build the differential operator even for maps that are just

locally Sobolev, by means of a suitable inverse limit construction. The motivation behind

such results is the following: we would like to provide a Bochner-Eells-Sampson inequality for

maps between an RCD(K,N) space X and a CAT(0) space Y, with the aim of proving that

any harmonic maps from X to Y is locally Lipschitz. To pursue such long-term plan, the very

first step to make is precisely to define a notion of differential that fits into this framework.
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In this chapter we collect some well-known definitions and results, which will be needed

throughout the whole thesis. More specifically, the chapter is organised as follows:

• In Section 1.1 we will present the basics of metric geometry, with a particular accent

on the concepts of absolute continuity, Lipschitz continuity and geodesic space; most

of the material can be found, for instance, in [BBI01].

• In Section 1.2 we shall recall the main topics of measure theory. A special role will

be played by the space L0(m) of all equivalence classes (up to m-a.e. equality) of Borel

functions, which will constitute a fundamental tool in Chapter 3. For a thorough

treatise about this vast subject, we refer e.g. to the monography [Bog07].

• Finally, Section 1.3 will be devoted to the main aspects of geometric analysis on metric

measure spaces. Among the several tools we will discuss, we just mention the notion of

pointed-measured-Gromov-Hausdorff convergence, which will be used later on to study

the blow-ups of finite-dimensional RCD spaces around its points (in Chapter 5).

1
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1.1 Metric spaces

A metric space is any couple (X, d), where X is a set and the function d : X×X→ [0,+∞),

which is called distance on X, is symmetric, vanishes precisely on the diagonal and satisfies

the triangle inequality. Given a point x ∈ X and a radius r > 0, we shall denote by Br(x)

the open ball centered at x of radius r, namely

(1.1) Br(x)
.
=
{
y ∈ X : d(x, y) < r

}
.

We will write Bd
r (x) instead of Br(x) whenever it will seem necessary to emphasise the

distance under consideration. More generally, given any subset A of X and any radius r > 0,

we will write Br(A) or Bd
r (A) to indicate the r-neighbourhood of A, which is defined as

(1.2) Br(A)
.
=
⋃
x∈A

Br(x).

The distance between a point x ∈ X and a non-empty set A ⊆ X is given by the quantity

(1.3) d(x,A)
.
= inf

{
d(x, y) : y ∈ A

}
.

With this notation, we can equivalently express Br(A) as the set
{
x ∈ X : d(x,A) < r

}
.

We define the diameter diam(A) ∈ [0,+∞] of any non-empty set A ⊆ X as

(1.4) diam(A)
.
= sup

{
d(x, y) : x, y ∈ A

}
,

while we let diam(∅) .
= 0 by convention. Observe that the only sets having zero diameter are

the singletons and the empty set. A subset A of X is said to be bounded provided it has finite

diameter – or, equivalently, if there exist x ∈ X and r > 0 such that A ⊆ Br(x). We say that

the metric space (X, d) is proper provided any bounded closed subset of X is compact (while

the converse implication is always verified: every compact set is closed and bounded).

Fix a sequence (xn)n in X. We say that (xn)n is Cauchy provided limn,m→∞ d(xn, xm) = 0,

while it converges to some limit x∞ ∈ X, briefly xn → x∞, provided limn→∞ d(xn, x∞) = 0.

Any converging sequence is Cauchy, but in general the converse implication does not hold.

Whenever it does, we say that (X, d) is complete. Moreover, a subset D of X is dense in X

if for every r > 0 it holds that X = Br(D). We say that (X, d) is separable provided there

exists a sequence (xn)n ⊆ X that is dense in X.

By curve in X we intend any continuous map γ : [0, 1] → X. For brevity, we will often

write γt instead of γ(t). Given x, y ∈ X, we say that γ joins x to y provided (γ0, γ1) = (x, y).

The family of all curves in X will be shortly indicated by

(1.5) Γ(X)
.
= C

(
[0, 1],X

)
.

A natural distance that can be defined on the set Γ(X) is the sup distance dΓ(X), given by

(1.6) dΓ(X)(γ, σ)
.
= max

{
d(γt, σt)

∣∣ t ∈ [0, 1]
}

for every γ, σ ∈ Γ(X).

If (X, d) is complete and separable, then also
(
Γ(X), dΓ(X)

)
is complete and separable.

We call evaluation map the continuous map e : Γ(X)× [0, 1]→ X, which is defined by

(1.7) e(γ, t)
.
= γt for every (γ, t) ∈ Γ(X)× [0, 1].
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Given t ∈ [0, 1], we denote by et
.
= e(·, t) : Γ(X)→ X the evaluation map at time t, namely

(1.8) et(γ)
.
= γt for every γ ∈ Γ(X).

Each mapping et is clearly continuous.

The metric space (X, d) is said to be doubling (or metrically doubling) provided there

exists a constant Cd ∈ N, called metric doubling constant of the space (X, d), such that any

open ball of some radius r > 0 can be covered by Cd many open balls of radius r/2.

1.1.1 Absolute continuity

An important class of curves is that of absolutely continuous curves, which we now describe.

Definition 1.1 (Absolutely continuous curve) Let (X, d) be any complete metric space.

Fix an exponent p ∈ [1,∞]. Then a curve γ ∈ Γ(X) is said to be p-absolutely continuous

provided there exists a function f ∈ Lp(0, 1) such that

(1.9) d(γt, γs) ≤
∫ t

s
f(r) dr for every t, s ∈ [0, 1] with s < t.

The family of all p-absolutely continuous curves in X is denoted by ACp
(
[0, 1],X

)
.

For the sake of brevity, the space AC1
(
[0, 1],X

)
will be denoted by AC

(
[0, 1],X

)
and its

elements will be called just absolutely continuous curves in X.

Remark 1.2 In the case in which (X, d) coincides with the real line R endowed with the

Euclidean distance, the previous notion of absolute continuity coincides with the classical

one, which is treated e.g. in [Roy88]. �

Remark 1.3 Given any complete metric space (X, d), the following inclusions hold:

(1.10) ACq
(
[0, 1],X

)
⊆ ACp

(
[0, 1],X

)
for every p, q ∈ [1,∞] with p ≤ q.

It is a direct consequence of this fact: given that the interval [0, 1] has finite L1-measure, we

have Lq(0, 1) ⊆ Lp(0, 1) whenever p ≤ q by Hölder inequality. �

Definition 1.4 (Metric speed) Let (X, d) be a metric space. Then we define the metric

speed operator ms : Γ(X)× [0, 1]→ [0,+∞] as follows: given γ ∈ Γ(X) and t ∈ [0, 1], let

(1.11) ms(γ, t)
.
= lim

h→0

d(γt+h, γt)

|h|
whenever such limit exists

and ms(γ, t)
.
= +∞ otherwise. For the sake of brevity, we shall often write |γ̇t| to indicate the

quantity ms(γ, t). Given any curve γ ∈ Γ(X), we denote by |γ̇| : [0, 1]→ [0,+∞] the function

sending t ∈ [0, 1] to |γ̇t| and we call it the metric speed of γ.

Remark 1.5 The map ms : Γ(X)× [0, 1]→ [0,+∞] can be proven to be Borel measurable;

see for instance [Pas18, Remark 5.1]. �

The next result states that the metric speed of a p-absolutely continuous curve is the a.e.

minimal Lp(0, 1)-function that can be chosen as f in the right hand side of (1.9). For its

proof we refer to [AGS08, Theorem 1.1.2].
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Theorem 1.6 Let (X, d) be a complete metric space. Fix p ∈ [1,∞] and γ ∈ ACp
(
[0, 1],X

)
.

Then the metric speed |γ̇| of γ belongs to Lp(0, 1) and satisfies

(1.12) d(γt, γs) ≤
∫ t

s
|γ̇r| dr for every t, s ∈ [0, 1] with s < t.

Moreover, given any function f ∈ Lp(0, 1) satisfying property (1.9), it holds that |γ̇t| ≤ f(t)

for L1-a.e. t ∈ [0, 1].

In particular, if γ is a p-absolutely continuous curve then the limit limh→0 d(γt+h, γt)/|h|
exists and is finite for L1-a.e. t ∈ [0, 1].

Remark 1.7 It may happen that the metric speed of a curve γ belongs to the space Lp(0, 1)

even if γ is not p-absolutely continuous. For instance, the Cantor function c : [0, 1] → [0, 1]

is not absolutely continuous but |ċt| = 0 for L1-a.e. t ∈ [0, 1], see e.g. [DMRV06]. �

Definition 1.8 (Kinetic energy) Let (X, d) be a complete metric space. Fix p ∈ (1,∞).

Then we define the p-kinetic energy functional KEp : Γ(X)→ [0,+∞] as follows:

(1.13) KEp(γ)
.
=

{ ∫ 1
0 |γ̇t|

p dt

+∞
if γ ∈ ACp

(
[0, 1],X

)
,

otherwise.

It turns out that the map KEp is lower semicontinuous with respect to the distance dΓ(X),

see e.g. [Pas18, Proposition 3.7]. A direct consequence of this lower semicontinuity is that

the set of all p-absolutely continuous curves is Borel; cf. [Lis07] for a proof of such fact:

Corollary 1.9 Let (X, d) be a complete metric space. Fix an exponent p ∈ (1,∞). Then the

space ACp
(
[0, 1],X

)
is a Borel subset of Γ(X).

1.1.2 Lipschitz continuity

Let us consider two metric spaces (X, dX) and (Y, dY). Then we say that a map f : X→ Y

is Lipschitz provided there exists a constant λ ≥ 0 such that

(1.14) dY

(
f(x), f(y)

)
≤ λ dX(x, y) for every x, y ∈ X.

To be more precise, we can say that f is λ-Lipschitz. Observe that the map f is continuous.

We denote by LIP(X,Y) the family of all Lipschitz maps from X to Y, while LIPλ(X,Y)

is the space of all λ-Lipschitz maps. In the case in which the target (Y, dY) coincides with the

real line endowed with the Euclidean distance, we simply write LIP(X) instead of LIP(X,R).

Moreover, if a map f ∈ LIP(X,Y) is invertible and f , f−1 are λ-Lipschitz, then we say that

the map f is λ-biLipschitz.

Definition 1.10 (Lipschitz constants) Let (X, dX) and (Y, dY) be metric spaces. Fix any

Lipschitz map f ∈ LIP(X,Y). Then we give the following definitions:

i) The Lipschitz constant of f is the quantity Lip(f) ∈ [0,+∞), which is defined as

(1.15) Lip(f)
.
= sup

x,y∈X
x 6=y

dY

(
f(x), f(y)

)
dX(x, y)

.

Given any subset E of X, we indicate by Lip(f ;E) the Lipschitz constant of f |E.
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ii) The local Lipschitz constant of f is the function lip(f) : X→ [0,+∞), defined as

(1.16) lip(f)(x)
.
= lim

y→x
y∈X\{x}

dY

(
f(x), f(y)

)
dX(x, y)

if x ∈ X is an accumulation point

and lip(f)(x)
.
= 0 if x ∈ X is an isolated point.

iii) The asymptotic Lipschitz constant of f is the function lipa(f) : X→ [0,+∞) given by

(1.17) lipa(f)(x)
.
= lim

r↘0
Lip
(
f ;Br(x)

)
for every x ∈ X.

Observe that the Lipschitz constant Lip(f) is the smallest λ ≥ 0 such that f is λ-Lipschitz.

Moreover, it directly follows from the definitions (1.15), (1.16) and (1.17) above that

(1.18) lip(f)(x) ≤ lipa(f)(x) ≤ Lip(f) for every x ∈ X.

Standard verifications yield the inequalities

lip(f ◦ ϕ) ≤ Lip(ϕ) lip(f) ◦ ϕ,
lipa(f ◦ ϕ) ≤ Lip(ϕ) lipa(f) ◦ ϕ

(1.19)

for any metric spaces (X, dX), (Y, dY) and Lipschitz maps ϕ ∈ LIP(X,Y), f ∈ LIP(Y).

Remark 1.11 Given any complete metric space (X, d), it clearly holds that

(1.20) LIP
(
[0, 1],X

)
= AC∞

(
[0, 1],X

)
.

In particular, each Lipschitz curve in X is absolutely continuous. �

We shall frequently use the following well-known fact:

Given a metric space (X, d), a subset E of X and f ∈ LIP(E),

there exists f̄ ∈ LIP(X) such that f̄ |E = f and Lip(f̄) = Lip(f).
(1.21)

An explicit expression for such a function f̄ – called McShane extension – is given by the

formula f̄(x)
.
= inf

{
f(y) + Lip(f) d(x, y) : y ∈ E

}
for any x ∈ X. Moreover, we recall that:

Given any metric space (X, d), any subset E of X and f ∈ LIP(E,Rn),

there exists f̄ ∈ LIP(X,Rn) such that f̄ |E = f and Lip(f̄) ≤
√
nLip(f),

as one can readily deduce from (1.21) by arguing componentwise.

We conclude the subsection by introducing a key class of Lipschitz curves: the geodesics.

Let (X, d) be a complete separable metric space. A curve γ ∈ Γ(X) is said to be a geodesic if

(1.22) d(γt, γs) = |t− s| d(γ0, γ1) for every t, s ∈ [0, 1],

in other words if γ : [0, 1] → X is an isometric embedding. In particular, γ ∈ LIP
(
[0, 1],X

)
and the equality |γ̇t| = d(γ0, γ1) holds for every t ∈ [0, 1].

The set of all geodesic curves in X is denoted by Geo(X). The space (X, d) is called a

geodesic space provided for any x, y ∈ X there exists γ ∈ Geo(X) such that γ0 = x and γ1 = y.
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Remark 1.12 Let (X, d) be a geodesic metric space (containing at least two points). Given

any x ∈ X, let us define the 1-Lipschitz function dx : X → [0,+∞) as dx(y)
.
= d(x, y) for

every y ∈ X. Then it holds that

(1.23) lip(dx)(y) = 1 for every y ∈ X.

We already know from (1.18) that lip(dx) ≤ 1 everywhere, whence to prove (1.23) it suffices

to show that lip(dx)(y) ≥ 1 for any y ∈ X. In the case in which y = x, we trivially have that

lip(dx)(x) = lim
z→x

∣∣dx(z)− dx(x)
∣∣

d(z, x)
= lim

z→x

dx(z)

d(z, x)
= 1.

On the other hand, given any y ∈ X \ {x} we can choose a geodesic γ joining y to x, so that

lip(dx)(y) ≥ lim
t→0

∣∣dx(γt)− dx(γ0)
∣∣

d(γt, γ0)
= lim

t→0

∣∣d(γ1, γt)− d(γ1, γ0)
∣∣

t d(x, y)
= lim

t→0

∣∣(1− t)− 1
∣∣

t
= 1.

This completes the proof of the claim. �

1.2 Measure spaces

A measurable space is any couple (X,A), where X is a set and A is a σ-algebra on X. By

measure on (X,A) we intend any σ-additive map m : A → [0,+∞] such that m(∅) = 0. Then

we say that (X,A,m) is a measure space. We say that m is a finite measure if m(X) < +∞,

while it is said to be σ-finite provided there exists a sequence (An)n ⊆ A such that X =
⋃
nAn

and m(An) < +∞ for all n ∈ N. In particular, any finite measure is σ-finite.

Remark 1.13 We say that a set N ∈ A is m-negligible provided m(N) = 0. This provides

us with a natural equivalence relation on A: given any A,B ∈ A, we declare that A and B

are m-equivalent if their symmetric difference A∆B is m-negligible. The quotient set of A by

such relation will be denoted by A/m, while [A]m indicates the equivalence class of A ∈ A.

Another measure µ on (X,A) is absolutely continuous with respect to m – briefly, µ � m –

provided µ(N) = 0 whenever N ∈ A satisfies m(N) = 0. Therefore we have a natural map

from A/m to A/µ, which associates to any element [A]m the equivalence class [A]µ. �

A function f : X → R is measurable if f−1(U) ∈ A for any open subset U of R. Given

any two measurable functions f, g : X → R, we declare that f ∼m g provided f = g holds

m-a.e., which means that the set {f 6= g} is m-negligible. Then we define the space L0(m) as

(1.24) L0(m)
.
=
{
f : X→ R measurable

}/
∼m,

while we set L0(m)+ .
=
{
f : X → [0,+∞] measurable

}/
∼m. It holds that L0(m) is both a

vector space and a commutative ring with identity when endowed with the pointwise opera-

tions. Furthermore, L0(m) can be equipped with a distance that metrizes the convergence in

measure; we postpone the discussion about this topic to Subsection 1.2.1.

Fix any exponent p ∈ [1,∞]. Hence we define the space Lp(m) as

(1.25) Lp(m)
.
=
{
f ∈ L0(m)

∣∣ ‖f‖Lp(m) < +∞
}
,
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where the quantity ‖f‖Lp(m) is given by

(1.26) ‖f‖Lp(m)
.
=

{ ( ∫
|f |p dm

)1/p
ess sup X |f |

if p <∞,
if p =∞.

Therefore
(
Lp(m), ‖ · ‖Lp(m)

)
is a Banach space. Moreover, L∞(m) is a subring of L0(m).

Given any function f ∈ L0(m)+, we define the measure fm on (X,A) as

(1.27) (fm)(A)
.
=

∫
A
f dm for every A ∈ A.

Moreover, for any set A ∈ A we define the restricted measure m|A as

(1.28) m|A
.
= χAm.

Observe that m|A(B) = m(A ∩B) for every B ∈ A.

Theorem 1.14 (Radon-Nikodým) Let (X,A,m) be a σ-finite measure space. Let µ be any

σ-finite measure on A with µ � m. Then there exists a unique function dµ/dm ∈ L0(m)+,

called density of µ with respect to m or Radon-Nikodým derivative, such that µ = (dµ/dm)m.

Moreover, it holds that (dµ/dm)(x) < +∞ for m-a.e. x ∈ X.

Remark 1.15 (Properties of the density) We recall two useful properties of the density:

i) The density of a measure is linear: if µ, ν � m, then µ+ ν � m and

(1.29)
d(µ+ ν)

dm
=

dµ

dm
+

dν

dm
holds m-a.e. in X.

ii) The density of a measure satisfies the chain rule: if µ � ν and ν � m, then µ � m

and

(1.30)
dµ

dm
=

dµ

dν

dν

dm
holds m-a.e. in X.

Both facts are immediate consequences of the uniqueness of the density. �

Now consider two measurable spaces (X,AX), (Y,AY) and a map ϕ : X → Y. We say

that ϕ is measurable provided ϕ−1(B) ∈ AX for all B ∈ AY. Notice that the function f ◦ ϕ
is measurable for every choice of f : Y → R measurable and ϕ : X → Y measurable. Given

any measure µ on (X,AX), we define the pushforward measure ϕ∗µ on (Y,AY) as

(1.31) (ϕ∗µ)(B)
.
= µ

(
ϕ−1(B)

)
for every B ∈ AY.

It holds that (ϕ∗µ)(Y) = µ(X), in particular µ is finite if and only if ϕ∗µ is finite. We point

out that the pushforward measure ϕ∗µ satisfies the following change-of-variable formula:

(1.32)

∫
f dϕ∗µ =

∫
f ◦ ϕdµ whenever f ∈ L1(ϕ∗µ) or f ∈ L0(ϕ∗µ)+.

The previous formula makes sense, because f ◦ ϕ ∈ L1(µ) for every f ∈ L1(ϕ∗µ).
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Remark 1.16 We claim that for any f ∈ L0(ϕ∗µ)+ it holds

(1.33) ϕ∗(f ◦ ϕµ) = f ϕ∗µ.

Indeed, ϕ∗(f ◦ ϕµ)(B) =
∫
ϕ−1(B) f ◦ ϕdµ =

∫
B f dϕ∗µ = (f ϕ∗µ)(B) for all B ∈ A. �

Remark 1.17 (Pushforward of σ-algebra) Given a measurable space (X,A), a set Y and

a map f : X→ Y, we define the pushforward of A via f as the σ-algebra on Y given by

(1.34) f∗A
.
=
{
E ⊆ Y

∣∣ f−1(E) ∈ A
}
.

It turns out that f∗A can be characterised as the greatest σ-algebra A′ on Y such that the

map f is measurable from (X,A) to (Y,A′). �

1.2.1 The space L0(m)

Let (X,A,m) be a given σ-finite measure space. Consider the space L0(m), defined in (1.24).

Remark 1.18 We claim that:

(1.35) There exists a finite measure m′ on (X,A) such that m� m′ � m.

The proof of such fact can be achieved via explicit construction. The case m(X) < +∞ is

trivial, so suppose m(X) = +∞. Since m is σ-finite, we can pick a partition (En)n ⊆ A of X

such that 0 < m(En) < +∞ for every n ∈ N. Then

(1.36) m′
.
=
∑
n∈N

m|En
2nm(En)

is a finite measure on (X,A) having the same null sets as m. �

Given any measure m′ as in Remark 1.18, we define the distance dL0(m) on L0(m) as

(1.37) dL0(m)(f, g)
.
=

∫
|f − g| ∧ 1 dm′ for every f, g ∈ L0(m).

It turns out that L0(m) is both a topological vector space and a topological ring if equipped

with the topology induced by the distance dL0(m). Furthermore, observe that dL0(m) might

depend on the choice of the measure m′, but that its induced topology does not:

Proposition 1.19 Let (fn)n ⊆ L0(m) be given. Then (fn)n is dL0(m)-Cauchy if and only if

(1.38) lim
n,m

m
(
E ∩

{
|fn − fm| > ε

})
= 0 for all ε > 0 and E ∈ A with m(E) < +∞.

A proof of Proposition 1.19 can be found – for instance – in [Pas18, Proposition 15.1].

The distance dL0(m) metrizes the convergence in measure, as shown by the following result:

Proposition 1.20 Let f ∈ L0(m) and (fn)n ⊆ L0(m). Then the following are equivalent:

i) It holds that dL0(m)(fn, f)→ 0 as n→∞.

ii) Any subsequence (nm)m admits a further subsequence (nmk)k such that fnmk (x)→ f(x)

as k →∞ for m-a.e. x ∈ X.
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iii) Given any ε > 0 and E ∈ A with m(E) < +∞, we have limnm
(
E∩

{
|fn−f | > ε

})
= 0.

We refer e.g. to [Pas18, Proposition 15.3] for a proof of Proposition 1.20.

Remark 1.21 Another distance on L0(m) metrizing the convergence in measure is given by

(1.39) d′L0(m)(f, g)
.
= inf

δ>0

(
δ + m′

({
|f − g| > δ

}))
for every f, g ∈ L0(m),

where m′ is any measure as in (1.35). See [Bog07] for additional details about d′L0(m). �

As shown – for example – in [Pas18, Proposition 15.6], it holds that

(1.40)
(
L0(m), dL0(m)

)
is a complete and separable metric space.

A consequence of Proposition 1.20 is that the completeness of L0(m) is not affected by the

particular choice of the measure m′. Another important property of L0(m) is the following:

(1.41) The inclusion map Lp(m) ↪→ L0(m) is continuous and has dense image,

for any p ∈ [1,∞]. Finally, we point out that the distance dL0(m) is translation-invariant, i.e.

(1.42) dL0(m)(f, g) = dL0(m)(f + h, g + h) for every f, g, h ∈ L0(m),

but that it is not induced by any norm.

1.2.2 Essential image

Let (X,AX,mX), (Y,AY,mY) be σ-finite measure spaces. Let ϕ : X → Y be a measurable

map such that mY = ϕ∗mX. We then define the map Prϕ : L1(mX) +L∞(mX)→ L0(mY) as

(1.43) Prϕ(f)
.
=

dϕ∗(f
+mX)

dmY
− dϕ∗(f

−mX)

dmY
for every f ∈ L1(mX) + L∞(mX).

We say that the operator Prϕ is the projection for functions through the map ϕ.

Remark 1.22 To be sure that Prϕ(f) is well-defined, we show that ϕ∗(f
±mX) are σ-finite

measures on AY, so that the Radon-Nikodým theorem can be applied: choose f1 ∈ L1(mX)

and f∞ ∈ L∞(mX) such that f = f1 + f∞. The measure |f1|mX is finite, whence ϕ∗
(
|f1|mX

)
is finite as well. It also holds that ϕ∗

(
|f∞|mX) ≤ ‖f∞‖L∞(mX)mY, so ϕ∗

(
|f∞|mX) is σ-finite.

Since (f1 + f∞)± ≤ |f1|+ |f∞|, we conclude that the measures ϕ∗(f
±mX) are σ-finite. �

Notice that Prϕ(f) = Prϕ(f+) − Prϕ(f−) is satisfied for every f ∈ L1(mX) + L∞(mX).

Furthermore, if f ≥ 0 holds mX-a.e. in X, then one has that

(1.44) Prϕ(f) = 0 mY-a.e. ⇐⇒ f = 0 mX-a.e..
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Remark 1.23 We claim that

(1.45) Prϕ : L1(mX) + L∞(mX)→ L0(mY) is a linear operator.

Indeed, given any λ ∈ R and f ∈ L1(mX) + L∞(mX), we have (λf)± = λf± when λ ≥ 0

and (λf)± = −λf∓ when λ < 0, which grants that Prϕ(λf) = λPrϕ(f), proving that Prϕ
is 1-homogeneous. To prove that it is also additive, consider f, g ∈ L1(mX) + L∞(mX) and

denote q
.
= f+ + g+ − (f + g)+ = f− + g− − (f + g)− ≥ 0. Then Prϕ(f+) + Prϕ(g+)

and Prϕ(f−) + Prϕ(g−) coincide with Prϕ
(
(f + g)+

)
+ Prϕ(q) and Prϕ

(
(f + g)−

)
+ Prϕ(q),

respectively, whence Prϕ(f+g) = Prϕ(f+)+Prϕ(g+)−Prϕ(q)−
(
Prϕ(f−)+Prϕ(g−)−Prϕ(q)

)
is equal to Prϕ(f) + Prϕ(g), as required. Therefore (1.45) is proved. �

Remark 1.24 The operator Prϕ satisfies the following two properties:

Prϕ(c) = c mY-a.e. for every constant c ∈ R,
Prϕ(f) ≤ Prϕ(g) mY-a.e. for every f, g ∈ L1(mX) + L∞(mX) with f ≤ g.

(1.46)

Both facts can be easily deduced from the very definition of Prϕ. �

Proposition 1.25 (Jensen) Let u : R→ R be a convex function. Then it holds that

(1.47) u ◦ Prϕ(f) ≤ Prϕ(u ◦ f) mY-a.e. whenever f, u ◦ f ∈ L1(mX) + L∞(mX).

Proof. Fix f ∈ L1(mX) +L∞(mX) such that u ◦ f ∈ L1(mX) +L∞(mX). Linearity of Prϕ and

the first property in (1.46) grant that

(1.48) v ◦ Prϕ(f) = Prϕ(v ◦ f) mY-a.e. for every affine function v : R→ R.

Now choose a countable family F(u) of affine functions v : R→ R, which satisfy v ≤ u, such

that u(t) = sup
{
v(t) : v ∈ F(u)

}
for every t ∈ R. Hence (1.48) gives

(1.49) u ◦ Prϕ(f) = ess sup
{
Prϕ(v ◦ f) : v ∈ F(u)

}
.

Given that Prϕ(v ◦ f) ≤ Prϕ(u ◦ f) holds mY-a.e. for every v ∈ F(u), we deduce from (1.49)

that u ◦ Prϕ(f) ≤ Prϕ(u ◦ f) is satisfied mY-a.e., thus proving (1.47). �

The previous result ensures that the projection Prϕ maps Lp(mX) to Lp(mY) for any p:

Corollary 1.26 Given any p ∈ [1,∞), it holds that

(1.50)
∣∣Prϕ(f)

∣∣p ≤ Prϕ
(
|f |p

)
mY-a.e. for every f ∈ Lp(mX) + L∞(mX).

In particular, the operator Prϕ continuously maps Lp(mX) to Lp(mY) for any p ∈ [1,∞], with

(1.51)
∥∥Prϕ(f)

∥∥
Lp(mY)

≤ ‖f‖Lp(mX) for every f ∈ Lp(mX).

Proof. First of all, fix p ∈ [1,∞) and f ∈ Lp(mX) +L∞(mX). Clearly both f and |f |p belong

to L1(mX)+L∞(mX), so that property (1.47) with u = |·|p ensures that
∣∣Prϕ(f)

∣∣p ≤ Prϕ
(
|f |p

)
holds mY-a.e. in Y, obtaining (1.50). To prove the last statement, fix p ∈ [1,∞]. In the case

in which p <∞, we have for any f ∈ Lp(mX) that∫ ∣∣Prϕ(f)
∣∣p dmY

(1.50)

≤
∫

Prϕ
(
|f |p

)
dmY =

∫
dϕ∗

(
|f |pmX

)
dmY

dmY =

∫
|f |p dmX,



1.2. Measure spaces 11

showing that
∥∥Prϕ(f)

∥∥
Lp(mY)

≤ ‖f‖Lp(mX) for every f ∈ Lp(mX), so that Prϕ continuously

maps Lp(mX) to Lp(mY). Finally, if p =∞ then (1.46) and (1.50) give∣∣Prϕ(f)
∣∣ ≤ Prϕ|f | ≤ Prϕ

(
‖f‖L∞(mX)

)
= ‖f‖L∞(mX) mY-a.e. for every f ∈ L∞(mX),

proving that
∥∥Prϕ(f)

∥∥
L∞(mY)

≤ ‖f‖L∞(mX) for every f ∈ L∞(mX), thus accordingly Prϕ
continuously maps L∞(mX) to L∞(mY). This completes the proof. �

Lemma 1.27 Let p ∈ [1,∞] be fixed. Then

(1.52) Prϕ(g ◦ ϕf) = g Prϕ(f) mY-a.e. for every f ∈ L∞(mX) and g ∈ Lp(mY).

Proof. First of all, consider f ∈ L∞(mX)+ and g ∈ Lp(mY)+. Given that ϕ∗(g ◦ ϕfmX)

coincides with g ϕ∗(fmX) by (1.33), we deduce that

Prϕ(g ◦ ϕf) =
d
(
g ϕ∗(fmX)

)
dmY

(1.30)
=

d
(
g ϕ∗(fmX)

)
dϕ∗(fmX)

dϕ∗(fmX)

dmY
= g Prϕ(f) mY-a.e.,

proving (1.52) for f, g nonnegative. For general f ∈ L∞(mX) and g ∈ Lp(mY), we thus have

Prϕ(g ◦ ϕf) = Prϕ(g+ ◦ ϕf+) + Prϕ(g− ◦ ϕf−)− Prϕ(g+ ◦ ϕf−)− Prϕ(g− ◦ ϕf+)

= (g+ − g−)
(
Prϕ(f+)− Prϕ(f−)

)
= g Prϕ(f)

in the mY-a.e. sense, which proves (1.52). Hence the statement is achieved. �

Remark 1.28 It can be readily deduced from Corollary 1.26 that the map Prϕ can be

uniquely extended to a linear and continuous operator

(1.53) Prϕ : L0(mX)→ L0(mY).

By an approximation argument, one easily obtains that∣∣Prϕ(f)
∣∣ ≤ Prϕ|f |

Prϕ(g ◦ ϕf) = g Prϕ(f)

mY-a.e. for every f ∈ L0(mX),

mY-a.e. for every f ∈ L0(mX) and g ∈ L0(mY),
(1.54)

as a consequence of (1.50) and Lemma 1.27, respectively. �

With the projection operator Prϕ at our disposal, we can readily introduce the notion of

‘essential image’ of a measurable set under the map ϕ, as we are going to describe (recall the

terminology that has been introduced in Remark 1.13).

Definition 1.29 We define the map Imϕ : AX/mX → AY/mY as

(1.55) Imϕ(A)
.
=
{
Prϕ(χA) > 0

}
∈ AY/mY for every A ∈ AX/mX.

We shall refer to Imϕ(A) as the essential image of the set A under the map ϕ.

Observe that ϕ naturally induces a mapping ϕ−1 : AY/mY → AX/mX, as follows:

(1.56) ϕ−1
(
[B]mY

) .
=
[
ϕ−1(B)

]
mX

for every B ∈ AY.

Such definition is well-posed, since we have mX

(
ϕ−1(B)∆ϕ−1(B′)

)
= (ϕ∗mX)(B∆B′) = 0

whenever B,B′ ∈ AY are two measurable sets satisfying mY(B∆B′) = 0.
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Proposition 1.30 The map Imϕ is a left inverse of ϕ−1 : AY/mY → AX/mX, namely

(1.57) Imϕ

(
ϕ−1(B)

)
= B holds for every B ∈ AY/mY.

Proof. Fix a measurable set B ∈ AY and denote A
.
= ϕ−1(B) ∈ AX. Choose any represen-

tative B′ ∈ AY of Imϕ

(
ϕ−1(B)

)
. Then our aim is to show that mY(B∆B′) = 0. Since the

equality Prϕ(χA) = 0 holds mY-a.e. in Y \B′, we deduce that

mY(B \B′) =

∫
Y\B′

χB dϕ∗mX
(1.33)

= ϕ∗(χAmX)(Y \B′) =

∫
Y\B′

Prϕ(χA) dmY = 0.

On the other hand, the measures mY|B′ and Prϕ(χA)mY have the same null sets. Given that∫
Y\B

Prϕ(χA) dmY =
(
ϕ∗(χAmX)

)
(Y \B) = mX

(
A ∩ ϕ−1(Y \B)

)
= 0,

we thus conclude that also mY(B′ \B) = mY|B′(Y \B) = 0. This completes the proof. �

1.3 Metric measure spaces

Given any metric space (X, d), we denote by B(X) the Borel σ-algebra on X, i.e. the smallest

σ-algebra on X that contains every open d-ball of X. Measures over
(
X,B(X)

)
are called

Borel measures on X. We say that a Borel measure m on X is a Radon measure provided it is

finite on compact sets. For our purposes, a metric measure space is a triple (X, d,m), where

(X, d) is a complete and separable metric space,

m 6= 0 is a non-negative Borel measure on X, finite on balls.
(1.58)

The measure m is called reference measure. Observe that m is a σ-finite Radon measure. The

support of m – denoted by spt(m) – is defined as the intersection of all closed subsets C of X

such that m(X \ C) = 0. In particular, the support is a closed set.

Given two metric measure spaces (X, dX,mX) and (Y, dY,mY), we will always implicitly

endow the product space X×Y with the product distance dX × dY, given by

(1.59) (dX × dY)
(
(x1, y1), (x2, y2)

) .
=
√

dX(x1, x2)2 + dY(y1, y2)2

for every (x1, y1), (x2, y2) ∈ X×Y, and with the product measure mX ⊗mY.

Definition 1.31 (Doubling measure) Let (X, d,m) be a metric measure space. Then we

say that the reference measure m is pointwise doubling at a point x ∈ spt(m) provided

(1.60) lim
r↘0

m
(
B2r(x)

)
m
(
Br(x)

) < +∞.

Moreover, we say that the metric measure space (X, d,m) – or just the measure m – is doubling

provided there exists a constant Cm > 0 such that

(1.61) m
(
B2r(x)

)
≤ Cmm

(
Br(x)

)
for every x ∈ X and r > 0.

The least such constant Cm is called the doubling constant of the space.
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Remark 1.32 It is immediate to see that a doubling measure is pointwise doubling at all

points of the space. Moreover, if a metric measure space (X, d,m) is doubling, then the

underlying metric space (X, d) is metrically doubling. �

Definition 1.33 (Vitali space) Let (X, d,m) be a metric measure space. Then X is said to

be a Vitali space provided the following condition is satisfied: given a Borel set A ⊆ X and a

family F of closed balls in X such that inf
{
r > 0 : Br(x) ∈ F

}
= 0 holds for m-a.e. x ∈ A,

there exists a countable family G ⊆ F of pairwise disjoint balls such that m
(
A\
⋃
B∈G B

)
= 0.

By adapting the arguments in the proof of [Hei01, Theorem 1.6], one can prove that

(1.62) m is pointwise doubling at m-a.e. x ∈ X =⇒ (X, d,m) is a Vitali space.

A fundamental property of Vitali spaces is given by the Lebesgue differentiation theorem,

whose proof can be found e.g. in [Hei01]:

Theorem 1.34 (Lebesgue differentiation theorem) Let (X, d,m) be a Vitali space. Fix

any function f ∈ L1
loc(m). Then

(1.63) f(x) = lim
r↘0

1

m
(
Br(x)

) ∫
Br(x)

f dm for m-a.e. x ∈ X.

Definition 1.35 (Density of a point) Let (X, d,m) be a metric measure space. Let E ⊆ X

be a Borel set. Then we say that a point x ∈ spt(m) has density λ ∈ [0, 1] for E provided

(1.64) ∃DE(x)
.
= lim

r↘0

m
(
E ∩Br(x)

)
m
(
Br(x)

) = λ.

Corollary 1.36 Let (X, d,m) be a Vitali space. Let E ⊆ X be a Borel set. Then

(1.65) DE(x) = 1 holds for m-a.e. point x ∈ E.

Proof. Just apply Theorem 1.34 to the function f
.
= χE . �

In Subsection 5.3.3, the following class of spaces will play a fundamental role:

(X, d,m) is a metric measure space with the following property:

for every Borel set E ⊆ X and for m-a.e. x̄ ∈ E, it holds that

∀ε > 0 ∃ r > 0 : ∀x ∈ Br(x̄) ∃ y ∈ E : d(x, y) < ε d(x, x̄).

(1.66)

A sufficient condition for the previous property to hold is given by the next result:

Lemma 1.37 Let (X, d,m) be a metric measure space. Let A ⊆ X be Borel. Suppose there

exist constants r̄,C > 0 such that m
(
B2r(x)

)
≤ Cm

(
Br(x)

)
for every 0 < r < r̄ and x ∈ A.

Then the metric measure space
(
A, d|A×A,m|A

)
satisfies property (1.66). In particular, any

doubling metric measure space satisfies property (1.66).

Proof. We argue by contradiction: assume the existence of ε > 0 and of points {xr}r>0 ⊆ A
with d(xr, x̄) < r for every r > 0, such that

(1.67) E ∩Bε d(xr,x̄)(xr) = ∅ for every r > 0.
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Fix n ∈ N such that 2n ε ≥ 2 + ε. Thus Bε d(xr,x̄)(xr) ⊆ B(1+ε) d(xr,x̄)(x̄) ⊆ B2n ε d(xr,x̄)(xr) for

every r > 0, hence in particular it holds that

(1.68) m
(
Bε d(xr,x̄)(xr)

)
≥

m
(
B2nε d(xr,x̄)(xr)

)
Cn

≥
m
(
B(1+ε) d(xr,x̄)(x̄)

)
Cn

for every r > 0 such that r < r̄/(2n−1ε). Therefore

DE(x̄) = lim
r↘0

m
(
B(1+ε) d(xr,x̄)(x̄) ∩ E

)
m
(
B(1+ε) d(xr,x̄)(x̄)

)
(by (1.67)) ≤ lim

r↘0

m
(
B(1+ε) d(xr,x̄)(x̄) \Bε d(xr,x̄)(xr)

)
m
(
B(1+ε) d(xr,x̄)(x̄)

)
= lim

r↘0

m
(
B(1+ε) d(xr,x̄)(x̄)

)
−m

(
Bε d(xr,x̄)(xr)

)
m
(
B(1+ε) d(xr,x̄)(x̄)

)
(by (1.68)) ≤ 1− 1

Cn
< 1,

which contradicts our assumption DE(x̄) = 1. Hence the statement follows. �

Given a metric space (X, d), a Lipschitz function f ∈ LIP(X) and a Borel set E ⊆ X,

we have that lip
(
f |E
)
(x) ≤ lip(f)(x) is satisfied for every x ∈ X, where lip

(
f |E
)

is taken in

the metric space
(
E, d|E×E

)
. Simple examples show that in general equality does not hold;

however, if we restrict to the case of a doubling metric measure space, then Lemma 1.37

grants that the equality holds at least on density points of E:

Proposition 1.38 Let (X, d,m) be a doubling metric measure space. Fix a Borel set E ⊆ X

and a Lipschitz function f ∈ LIP(X). Then

(1.69) lip
(
f |E
)
(x) = lip(f)(x) for m-a.e. x ∈ E.

Proof. It suffices to prove that lip(f)(x) ≤ lip
(
f |E
)
(x) for every point x ∈ E of density 1. Fix

x ∈ E with DE(x) = 1. If x is an isolated point in X, then lip(f)(x) = lip
(
f |E
)
(x) = 0. If x is

an accumulation point, then take a sequence (xn)n ⊆ X \ {x} converging to x. Up to passing

to a suitable subsequence, we can assume that limn

∣∣f(xn)−f(x)
∣∣/d(xn, x) is actually a limit.

Moreover – possibly passing to a further subsequence – Lemma 1.37 provides the existence

of a sequence (yn)n ⊆ E satisfying d(xn, yn) < d(xn, x)/n for every n ≥ 1. In particular,

limn yn = x and yn 6= x for every n ≥ 1. Therefore

lim
n→∞

∣∣f(xn)− f(x)
∣∣

d(xn, x)
≤ lim

n→∞

∣∣f(xn)− f(yn)
∣∣

d(xn, yn)

d(xn, yn)

d(xn, x)
+ lim
n→∞

∣∣f(yn)− f(x)
∣∣

d(yn, x)

d(yn, x)

d(xn, x)

≤ Lip(f) lim
n→∞

1

n
+ lim
n→∞

∣∣f(yn)− f(x)
∣∣

d(yn, x)
lim
n→∞

(
1 +

1

n

)
≤ lip

(
f |E
)
(x).

The arbitrariness of (xn)n gives the conclusion. �

1.3.1 Gromov-Hausdorff convergence

We say that (X, d,m, x̄) is a pointed metric measure space provided (X, d,m) is a metric

measure space and the reference point x̄ ∈ X belongs to spt(m). Two pointed metric measure

spaces (X, dX,mX, ȳ) and (Y, dY,mY, ȳ) are said to be isomorphic if there exists an isometric
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embedding ι : spt(mX) → Y such that ι∗mX = mY and ι(x̄) = ȳ. The equivalence class of a

given space (X, d,m, x̄) under this isomorphism relation will be denoted by [X, d,m, x̄].

Given a complete separable metric space (X, d) and a sequence (µn)n∈N∪{∞} of non-

negative Borel measures on X that are finite on bounded sets, we say that µn weakly converges

to µ∞ as n→∞, briefly µn ⇀ µ∞, provided

(1.70) lim
n→∞

∫
f dµn =

∫
f dµ∞ for every f ∈ Cbs(X),

where Cbs(X) is the space of all bounded continuous functions on X with bounded support.

Since we shall deal with possibly non-compact and non-doubling spaces, it will be conve-

nient to work with the notion of pointed measured Gromov convergence. More precisely, we

shall follow the so-called ‘extrinsic approach’, introduced in [GMS15, Definition 3.9]:

Definition 1.39 (Pointed measured Gromov convergence) Fix a sequence of pointed

metric measure spaces (Xn, dn,mn, x̄n), n ∈ N∪{∞}. Then [Xn, dn,mn, x̄n] is said to converge

to [X∞, d∞,m∞, x̄∞] in the pointed measured Gromov sense, or briefly pmG-sense, provided

there exist a complete separable metric space (W, dW) and a sequence (ιn)n∈N∪{∞} of isometric

embeddings ιn : Xn →W such that

ιn(x̄n)→ι∞(x̄∞) ∈ spt
(
(ι∞)∗m∞

)
,

(ιn)∗mn ⇀(ι∞)∗m∞,
(1.71)

as n→∞.

Let us fix a shorthand notation: given a pointed metric measure space (X, d,m, x̄) and

any radius r > 0, we define the normalised measure mx̄
r on X as

(1.72) mx̄
r
.
=

m

m
(
Br(x̄)

) .
We can now introduce the notion of tangent cone to a pointed metric measure space:

Definition 1.40 (Tangent cone) Let (X, d,m, x̄) be a pointed metric measure space. Then

we denote by Tan[X, d,m, x̄] the family of all the classes [Y, dY,mY, ȳ] that are obtained as

pmG-limits of
[
X, d/rn,m

x̄
rn , x̄

]
, for a suitable sequence rn ↘ 0. We refer to Tan[X, d,m, x̄]

as the tangent cone of [X, d,m, x̄].

Proposition 1.41 (Locality of the tangent cone) Fix a metric measure space (X, d,m)

and a Borel set A ⊆ X. Let x̄ ∈ A be a point of density 1 for A such that the reference

measure m is pointwise doubling at x̄. Then

(1.73) Tan[X, d,m, x̄] = Tan[A, d|A×A,m|A, x̄].

Proof. For the sake of simplicity, let us denote d′
.
= d|A×A and m′

.
= m|A. Suppose that the

class [Y, dY,mY, ȳ] is the pmG-limit of
[
X, d/rn,m

x̄
rn , x̄] for some rn ↘ 0. Then there exist

a complete and separable metric space (Z, dZ), an isometric embedding ιY : Y → Z and a

sequence (ιn)n of isometries ιn :
(
X, d/rn

)
→ (Z, dZ) such that ιn(x̄)→ ιY(ȳ) ∈ spt

(
(ιY)∗mY

)
and (ιn)∗m

x̄
rn ⇀ (ιY)∗mY. Hence let us define ι′n

.
= ιn|A for every n ∈ N. Clearly each map ι′n

is an isometry from (A, d′/rn) to (Z, dZ). To conclude that [Y, dY,mY, ȳ] ∈ Tan[A, d′,m′, x̄],
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it is enough to show that (ι′n)∗(m
′)x̄rn ⇀ (ιY)∗mY. Thus fix f ∈ Cbs(Z). Choose R > 0 such

that spt(f) ⊆ BR
(
ιY(ȳ)

)
, whence spt(f ◦ ιn) ⊆ B2Rrn(x̄) for n big enough. Then∫

f d(ι′n)∗(m
′)x̄rn =

m
(
Brn(x̄)

)
m
(
Brn(x̄) ∩A

) ∫ f d(ιn)∗m
x̄
rn −

1

m
(
Brn(x̄) ∩A

) ∫
B2Rrn (x̄)\A

f ◦ ιn dm.

Since DA(x̄) = 1 and m is pointwise doubling at x̄, one has∣∣∣∫B2Rrn (x̄)\A f ◦ ιn dm
∣∣∣

m
(
Brn(x̄) ∩A

) ≤
m
(
B2Rrn(x̄) \A

)
m
(
B2Rrn(x̄)

) m
(
Brn(x̄)

)
m
(
Brn(x̄) ∩A

) m
(
B2Rrn(x̄)

)
m
(
Brn(x̄)

) max
Z
|f | n−→ 0,

which grants that
∫
f d(ι′n)∗(m

′)x̄rn →
∫
f d(ιn)∗mY, as required.

Conversely, let [Y, dY,mY, ȳ] be the pmG-limit of [A, d′/rn, (m
′)x̄rn , x̄] for some rn ↘ 0.

Then take a complete separable metric space (W, dW), an isometric embedding ι′Y : Y →W

and a sequence of maps ι′n : A → W, which are isometries from (A,d′/rn) to (W, dW),

such that ι′n(x̄n) → ι′Y(ȳ) ∈ spt
(
(ι′Y)∗mY

)
and (ι′n)∗(m

′)x̄rn ⇀ (ι′Y)∗mY. Hence there exist a

complete separable metric space (Z,mZ), an isometric embedding ιW : W→ Z and a sequence

of maps ιn : X→ Z, which are isometries from (X, d/rn) to (Z, dZ), such that ιn|A = ιW ◦ ι′n
holds for every n ∈ N – see for instance [GMS15, Proposition 3.10]. Denote ιY

.
= ιW ◦ ι′Y. We

clearly have that ιn(x̄) = ιW
(
ι′n(x̄)

)
→ ιY(ȳ) ∈ spt

(
(ιY)∗mY

)
as n→∞, thus it only remains

to prove that (ιn)∗m
x̄
rn ⇀ (ιY)∗mY as n→∞. To this aim, fix f ∈ Cbs(Z). Observe that∫

f d(ιn)∗m
x̄
rn =

m
(
A ∩Brn(x̄)

)
m
(
Brn(x̄)

) ∫
f ◦ ιW d(ι′n)∗(m

′)x̄rn +
1

m
(
Brn(x̄)

) ∫
X\A

f ◦ ιn dm.

The first addendum in the right hand side of the previous equation tends to
∫
f ◦ιW d(ι′Y)∗mY,

because DA(x̄) = 1 and f ◦ ιW ∈ Cbs(W). To estimate the second one, take any R > 0 such

that spt(f) ⊆ BR
(
ιY(ȳ)

)
, so that spt(f ◦ ιn) ⊆ B2Rrn(x̄) for n sufficiently big. Then∣∣∣∣∣ 1

m
(
Brn(x̄)

) ∫
X\A

f ◦ ιn dm

∣∣∣∣∣ ≤ m
(
B2Rrn(x̄) \A

)
m
(
B2Rrn(x̄)

) m
(
B2Rrn(x̄)

)
m
(
Brn(x̄)

) max
Z
|f | −→ 0.

Therefore
∫
f d(ιn)∗m

x̄
rn →

∫
f d(ιY)∗mY, proving that [Y, dY,mY, ȳ] ∈ Tan[X, d,m, x̄] and

accordingly the statement. �

The previous result will allow us to concentrate our attention only on those spaces that

satisfy property (1.66). In such context, it is easier to study the blow-ups of the space by

means of a different notion of convergence (see, for instance, [GMS15, Definition 3.24]):

Definition 1.42 (Pointed measured Gromov-Hausdorff convergence) Consider any

sequence of pointed metric measure spaces (Xn, dn,mn, x̄n), with n ∈ N ∪ {∞}. Then we

say that (Xn, dn,mn, x̄n) converges to (X∞, d∞,m∞, x̄∞) in the pointed measured Gromov-

Hausdorff sense, or briefly pmGH-sense, provided for any fixed ε,R > 0 with ε < R there

exist n̄ ∈ N and a sequence (fn)n≥n̄ of Borel maps fn : Bdn
R (x̄n)→ X∞ such that

i) fn(x̄n) = x̄∞ for every n ≥ n̄,

ii)
∣∣∣d∞(fn(x), fn(y)

)
− dn(x, y)

∣∣∣ ≤ ε for every n ≥ n̄ and x, y ∈ Bdn
R (x̄n),

iii) the ε-neighbourhood of fn
(
Bdn
R (x̄n)

)
contains Bd∞

R−ε(x̄∞) for every n ≥ n̄,
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iv) (fn)∗
(
mn|

Bdn
R (x̄n)

)
⇀ m∞|

Bd∞
R (x̄∞)

as n→∞ for a.e. R > 0.

As shown in [GMS15, Proposition 3.30], the relation between the two notions of conver-

gence (for pointed metric measure spaces) introduced so far is the following:

Proposition 1.43 (From pmGH to pmG) Let (Xn, dn,mn, x̄n) be a sequence of pointed

metric measure spaces that converges to some limit (X∞, d∞,m∞, x̄∞) in the pmGH-sense.

Then the sequence of classes [Xn, dn,mn, x̄n] pmG-converges to [X∞, d∞,m∞, x̄∞].

1.3.2 Optimal transport

We report here just few basic notions of optimal transport theory – the ones that are enough

for our purposes. For a complete treatise of this argument, we refer for instance to the

monographs [Vil09] and [AG13], while the following short discussion is taken from [GRS16].

Let (X, d) be a complete and separable metric space. Then we denote by P2(X) the set

of all Borel probability measures µ on X having finite second moment, namely that satisfy

the inequality
∫
d(x, ·)2 dµ < +∞ for some (thus any) point x ∈ X.

Suppose the space (X, d) is proper (i.e. closed bounded sets are compact) and geodesic.

Then it is possible to formulate the dynamical version of the optimal transport problem:

(1.74) W2(µ, ν)
.
=

√
inf

∫∫ 1

0
|γ̇t|2 dt dπ(γ) for every µ, ν ∈P2(X),

where the infimum is taken among all π ∈ P
(
Γ(X)

)
such that (e0)∗π = µ and (e1)∗π = ν.

It turns out that W2 is a distance on P2(X), called quadratic transportation distance. We

say that
(
P2(X),W2

)
is the Wasserstein space over X. Moreover, the infimum in (1.74) is

actually a minimum and we indicate with OptGeo(µ, ν) the set of all its minimizers. Given

any π ∈ OptGeo(µ, ν), one has that π is concentrated on the set Geo(X) (which can be easily

proven to be a closed subset of the space Γ(X) of all continuous curves). Moreover, it holds

that the map [0, 1] 3 t 7→ (et)∗π ∈P2(X) is a W2-geodesic curve joining µ to ν.
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These last two decades have witnessed an increasing interest in the theory of weakly

differentiable functions on metric measure spaces, which represents a fundamental passage

towards a differential calculus on nonsmooth structures. The notion of Sobolev space for

metric measure spaces that first made its appearance in the literature is the one proposed by

P. Haj lasz in [Haj96]. Nevertheless, such space does not fit our needs because it is ‘non-local’,

meaning that the gradient of a Sobolev function may not depend just on the local behaviour

of the function itself. This does not happen for the alternative approaches we are going to

describe, which surprisingly turned out to be equivalent. We divide them into three groups:

• Approximation via ‘smooth’ functions. Any Sobolev function in the Euclidean

space can be approximated by smooth functions; such classical result can be adapted

to the metric context, by replacing ‘smooth functions’ with ‘Lipschitz functions’. More

precisely, it is possible to select the Sobolev functions by looking at the relaxation of the

local Lipschitz constant. Such idea – which originally comes from J. Cheeger’s paper

[Che99] – has been further developed in [AGS14a].

• Distributional derivatives. In analogy with the smooth case, one can also define

the Sobolev space by means of a suitable integration-by-parts formula, where the role

of vector field is played by some concept of derivation – inspired by N. Weaver’s papers

[Wea99, Wea00]. This goal has been achieved by S. Di Marino in [DM14], thus obtaining

a notion that is equivalent to the one described in the previous item.

19
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• Good behaviour along curves. The very first perspective on weakly differentiable

functions, due to B. Levi [Lev06], relies upon the following idea: Sobolev functions in

the Euclidean space can be characterised by checking their behaviour along lines. This

approach has been carried on by B. Fuglede in [Fug57], who introduced a fundamental

potential-theoretic notion called p-modulus and denoted by Modp. Roughly speaking,

the p-Sobolev functions are those admitting a good behaviour along Modp-almost every

curve. In the metric measure framework, N. Shanmugalingam adapted the notion

of p-modulus and combined it with the concept of upper gradient (cf. [KM98]), thus

obtaining the so-called Newtonian space (see [Sha00]). An equivalent formulation of

this technique – based on the notion of test plan – can be found in [AGS14a]; since this

is the approach we shall adopt in the second half of the thesis, we will describe it more

in details at the end of this introductory part of the chapter.

The several definitions of Sobolev space illustrated so far present many common features,

thus enabling an axiomatic approach to the subject. This plan has been pursued by V.

Gol’dshtein and M. Troyanov in [GT01]. The key object in their construction is given by the

D-structure: any locally p-integrable function u is associated with a family D[u] of pseudo-

gradients, which are non-negative Borel functions on X exerting some control from above

on the variation of u. The pseudo-gradients are not explicitly specified, but they are rather

supposed to fulfil a certain list of axioms. Therefore the p-Sobolev space associated to D can

be defined as the space of all p-integrable functions admitting a p-integrable pseudo-gradient.

Standard functional-analytic techniques allow us to select – for any Sobolev function u – a

distinguished minimal object Du, called minimal pseudo-gradient. In Section 2.1 we shall

first report the main definitions and results of [GT01], then propose new notions of locality

for D-structures (cf. Definition 2.6) and show that under such additional assumptions the

minimal pseudo-gradient satisfies some useful calculus rules (cf. Proposition 2.13).

In Section 2.2 we will focus our attention on the version of Sobolev space W 1,2(X, d,m)

over a metric measure space (X, d,m) proposed by L. Ambrosio, N. Gigli and G. Savaré in

[AGS14a] (we restrict to the case p = 2 for simplicity, since this is enough for our purposes).

The key ingredient is the concept of test plan, which constitutes a ‘probabilistic’ tool that

is needed to select curves in X; from a technical point of view, it represents an alternative

to the 2-modulus in Shanmugalingam’s approach. Test plans permit to relax the notion

of upper gradient, thus leading to the so-called weak upper gradients (cf. Definition 2.17)

and accordingly to the definition of the Sobolev space W 1,2(X, d,m) (cf. Definition 2.24).

Such space satisfies the above-mentioned locality properties and calculus rules; it will play

a fundamental role in Chapter 4, when we will describe how to build a differential structure

over general metric measure spaces.

2.1 Axiomatic theory of Sobolev spaces

2.1.1 Definition of D-structure and its basic properties

In this subsection we summarise the content of [GT01]. We point out that in the mentioned

paper a more general notion of locally p-integrable function is considered – built upon the

concept of K-set. We chose the present approach just for simplicity, but the whole discussion

would remain unaltered if we replaced our definition of Lploc(m) with the one of [GT01].
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Definition 2.1 (D-structure) Let (X, d,m) be a metric measure space. Fix any p ∈ [1,∞).

Then a D-structure on (X, d,m) is any map D associating to each function u ∈ Lploc(X) a

family D[u] ⊆ L0(m)+ of pseudo-gradients of u, which satisfies the following axioms:

A1 Non triviality. It holds that Lip(u)χ{u>0} ∈ D[u] for every u ∈ Lploc(X)+ ∩ LIP(X).

A2 Upper linearity. Let u1, u2 ∈ Lploc(X) be fixed. Consider g1 ∈ D[u1] and g2 ∈ D[u2].

Suppose that a function g ∈ L0(m)+ satisfies the inequality g ≥ |α1| g1 + |α2| g2 in the

m-a.e. sense for some α1, α2 ∈ R. Then g ∈ D[α1 u1 + α2 u2].

A3 Leibniz rule. Fix a function u ∈ Lploc(X) and a pseudo-gradient g ∈ D[u] of u. Then

for every ϕ ∈ LIPb(X) it holds that g ‖ϕ‖L∞(m) + Lip(ϕ) |u| ∈ D[ϕu].

A4 Lattice property. Fix u1, u2 ∈ Lploc(X). Given any g1 ∈ D[u1] and g2 ∈ D[u2], one

has that g1 ∨ g2 ∈ D[u1 ∨ u2] ∩D[u1 ∧ u2].

A5 Completeness. Consider two sequences (un)n ⊆ Lploc(X) and (gn)n ⊆ Lp(m) that

satisfy gn ∈ D[un] for every n ∈ N. Suppose that there exist u ∈ Lploc(X) and g ∈ Lp(m)

such that un → u in Lploc(X) and gn → g in Lp(m). Then g ∈ D[u].

Remark 2.2 It directly follows from axioms A1 and A2 that 0 ∈ D[c] for every constant

function c ∈ R. Moreover, axiom A2 grants that the set D[u] ∩ Lp(m) is convex in Lp(m)

and that D[αu] = |α|D[u] for every u ∈ Lploc(X) and α ∈ R \ {0}, while axiom A5 implies

that the set D[u] ∩ Lp(m) is closed in Lp(m). �

Given any function u ∈ Lploc(X) and any Borel set B ⊆ X, let us define the p-Dirichlet

energy Ep(u |B) of u on B in the following way:

(2.1) Ep(u |B)
.
= inf

{∫
B
gp dm

∣∣∣∣ g ∈ D[u]

}
∈ [0,+∞].

For the sake of brevity, we shall use the shorthand notation Ep(u) to indicate Ep(u |X).

Definition 2.3 (Sobolev space) Let (X, d,m) be a metric measure space. Let p ∈ [1,∞)

be fixed. Given any D-structure on (X, d,m), we define the Sobolev class associated to D as

(2.2) Sp(X) = Sp(X;D)
.
=
{
u ∈ Lploc(X)

∣∣∣ Ep(u) < +∞
}
.

Moreover, we define the Sobolev space associated to D as

(2.3) W 1,p(X) = W 1,p(X;D)
.
= Lp(m) ∩ Sp(X;D).

It turns out that W 1,p(X;D) has a natural structure of Banach space, as we are going to

show in the next result; cf. also [GT01, Theorem 1.5].

Theorem 2.4 Let (X, d,m) be any metric measure space and let p ∈ [1,∞). Consider any

D-structure on (X, d,m). Then W 1,p(X) is a Banach space if endowed with the norm

(2.4) ‖u‖W 1,p(X)
.
=
(
‖u‖pLp(m) + Ep(u)

)1/p
for every u ∈W 1,p(X).
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Proof. First of all, we have that 0 ∈ W 1,p(X) by Remark 2.2. Given any u1, u2 ∈ W 1,p(X)

and α1, α2 ∈ R, we have α1 u1 +α2 u2 ∈W 1,p(X) by axiom A2: indeed, if g1 ∈ D[u1]∩Lp(m)

and g2 ∈ D[u2]∩Lp(m), then |α1| g1 + |α2| g2 ∈ D[α1 u1 +α2 u2]∩Lp(m). Therefore W 1,p(X)

is a vector subspace of Lp(m). We now prove that ‖ · ‖W 1,p(X) is actually a norm on W 1,p(X):

• If u ∈ W 1,p(X) satisfies ‖u‖W 1,p(X) = 0, then in particular ‖u‖Lp(m) = 0, which grants

that u = 0 holds m-a.e. in X.

• Fix u ∈ W 1,p(X) and α ∈ R. It follows from Remark 2.2 that Ep(αu) = |α|p Ep(u),

whence ‖αu‖W 1,p(X) = |α| ‖u‖W 1,p(X).

• Let u1, u2 ∈ W 1,p(X). Given any g1 ∈ D[u1] ∩ Lp(m) and g2 ∈ D[u2] ∩ Lp(m), one has

that g1 + g2 ∈ D[u1 + u2] ∩ Lp(m) by axiom A2, so accordingly

‖u1 + u2‖W 1,p(X) =
(
‖u1 + u2‖pLp(m) + Ep(u1 + u2)

)1/p

≤
(
‖u1 + u2‖pLp(m) + ‖g1 + g2‖pLp(m)

)1/p

≤
(
‖u1‖pLp(m) + ‖g1‖pLp(m)

)1/p
+
(
‖u2‖pLp(m) + ‖g2‖pLp(m)

)1/p
.

By arbitrariness of g1 ∈ D[u1] ∩ Lp(m) and g2 ∈ D[u2] ∩ Lp(m), we deduce from the

previous estimates that ‖u1 + u2‖W 1,p(X) ≤ ‖u1‖W 1,p(X) + ‖u2‖W 1,p(X).

In order to conclude the proof, it only remains to show that W 1,2(X) is complete. Let (un)n be

a fixed Cauchy sequence in W 1,p(X), in particular un → u in Lp(m) for some u ∈ Lp(m). With

no loss of generality, we can also suppose that ‖un − un+1‖W 1,p(X) < 1/2n for all n ∈ N. Then

there exists a sequence (hn)n ⊆ Lp(m) such that hn ∈ D[un − un+1] and ‖hn‖Lp(m) ≤ 1/2n

for every n ∈ N. Now call vkn
.
= un − uk for every k > n ≥ 0. Given any n ∈ N, one clearly

has that vkn → un − u in Lp(m) as k → ∞. Since vkn =
∑k−1

i=n ui − ui+1 for every k > n ≥ 0,

we deduce from axiom A2 that gkn
.
=
∑k−1

i=n hi ∈ D[vkn] ∩ Lp(m). Moreover, notice that

(2.5) ‖gkn‖Lp(m) ≤
k−1∑
i=n

‖hi‖Lp(m) ≤
k−1∑
i=n

1

2i
<

1

2n−1
for every k > n ≥ 0.

Given that the sequence (gkn)k is Cauchy in Lp(m) by construction, there exists gn ∈ Lp(m)

such that gkn → gn in Lp(m) as k → ∞. Hence gn ∈ D[un − u] for all n ∈ N by axiom A5.

This grants that u0 − u ∈ W 1,p(X), thus accordingly u = u0 − (u0 − u) ∈ W 1,p(X). Finally,

we deduce from (2.5) that ‖gn‖Lp(m) = limk ‖gkn‖Lp(m) ≤ 1/2n−1, so that

‖un − u‖pW 1,p(X)
= ‖un − u‖pLp(m) + Ep(un − u) ≤ ‖un − u‖pLp(m) + ‖gn‖pLp(m)

n−→ 0,

proving that un → u in W 1,p(X). This completes the proof of the statement. �

In the case p > 1, there is a natural way to select for any Sobolev function a specific

pseudo-gradient, minimal in an integral sense; cf. [GT01, Proposition 1.22]. More precisely:

Proposition 2.5 (Minimal pseudo-gradient) Let (X, d,m) be a metric measure space

and let p ∈ (1,∞). Consider any D-structure on (X, d,m). Let u ∈ Sp(X) be given. Then

there exists a unique element Du ∈ D[u] such that Ep(u) = ‖Du‖pLp(m). The element Du is

called minimal pseudo-gradient of u.
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Proof. Observe that D[u] ∩ Lp(m) 6= ∅ and that Ep(u) = inf
{
‖g‖pLp(m) : g ∈ D[u] ∩ Lp(m)

}
.

Recall also that the set D[u]∩Lp(m) is convex and closed by Remark 2.2. Since any nonempty

convex closed subset of a uniformly convex Banach space admits a unique element of minimal

norm, we get the statement. �

2.1.2 Local D-structures and calculus rules

In order to provide some calculus rules for minimal pseudo-gradients, we need to be sure that

they depend only on the local behaviour of the function, in a suitable sense. For this reason,

we propose various notions of locality for D-structures; some of them can be found in [GT01].

Definition 2.6 (Locality) Let (X, d,m) be a metric measure space. Fix p ∈ (1,∞). Then

we define five notions of locality for D-structures on (X, d,m):

L1 If B ⊆ X is Borel and u ∈ Sp(X) is m-a.e. constant in B, then Ep(u |B) = 0.

L2 If B ⊆ X is Borel and u ∈ Sp(X) is m-a.e. constant in B, then Du = 0 m-a.e. in B.

L3 If u ∈ Sp(X) and g ∈ D[u], then χ{u>0} g ∈ D[u+].

L4 If u ∈ Sp(X) and g1, g2 ∈ D[u], then g1 ∧ g2 ∈ D[u].

L5 If u ∈ Sp(X), then Du ≤ g m-a.e. in X for every g ∈ D[u].

Remark 2.7 In the language of [GT01, Definition 1.11], the properties L1 and L3 corre-

spond to locality and strict locality, respectively. �

We now discuss the relations among the several notions of locality for D-structures:

Proposition 2.8 Let (X, d,m) be a metric measure space. Let p ∈ (1,∞). Fix a D-structure

on (X, d,m). Then the following implications hold:

L3 =⇒
L4 ⇐⇒

L1 + L5 =⇒

L2 =⇒ L1,

L5,

L2 + L3.

(2.6)

Proof. We divide the proof into several steps:

L2 =⇒ L1. Suppose that a function u ∈ Sp(X) is m-a.e. constant on some B ⊆ X Borel.

Then it holds that Ep(u |B) ≤
∫
B(Du)p dm = 0 by L2, thus proving L1.

L3 =⇒ L2. Suppose that a function u ∈ Sp(X) is m-a.e. constant on some Borel set B ⊆ X.

Take that constant c ∈ R for which u = c holds m-a.e. in B. Since Du ∈ D[u− c] ∩D[c− u]

by axiom A2 and Remark 2.2, we deduce from L3 that

χ{u>c}Du ∈ D
[
(u− c)+

]
,

χ{u<c}Du ∈ D
[
(c− u)+

]
.

Given that u− c = (u− c)+ − (c− u)+, by applying again axiom A2 we see that

χ{u6=c}Du = χ{u>c}Du+ χ{u<c}Du ∈ D[u− c] = D[u].
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Hence the minimality of Du grants that∫
(Du)p dm ≤

∫
{u6=c}

(Du)p dm,

which implies that Du = 0 holds m-a.e. in {u = c}, so in particular m-a.e. in B. This means

that the D-structure satisfies property L2, as required.

L4 =⇒ L5. We argue by contradiction: suppose the existence of u ∈ Sp(X) and g ∈ D[u]

such that m
(
{Du > g}

)
> 0, whence h

.
= Du ∧ g ∈ Lp(m) satisfies

∫
hp dm <

∫
(Du)p dm.

Since h ∈ D[u] by L4, we deduce that Ep(u) <
∫

(Du)p dm, thus getting a contradiction.

Therefore property L5 is verified.

L5 =⇒ L4. Let u ∈ Sp(X) and g1, g2 ∈ D[u] be fixed. Since Du ≤ g1 and Du ≤ g2 hold

m-a.e. by L5, we see that Du ≤ g1 ∧ g2 holds m-a.e. as well. Therefore g1 ∧ g2 ∈ D[u] by A2,

whence accordingly L4 is proven to be satisfied.

L1+L5 =⇒ L2+L3. First of all, we prove L2. Fix u ∈ Sp(X) and suppose that u is m-a.e.

constant on some Borel subset B of X. Property L1 grants the existence of (gn)n ⊆ D[u]

such that
∫
B(gn)p dm→ 0. Hence L5 tells us that

∫
B(Du)p dm ≤ limn

∫
B(gn)p dm = 0, which

implies that the equality Du = 0 holds m-a.e. in B, thus yielding property L2.

We now show the validity of L3. Let u ∈ Sp(X) and g ∈ D[u] be fixed. Given that one

has h = h ∨ 0 ∈ D[u ∨ 0] = D[u+] for every h ∈ D[u] by A4 and Remark 2.2, we have that

the inclusion D[u] ⊆ D[u+] is verified, thus in particular u+ ∈ Sp(X). Given that u+ = 0

m-a.e. in the set {u ≤ 0}, one has that Du+ = 0 holds m-a.e. in {u ≤ 0} by L2. Hence for

any g ∈ D[u] we have Du+ ≤ χ{u>0} g by L5, which implies that χ{u>0} g ∈ D[u+] by A2.

Therefore property L3 is proved, as required. �

Definition 2.9 (Pointwise locality) Let (X, d,m) be a metric measure space and fix any

exponent p ∈ (1,∞). Then a D-structure on (X, d,m) is said to be pointwise local provided

it satisfies L1 and L5 (thus also L2, L3 and L4 by Proposition 2.8).

We now recall other two notions of locality for D-structures that appeared in the literature:

Definition 2.10 (Strong locality) Let (X, d,m) be a metric measure space and p ∈ (1,∞).

Consider a D-structure on (X, d,m). Then we give the following definitions:

i) We say that D is strongly local in the sense of Timoshin provided

(2.7) χ{u1<u2} g1 + χ{u2<u1} g2 + χ{u1=u2} (g1 ∧ g2) ∈ D[u1 ∧ u2]

whenever u1, u2 ∈ Sp(X), g1 ∈ D[u1] and g2 ∈ D[u2].

ii) We say that D is strongly local in the sense of Shanmugalingam provided

(2.8) χB g1 + χX\B g2 ∈ D[u2] for every g1 ∈ D[u1] and g2 ∈ D[u2]

whenever u1, u2 ∈ Sp(X) satisfy u1 = u2 m-a.e. on some Borel set B ⊆ X.

The above two notions of strong locality have been proposed in [Tim06] and [Sha09],

respectively. We now prove that they are both equivalent to our pointwise locality property:

Lemma 2.11 Let (X, d,m) be a metric measure space and p ∈ (1,∞). Fix any D-structure

on (X, d,m). Then the following are equivalent:
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i) D is pointwise local.

ii) D is strongly local in the sense of Shanmugalingam.

iii) D is strongly local in the sense of Timoshin.

Proof. We divide the proof into several steps:

i) =⇒ ii) Fix u1, u2 ∈ Sp(X) such that u1 = u2 m-a.e. on some E ⊆ X Borel. Pick g1 ∈ D[u1]

and g2 ∈ D[u2]. Observe that D(u2 − u1) + g1 ∈ D
[
(u2 − u1) + u1

]
= D[u2] by A2, so that

we have
(
D(u2 − u1) + g1

)
∧ g2 ∈ D[u2] by L4. Since D(u2 − u1) = 0 m-a.e. on B by L2, we

see that χB g1 + χX\B g2 ≥
(
D(u2 − u1) + g1

)
∧ g2 holds m-a.e. in X, whence accordingly we

conclude that χB g1 + χX\B g2 ∈ D[u2] by A2. This shows the validity of ii).

ii) =⇒ i) First of all, let us prove L1. Let u ∈ Sp(X) and c ∈ R satisfy u = c m-a.e. on

some Borel set B ⊆ X. Given any g ∈ D[u], we deduce from ii) that χX\B g ∈ D[u], thus

accordingly Ep(u|B) ≤
∫
B(χX\B g)p dm = 0. This proves the property L1.

To show property L4, fix u ∈ Sp(X) and g1, g2 ∈ D[u]. Let us denote B
.
= {g1 ≤ g2}.

Therefore ii) grants that g1 ∧ g2 = χB g1 + χX\B g2 ∈ D[u], thus obtaining L4. By recalling

Proposition 2.8, we conclude that D is pointwise local.

i)+ ii) =⇒ iii) Fix u1, u2 ∈ Sp(X), g1 ∈ D[u1] and g2 ∈ D[u2]. Recall that g1∨g2 ∈ D[u1∧u2]

by axiom A4. Hence by using property ii) twice we obtain that

χ{u1≤u2} g1 + χ{u1>u2} (g1 ∨ g2) ∈ D[u1 ∧ u2],

χ{u2≤u1} g2 + χ{u2>u1} (g1 ∨ g2) ∈ D[u1 ∧ u2].
(2.9)

The pointwise minimum between the two functions that are written in (2.9) – namely given

by χ{u1<u2} g1 + χ{u2<u1} g2 + χ{u1=u2} (g1 ∧ g2) – belongs to the class D[u1 ∧ u2] as well by

property L4, thus showing iii).

iii) =⇒ i) First of all, let us prove L1. Fix a function u ∈ Sp(X) that is m-a.e. equal to some

constant c ∈ R on a Borel set B ⊆ X. By using iii) and the fact that 0 ∈ D[0], we have that

χ{u<c} g ∈ D
[
(u− c) ∧ 0

]
= D

[
− (u− c)+

]
= D

[
(u− c)+

]
,

χ{u>c} g ∈ D
[
(c− u) ∧ 0

]
= D

[
− (c− u)+

]
= D

[
(c− u)+

]
.

(2.10)

Since u− c = (u− c)+ − (c− u)+, we know from A2 and (2.10) that

χ{u6=c} g = χ{u<c} g + χ{u>c} g ∈ D[u− c] = D[u],

whence Ep(u|B) ≤
∫
B(χ{u6=c} g)p dm = 0. This proves the property L1.

To show property L4, fix u ∈ Sp(X) and g1, g2 ∈ D[u]. Hence (2.7) with u1 = u2
.
= u

simply reads as g1 ∧ g2 ∈ D[u], which gives L4. This proves that D is pointwise local. �

Remark 2.12 (L1 does not imply L2) As we are going to show in the following example,

it can happen that a D-structure satisfies property L1 but not property L2.

Let G = (V,E) be a locally finite connected graph. The distance d(x, y) between two

vertices x, y ∈ V is defined as the minimum length of a path joining x to y, while as a reference

measure m on V we choose the counting measure. Notice that any function u : V → R is

locally Lipschitz and that any bounded subset of V consists of finitely many points. Then

we define a D-structure on the metric measure space (V, d,m) in the following way:

(2.11) D[u]
.
=
{
g : V → [0,+∞]

∣∣∣ ∣∣u(x)−u(y)
∣∣ ≤ g(x) + g(y) for any x, y ∈ V with x ∼ y

}
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for every u : V → R, where the notation x ∼ y indicates that x and y are adjacent vertices,

i.e. that there exists an edge in E joining x to y.

We claim that D fulfils L1. To prove it, suppose that some function u : X→ R is constant

on some set B ⊆ V , say u(x) = c for every x ∈ B. Define the function g : V → [0,+∞) as

g(x)
.
=

{
0

|c|+
∣∣u(x)

∣∣ if x ∈ B,
if x ∈ V \B.

Hence g ∈ D[u] and
∫
B g

p dm = 0, so that Ep(u |B) = 0. This proves the validity of L1.

On the other hand, if V contains more than one vertex, then property L2 is not satisfied.

Indeed, consider any non-constant function u : V → R. Clearly any pseudo-gradient g ∈ D[u]

of u is not identically zero, thus there exists x ∈ V such that Du(x) > 0. Since u is trivially

constant on the set {x}, we then conclude that property L2 does not hold. �

Hereafter, we shall focus our attention on the pointwise local D-structures. Under these

locality assumptions, one can show the following calculus rules for minimal pseudo-gradients,

whose proof is suitably adapted from analogous results that have been proved in [AGS14a]:

Proposition 2.13 (Calculus rules for Du) Let (X, d,m) be a metric measure space and

let p ∈ (1,∞). Consider a pointwise local D-structure on (X, d,m). Then the following hold:

i) Let u ∈ Sp(X) and let N ⊆ R be a Borel set with L1(N) = 0. Then the equality Du = 0

holds m-a.e. in u−1(N).

ii) Chain rule. Let u ∈ Sp(X) and ϕ ∈ LIP(R). Then |ϕ′| ◦ uDu ∈ D[ϕ ◦ u]. More

precisely, ϕ ◦ u ∈ Sp(X) and D(ϕ ◦ u) = |ϕ′| ◦ uDu holds m-a.e. in X.

iii) Leibniz rule. Let u, v ∈ Sp(X) ∩ L∞(m). Then |u|Dv + |v|Du ∈ D[uv]. In other

words, uv ∈ Sp(X) ∩ L∞(m) and D(uv) ≤ |u|Dv + |v|Du holds m-a.e. in X.

Proof. First of all, we just briefly describe the plan of the ensuing proof:

• Step 1. We show the first statement of ii) for u ∈ Sp(X) and ϕ piecewise affine.

• Step 2. We prove the first statement of ii) for u ∈ Sp(X) and ϕ ∈ LIP(R) ∩C1(R), by

using Step 1 together with an approximation argument.

• Step 3. We get i) for N compact, as a consequence of Step 2.

• Step 4. We prove i) for N general, by using Step 3 and an approximation argument.

• Step 5. We obtain the first statement of ii) in full generality, again by using Step 3.

• Step 6. The second statement of ii) follows from i) and the first statement of ii).

• Step 7. We deduce iii) from ii) when u, v ≥ c holds m-a.e. for some constant c > 0.

• Step 8. We prove iii) in full generality, as a consequence of i) and Step 7.

With this said, we can now pass to the proof of the statement:

Step 1. First, consider ϕ affine, say ϕ(t) = α t + β. Then |ϕ′| ◦ uDu = |α|Du ∈ D[ϕ ◦ u]

by Remark 2.2 and A2. Now suppose that the function ϕ is piecewise affine, i.e. there exists
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a sequence (ak)k∈Z ⊆ R, with ak < ak+1 for all k ∈ Z and a0 = 0, such that each ϕ|[ak,ak+1]

is an affine function. Let us denote Ak
.
= u−1

(
[ak, ak+1)

)
and uk

.
= (u ∨ ak) ∧ ak+1 for every

index k ∈ Z. By combining L3 with the axioms A2 and A5, we can see that χAk Du ∈ D[uk]

for every k ∈ Z. Calling ϕk : R → R the affine function coinciding with ϕ on [ak, ak+1), we

deduce from the previous case that |ϕ′k| ◦ ukDuk ∈ D[ϕk ◦ uk] = D[ϕ ◦ uk], whence we have

that |ϕ′| ◦ uk χAk Du ∈ D[ϕ ◦ uk] by L5, A2 and L2. Let us define (vn)n ⊆ Sp(X) as

vn
.
= ϕ(0) +

n∑
k=0

(
ϕ ◦ uk − ϕ(ak)

)
+

−1∑
k=−n

(
ϕ ◦ uk − ϕ(ak+1)

)
for every n ∈ N.

Hence gn
.
=
∑n

k=−n |ϕ′| ◦uk χAk Du ∈ D[vn] for all n ∈ N by A2 and Remark 2.2. Given that

one has vn → ϕ ◦ u in Lploc(m) and gn → |ϕ′| ◦ uDu in Lp(m) as n→∞, we finally conclude

that |ϕ′| ◦ uDu ∈ D[ϕ ◦ u], as required.

Step 2. We aim to prove the chain rule for ϕ ∈ C1(R)∩LIP(R). For any n ∈ N, let us denote

by ϕn the piecewise affine function interpolating the points
(
k/2n, ϕ(k/2n)

)
with k ∈ Z. We

denote by D ⊆ R the countable set
{
k/2n : k ∈ Z, n ∈ N

}
. Therefore ϕn uniformly converges

to ϕ and ϕ′n(t)→ ϕ′(t) for all t ∈ R\D. In particular, the functions gn
.
= |ϕ′n|◦uDu converge

m-a.e. to |ϕ′| ◦ uDu by L2. Moreover, Lip(ϕn) ≤ Lip(ϕ) for every n ∈ N by construction,

so that (gn)n is a bounded sequence in Lp(m). This implies that (up to a not relabeled

subsequence) gn ⇀ |ϕ′| ◦ uDu weakly in Lp(m). Now apply Mazur lemma: for any n ∈ N,

there exists (αni )Nni=n ⊆ [0, 1] such that
∑Nn

i=n α
n
i = 1 and hn

.
=
∑Nn

i=n α
n
i gi

n→ |ϕ′| ◦ uDu
strongly in Lp(m). Given that gn ∈ D[ϕn ◦ u] for every n ∈ N by Step 1, we deduce from

axiom A2 that hn ∈ D[ψn ◦ u] for every n ∈ N, where ψn
.
=
∑Nn

i=n α
n
i ϕi. Finally, it clearly

holds that ψn ◦ u→ ϕ ◦ u in Lploc(X), whence |ϕ′| ◦ uDu ∈ D[ϕ ◦ u] by axiom A5.

Step 3. We claim that

(2.12) Du = 0 m-a.e. in u−1(K), for every K ⊆ R compact with L1(K) = 0.

For any n ∈ N \ {0}, define ψn
.
= n d(·,K) ∧ 1 and denote by ϕn the primitive of ψn such

that ϕn(0) = 0. Since each ψn is continuous and bounded, any function ϕn is of class C1 and

Lipschitz. By applying the dominated convergence theorem we see that the L1-measure of

the ε-neighbourhood of K converges to 0 as ε↘ 0, thus accordingly ϕn uniformly converges

to idR as n→∞. This implies that ϕn ◦ u→ u in Lploc(X). Moreover, we know from Step 2

that |ψn| ◦uDu ∈ D[ϕn ◦u], thus also χX\u−1(K)Du ∈ D[ϕn ◦u]. Hence χX\u−1(K)Du ∈ D[u]

by A5, which forces the equality Du = 0 to hold m-a.e. in u−1(K), proving (2.12).

Step 4. We are in a position to prove i). Choose any m′ ∈P(X) such that m� m′ � m and

call µ
.
= u∗m

′. Then µ is a Radon measure on R, in particular it is inner regular. We can thus

find an increasing sequence of compact sets Kn ⊆ N such that µ
(
N \
⋃
nKn

)
= 0. We already

know from Step 3 that Du = 0 holds m-a.e. in
⋃
n u
−1(Kn). Since u−1(N) \

⋃
n u
−1(Kn) is

m-negligible by definition of µ, we conclude that Du = 0 holds m-a.e. in u−1(N). This shows

the validity of property i).

Step 5. We now prove ii). Let us fix ϕ ∈ LIP(R). Choose some standard Euclidean

convolution kernels (ρn)n, i.e. a sequence of nonnegative-valued functions ρn ∈ C∞c (R) such

that spt(ρn) ⊆ B1/n(0) and
∫
ρn(t) dt = 1. Define ϕn

.
= ϕ ∗ ρn for all n ∈ N. Then ϕn → ϕ

uniformly and ϕ′n → ϕ′ pointwise L1-a.e., whence accordingly

ϕn ◦ u→ ϕ ◦ u in Lploc(m),

|ϕ′n| ◦ uDu→ |ϕ′| ◦ uDu pointwise m-a.e. in X.
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Since |ϕ′n| ◦ uDu ≤ Lip(ϕ)Du holds for all n ∈ N, there exists a (not relabeled) subsequence

such that |ϕ′n| ◦ uDu ⇀ |ϕ′| ◦ uDu weakly in Lp(m). We know that |ϕ′n| ◦ uDu ∈ D[ϕn ◦ u]

for all n ∈ N because the chain rule holds for all ϕn ∈ C1(R) ∩ LIP(R), hence by combining

Mazur lemma and A5 as in Step 2 we obtain that |ϕ′|◦uDu ∈ D[ϕ◦u], so that ϕ◦u ∈ Sp(X)

and the inequality D(ϕ ◦ u) ≤ |ϕ′| ◦ uDu holds m-a.e. in X.

Step 6. We conclude the proof of ii) by showing that one actually has D(ϕ◦u) = |ϕ′| ◦uDu.

We can suppose without loss of generality that Lip(ϕ) = 1. Let us define the functions ψ±
as ψ±(t)

.
= ±t−ϕ(t) for all t ∈ R, respectively. Then it m-a.e. holds in u−1

(
{±ϕ′ ≥ 0}

)
that

Du = D(±u) ≤ D(ϕ ◦ u) +D(ψ± ◦ u) ≤
(
|ϕ′| ◦ u+ |ψ′±| ◦ u

)
Du = Du,

which forces the equality D(ϕ ◦ u) = ±ϕ′ ◦ uDu to hold m-a.e. in the set u−1
(
{±ϕ′ ≥ 0}

)
.

This grants the validity of D(ϕ ◦ u) = |ϕ′| ◦ uDu, thus completing the proof of item ii).

Step 7. We show iii) for the case in which u, v ≥ c is satisfied m-a.e. in X, for some c > 0.

Call ε
.
= min{c, c2} and note that the function log is Lipschitz on the interval [ε,+∞), then

choose any Lipschitz function ϕ : R→ R that coincides with log on [ε,+∞). Now call C the

constant log
(
‖uv‖L∞(m)

)
and choose a Lipschitz function ψ : R → R such that ψ = exp on

the interval [log ε, C]. By applying twice the chain rule ii), we thus deduce that uv ∈ Sp(X)

and the m-a.e. inequalities

D(uv) ≤ |ψ′| ◦ ϕ ◦ (uv)D
(
ϕ ◦ (uv)

)
≤ |uv|

(
D log u+D log v

)
= |uv|

(
Du

|u|
+
Dv

|v|

)
= |u|Dv + |v|Du.

Therefore the Leibniz rule iii) is verified under the additional assumption that u, v ≥ c > 0.

Step 8. We conclude by proving item iii) for general u, v ∈ Sp(X)∩L∞(m). Given any n ∈ N
and k ∈ Z, let us denote In,k

.
=
[
k/n, (k + 1)/n

)
. Call ϕn,k : R→ R the continuous function

that is the identity on In,k and constant elsewhere. For any n ∈ N, let us define

un,k
.
= u− k − 1

n
, ũn,k

.
= ϕn,k ◦ u−

k − 1

n
for all k ∈ Z,

vn,`
.
= v − `− 1

n
, ṽn,`

.
= ϕn,` ◦ v −

`− 1

n
for all ` ∈ Z.

Notice that the equalities un,k = ũn,k and vn,` = ṽn,` hold m-a.e. in u−1(In,k) and v−1(In,`),

respectively. Hence Dun,k = Dũn,k = Du and Dvn,` = Dṽn,` = Dv hold m-a.e. in u−1(In,k)

and v−1(In,`), respectively, but we also have that

D(un,k vn,`) = D(ũn,k ṽn,`) is verified m-a.e. in u−1(In,k) ∩ v−1(In,`).

Moreover, we have the m-a.e. inequalities 1/n ≤ ũn,k, ṽn,` ≤ 2/n by construction. Therefore

for any k, ` ∈ Z it holds m-a.e. in u−1(In,k) ∩ v−1(In,`) that

D(uv) ≤ D(ũn,k ṽn,`) +
|k − 1|
n

Dvn,` +
|`− 1|
n

Dun,k

≤ |ṽn,`|Dũn,k + |ũn,k|Dṽn,` +
|k − 1|
n

Dvn,` +
|`− 1|
n

Dun,k

≤
(
|v|+ 4

n

)
Du+

(
|u|+ 4

n

)
Dv,

where the second inequality is a consequence of the case u, v ≥ c > 0, treated in Step 7.

This implies that the inequality D(uv) ≤ |u|Dv+ |v|Du+ 4 (Du+Dv)/n holds m-a.e. in X.

Given that n ∈ N is arbitrary, the Leibniz rule iii) follows. �
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2.2 Sobolev spaces via test plans

The aim of the present section is to briefly illustrate the notion of Sobolev space W 1,2(X) for

metric measure spaces that has been introduced in [AGS14a]; unless otherwise specified, the

whole material of this section can be found therein.

A key ingredient in the definition of the space W 1,2(X) is the concept of test plan, which

is a ‘weighted selection’ of absolutely continuous curves – with bounded kinetic energy – that

do not concentrate mass too much (see Definition 2.14). Nevertheless, test plans are not mere

auxiliary tools that are used to define the Sobolev space; they rather play a central role in

the structure theory of RCD spaces. For instance, in Chapter 6 they will constitute – in a

sense – a generalisation of the notion of Lipschitz curve.

We adopt the following notation: the 1-dimensional Lebesgue measure restricted to the

unit interval [0, 1] will be denoted by

(2.13) L1
.
= L1

|[0,1]
.

We can now give the definition of test plan:

Definition 2.14 (Test plan) Let (X, d,m) be a metric measure space. Then we say that a

Borel probability measure π ∈P
(
Γ(X)

)
is a test plan on X provided the following hold:

i) There exists a constant C > 0 such that

(2.14) (et)∗π ≤ Cm for every t ∈ [0, 1].

We denote by C(π) the smallest constant C > 0 for which (2.14) is satisfied.

ii) The measure π has finite kinetic energy, i.e. it is concentrated on AC
(
[0, 1],X

)
and

(2.15) ms ∈ L2(π × L1),

where ms denotes the metric speed operator defined in Definition 1.4.

Theorem 2.15 Let (X, d,m) be a metric measure space. Let π be a test plan on X. Then

(2.16) [0, 1] 3 t 7−→ f ◦ et ∈ L1(π) is continuous for every f ∈ L1(m).

In particular, the function [0, 1] 3 t 7→
∫
f ◦ et dπ is continuous for every f ∈ L1(m).

Proof. First of all, we claim that

(2.17) lim
s→t

∫
|f ◦ es − f ◦ et| dπ = 0 for all f ∈ Cb(X) ∩ L1(m) and t ∈ [0, 1].

To prove it, note that |f ◦ es − f ◦ et|(γ) ≤ 2 ‖f‖L∞(m) for every γ ∈ Γ(X) and t, s ∈ [0, 1].

Moreover,
∣∣f(γs)−f(γt)

∣∣→ 0 as s→ t by continuity, for every γ ∈ Γ(X) and t ∈ [0, 1]. Hence

we obtain (2.17) as a consequence of the dominated convergence theorem. Observe also that

(2.18) L1(m) 3 f 7−→ f ◦ et ∈ L1(π) is linear and continuous for every t ∈ [0, 1].
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Indeed,
∫
|f ◦ et|dπ ≤ C(π)

∫
|f | dm is satisfied for every f ∈ L1(m). Now fix f ∈ L1(m).

Choose a sequence (fn)n ⊆ Cb(X) ∩ L1(m) that converges to f with respect to the L1-norm.

Given any t ∈ [0, 1] and n ∈ N, we have that (2.17) and (2.18) yield

lim
s→t

∫
|f ◦ es − f ◦ et| dπ ≤ 2C(π) ‖f − fn‖L1(m) + lim

s→t

∫
|fn ◦ es − fn ◦ et|dπ

= 2C(π) ‖f − fn‖L1(m).

(2.19)

By letting n→∞ in (2.19) we finally conclude that
∫
|f ◦ es− f ◦ et| dπ → 0 as s→ t, which

proves (2.16). To prove the last statement, just observe that the operator

L1(π) 3 g 7−→
∫
g dπ ∈ R

is (linear and) continuous. This completes the proof of the theorem. �

Remark 2.16 Consider the continuous map e : (γ, t) 7→ γt, introduced in (1.7). Given any

Borel function f : X→ R, we have that f ◦ e is Borel as well. Moreover, observe that

(π × L1)
(
e−1(A)

)
=

∫ 1

0
π
(
e−1
t (A)

)
dt ≤ C(π)m(A) for every A ∈ B(X)

by Fubini theorem, in other words it holds that e∗(π×L1) ≤ C(π)m. Therefore one has that

the composition f ◦ e ∈ L0(π × L1) is well-defined for any f ∈ L0(m). �

With the notion of test plan at disposal, we can give the definition of weak upper gradient:

Definition 2.17 (Weak upper gradient) Let (X, d,m) be a metric measure space. Fix a

Borel function f : X→ R. Then we say that G ∈ L2(m)+ is a weak upper gradient of f if

(2.20)

∫ ∣∣f(γ1)− f(γ0)
∣∣ dπ(γ) ≤

∫∫ 1

0
G(γt) |γ̇t| dtdπ(γ) for every test plan π on X.

Remark 2.18 The term ‘gradient’ for G is slightly inappropriate, since it is an object in

duality with curves and accordingly it behaves like the ‘modulus of the differential’. �

The following theorem – for whose proof we refer e.g. to [Pas18, Theorem 7.7] – provides

us with several equivalent definitions of weak upper gradient:

Theorem 2.19 Let (X, d,m) be a metric measure space. Fix a Borel function f : X → R.

Let G ∈ L2(m)+ be given. Then the following are equivalent:

i) The function G is a weak upper gradient of f .

ii) For every test plan π on X and for every t, s ∈ [0, 1] with s < t, it holds that

(2.21)
∣∣f(γt)− f(γs)

∣∣ ≤ ∫ t

s
G(γr) |γ̇r|dr for π-a.e. γ.

iii) Given any test plan π on X, it holds that:

a) The map [0, 1] 3 t 7→ f ◦ et − f ◦ e0 ∈ L1(π) is absolutely continuous.

b) For a.e. t ∈ [0, 1], the L1(π)-limit Derπ(f)t
.
= limh→0

f◦et+h−f◦et
h exists.
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c) The inequality
∣∣Derπ(f)t

∣∣ ≤ G(γt) |γ̇t| is satisfied for (π × L1)-a.e. (γ, t).

iv) Given any test plan π on X, we have for π-a.e. γ that the function f ◦ γ belongs to the

space W 1,1(0, 1) and satisfies the inequality
∣∣(f ◦ γ)′t

∣∣ ≤ G(γt) |γ̇t| for a.e. t ∈ [0, 1].

If the above hold, then the equality Derπ(f)t(γ) = (f ◦ γ)′t is verified for (π × L1)-a.e. (γ, t).

We introduce the notion of Sobolev class, following the original presentation of [AGS14a]:

Definition 2.20 (Sobolev class) We define the Sobolev class S2(X) as the space of all

Borel functions f : X→ R admitting a weak upper gradient.

It immediately follows from item iii) of Theorem 2.19 that G1 ∧ G2 is a weak upper

gradient of f whenever G1, G2 are weak upper gradients of f . This grants that there exists

a (unique) weak upper gradient of f that is minimal in the m-a.e. sense:

Definition 2.21 (Minimal weak upper gradient) Let f ∈ S2(X) be a Sobolev function.

Then we denote by |Df | ∈ L2(m) the minimal weak upper gradient of f .

In the following result, we collect the main properties of minimal weak upper gradients:

Theorem 2.22 Let (X, d,m) be a metric measure space. Then the following hold:

i) Lower semicontinuity. Let (fn)n ⊆ S2(X) satisfy fn → f in the m-a.e. sense, for

some Borel function f : X → R. Suppose |Dfn| ⇀ G in the weak topology of L2(m),

for some G ∈ L2(m). Then f ∈ S2(X) and the inequality |Df | ≤ G holds m-a.e. in X.

ii) Subadditivity. Let f, g ∈ S2(X) and α, β ∈ R be given. Then α f + β g ∈ S2(X) and

(2.22)
∣∣D(α f + β g)

∣∣ ≤ |α| |Df |+ |β| |Dg| holds m-a.e. in X.

iii) Behaviour of Lipschitz functions. Let f ∈ LIPbs(X). Then f ∈ S2(X) and

(2.23) |Df | ≤ lip(f) holds m-a.e. in X.

Remark 2.23 Let (X, d,m) be a PI space, i.e. a doubling metric measure space supporting

a weak (1, 2)-Poincaré inequality. Then

(2.24) |Df | = lip(f) m-a.e. in X for every f ∈ LIPbs(X) ⊆ S2(X).

This deep result has been proved in [Che99]. We will use it in Section 5.2. �

By considering the class of all 2-integrable functions admitting a weak upper gradient, we

obtain the notion of Sobolev space W 1,2(X):

Definition 2.24 (Sobolev space) Let (X, d,m) be a metric measure space. Then we define

(2.25) W 1,2(X)
.
= L2(m) ∩ S2(X).

We endow the Sobolev space W 1,2(X) with the following norm:

(2.26) ‖f‖W 1,2(X)
.
=
√
‖f‖2L2(m) +

∥∥|Df |∥∥2

L2(m)
for every f ∈W 1,2(X).
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It turns out that W 1,2(X) is a Banach space, but in general it is not a Hilbert space.

Definition 2.25 (Infinitesimal Hilbertianity) A metric measure space (X, d,m) is said

to be infinitesimally Hilbertian provided its associated Sobolev space W 1,2(X) is Hilbert.

Remark 2.26 (Consistency on Finsler manifolds) If X is a smooth Finsler manifold,

then W 1,2(X) concides with the Sobolev space defined via charts and |Df | is a.e. equal to

the norm of the distributional differential of f . �

As it has been proved in [AGS13], Lipschitz functions are dense in the Sobolev space:

Theorem 2.27 (Density in energy) Let (X, d,m) be a metric measure space. Then the

space LIPbs(X) is dense in energy in W 1,2(X), i.e. for every f ∈ W 1,2(X) there exists a

sequence (fn)n ⊆ LIPbs(X) such that fn → f and lipa(fn)→ |Df | in L2(m).

In particular, if the Sobolev space W 1,2(X) is reflexive, then LIPbs(X) is dense in W 1,2(X)

with respect to the W 1,2(X)-norm.

By recalling item i) of Theorem 2.22, one can readily prove that the sequence (fn)n in

Theorem 2.27 can be chosen so that also |Dfn| → |Df | and lip(fn)→ |Df | in L2(m).

A sufficient condition for the reflexivity of the Sobolev space is provided by the following

theorem, which has been proved in [ACDM12]:

Theorem 2.28 Let (X, d,m) be a metric measure space such that (X, d) is doubling. Then

the Sobolev space W 1,2(X) is reflexive.

Furthermore, it is proven – again in the paper [ACDM12] – that the implication

(2.27) W 1,2(X) reflexive =⇒ W 1,2(X) separable

occurs on any metric measure space (X, d,m).

Remark 2.29 By suitably adapting the definition of weak upper gradient, it is possible to

define the Sobolev space W 1,p(X) for any exponent p ∈ (1,∞). We point out that – as shown

in [DMS15] – the minimal weak upper gradient might depend on p.

Nevertheless, this cannot happen whenever (X, d,m) is an RCD space (whose definition

will be given later on, namely in Subsection 4.2.1), as proven in [GH16]. �

Remark 2.30 (Relation with the theory of D-structures) It can be readily checked

that the notion of Sobolev space via test plan fits in the framework of D-structures, described

in Section 2.1. By looking at weak upper gradients, we can indeed define a pointwise local

D-structure – denoted by Dwug – on any metric measure space (X, d,m). In particular, for

any f ∈ S2(X) ∩ L2
loc(X) we have that |Df | is the minimal pseudo-gradient of f and that

Dwug[f ] =
{
g ∈ L0(m)+

∣∣∣ g ≥ |Df | m-a.e. on X
}
.

Hence the following calculus rules for minimal weak upper gradients can be deduced from

Proposition 2.13 (at least for functions in S2(X) ∩ L2
loc(X); for the general case of functions

in S2(X) the proof has been carried out in [AGS14a]). �
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Proposition 2.31 (Calculus rules for |Df |) The following properties hold:

i) Locality. Let f ∈ S2(X) and let N ⊆ R be a Borel set with L1(N) = 0. Then the

equality |Df | = 0 holds m-a.e. in f−1(N).

ii) Chain rule. Let f ∈ S2(X) and ϕ ∈ LIP(R) be given. Then ϕ ◦ f ∈ S2(X) and the

equality
∣∣D(ϕ ◦ f)

∣∣ = |ϕ′| ◦ f |Df | holds m-a.e. in X.

iii) Leibniz rule. Let f, g ∈ S2(X) ∩ L∞(m) be given. Then fg ∈ S2(X) ∩ L∞(m) and the

inequality
∣∣D(fg)

∣∣ ≤ |f | |Dg|+ |g| |Df | holds m-a.e. in X.
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In order to develop a differential structure over an abstract metric measure space (X, d,m),

a crucial role is played by the concept of normed module. Such notion – which can be regarded

as a generalisation of the ‘space of measurable sections of some vector bundle’ – has been

proposed by N. Gigli in [Gig17b] and further refined in [Gig17a]. Technically speaking, it is a

variant of a similar notion that has been introduced by N. Weaver [Wea00], who was in turn

inspired by the papers [Sau89, Sau90] of J.-L. Sauvageot.

In an informal way, an L2(m)-normed L∞(m)-module M over the space (X, d,m) is an

object that is composed of the following structures:

• Algebraic. It is a module over the commutative ring L∞(m).

• Geometric. It is endowed with a pointwise norm operator | · | : M → L2(m), which

‘fiberwise’ behaves like a norm, in some suitable m-a.e. sense.

• Analytic. It is a Banach space if endowed with the norm M 3 v 7→
∥∥|v|∥∥

L2(m)
.

35
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A fundamental example of L2-normed L∞-module – which actually served as a motivation

for its axiomatisation – is the space L2(TM) of 2-integrable vector fields on a Riemannian

manifold (M, g,Vol), i.e. the space of all L2-sections of the tangent bundle TM of M . In this

case, the normed module structure is the following: given any f ∈ L∞(Vol) and v ∈ L2(TM),

we define f · v ∈ L2(TM) as (f · v)(x)
.
= f(x) v(x) ∈ TxM for Vol-a.e. x ∈M ; moreover, the

pointwise norm of v ∈ L2(TM) is given by |v|(x)
.
=
∥∥v(x)

∥∥
TxM

for Vol-a.e. x ∈M .

Sometimes it will be convenient to work with objects not satisfying any integrability

requirement; this led to the notion of L0(m)-normed L0(m)-module. Anyway, the two concepts

of normed modules are strictly related (cf. Propositions 3.7, 3.8 and Theorem 3.69).

The chapter is organised as follows: in Section 3.1 we introduce the normed modules and

their basic properties, we show that on normed modules there is a well-defined notion of local

dimension (the L0(m)-module structure is enough for this; cf. [LP18, Subsection 1.1]), finally

we explain how one can build duals, pullbacks and tensor products of normed modules and

investigate their main features. Such discussion is mostly taken from [Gig17a].

In Section 3.2 we shall prove that any ‘locally finitely-generated’ normed module (called

proper, see Definition 3.18 for the precise formulation of such concept) can be viewed as the

space of sections of some ‘measurable Banach bundle’ with finite-dimensional fibers. We will

give the definition of such an object (cf. Definition 3.42) and discuss its properties, then we

will equip the space of its measurable sections with an L0(m)-normed L0(m)-module structure

(thus obtaining the so-called ‘section functor’, see Definition 3.50), finally we will prove the

equivalence between proper L0(m)-normed L0(m)-modules and measurable Banach bundles

via the section functor (the Serre-Swan theorem, cf. Theorem 3.54). The whole material

contained in this section can be found in the paper [LP18].

3.1 Abstract theory of normed modules

3.1.1 Definition of normed module

Consider a metric measure space (X, d,m), which will remain fixed for the whole subsection.

Definition 3.1 (L2-normed L∞-module) We define an L2(m)-normed L∞(m)-module as

any structure
(
M , ‖ · ‖M , · , | · |

)
with these properties:

i)
(
M , ‖ · ‖M

)
is a Banach space.

ii) (M , · ) is a module over the commutative ring L∞(m), i.e. · : L∞(m)×M →M is a

bilinear operator – called multiplication by L∞(m)-functions – which satisfies

f · (g · v) = (fg) · v for every f, g ∈ L∞(m) and v ∈M ,

1̂ · v = v for every v ∈M ,
(3.1)

where 1̂ ∈ L∞(m) denotes the function identically equal to 1.

iii) The operator | · | : M → L2(m)+, called pointwise norm, satisfies

|f · v| = |f ||v|
‖v‖M =

∥∥|v|∥∥
L2(m)

m-a.e. for every f ∈ L∞(m) and v ∈M ,

for every v ∈M .
(3.2)
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For the sake of simplicity, we shall typically write fv instead of f · v. Given any v, w ∈ M

and a Borel set E ⊆ X, we say that v = w holds m-a.e. on E provided χE (v − w) = 0, or

equivalently |v − w| = 0 is satisfied m-a.e. on E. Moreover, we define the space M |E as

(3.3) M |E
.
=
{
χE v

∣∣ v ∈M
}
.

Then M |E is an L2(m)-normed L∞(m)-module as well and is called restriction of M to E.

It readily follows from the very definition of L2(m)-normed L∞(m)-module that one has

|λv| = |λ||v|,
|v + w| ≤ |v|+ |w|

(3.4)

in the m-a.e. sense for every λ ∈ R and v, w ∈M .

Proposition 3.2 Let M be an L2(m)-normed L∞(m)-module. Then · : L∞(m)×M →M

and | · | : M → L2(m) are continuous maps. In particular, M is a topological L∞(m)-module.

Proof. It follows from (3.2) that ‖fv‖M ≤ ‖f‖L∞(m)‖v‖M and
∥∥|v − w|∥∥

L2(m)
= ‖v − w‖M

hold for every f ∈ L∞(m) and v, w ∈M , thus proving continuity of · : L∞(m) ×M →M

and | · | : M → L2(m), respectively. �

It is often convenient to deal with objects having no integrability assumption:

Definition 3.3 (L0-normed L0-module) We define an L0(m)-normed L0(m)-module as

any structure
(
M 0, τ, · , | · |

)
with these properties:

i) (M 0, τ) is a topological vector space.

ii) (M 0, ·) is a module over the commutative ring L0(m), i.e. · : L0(m)×M 0 →M 0 is a

bilinear operator – called multiplication by L0(m)-functions – which satisfies

f · (g · v) = (fg) · v for every f, g ∈ L0(m) and v ∈M 0,

1̂ · v = v for every v ∈M 0.
(3.5)

iii) The operator | · | : M 0 → L0(m), called pointwise norm, satisfies

|v| ≥ 0 for every v ∈M 0, with equality if and only if v = 0,

|f · v| = |f ||v| for every f ∈ L0(m) and v ∈M 0,

|v + w| ≤ |v|+ |w| for every v, w ∈M 0,

(3.6)

where all equalities and inequalities have to be intended in the m-a.e. sense.

iv) For some (thus any) Borel probability measure m′ ∈ P(X) such that m � m′ � m, it

holds that the distance dM 0 on M 0, defined as

(3.7) dM 0(v, w)
.
=

∫
|v − w| ∧ 1 dm′ for every v, w ∈M 0,

is complete and induces the topology τ .

Remark 3.4 As pointed out in item iv) of Definition 3.3, the particular choice of m′ does

not affect neither the completeness of dM 0 nor its induced topology τ . �
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Remark 3.5 The space L0(m) depends only on the negligible sets of m: given any σ-finite

Borel measure m′ on X that is mutually absolutely continuous with respect to m, it holds

that L0(m) = L0(m′) as topological rings. Then we can unambiguously make use of the

notation L0(N ) to indicate the space L0(m), where N is the σ-ideal of negligible sets of m.

Accordingly, one could speak about L0(N )-normed L0(N )-modules, in order to underline

their dependence just on the family of null sets. �

A proof of the following result – which represents the analogue of Proposition 3.2 – can

be found, for instance, in [Pas18, Remark 15.12].

Proposition 3.6 Let M 0 be an L0(m)-normed L0(m)-module. Then · : L0(m)×M 0 →M 0

and |·| : M 0 → L0(m) are continuous maps. In particular, M 0 is a topological L0(m)-module.

The relation between L2-normed L∞-modules and L0-normed L0-modules is the object

of the following two results. The former is proven in [Gig17b, Subsection 1.3], while for the

latter we refer to [Gig17a, Theorem/Definition 1.7].

Proposition 3.7 (L2-restriction) Let M 0 be an L0(m)-normed L0(m)-module. Then

(3.8) M
.
=
{
v ∈M 0

∣∣ |v| ∈ L2(m)
}

has a natural structure of L2(m)-normed L∞(m)-module.

Proposition 3.8 (L0-completion) Let M be an L2(m)-normed L∞(m)-module. Then there

exists a unique couple (M 0, ι), where M 0 is an L0(m)-normed L0(m)-module and the map

ι : M →M 0 is a linear operator with dense image that preserves the pointwise norm.

Uniqueness is intended up to unique isomorphism: given any other such couple (N 0, ι′),

there exists a unique isomorphism Φ : M 0 → N 0 of L0(m)-normed L0(m)-modules such that

(3.9)

M M 0

N 0

ι

ι′
Φ

is a commutative diagram.

Remark 3.9 As described in Subsection 3.2.4, the operations of taking the L0-completion

and the L2-restriction can be actually made into an equivalence of categories, between the

category of L2(m)-normed L∞(m)-modules and that of L0(m)-normed L0(m)-modules. �

Let M 0 be any L0(m)-normed L0(m)-module and let E be any Borel subset of X. Let

us define M 0|E
.
=
{
χE v : v ∈ M 0

}
. It then turns out that M 0|E is an L0(m)-normed

L0(m)-module. Moreover, if M denotes the L2-restriction of M 0, then the module M 0|E
can be canonically identified with the L0-completion of M |E .

Remark 3.10 (Lp-normed L∞-module) By replacing p = 2 with any other p ∈ [1,∞]

in Definition 3.1, we obtain the notion of Lp(m)-normed L∞(m)-module. All the properties

illustrated so far – and many others that we shall see in the sequel – can be suitably adapted

to deal with the class of Lp(m)-normed L∞(m)-modules. �
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Remark 3.11 We now present a simple construction that we shall frequently make use of.

Let (X, d,m) be a given metric measure space. Consider any Borel set E ⊆ X and call ν
.
= m|E .

Then to any L0(ν)-normed L0(ν)-module M we can canonically associate an L0(m)-normed

L0(m)-module – called extension of M and denoted by Ext(M ) – in the following way. First

of all, we notice that we have a natural projection/restriction operator

proj : L0(m) −→ L0(ν)

given by the passage to the quotient up to ν-a.e. equality and a natural ‘extension’ operator

ext : L0(ν) −→ L0(m)

that sends f ∈ L0(ν) to the function m-a.e. equal to f on E and to 0 on X \ E. Then for a

generic L0(ν)-normed L0(ν)-module M we put Ext(M )
.
= M as set, while the multiplication

of v ∈ Ext(M ) by f ∈ L0(m) is defined as proj(f)v ∈M = Ext(M ) and the pointwise norm

of v as ext
(
|v|
)
∈ L0(m). Further, we shall denote by ext : M → Ext(M ) the identity map.

Notice that one trivially has that

(3.10) Ext(M ∗) ∼ Ext(M )∗ via the coupling ext(L)
(
ext(v)

) .
= ext

(
L(v)

)
.

In what follows, we shall always implicitly make this identification. �

In the theory of normed modules, a fundamental role is played by the following class:

Definition 3.12 (Hilbert module) Let H be an L2(m)-normed L∞(m)-module. Then we

say that H is a Hilbert module provided
(
H , ‖ · ‖H

)
is a Hilbert space, or equivalently if

(3.11) |v + w|2 + |v − w|2 = 2 |v|2 + 2 |w|2 holds m-a.e. in X

for every v, w ∈H . Such formula is referred to as the pointwise parallelogram identity.

The pointwise norm of a Hilbert module H induces – by polarisation – a pointwise scalar

product 〈·, ·〉 : H ×H → L1(m) on H , which is the L∞(m)-bilinear map given by

(3.12) 〈v, w〉 .= |v + w|2 − |v|2 − |w|2

2
for every v, w ∈H .

It is easy to check that 〈v, v〉 = |v|2 is satisfied m-a.e. for any v ∈H . Moreover, one has that

(3.13)
∣∣〈v, w〉∣∣ ≤ |v||w| holds m-a.e. for every v, w ∈H .

The previous formula is called pointwise Cauchy-Schwarz inequality.

Remark 3.13 An L0(m)-normed L0(m)-module H 0 is said to be a Hilbert module provided

the identity (3.11) is satisfied for every v, w ∈H 0. Then it turns out that an L2(m)-normed

L∞(m)-module H is Hilbert if and only if its L0-completion H 0 is Hilbert. It can be readily

checked that the pointwise scalar product of H can be uniquely extended to an L0(m)-bilinear

map 〈·, ·〉 : H 0 ×H 0 → L0(m) that satisfies the pointwise Cauchy-Schwarz inequality. �
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3.1.2 Local dimension of a normed module

Consider a metric measure space (X, d,m), which will remain fixed for the whole subsection.

Definition 3.14 (Local dimension) Let M 0 be an L0(m)-normed L0(m)-module. Let E

be any Borel subset of X such that m(E) > 0. Then:

i) A set S ⊆ M 0 is said to generate the module M 0 on E provided the set of all finite

sums of the form
∑n

i=1
χEi vi, where (Ei)

n
i=1 is a Borel partition of E and (vi)

n
i=1 ⊆ S,

is dense in the space M 0|E.

ii) Finitely many elements v1, . . . , vn ∈M 0 are said to be independent on E provided any

n-tuple (f1, . . . , fn) ∈
[
L0(m)

]n
for which

∑n
i=1 fi · vi = 0 must vanish m-a.e. on E.

iii) We say that some elements v1, . . . , vn ∈ M 0 constitute a local basis for M 0 on E

provided they are independent on E and they generate M 0 on E.

iv) We declare that the module M 0 has local dimension equal to n ∈ N+ on E provided

it admits a local basis v1, . . . , vn ∈M 0 on E, while we say that it has local dimension

equal to 0 on E if M 0|E = {0}. Such definition is well-posed, since any two local bases

for M 0 on E must have the same cardinality.

Notice that some elements v1, . . . , vn ∈M 0 generate the module M 0 on E if and only if

for any v ∈M 0 there exist f1, . . . , fn ∈ L0(m) such that χE v =
∑n

i=1 fi vi.

Remark 3.15 The notions introduced in Definition 3.14 have been originally formulated for

L2(m)-normed L∞(m)-modules, in Subsection 1.4 of [Gig17b]. For our purposes, it is sufficient

to say that an L2(m)-normed L∞(m)-module M has local dimension equal to n ∈ N on a

Borel set E ⊆ X provided its L0-completion M 0 has local dimension n on E. �

Remark 3.16 (Orthonormal basis) Suppose that m is a finite measure and consider a

Hilbert L2(m)-normed L∞(m)-module H . Assume that H has local dimension n ∈ N+ on

some Borel set E ⊆ X. Then it turns out that there exist v1, . . . , vn ∈H such that

(3.14) 〈vi, vj〉 = δij m-a.e. in E for every i, j = 1, . . . , n.

Clearly v1, . . . , vn form a local basis for H on E – called orthonormal basis. �

An important feature of the normed modules is that they admit a (unique) dimensional

decomposition. For a proof of the following result, we refer e.g. to [LP18, Theorem 1.8].

Theorem 3.17 (Dimensional decomposition) Fix an L0(m)-normed L0(m)-module M 0.

Then there exists a unique Borel partition (En)n∈N∪{∞} of the space X, called dimensional

decomposition of M 0, such that the following properties hold:

i) M 0 has local dimension equal to n on En, for any n ∈ N such that m(En) > 0.

ii) M 0 does not admit any finite local basis on any Borel subset E ⊆ E∞ with m(E) > 0.

Uniqueness is intended up to m-a.e. equality: given any other sequence (Fn)n∈N∪{∞} with the

same properties, it holds that m(En∆Fn) = 0 for every n ∈ N ∪ {∞}.
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Many important normed modules that arise in the study of the differential structure of

finite-dimensional RCD spaces – which will be described in the sequel – are ‘locally finitely-

generated’, in the following sense; the definition is taken from [LP18].

Definition 3.18 (Proper module) Let M 0 be any L0(m)-normed L0(m)-module, whose

dimensional decomposition is denoted by (En)n∈N∪{∞}. Then we say that M 0 is a proper

module provided m(E∞) = 0.

Remark 3.19 In Subsection 1.4 of [Gig17b], the dimensional decomposition is defined – and

proven to exist – for any L2(m)-normed L∞(m)-module M . The dimensional decomposition

of M coincides with the dimensional decomposition of its L0-completion M 0. �

Lemma 3.20 Let M 0 be a proper L0(m)-normed L0(m)-module. Then M 0 is separable.

Proof. Call (En)n∈N the dimensional decomposition of M 0. For any n ∈ N, choose a local

basis vn1 , . . . , v
n
n ∈M 0|En for M 0|En . Fix a countable dense subset D of L0(m). Then{ ∞∑

n=1

n∑
i=1

fni · vni
∣∣∣∣ (fni )1≤i≤n ⊆ D

}
⊆M 0,

which is countable by construction, is dense in M 0 by Proposition 3.6. �

A module morphism Φ : M → N between two L0(m)-normed L0(m)-modules (resp.

Lp(m)-normed L∞(m)-modules) is any L0(m)-linear (resp. L∞(m)-linear) operator such that

(3.15)
∣∣Φ(v)

∣∣ ≤ |v| m-a.e. in X for every v ∈M .

Furthermore, in Section 3.2 we shall adopt the following categorical terminology:

Definition 3.21 (Categories of normed modules) Let X = (X, d,m) be a given metric

measure space and let p ∈ [1,∞]. The category of Lp(m)-normed L∞(m)-modules is denoted

by NModp(X) and that of L0(m)-normed L0(m)-modules by NMod0(X).

Moreover, those subcategories of NModp(X) and NMod0(X) that consist of all proper

modules will be called NModppr(X) and NMod0
pr(X), respectively.

3.1.3 Construction of normed modules: dual

Fix a metric measure space (X, d,m). We introduce the notion of dual for normed modules:

Definition 3.22 (Dual of a L2-normed L∞-module) Let us consider an L2(m)-normed

L∞(m)-module M . Then we define its dual module M ∗ as

(3.16) M ∗ .=
{
L : M → L1(m)

∣∣∣ L is L∞(m)-linear and continuous
}
,

endowed with the following operations:

(L+ L′)(v)
.
= L(v) + L′(v),

(f · L)(v)
.
= L(f · v),

|L| .= ess sup
{
L(v)

∣∣ v ∈M , |v| ≤ 1 m-a.e.
}
,

‖L‖M ∗
.
=
∥∥|L|∥∥

L2(m)

(3.17)

for every f ∈ L∞(m) and L,L′ ∈M ∗. The space M ∗ is an L2(m)-normed L∞(m)-module.
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Definition 3.23 (Dual of an L0-normed L0-module) Let us consider an L0(m)-normed

L0(m)-module M 0. Then we define its dual module (M 0)∗ as

(3.18) (M 0)∗
.
=
{
L : M 0 → L0(m)

∣∣∣ L is L0(m)-linear and continuous
}
,

endowed with the following operations:

(L+ L′)(v)
.
= L(v) + L′(v),

(f · L)(v)
.
= L(f · v),

|L| .= ess sup
{
L(v)

∣∣ v ∈M 0, |v| ≤ 1 m-a.e.
}(3.19)

for any f ∈ L0(m) and L,L′ ∈ (M 0)∗. The space (M 0)∗ is an L0(m)-normed L0(m)-module.

Remark 3.24 Let M be an L2(m)-normed L∞(m)-module and let M 0 be its L0-completion.

Then it can be readily checked that (M 0)∗ is the L0-completion of M ∗. In other words, the

operations of taking the dual and taking the L0-completion commute. �

Given an L2(m)-normed L∞(m)-module M , we denote by M ′ its dual as a Banach space.

Then the integration provides a natural map IntM : M ∗ →M ′, which is defined as

(3.20) IntM (L)(v)
.
=

∫
L(v) dm for every L ∈M ∗ and v ∈M .

It holds that IntM is a bijective isometry, i.e. ‖L‖M ∗ =
∥∥IntM (L)

∥∥
M ′ for every L ∈M ∗.

Let us denote by IM : M ↪→M ∗∗ the canonical embedding in the bidual, given by

(3.21) IM (v)(L)
.
= L(v) for every v ∈M and L ∈M ∗.

Then IM is an L∞(m)-linear operator that preserves the pointwise norm. We say that M

is reflexive as a module provided the map IM is surjective. Actually, we have that M is

reflexive as a module if and only if it is reflexive as a Banach space.

Theorem 3.25 (Riesz) Let H be a Hilbert L2(m)-normed L∞(m)-module. Then the map

sending any v ∈H to the element Lv ∈H ∗, given by

(3.22) Lv(w)
.
= 〈v, w〉 for every w ∈H ,

is an isomorphism of modules and is called Riesz isomorphism. In particular, H is reflexive.

3.1.4 Construction of normed modules: pullback

Let (X, dX,mX), (Y, dY,mY) be two fixed metric measure spaces.

Definition 3.26 (Map of bounded compression) Let ϕ : X→ Y be a Borel map. Then

we say that ϕ has bounded compression provided there exists a constant C > 0 such that

(3.23) ϕ∗mX ≤ C mY.

The smallest such constant C is called compression constant of ϕ and is denoted by Comp(ϕ).

Any map of bounded compression canonically induces a notion of pullback for L2-normed

L∞-modules, as expressed by the following result; cf. [Gig17a, Theorem/Definition 1.23].
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Theorem 3.27 (Pullback) Let M be an L2(mY)-normed L∞(mY)-module. Let ϕ : X→ Y

be a map of bounded compression. Then there exists a unique couple (ϕ∗M , ϕ∗), where ϕ∗M

is an L2(mX)-normed L∞(mX)-module and ϕ∗ : M → ϕ∗M is a linear continuous operator,

such that the following properties are satisfied:

i) The identity |ϕ∗v| = |v| ◦ ϕ holds mX-a.e. for every v ∈M .

ii) The set
{
ϕ∗v : v ∈M

}
generates ϕ∗M on the whole X in the sense of modules.

Uniqueness is intended up to unique isomorphism: given any other such couple (N , T ), there

exists a unique isomorphism Φ : ϕ∗M → N of L2(mX)-normed L∞(mX)-modules such that

(3.24)

M ϕ∗M

N

ϕ∗

T
Φ

is a commutative diagram.

Remark 3.28 Observe that the space L2(mY) is an L2(mY)-normed L∞(mY)-module, whose

local dimension is 1 on the whole Y. Moreover, we have that ϕ∗L2(mY) ∼= L2(mX), with

pullback map ϕ∗ : L2(mY)→ L2(mX) given by ϕ∗f = f ◦ ϕ for every f ∈ L2(mY). �

Remark 3.29 It can be readily checked – by exploiting item i) of Theorem 3.27 – that the

pullback of a Hilbert module is a Hilbert module as well. �

As described in Subsection 2.2 of [GP17], the concept of pullback module can be car-

ried over to the class of L0-normed L0-modules in a natural way: given an L0(mY)-normed

L0(mY)-module M 0 and a map ϕ of bounded compression, we define the pullback ϕ∗M 0 as

the L0(mX)-completion of ϕ∗M , where M is the L2(mY)-restriction of M 0, while the pull-

back map ϕ∗ : M 0 → ϕ∗M 0 is the unique linear continuous extension of ϕ∗ : M → ϕ∗M .

Furthermore, we have that (ϕ∗M 0, ϕ∗) can be characterised as the unique couple (up to

unique isomorphism) such that the equality |ϕ∗v| = |v| ◦ ϕ holds mX-a.e. for every v ∈ M 0

and the set {ϕ∗v : v ∈M 0} generates ϕ∗M 0 on X as an L0(mX)-normed L0(mX)-module.

Remark 3.30 Let M be an L2(mY)-normed L∞(mY)-module and let ϕ : X→ Y be a map

of bounded compression. The role of this assumption on ϕ is to ensure that |ϕ∗v| ∈ L2(mX)

for every v ∈M , as shown by the following estimates:∫
|ϕ∗v|2 dmX =

∫
|v|2 ◦ ϕdmX =

∫
|v|2 dϕ∗mX ≤ Comp(ϕ)

∫
|v|2 dmY < +∞.

However, the hypothesis of bounded compression seems unnaturally strong in the case of L0-

normed L0-modules, as the integrability issue does not occur. Indeed, it turns out that the

pullback ϕ∗M 0 of an L0(mY)-normed L0(mY)-module M 0 can be built whenever ϕ : X→ Y

is a Borel map for which ϕ∗mX � mY. In order to prove such fact, let us define

m′Y
.
= (ϕ∗mX)|A + mY|X\A, where we set A

.
=

{
dϕ∗mX

dmY
> 0

}
.

Hence we have m′Y � mY � m′Y, which grants that L0(m′Y) = L0(mY) and accordingly

that M 0 is an L0(m′Y)-normed L0(m′Y)-module. Given that ϕ∗mX ≤ m′Y, i.e. the map ϕ has

bounded compression when the target space Y is endowed with the measure m′Y, it makes

sense to consider the pullback module ϕ∗M 0. This proves the above claim. �
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The pullback module can be proven to satisfy the following universal property:

Proposition 3.31 (Universal property of the pullback) Let M be an L2(mY)-normed

L∞(mY)-module and ϕ : X → Y a map of bounded compression. Take an L2(mX)-normed

L∞(mX)-module N and a linear operator T : M → N such that the inequality

(3.25)
∣∣T (v)

∣∣ ≤ C |v| ◦ ϕ mX-a.e. for every v ∈M

is satisfied for some constant C > 0. Then there exists a unique L∞(mX)-linear continuous

operator T̂ : ϕ∗M → N such that

(3.26)

M N

ϕ∗M

T

ϕ∗

T̂

is a commutative diagram.

An analogous universal property is verified by the pullback of an L0-normed L0-module;

cf. [GP17, Proposition 2.9] for the details.

Remark 3.32 (Functoriality) An important consequence of Proposition 3.31 is that the

pullback of modules is functorial, in the sense we are now going to explain.

Let (Z, dZ,mZ) be a metric measure space. Let ϕ : X → Y and ψ : Y → Z be maps of

bounded compression. Consider any L2(mZ)-normed L∞(mZ)-module M . Then (ψ ◦ ϕ)∗M

can be canonically identified with ϕ∗(ψ∗M ). �

Remark 3.33 Suppose that ϕ : X → Y and ψ : Y → X are maps of bounded compression

such that the identities ψ ◦ ϕ = idX and ϕ ◦ ψ = idY hold mX-a.e. and mY-a.e., respec-

tively. Consider any L2(mY)-normed L∞(mY)-module M . Then Remark 3.32 grants that

the pullback map ϕ∗ : M → ϕ∗M is bijective. Since the right composition f 7→ f ◦ ϕ is

an isomorphism between L∞(mY ) and L∞(mX), we conclude that the modules M and ϕ∗M

can be identified via the isomorphism ϕ∗. �

A natural question is the following: do the operations of taking the dual and taking the

pullback commute? As we shall see in the next result, the answer is in general no – unless

we add some additional assumptions on the module under consideration.

Theorem 3.34 (Relation between ϕ∗M ∗ and (ϕ∗M )∗) Let M be any L2(mY)-normed

L∞(mY)-module. Let ϕ : X → Y be a map of bounded compression. Then there exists a

unique L∞(mX)-linear and continuous map I : ϕ∗M ∗ → (ϕ∗M )∗ such that

(3.27) I(ϕ∗L)(ϕ∗v) = L(v) ◦ ϕ for every L ∈M ∗ and v ∈M .

It holds that the operator I preserves the pointwise norm.

Moreover, suppose that either M ∗ is separable (when viewed as a Banach space) or M

is a Hilbert module. Then the operator I is surjective. In other words, the modules (ϕ∗M )∗

and ϕ∗M ∗ can be canonically identified.

The pullback map is in general not bijective. Nevertheless, by relying upon the machinery

that has been developed in Subsection 1.2.2 it is possible – in the case in which ϕ∗ preserves

the reference measure – to select a special left inverse Prϕ of the pullback map ϕ∗.
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Theorem 3.35 (Projection for modules) Let M be a L2(mY)-normed L∞(mY)-module.

Let ϕ : X→ Y be a Borel map such that ϕ∗mX = mY. Then there exists a unique linear and

continuous operator Prϕ : ϕ∗M →M such that

(3.28) Prϕ(f ϕ∗v) = Prϕ(f) v for every f ∈ L∞(mX) and v ∈M .

In particular, it holds that Prϕ(ϕ∗v) = v for every v ∈M and

(3.29)
∣∣Prϕ(w)

∣∣ ≤ Prϕ|w| mY-a.e. for every w ∈ ϕ∗M .

Proof. Let us denote by V the set of all the elements w ∈ ϕ∗M that can be written in the

form w =
∑n

i=1
χEi ϕ

∗vi, where (Ei)
n
i=1 is a Borel partition of X and (vi)

n
i=1 ⊆ M . Recall

that V is a dense vector subspace of ϕ∗M . Then we are forced to define Prϕ : V →M as

(3.30) Prϕ(w)
.
=

n∑
i=1

Prϕ(χEi) vi for every w =

n∑
i=1

χEi ϕ
∗vi ∈ V.

Well-posedness of such definition is guaranteed by the following mY-a.e. inequality:∣∣∣∣ n∑
i=1

Prϕ(χEi) vi

∣∣∣∣ ≤ n∑
i=1

Prϕ(χEi) |vi|
(1.52)

=
n∑
i=1

Prϕ
(
χEi |vi| ◦ ϕ

)
= Prϕ

∣∣∣∣ n∑
i=1

χEi ϕ
∗vi

∣∣∣∣.
This shows that

∣∣Prϕ(w)
∣∣ ≤ Prϕ|w| holds mY-a.e. for any w ∈ V . By integrating it, we get

∥∥Prϕ(w)
∥∥

M
≤
∥∥Prϕ|w|∥∥L2(mY)

(1.51)

≤
∥∥|w|∥∥

L2(mX)
= ‖w‖ϕ∗M for every w ∈ V,

which grants that the map Prϕ : V → M – that is linear by construction – is continuous.

Therefore Prϕ can be uniquely extended to a linear continuous operator Prϕ : ϕ∗M → M .

An approximation argument shows that property (3.29) is satisfied. Finally, for any v ∈M

it holds that Prϕ(ϕ∗v) = Prϕ(1) v = v by (1.46), thus proving that Prϕ ◦ ϕ∗ = idM . �

Remark 3.36 We claim that

(3.31) g Prϕ(w) = Prϕ(g ◦ ϕw) for every g ∈ L∞(mY) and w ∈ ϕ∗M .

Indeed, just observe that both sides of the identity are linear continuous with respect to the

entry w and agree on those w’s of the form f ϕ∗v, with f ∈ L∞(mX) and v ∈M . �

As we are going to show in the next results, the projection map Prϕ is a key tool in order

to prove that the passage to the pullback ‘preserves’ the local dimension of the module.

Proposition 3.37 Let ϕ : X → Y be a Borel map such that ϕ∗mX = mY. Let M be any

L2(mY)-normed L∞(mY)-module. Let E be a Borel subset of Y such that mY(E) > 0. Then:

i) Given any set S ⊆M that generates M on E, it holds that the family
{
ϕ∗v : v ∈ S

}
generates ϕ∗M on ϕ−1(E).

ii) Given any v1, . . . , vn ∈M independent on E, it holds that ϕ∗v1, . . . , ϕ
∗vn ∈ ϕ∗M are

independent on ϕ−1(E).



46 Chapter 3 • The language of normed modules

Proof. To prove item i), fix a set S ⊆ M generating M on E. This means that the set V

of all finite sums
∑n

i=1
χEi vi, where (Ei)

n
i=1 is a Borel partition of E and (vi)

n
i=1 ⊆ S, is

dense in M |E . Therefore any element of ϕ∗(M |E) ' (ϕ∗M )|ϕ−1(E)
can be approximated by

a sequence of elements of the form
∑m

j=1
χFj ϕ

∗wj , with (Fj)
m
j=1 Borel partition of ϕ−1(E)

and (wj)
m
j=1 ⊆ V . This ensures that

{
ϕ∗v : v ∈ S

}
generates ϕ∗M on ϕ−1(E), as required.

To prove item ii), fix some elements v1, . . . , vn ∈ M that are independent on E. Let us

consider any f1, . . . , fn ∈ L∞(mX) such that χϕ−1(E)

∑n
i=1 fi ϕ

∗vi = 0. Given any subset S

of {1, . . . , n}, we define the Borel set AS ⊆ X as

AS
.
= ϕ−1(E) ∩

⋂
i∈S
{fi ≥ 0} ∩

⋂
i/∈S

{fi < 0}.

Then
{
AS : S ⊆ {1, . . . , n}

}
constitutes a Borel partition of ϕ−1(E). Fix any S ⊆ {1, . . . , n}.

We have that
∑n

i=1 Prϕ(χAS fi) vi = Prϕ
(∑n

i=1
χAS fi ϕ

∗vi
)

= 0, whence χE Prϕ(χAS fi) = 0

holds mY-a.e. for all i = 1, . . . , n by independence of v1, . . . , vn on E. Moreover, it holds∣∣χEc Prϕ(χAS fi)
∣∣ (1.50)

≤ χEc Prϕ
(
χAS |fi|

) (1.46)

≤ χEc Prϕ(χAS ) ‖fi‖L∞(mX)

(1.57)
= 0

in the mY-a.e. sense. Then Prϕ(χAS fi) = 0 for all i, so that χAS fi = 0 for every i by (1.44).

Therefore χϕ−1(E) fi =
∑

S⊆{1,...,n} χAS fi = 0, proving the statement. �

Theorem 3.38 Let ϕ : X → Y be a Borel map such that ϕ∗mX = mY. Let M be an

L2(mY)-normed L∞(mY)-module. Let E be a Borel subset of Y with mY(E) > 0. Then M

has local dimension n ∈ N on E if and only if ϕ∗M has local dimension n on ϕ−1(E).

Proof. First of all, assume that M has local dimension n on E and let us choose any local

basis v1, . . . , vn ∈M for M on E. Hence the elements ϕ∗v1, . . . , ϕ
∗vn constitute a local basis

for ϕ∗M on ϕ−1(E) by Proposition 3.37, thus ϕ∗M has local dimension n on ϕ−1(E). The

converse implication follows from the well-posedness of the notion of local dimension. �

3.1.5 Construction of normed modules: tensor product

Let us fix any metric measure space (X, d,m).

Given two Hilbert L2(m)-normed L∞(m)-modules H1, H2, we denote by H1 ⊗Alg H2

their tensor product as L∞(m)-modules – i.e. the space of formal finite sums of objects of the

kind v1 ⊗ v2, with (v1, v2) 7→ v1 ⊗ v2 being L∞(m)-bilinear. Then let us define

(3.32) (v1 ⊗ v2) : (w1 ⊗ w2)
.
= 〈v1, w1〉1 〈v2, w2〉2 for any v1, w1 ∈H1 and v2, w2 ∈H2,

where 〈·, ·〉i denotes the pointwise scalar product of Hi for i = 1, 2. We can extend it to a

unique L∞(m)-bilinear symmetric operator : from (H1 ⊗Alg H2)× (H1 ⊗Alg H2) to L0(m).

It turns out that the inequality A : A ≥ 0 is verified m-a.e. for any A ∈ H1 ⊗Alg H2.

Moreover, given any Borel set E ⊆ X we have that

(3.33) A : A = 0 m-a.e. on E ⇐⇒ A = 0 m-a.e. on E.

In other words, the map : is ‘pointwise positive definite’. The Hilbert-Schmidt pointwise norm

of any tensor A ∈H1 ⊗Alg H2 is given by

(3.34) |A|HS
.
=
√
A : A ∈ L0(m),
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thus we define the tensor product norm as

(3.35) ‖A‖H1⊗H2

.
=

(∫
|A|2HS dm

)1/2

∈ [0,+∞] for every A ∈H1 ⊗Alg H2.

We are now in a position to define the ‘analytical’ tensor product between H1 and H2.

Definition 3.39 (Tensor product) We define the tensor product H1⊗H2 as the comple-

tion of the space
{
A ∈H1⊗Alg H2 ; ‖A‖H1⊗H2

< +∞
}

with respect to the norm ‖ · ‖H1⊗H2
.

It can be readily proved that H1 ⊗H2 has a natural structure of Hilbert L2(m)-normed

L∞(m)-module, whose pointwise norm will be denoted by | · |HS.

Remark 3.40 Let us suppose that the modules H1 and H2 are separable. Then their tensor

product H1 ⊗H2 is separable as well. �

Remark 3.41 Consider any two Hilbert L0(m)-normed L0(m)-modules H 0
1 and H 0

2 . Let

us denote by H1 and H2 the L2(m)-restrictions of H 0
1 and H 0

2 , respectively. Then we define

the tensor product H 0
1 ⊗H 0

2 as the L0(m)-completion of H1 ⊗H2, thus accordingly the

space H 0
1 ⊗H 0

2 is a Hilbert L0(m)-normed L0(m)-module. �

Let H be a Hilbert L2(m)-normed L∞(m)-module. Then for any n ∈ N+ we set

(3.36) H ⊗n .
= H ⊗ . . .⊗H︸ ︷︷ ︸

n times

.

We conclude by pointing out that the operator

H ⊗Alg H 3 v1 ⊗ v2 7−→ v2 ⊗ v1 ∈H ⊗Alg H

induces an automorphism of H ⊗2, which will be called transposition and denoted by A 7→ At.

Then a tensor A ∈H ⊗2 is said to be symmetric provided At = A.

3.2 Serre-Swan theorem for proper normed modules

3.2.1 Measurable Banach bundles and section functor

The first part of this subsection is devoted to propose a notion of measurable Banach bundle

– or briefly MBB – over a given metric measure space X = (X, d,m). An alternative definition

of MBB, which does not perfectly fit into our framework, can be found in [GP16b].

Definition 3.42 (MBB) We define a measurable Banach bundle over the space X as any

quadruplet T = (T,E, π,n), where:

i) The sequence E = (En)n∈N is a Borel partition of X.

ii) The set T
.
=
⊔
n∈NEn × Rn is called total space and is always implicitly endowed with

the σ-algebra
⋂
n∈N(ιn)∗B(En × Rn), where ιn : En × Rn ↪→ T denotes the inclusion

map for every n ∈ N. Recall Remark 1.17 for the definition of (ιn)∗B(En × Rn).

iii) The map sending any element (x, v) ∈ T to its base point x ∈ X is denoted by π : T → X

and is called projection map.



48 Chapter 3 • The language of normed modules

iv) The measurable function n : T → [0,+∞) has the property that for any n ∈ N it holds

that n(x, ·) is a norm on Rn for m-a.e. point x ∈ En.

Given n ∈ N and x ∈ En, we say that (T)x
.
= π−1{x} = {x} × Rn is the fiber of T over x.

We will often implicitly identify the fiber (T)x with the vector space Rn itself.

Remark 3.43 It is immediate to check that a subset S of the total space T of an MBB T is

measurable if and only if S ∩ (En × Rn) is a Borel subset of En × Rn for any n ∈ N. �

We now describe which are the (pre-)morphisms between any two given MBB’s.

Definition 3.44 (MBB pre-morphisms) Let T1 = (T1, E
1, π1,n1), T2 = (T2, E

2, π2,n2)

be MBB’s over X. Then a measurable map ϕ : T1 → T2 is said to be an MBB pre-morphism

from T1 to T2 provided it holds that the diagram

(3.37)

T1 T2

X

ϕ

π1
π2

commutes and that for m-a.e. x ∈ X the operator

ϕ|(T1)x
:
(
(T1)x,n1(x, ·)

)
→
(
(T2)x,n2(x, ·)

)
is linear and 1-Lipschitz.

We declare two MBB pre-morphisms ϕ,ϕ′ : T1 → T2 to be equivalent, briefly ϕ ∼ ϕ′, if

(3.38) ϕ|(T1)x
= ϕ′|(T1)x

holds for m-a.e. x ∈ X.

We are now finally in a position to define the category of measurable Banach bundles over X:

Definition 3.45 (The category of MBB’s) The collection of measurable Banach bundles

over X and of equivalence classes of MBB pre-morphisms form a category, which we shall

denote by MBB(X).

Once a notion of measurable Banach bundle is given, it is natural to consider its ‘measurable

sections’, namely those maps which assign (in a measurable way) to almost every point of

the underlying metric measure space an element of the fiber over such point.

It will turn out that the space Γ0(T) of all measurable sections of a measurable Banach

bundle T is a proper L0-normed L0-module. The correspondence T 7→ Γ0(T) can be made

into a functor, called ‘section functor’, from the category of measurable Banach bundles to

the category of proper L0-normed L0-modules.

Definition 3.46 (Sections of an MBB) Let T = (T,E, π,n) be (a representative of) an

MBB over X. Then we call (measurable) section of T any measurable right inverse of the

projection π, i.e. any measurable map s : X→ T such that π ◦ s = idX.

Two given sections s1, s2 : X→ T are equivalent provided s1(x) = s2(x) for m-a.e. x ∈ X.

The space of all equivalence classes of sections of T will be denoted by Γ0(T). We add some

structure to the set Γ0(T), in order to get an L0(m)-normed L0(m)-module:
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i) Vector space. Let s1, s2 ∈ Γ0(T) and λ ∈ R. Pick a representative si : X→ T of si
for each i = 1, 2. Then we can pointwise define the sections s1 + s2 and λ s1 of T as

(s1 + s2)(x)
.
= s1(x) + s2(x)

(λ s1)(x)
.
= λ s1(x)

for every x ∈ X.(3.39)

Therefore we define s1+s2 ∈ Γ0(T) and λ s1 ∈ Γ0(T) as the equivalence classes of s1+s2

and λ s1, respectively. It can be readily seen that these operations are well-defined and

give to Γ0(T) a vector space structure.

ii) Multiplication by L0-functions. Let s ∈ Γ0(T) and f ∈ L0(m) be fixed. Choose a

representative s : X→ T of s and a Borel version f : X→ R of f . Then it holds that

the map f · s : X→ T , given by

(3.40) (f · s)(x)
.
= f(x) s(x) ∈ (T)x for every x ∈ X,

is a section of T. Hence we define f · s ∈ Γ0(T) as the equivalence class of f · s. This

yields a well-posed bilinear operator · : L0(m)× Γ0(T)→ Γ0(T).

iii) Pointwise norm. Consider any section s ∈ Γ0(T). Pick a representative s : X → T

of s. Define the Borel function |s| : X→ [0,+∞) as

(3.41) |s|(x)
.
= n

(
s(x)

)
for every x ∈ X.

Then we denote by |s| ∈ L0(m) the equivalence class of the function |s|. This provides

us a well-defined operator | · | : Γ0(T)→ L0(m).

iv) Topology on Γ0(T). Pick a Borel probability measure m′ on X with m � m′ � m.

Then we define the distance dΓ0(T) on Γ0(T) as follows:

(3.42) dΓ0(T)(s1, s2)
.
=

∫
|s1 − s2| ∧ 1 dm′ for every s1, s2 ∈ Γ0(T).

We denote by τ the topology induced by dΓ0(T).

It turns out that Γ0(T) is an L0(m)-normed L0(m)-module. Furthermore, given a measurable

Banach bundle T over the space X, we define

(3.43) Γ0(T)
.
= Γ0(T) for one (thus any) representative T of T.

Well-posedness of such definition is granted by the fact that Γ0(T1) and Γ0(T2) are isomorphic

as L0(m)-normed L0(m)-modules whenever T1 and T2 are equivalent bundles.

Remark 3.47 (Constant sections) In the forthcoming discussion, a key role will be played

by those sections of T that are obtained in this way: for any n ∈ N and any vector v ∈ Rn,

we consider the section v ∈ Γ0(T) that is identically equal to v on En and null elsewhere.

More precisely, for any n ∈ N and any vector v ∈ Rn, we define v ∈ Γ0(T) as the

equivalence class of the section v : X→ T , given by

(3.44) v(x)
.
=

{
(x, v)

(x, 0)

if x ∈ En,
if x ∈ X \ En,

where T = (T,E, π,n) is any chosen representative of T. �
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Proposition 3.48 The space Γ0(T) is a proper L0(m)-normed L0(m)-module. More pre-

cisely, for any representative T = (T,E, π,n) of the bundle T it holds that E = (En)n∈N
constitutes a dimensional decomposition of Γ0(T).

Proof. Fix T = (T,E, π,n) ∈ T and n ∈ N. Denote by e1, . . . , en the canonical basis of Rn.

Then consider the sections e1, . . . , en ∈ Γ0(T) defined in Remark 3.47. We claim that

(3.45) e1, . . . , en is a local basis for Γ0(T) on En.

Take any s ∈ Γ0(T), with representative s : X→ T . Since the map s|En : En → En × Rn is

Borel measurable by Remark 3.43, there exists a Borel function c = (c1, . . . , cn) : En → Rn

such that s(x) =
(
x, c(x)

)
holds for every x ∈ En. Now extend each ci to the whole X by

declaring it equal to 0 on the complement of En. Hence χEn ·s =
∑n

i=1 ci ·ei, where e1, . . . , en
are defined as in (3.44). Calling ci ∈ L0(m) the equivalence class of ci for every i = 1, . . . , n,

we deduce that χEn · s =
∑n

i=1 ci · ei, which grants that e1, . . . , en generate Γ0(T) on En.

Now suppose that
∑n

i=1 ci · ei = 0 for some c1, . . . , cn ∈ L0(m). Choose a Borel repre-

sentative ci : X → R of each ci, whence
(
c1(x), . . . , cn(x)

)
=
(∑n

i=1 ci · ei
)
(x) = 0 holds for

m-a.e. x ∈ En, in other words χEnc1, . . . , χEncn = 0. Therefore the sections e1, . . . , en are

independent on En. This yields (3.45) and accordingly the statement. �

In order to define the functor Γ0 from MBB(X) to NMod0
pr(X), it only remains to declare

how it behaves on morphisms, namely to associate to any MBB morphism ϕ ∈ Mor(T1,T2)

a suitable morphism Γ0(ϕ) : Γ0(T1)→ Γ0(T2) of proper L0(m)-normed L0(m)-modules.

Let Ti = (Ti, E
i, πi,ni) be representatives of MBB’s over X for i = 1, 2. Take a section s

of T1 and a pre-morphism ϕ : T1 → T2. Since ϕ ◦ s : X → T2 is measurable as composition

of measurable maps and π2 ◦ ϕ ◦ s = π1 ◦ s = idX, we conclude that ϕ ◦ s is a section of T2.

Now let us call T1, T2 and ϕ the equivalence classes of T1, T2 and ϕ, respectively. Then

we define Γ0(ϕ) : Γ0(T1)→ Γ0(T2) as follows: given any s ∈ Γ0(T1), we set

(3.46) Γ0(ϕ)(s)
.
= the equivalence class of ϕ ◦ s, where s is any representative of s.

In the next result, we shall prove that Γ0(ϕ) is actually a module morphism:

Lemma 3.49 Let T1, T2 be two measurable Banach bundles over X and let ϕ ∈ Mor(T1,T2).

Then Γ0(ϕ) ∈ Mor
(
Γ0(T1),Γ0(T2)

)
.

Proof. It suffices to show that for any s1, s2 ∈ Γ0(T1) and f1, f2 ∈ L0(m) one has

Γ0(ϕ)(f1 · s1 + f2 · s2) = f1 · Γ0(ϕ)(s1) + f2 · Γ0(ϕ)(s2),∣∣Γ0(ϕ)(s1)
∣∣ ≤ |s1| m-a.e. in X.

(3.47)

Choose representatives Ti = (Ti, E
i, πi,ni) of Ti, ϕ : T1 → T2 of ϕ and si : X→ T1 of si for

each i = 1, 2. Further, choose Borel functions f1, f2 : X → R that are representatives of f1

and f2, respectively. Hence for m-a.e. point x ∈ X it holds that(
ϕ ◦ ( f1 · s1 + f2 · s2)

)
(x) = ϕ

(
f1(x) s1(x) + f2(x) s2(x)

)
= f1(x) (ϕ ◦ s1)(x) + f2(x) (ϕ ◦ s2)(x),

whence Γ0(ϕ)(f1 · s1 + f2 · s2) = f1 · Γ0(ϕ)(s1) + f2 · Γ0(ϕ)(s2), i.e. the first in (3.47).

To prove the second one, observe that for m-a.e. x ∈ X one has that

|ϕ ◦ s1|(x) = n2

(
(ϕ ◦ s1)(x)

)
= (n2 ◦ ϕ)

(
s1(x)

)
≤ n1

(
s1(x)

)
= |s1|(x),

so that
∣∣Γ0(ϕ)(s1)

∣∣ ≤ |s1| holds m-a.e. in X. Therefore the thesis is achieved. �
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Definition 3.50 (Section functor) The covariant functor Γ0 : MBB(X)→ NMod0
pr(X),

which associates to any object T of MBB(X) the object Γ0(T) of NMod0
pr(X) and to any

morphism ϕ : T1 → T2 the morphism Γ0(ϕ) : Γ0(T1)→ Γ0(T2), is called section functor.

3.2.2 Serre-Swan theorem

We now prove that the section functor is actually an equivalence of categories. We shall refer

to such result as the Serre-Swan theorem for normed modules. First, we prove a technical

lemma that provides us with a suitable dense subset of the space of all measurable sections

of a measurable Banach bundle. Then such density result (Lemma 3.51) will be needed to

show that the section functor is ‘essentially surjective’ (Proposition 3.52) and fully faithful

(Proposition 3.53). Finally, the Serre-Swan theorem (Theorem 3.54) will immediately follow.

Given a measurable Banach bundle T over X and any n ∈ N, we set

(3.48) S(T, n)
.
=

{∑
i∈N

χAi · qi
∣∣∣∣ (Ai)i∈N is a Borel partition of En, (qi)i∈N ⊆ Qn

}
,

where the ‘constant sections’ qi ∈ Γ0(T) are defined as in Remark 3.47. Note that any element

of the form
∑

i∈N χAi · qi ∈ Γ0(T) is well-defined since the sets Ai’s are pairwise disjoint.

Then we define the family S(T) ⊆ Γ(T) of simple sections of T as follows:

(3.49) S(T)
.
=
{
t ∈ Γ0(T)

∣∣ χEn · t ∈ S(T, n) for every n ∈ N
}
.

We now show that such class of sections, which is a Q-vector space, is actually dense in Γ0(T):

Lemma 3.51 Let T be a measurable Banach bundle over X. Then S(T) is dense in Γ0(T).

Proof. Let s ∈ Γ0(T) and ε > 0 be fixed. Choose any Borel probability measure m′ on X

such that m � m′ � m and define the distance dΓ0(T) on Γ0(T) as in (3.42). We aim to

construct a simple section t ∈ S(T) that satisfies the inequality dΓ0(T)(s, t) ≤ ε. In order to

do so, choose representatives T = (T,E, π,n) and s : X → T of T and s, respectively. We

can clearly suppose without loss of generality that n(x, ·) is a norm for every x ∈ X. Given

any n ∈ N, let us define

En,k
.
=

{
x ∈ En

∣∣∣∣ k − 1 < sup
q∈Qn\{0}

n(x, q)

|q|
≤ k

}
for every k ∈ N.

Since En 3 x 7→ n(x, q)/|q| is Borel for every q ∈ Qn \ {0}, we know that each En,k is Borel.

Moreover, the fact that any two norms on Rn are equivalent grants that the supremum in

the definition of En,k is finite for every x ∈ En, whence for all n ∈ N we have that (En,k)k∈N
constitutes a Borel partition of En. For any n, k ∈ N, call sn,k : En,k → Rn that Borel map

for which s(x) =
(
x, sn,k(x)

)
for every x ∈ En,k. It is well-known that there exists a Borel

map tn,k : En,k → Rn whose image is a finite subset of Qn and satisfying

(3.50)

∫
En,k

∣∣k sn,k(x)− k tn,k(x)
∣∣ ∧ 1 dm′(x) ≤ ε

2n+k
.
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Given that n(x, c) ≤ k |c| holds for every x ∈ En,k and c ∈ Rn, we deduce from (3.50) that

(3.51)

∫
En,k

n
(
x, sn,k(x)− tn,k(x)

)
∧ 1 dm′(x) ≤ ε

2n+k
.

Now let us denote by t : X → T the measurable map such that t|En,k = (idEn,k , tn,k) holds

for every n, k ∈ N, which is meaningful since (En,k)n,k∈N is a partition of X. Call t ∈ Γ0(T)

the equivalence class of t. Notice that t ∈ S(T) by construction. Property (3.51) yields

dΓ(T)(s, t) =

∫
|s− t| ∧ 1 dm′ =

∑
n,k∈N

∫
En,k

n
(
x, sn,k(x)− tn,k(x)

)
∧ 1 dm′(x)

≤
∑
n,k∈N

ε

2n+k
= ε,

which gives the statement. �

We briefly recall the notion of Carathéodory map, which will be needed in the proofs of the

next two results. Given three metric spaces W, Y and Z, we say that a map F : W×Y → Z

is Carathéodory provided the following hold:

i) F (·, y) : W→ Z is Borel measurable for every y ∈ Y,

ii) F (w, ·) : Y → Z is continuous for every w ∈W.

It is well-known that the Carathéodory map F is (jointly) Borel measurable as soon as the

metric space Y is separable.

Proposition 3.52 Let M be a proper L0(m)-normed L0(m)-module. Then there exists a

measurable Banach bundle T over X such that Γ0(T) is isomorphic to M .

Proof. Let (En)n∈N be a dimensional decomposition of the module M . Set E
.
= (En)n∈N

and take T , π as in the definition of MBB. In order to define n, fix a sequence (vn)n∈N ⊆M

such that the elements v1, . . . , vn form a local basis for M on En for each n ∈ N. Fix n ∈ N.

We define the linear and continuous operator Pn : Rn →M in the following way:

Pn(c)
.
= χEn · (c1 v1 + . . .+ cn vn) ∈M for every c = (c1, . . . , cn) ∈ Rn.

For any q ∈ Qn, choose any Borel representative
∣∣Pn(q)

∣∣ : X → [0,+∞) of
∣∣Pn(q)

∣∣ ∈ L0(m).

Hence there is a Borel set Nn ⊆ En, with m(Nn) = 0, such that for any x ∈ En \Nn it holds∣∣Pn(q1) + Pn(q2)
∣∣(x) ≤

∣∣Pn(q1)
∣∣(x) +

∣∣Pn(q2)
∣∣(x) for every q1, q2 ∈ Qn,∣∣Pn(λ q)

∣∣(x) = |λ|
∣∣Pn(q)

∣∣(x) for every λ ∈ Q and q ∈ Qn,∣∣Pn(q)
∣∣(x) > 0 for every q ∈ Qn \ {0}.

(3.52)

Then let us define

(3.53) n(x, q)
.
=
∣∣Pn(q)

∣∣(x) for every x ∈ En \Nn and q ∈ Qn.

We deduce from (3.52) that n(x, ·) is a norm on Qn for every x ∈ En \Nn. In particular it

is uniformly continuous, whence it can be uniquely extended to a uniformly continuous map

on the whole Rn, still denoted by n(x, ·). By approximation, we see that such extension is
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actually a norm on Rn. Finally, we set n(x, c)
.
= 0 for every x ∈ Nn and c ∈ Rn. We thus

built a function n : T → [0,+∞). We claim that

(3.54) n|En×Rn is a Carathéodory function for every n ∈ N,

which grants that each n|En×Rn is Borel, so accordingly that n is measurable by Remark 3.43.

First of all, fix n ∈ N and notice that the function n(x, ·) : Rn → [0,+∞) is continuous for

every x ∈ En. Moreover, given any c ∈ Rn and a sequence (qk)k∈N ⊆ Qn converging to c,

we have that n(x, c) = limk n(x, qk) = limk

∣∣Pn(qk)
∣∣(x) for every x ∈ En \ Nn, whence the

function n(·, c) : En → [0,+∞) is Borel as pointwise limit of a sequence of Borel functions.

Therefore the claim (3.54) is proved. We thus deduce that T .
= (T,E, π,n) is an MBB over

the space X. Then let us denote by T the equivalence class of T.

In order to get the statement, we want to exhibit a module isomorphism I : Γ0(T)→M ,

namely an L0(m)-linear map preserving the pointwise norm. We proceed as follows: given

any s ∈ Γ0(T), choose a representative s : X → T . For any n ∈ N, pick cn : X → Rn Borel

such that s(x) =
(
x, cn(x)

)
for every x ∈ En and call cn1 , . . . , c

n
n ∈ L0(m) those elements for

which (cn1 , . . . , c
n
n) is the equivalence class of cn. Now let us define

(3.55) I(s)
.
=
∑
n∈N

χEn · (cn1 · v1 + . . .+ cnn · vn) ∈M .

One can easily see that the resulting map I : Γ0(T)→M is a (well-defined) L0(m)-linear and

continuous operator. We show that it is surjective: fix any v ∈ M , whence for each n ∈ N
there exist cn1 , . . . , c

n
n ∈ L0(m) such that χEn · v = χEn · (cn1 · v1 + . . .+ cnn · vn). Pick any Borel

representative cn : X → Rn of (cn1 , . . . , c
n
n) and define s : X → T as s(x)

.
=
(
x, cn(x)

)
for

every n ∈ N and x ∈ En. Hence the equivalence class s ∈ Γ0(T) of s satisfies I(s) = v, thus

proving that the map I is surjective. It only remains to prove that
∣∣I(s)

∣∣ = |s| holds m-a.e.

in X for every s ∈ Γ0(T). First of all, for any n ∈ N and q ∈ Qn one has that I(q) = Pn(q),

where the definition of q is taken from Remark 3.47. Therefore

(3.56)
∣∣I(q)

∣∣ =
∣∣Pn(q)

∣∣ (3.53)
= n ◦ q (3.41)

= |q| holds m-a.e. in X.

We then directly deduce from (3.56) and the L0(m)-linearity of I that the equality
∣∣I(t)

∣∣ = |t|
is verified m-a.e. for every simple section t ∈ S(T). Recall that S(T) is dense in Γ0(T), as

seen in Lemma 3.51. Since both I and the pointwise norm are continuous operators, we

finally conclude that
∣∣I(s)

∣∣ = |s| holds m-a.e. for every s ∈ Γ0(T). Therefore I preserves the

pointwise norm, thus completing the proof. �

Proposition 3.53 The section functor Γ : MBB(X)→ NModpr(X) satisfies the following:

i) Γ is full, i.e. given two objects T1,T2 in MBB(X) and a morphism Φ : Γ(T1)→ Γ(T2),

there exists a morphism ϕ : T1 → T2 such that Φ = Γ(ϕ).

ii) Γ is faithful, i.e. given two objects T1,T2 in MBB(X) and morphisms ϕ,ψ : T1 → T2

with Γ(ϕ) = Γ(ψ), it holds that ϕ = ψ.

Proof. We divide the proof into two steps:

Faithful. Fix two measurable Banach bundles T1 and T2. Let ϕ,ψ ∈ Mor(T1,T2) be two

different bundle morphisms. Choose a representative T i = (Ti, E
i, πi,ni) of Ti for i = 1, 2,
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then representatives ϕ,ψ : T1 → T2 of ϕ and ψ, respectively. Hence there exist n ∈ N and a

Borel set E ⊆ E1
n, with m(E) > 0, such that ϕ|(T1)x

6= ψ|(T1)x
for every x ∈ E. Let us denote

by e1, . . . , en the canonical basis of Rn. Therefore there exists k ∈ {1, . . . , n} such that

m
({
x ∈ E

∣∣ ϕ(x, ek) 6= ψ(x, ek)
})

> 0.

This means that ϕ ◦ ek is not m-a.e. coincident with ψ ◦ ek, where the section ek is defined

as in Remark 3.47, whence Γ0(ϕ)(ek) 6= Γ0(ψ)(ek). This implies that Γ0(ϕ) 6= Γ0(ψ), thus

proving that the functor Γ0 is faithful.

Full. Fix measurable Banach bundles T1, T2 and a module morphism Φ : Γ0(T1)→ Γ0(T2).

We aim to show that there exists a bundle morphism ϕ ∈ Mor(T1,T2) such that Φ = Γ0(ϕ).

Since the ideas of the proof are similar in spirit to those that have been used for proving

Proposition 3.52, we shall omit some of the details. For i = 1, 2, let us choose any represen-

tative Ti = (Ti, E
i, πi,ni) of Ti. We define the Borel sets Fn,m ⊆ X as

Fn,m
.
= E1

n ∩ E2
m for every n,m ∈ N.

For any n ∈ N and q ∈ Qn, consider the section q ∈ Γ0(T1) as in Remark 3.47 and choose

a representative Φ(q) : X → T2 of Φ(q) ∈ Γ0(T2). Given any n,m ∈ N, there exists a Borel

subset Nn,m of Fn,m, with m(Nn,m) = 0, such that for every x ∈ Fn,m \Nn,m it holds

Φ(q1 + q2)(x) = Φ(q1)(x) + Φ(q2)(x) for every q1, q2 ∈ Qn,

Φ(λ q)(x) = λΦ(q)(x) for every λ ∈ Q and q ∈ Qn,

n2

(
Φ(q)(x)

)
≤ n1

(
q(x)

)
for every q ∈ Qn.

(3.57)

Then let us define

(3.58) ϕ(x, q)
.
=

{
Φ(q)(x)

0Rm

for every x ∈ Fn,m \Nn,m and q ∈ Qn,

for every x ∈ Nn,m and q ∈ Qn.

Property (3.57) grants that ϕ(x, ·) :
(
Qn,n1(x, ·)

)
→
(
Rm,n2(x, ·)

)
is a Q-linear 1-Lipschitz

operator for all x ∈ Fn,m, whence it can be uniquely extended to an R-linear 1-Lipschitz

operator ϕ(x, ·) :
(
Rn,n1(x, ·)

)
→
(
Rm,n2(x, ·)

)
. This defines a map ϕ : T1 → T2. To show

that such map is an MBB pre-morphism, it only remains to check its measurability, which

amounts to proving that ϕ|Fn,m×Rn : Fn,m × Rn → Fn,m × Rm is Borel for every n,m ∈ N.

We actually show that each ϕ|Fn,m×Rn is a Carathéodory map: for any x ∈ Fn,m we have

that ϕ(x, ·) is continuous by its very construction, while for any vector c ∈ Rn we have that

the map Fn,m 3 x 7→ ϕ(x, c) ∈ Rm is Borel as pointwise limit of the Borel maps χFn,m Φ(qk),

where (qk)k∈N ⊆ Qn is any sequence converging to c. Hence let us define ϕ ∈ Mor(T1,T2) as

the equivalence class of the MBB pre-morphism ϕ.

We conclude by proving that Γ0(ϕ) = Φ. For any n ∈ N and q ∈ Qn, we have that a

representative of Γ0(ϕ)(q) is given by the map ϕ ◦q, which m-a.e. coincides in E1
n with Φ(q),

whence Γ0(ϕ)(q) = Φ(q). Since both Γ0(ϕ) and Φ are L0(m)-linear, we thus immediately

deduce that Γ0(ϕ)(t) = Φ(t) for every t ∈ S(T1). Finally, the density of S(T1) in Γ0(T1) –

proven in Lemma 3.51 – together with the continuity of Γ0(ϕ) and Φ, grant that Γ0(ϕ) = Φ,

as required. Therefore the section functor Γ0 is full. �

We now collect the last two results, thus obtaining the main theorem of this section:
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Theorem 3.54 (Serre-Swan) Let X = (X, d,m) be a metric measure space. Then the

section functor Γ0 : MBB(X)→ NMod0
pr(X) on X is an equivalence of categories.

Proof. By [Awo06, Proposition 7.25] it suffices to prove that the functor Γ0 is fully faithful

and ‘essentially surjective’, the latter meaning that for each object M of NMod0
pr(X) there

exists an object T of MBB(X) such that Γ0(T) and M are isomorphic. Therefore we have

that Proposition 3.52 and Proposition 3.53 yield the statement. �

Remark 3.55 (Comparison with the classical Serre-Swan theorem) We now point

out which are the main analogies and differences between our result and the Serre-Swan

theorem for smooth manifolds, for whose presentation we refer to [Nes03, Chapter 11]. The

result in the smooth case can be informally stated in the following way: the category of

smooth vector bundles over a connected manifold M is equivalent to the category of finitely-

generated projective C∞(M)-modules. In our non-smooth setting we had to replace ‘smooth’

with ‘measurable’ – in a sense – and this led to these discrepancies with the case of manifolds:

i) The fibers of a measurable Banach bundle need not have the same dimension (still,

they are finite dimensional), while on a connected manifold any smooth vector bundle

must have constant dimension for topological reasons.

ii) In the definition of measurable Banach bundle we do not speak about the analogue of

the ‘trivialising diffeomorphisms’, the reason being that one can always patch together

countably many measurable maps still obtaining a measurable map. Hence there is no

loss of generality in requiring the total space to be of the form
⊔
n∈NEn × Rn and its

measurable subsets to be those sets whose intersection with each En × Rn is Borel.

iii) Given that we want to correlate the measurable Banach bundles with the L0(m)-normed

L0(m)-modules, which are naturally equipped with a pointwise norm | ·|, we also require

the existence of a function n that assigns a norm to (almost) every fiber of our bundle.

A similar structure is not treated in the smooth case.

iv) The Serre-Swan theorem for smooth manifolds deals with modules that are finitely-

generated and projective. In our context, any finitely-generated module is automatically

projective, as proven in [LP18, Proposition 1.5]. Moreover, the flexibility of L0(m)

actually allowed us to extend the result to all proper modules, that are not necessarily

‘globally’ finitely-generated but only ‘locally’ finitely-generated, in a sense.

We refer to [LP18] for a more detailed discussion about this topic. �

3.2.3 Measurable Hilbert bundles, pullbacks and duals

Let X = (X, d,m) be a metric measure space. We denote by HNMod0
pr(X) the subcategory

of NMod0
pr(X) made of those modules that are Hilbert modules. Our goal is to characterise

those measurable Banach bundles that correspond to the Hilbert modules via the section

functor Γ0. As one might expect, such bundles are precisely the following ones:

Definition 3.56 (Measurable Hilbert bundle) Let T be a measurable Banach bundle

over the space X. Then we say that T is a measurable Hilbert bundle, or briefly MHB,

provided for one (thus any) representative T = (T,E, π,n) of T it holds that n(x, ·) is a norm

induced by a scalar product for m-a.e. point x ∈ X.
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Given any such point x ∈ X, we denote the associated scalar product on (T)x by

(3.59)
〈
(x, v), (x,w)

〉
x

.
=

n(x, v + w)2 − n(x, v)2 − n(x,w)2

2

for every (x, v), (x,w) ∈ (T)x.

We shall denote by MHB(X) the subcategory of MBB(X) made of those bundles that

are measurable Hilbert bundles. Therefore we can easily prove that:

Proposition 3.57 Let T be a measurable Banach bundle over X. Then T is a measurable

Hilbert bundle if and only if Γ0(T) is a Hilbert module.

Proof. Choose any representative T = (T,E, π,n) of the measurable Banach bundle T.

Necessity. Suppose that T is a measurable Hilbert bundle. This means that n(x, ·) satisfies

the parallelogram rule for m-a.e. x ∈ X. Now let s1, s2 ∈ Γ0(T) be fixed and choose some

representatives s1, s2 : X→ T . Hence for m-a.e. x ∈ X it holds that

|s1 + s2|2(x) + |s1 − s2|2(x) =
(
n ◦ (s1 + s2)

)2
(x) +

(
n ◦ (s1 − s2)

)2
(x)

= 2 (n ◦ s1)2(x) + 2 (n ◦ s2)2(x)

= 2 |s1|2(x) + 2 |s2|2(x),

which grants that |s1 + s2|2 + |s1 − s2|2 = 2 |s1|2 + 2 |s2|2 holds m-a.e. in X. Therefore Γ0(T)

is a Hilbert module by arbitrariness of s1, s2 ∈ Γ0(T).

Sufficiency. Suppose that Γ0(T) is Hilbert module. Let n ∈ N be fixed. For any q ∈ Qn,

consider q : X → T and q ∈ Γ0(T) as in Remark 3.47. Then there exists an m-negligible

Borel subset Nn of En such that n(x, ·) is a norm and the equality

|q1 + q2|2(x) + |q1 − q2|2(x) = 2 |q1|2(x) + 2 |q2|2(x) for every q1, q2 ∈ Qn

is satisfied for every point x ∈ En \Nn. This implies that

n(x, q1+q2)2+n(x, q1−q2)2 = 2n(x, q1)2+2n(x, q2)2 for all x ∈ En\Nn and q1, q2 ∈ Qn.

Therefore n(x, ·) satisfies the parallelogram rule for every x ∈ En \Nn by continuity, so that

accordingly T is a measurable Hilbert bundle. �

As a consequence of Proposition 3.57, we can conclude that:

Theorem 3.58 (Serre-Swan for Hilbert modules) The section functor Γ0 restricts to

an equivalence of categories between MHB(X) and HNMod0
pr(X).

Remark 3.59 It has been proved in [Gig17b, Theorem 1.4.11] that any separable Hilbert

module (thus in particular any proper Hilbert module by Lemma 3.20) is the space of sections

of a suitable measurable Hilbert bundle. Moreover – as pointed out in [Gig17b, Remark

1.4.12] – this theory of Hilbert modules coincides with that of direct integral of Hilbert

spaces (cf. [Tak79]). More precisely, under this identification a Hilbert module corresponds

to a measurable field of Hilbert spaces. �

Let H1, H2 be two given Hilbert modules over X. Then we can consider their tensor

product H1 ⊗H2, which is a Hilbert module over X as well (cf. Subsection 3.1.5).
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Remark 3.60 Suppose H1 and H2 are proper, with dimensional decomposition (E1
n)n∈N

and (E2
m)m∈N, respectively. Then it can be readily checked that the module H1 ⊗H2 has

dimension equal to nm on E1
n ∩E2

m for any n,m ∈ N. In particular, the dimensional decom-

position (Ek)k∈N of H1 ⊗H2 is given by

(3.60) Ek
.
=

⋃
n,m∈N:
nm=k

E1
n ∩ E2

m for every k ∈ N,

so that H1 ⊗H2 is a proper module as well. �

On the other hand, we now define the tensor product of two MHB’s in the following way:

Definition 3.61 (Tensor product of MHB’s) Let T1, T2 be measurable Hilbert bundles

over X. Choose two representatives T1 and T2, say Ti = (Ti, E
i, πi,ni) for i = 1, 2. Let us

define E
.
= (Ek)k∈N as in (3.60) and T , π accordingly. Given n,m ∈ N and x ∈ E1

n ∩ E2
m

such that n1(x, ·), n2(x, ·) are norms induced by a scalar product, we define

(3.61) n(x, c)
.
=

( n∑
j,j′=1

m∑
`,`′=1

c(j−1)m+` c(j′−1)m+`′
〈
(x, ej), (x, ej′)

〉
1,x

〈
(x, f`), (x, f`′)

〉
2,x

)1/2

for every c = (c1, . . . , cnm) ∈ Rnm, where e1, . . . , en and f1, . . . , fm denote the canonical bases

of Rn and Rm, respectively, while 〈·, ·〉i,x stands for the scalar product on (Ti)x as in (3.59).

Then we define the tensor product T1 ⊗ T2 as the equivalence class of (T,E, π,n), which

turns out to be a measurable Hilbert bundle over X.

Given any real number λ ∈ R, we shall write dλe ∈ Z to indicate the smallest integer

number that is greater than or equal to λ.

Theorem 3.62 Let T1, T2 be measurable Hilbert bundles over X. Then

(3.62) Γ0(T1)⊗ Γ0(T2) = Γ0(T1 ⊗ T2).

Proof. We build an operator ι : Γ0(T1) ⊗ Γ0(T2) → Γ0(T1 ⊗ T2) in the following way: first

of all, let us fix s1 ∈ Γ0(T1) and s2 ∈ Γ0(T2). Choose any representatives Ti = (Ti, E
i, πi,ni)

and si : X → Ti for i = 1, 2. Given any natural numbers n,m ∈ N, any point x ∈ E1
n ∩ E2

m

and called s1(x) = (x, v), s2(x) = (x,w), we define

s(x)
.
= (x, c), where ck

.
= vdk/mewk−mdk/me+m for all k = 1, . . . , nm.

Hence the equivalence class ι(s1⊗ s2) of s is a section of T1⊗T2. Simple computations yield∣∣ι(s1 ⊗ s2)
∣∣ =

√
|s1| |s2| = |s1 ⊗ s2| m-a.e. on X.

Therefore ι can be uniquely extended to the whole Γ0(T1)⊗Γ0(T2) by linearity and continuity,

thus obtaining an L0(m)-linear operator ι : Γ0(T1) ⊗ Γ0(T2) → Γ0(T1 ⊗ T2) that preserves

the pointwise norm. In order to conclude, it only remains to check that such ι is surjective.

Fix n,m ∈ N and call (ei)
n
i=1, (fj)

m
j=1 and (gk)

nm
k=1 the canonical bases of Rn, Rm and Rnm,

respectively. Denote by ei ∈ Γ0(T1), fj ∈ Γ0(T2) and gk ∈ Γ0(T1 ⊗ T2) the associated

constant sections. It is then easy to realise that

χE1
n∩E2

m
· gk = ι

(
(χE1

n∩E2
m
· edk/me)⊗ (χE1

n∩E2
m
· fk−mdk/me+m)

)
for all k = 1, . . . , nm.

Hence the set (χE1
n∩E2

m
· gk)nmk=1, which forms a local basis for Γ0(T1 ⊗ T2) on E1

n ∩ E2
m, is

contained in the range of the map ι. This grants that ι is surjective, as required. �
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Now let X = (X, dX,mX) and Y = (Y, dY,mY) be two metric measure spaces. Fix a Borel

map f : X → Y such that f∗mX � mY. As described in Remark 3.30, we can consider the

pullback f∗M of any L0(mY)-normed L0(mY)-module M . On the other hand, we can define

what is the pullback of a measurable Banach bundle over Y:

Definition 3.63 (Pullback of an MBB) Let T be a measurable Banach bundle over Y.

Choose a representative T = (T,E, π,n) of T. Let us set

E′
.
=
(
f−1(En)

)
n∈N

n′(x, v)
.
= n

(
f(x), v

) and T ′, π′ accordingly,

for every (x, v) ∈ T ′.
(3.63)

Then we define the pullback bundle f∗T as the equivalence class of (T ′, E′, π′,n′), which

turns out to be a measurable Banach bundle over X.

Theorem 3.64 Let T be a measurable Banach bundle over Y. Then

(3.64) f∗Γ0(T) = Γ0(f∗T).

Proof. We aim to build a linear map f∗ : Γ0(T)→ Γ0(f∗T) such that

|f∗s| = |s| ◦ f for every s ∈ Γ0(T),{
f∗s : s ∈ Γ0(T)

}
generates Γ0(f∗T).

(3.65)

Pick a representative T = (T,E, π,n) of T and define (T ′, E′, π′,n′) as in (3.63). Take any

section s ∈ Γ0(T), with representative s : Y → T . Given any x ∈ X, we define s′(x)
.
= (x, v),

where v is the unique vector for which s
(
f(x)

)
=
(
f(x), v

)
. It clearly holds that s′ : X→ T ′

is a section of the MBB (T ′, E′, π′,n′). Then we define f∗s as the equivalence class of s′. We

thus built a map f∗ : Γ0(T)→ Γ0(f∗T), which is linear and satisfies the first claim in (3.65).

Now fix n ∈ N and q ∈ Qn. Denote by q ∈ Γ0(T) and q′ ∈ Γ0(f∗T) the constant sections

associated to q. It is then easy to check that q′ = f∗q. This grants that

S(f∗T) ⊆

{∑
i∈N

χAi · f∗si
∣∣∣∣ (Ai)i is a Borel partition of X, (si)i ⊆ Γ0(T)

}
.

Since S(f∗T) is dense in Γ0(f∗T) by Lemma 3.51, we finally conclude that the second condition

in (3.65) is verified as well. Therefore the statement is achieved. �

We finally introduce the notion of dual bundle:

Definition 3.65 (Dual bundle) Let T be a measurable Banach bundle over some metric

measure space X = (X, d,m). Choose a representative T = (T,E, π,n) of T. Let us set

(3.66) n∗(x, v)
.
=

{
supw∈(T)x\{0}

|v·w|
n(x,w)

0

if n(x, ·) is a norm,

otherwise.

Then we define the dual bundle T∗ as the equivalence class of (T,E, π,n∗), which turns out

to be a measurable Banach bundle over X.

Theorem 3.66 Let T be a measurable Banach bundle over X. Then

(3.67) Γ0(T)∗ = Γ0(T∗).
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Proof. Consider the operator ι : Γ0(T∗)→ Γ0(T)∗ defined as follows: given any s∗ ∈ Γ0(T∗),
we call ι(s∗) : Γ0(T)→ L0(m) the map sending (the equivalence class of) any section s to the

function X 3 x 7→ s∗(x) ·s(x) ∈ R, where s∗ is any representative of s∗. One can easily deduce

from its very construction that ι is a module morphism that preserves the pointwise norm.

To conclude, it only remains to show that the map ι is surjective. Let T ∈ Γ0(T)∗ be fixed.

For any n ∈ N, denote by en1 , . . . , e
n
n the canonical basis of Rn and by en1 , . . . , e

n
n ∈ Γ0(T) the

associated constant sections. Hence let us define s∗ ∈ Γ0(T∗) as

s∗(x)
.
=
∑
n∈N

(
x,
(
Ten1 (x), . . . , Tenn(x)

))
for m-a.e. x ∈ X.

Simple computations show that ι(s∗) = T . Hence ι is surjective, concluding the proof. �

3.2.4 A variant for Lp-normed L∞-modules

Our choice of using the language of L0-normed L0-modules – instead of that of Lp-normed

L∞-modules – is only a matter of practicality, not due to any theoretical reason. Indeed, we

now show that the results obtained so far can be reformulated for Lp-normed L∞-modules.

Consider any two Lp(m)-normed L∞(m)-modules M p, N p and pick any module mor-

phism Φ : M p → N p. Then there exists a unique module morphism Φ̃ : M 0 → N 0

extending Φ, where M 0 and N 0 denote the L0-completions of M p and N p, respectively.

Definition 3.67 (L0-completion functor) We define the L0-completion functor as the

functor Cp : NModp(X) → NMod0(X) that assigns to any M p its L0-completion M 0

and to any module morphism Φ : M p → N p its unique extension Φ̃ : M 0 → N 0.

Conversely, given any L0(m)-normed L0(m)-module M 0, one has that

(3.68) M p .
=
{
v ∈M 0

∣∣ |v| ∈ Lp(m)
}

is an Lp(m)-normed L∞(m)-module.

Moreover, it holds that the L0-completion of M p is the original module M 0.

Definition 3.68 (Lp-restriction functor) The Lp-restriction functor is defined as that

functor Rp : NMod0(X) → NModp(X) that assigns to any M 0 its ‘restriction’ M p, as in

(3.68), and to any module morphism Φ̃ : M 0 → N 0 its restriction Φ
.
= Φ̃|M p : M p → N p,

which turns out to be a morphism of Lp(m)-normed L∞(m)-modules.

We can finally collect all of the properties described so far in the following statement:

Theorem 3.69 (NModp(X) is equivalent to NMod0(X)) Both the functors Cp and Rp

are equivalence of categories, one the inverse of the other.

It is trivial to check that M p and Cp(M p) have the same dimensional decomposition,

thus in particular the above functors naturally restrict to Cppr : NModppr(X)→ NMod0
pr(X)

and Rppr : NMod0
pr(X)→ NModppr(X). Therefore:

Corollary 3.70 (NModppr(X) is equivalent to NMod0
pr(X)) It holds that the two func-

tors Cppr and Rppr are equivalence of categories, one the inverse of the other.
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Now fix a measurable Banach bundle T over X. Then let us define

(3.69) Γp(T)
.
=
{
s ∈ Γ0(T)

∣∣ |s| ∈ Lp(m)
}
.

The space Γp(T) can be viewed as an Lp(m)-normed L∞(m)-module. Moreover, given any

two measurable Banach bundles T1, T2 over X and a bundle morphism ϕ ∈ Mor(T1,T2), let

us define Γp(ϕ) ∈ Mor
(
Γp(T1),Γp(T2)

)
as

(3.70) Γp(ϕ)
.
= Γ0(ϕ)|Γp(T1)

: Γp(T1)→ Γp(T2).

Hence such construction induces an Lp-section functor Γp : MBB(X)→ NModppr(X). Then

(3.71)

MBB(X) NMod0
pr(X)

NModppr(X)

Γ0

Γp
Rppr

is a commutative diagram.

We can thus finally conclude that

Theorem 3.71 (Serre-Swan for Lp-normed L∞-modules) It holds that the Lp-section

functor Γp : MBB(X)→ NModppr(X) on X is an equivalence of categories.

Proof. It follows from Theorem 3.54, from Corollary 3.70 and from property (3.71). �
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The aim of this chapter is to illustrate the differential structure for RCD spaces that

has been introduced by N. Gigli in [Gig17b]. Roughly speaking, such theory consists of a

combination of the Sobolev calculus (discussed in Chapter 2) with the language of normed

modules (discussed in Chapter 3). More precisely, we shall proceed in the following way:

• First-order calculus. As described in Section 4.1, a first-order differential calcu-

lus can be developed over any metric measure space (X, d,m). The key tool is given

by the cotangent module L0(T ∗X), which constitutes a convenient abstraction of the

notion of ‘measurable 1-form’ over the space X. Shortly said, L0(T ∗X) is the smallest

L0(m)-normed L0(m)-module containing any L0(m)-linear combination of ‘differentials

of Sobolev functions’ (this is the link with the Sobolev calculus). Therefore the tan-

gent module L0(TX) can be defined as the module dual of the cotangent one and its

elements are called vector fields over X. In a similar fashion, one can introduce other

differential operators, such as (measure-valued) divergence and Laplacian. We point

out that this formal calculus is fully consistent with the classical one on the Euclidean

space Rd, even if the Lebesgue measure is replaced by any other Radon measure µ: as

61
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we shall see in Subsection 4.1.3, the ‘abstract’ tangent module L2
µ(TRd) associated to

the weighted Euclidean space
(
Rd, | · |, µ

)
can be isometrically embedded into the space

of all L2(µ)-integrable ‘concrete’ vector fields on Rd (cf. Theorem 4.27). Finally, we

will discuss how to build a notion of differential for sufficiently regular maps between

nonsmooth structures; namely, any map ϕ : X → Y of bounded deformation between

two metric measure spaces (X, dX,mX), (Y, dY,mY) – i.e. the map ϕ is Lipschitz and

satisfies ϕ∗mX ≤ C mY for some constant C > 0 – induces in a natural way a differential

operator dϕ : L2(TX)→ ϕ∗L2(TY). This topic will be treated in Subsection 4.1.4. In

Subsection 4.1.5 we will see a technical variant of the differential for maps of bounded

deformation, tailored for the situation in which the target space is the Euclidean one.

• Second-order calculus. Section 4.2 will be entirely devoted to a fundamental class

of metric measure spaces: the RCD spaces. The acronym RCD stands for Riemannian

Curvature-Dimension condition, indeed these spaces are Riemannian-like structures

with prescribed lower bounds on the Ricci curvature and upper bounds on the dimension

(in a synthetic way). The definition of this condition and its main properties are recalled

in Subsection 4.2.1. An advantage of working within this framework is given by the

possibility to develop even a second-order calculus on top of the first-order one. The

necessity of calling into play the curvature bounds is due to the fact that the latter grant

the presence of a sufficiently vast class of test functions, which are ‘twice differentiable’.

More specifically, by testing against such special functions it is possible to introduce

Hessian and covariant derivative via suitable integration-by-parts formulae, thus leading

to the definition of the Sobolev spaces W 2,2(X) and W 1,2
C (TX), respectively. The related

discussion can be found in Subsection 4.2.2.

4.1 First-order differential structure of metric measure spaces

4.1.1 Cotangent and tangent modules

We begin with the definition of cotangent module, which is the object that will play a central

role throughout the whole thesis. The ensuing three results are taken from [GP18].

Theorem 4.1 (Cotangent module associated to a D-structure) Let p ∈ (1,∞) and

let (X, d,m) be a metric measure space. Consider a pointwise local D-structure on (X, d,m).

Then there exists a unique couple
(
Lp(T ∗X;D),d

)
, where Lp(T ∗X;D) is an Lp(m)-normed

L∞(m)-module and d : Sp(X;D)→ Lp(T ∗X;D) is a linear map, such that the following hold:

i) The equality |du| = Du is satisfied m-a.e. in X for every u ∈ Sp(X;D).

ii) The vector space V of all elements of the form
∑n

i=1
χBi dui, where (Bi)i is a Borel

partition of X and (ui)i ⊆ Sp(X;D), is dense in the space Lp(T ∗X;D).

Uniqueness has to be intended up to unique isomorphism: given another such couple (M , d′),

there is a unique isomorphism Φ : Lp(T ∗X;D)→M such that the diagram

(4.1)

Sp(X;D) Lp(T ∗X;D)

M

d

d′
Φ
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commutes. The space Lp(T ∗X;D) is called cotangent module, while d is called differential.

Proof. We first prove the uniqueness part of the statement and then the existence one.

Uniqueness. Consider any element ω ∈ V written as ω =
∑n

i=1
χBi dui, with (Bi)i Borel

partition of X and u1, . . . , un ∈ Sp(X;D). Notice that the requirements that Φ ◦ d = d′ and

that Φ is L∞(m)-linear force the definition Φ(ω)
.
=
∑n

i=1
χBi d′ui. The m-a.e. equality

∣∣Φ(ω)
∣∣ =

∑
i=1

χBi |d′ui| =
n∑
i=1

χBi Dui =

n∑
i=1

χBi |dui| = |ω|

grants that Φ(ω) is well-defined, in the sense that it does not depend on the particular way

of representing ω, and that Φ : V → M preserves the pointwise norm. In particular, one

has that the map Φ : V → M is (linear and) continuous. Since V is dense in Lp(T ∗X;D),

we can uniquely extend Φ to a linear and continuous map Φ : Lp(T ∗X;D)→M , which also

preserves the pointwise norm. Moreover, we deduce from the very definition of Φ that the

identity Φ(hω) = hΦ(ω) holds for every ω ∈ V and h ∈ Sf(X), whence the L∞(m)-linearity

of Φ follows by an approximation argument. Finally, the image Φ(V) is dense in M , which

implies that Φ is surjective. Therefore Φ is the unique isomorphism satisfying Φ ◦ d = d′.

Existence. First of all, let us define the pre-cotangent module as

Pcm
.
=

{{
(Bi, ui)

}n
i=1

∣∣∣∣ n ∈ N, u1, . . . , un ∈ Sp(X;D),

(Bi)
n
i=1 Borel partition of X

}
.

We define an equivalence relation on Pcm as follows: we declare that
{

(Bi, ui)
}
i
∼
{

(Cj , vj)
}
j

provided D(ui − vj) = 0 holds m-a.e. on Bi ∩ Cj for every i, j. The equivalence class of an

element
{

(Bi, ui)
}
i

of Pcm will be denoted by [Bi, ui]i. We can endow the quotient Pcm/ ∼
with a vector space structure:

[Bi, ui]i + [Cj , vj ]j
.
= [Bi ∩ Cj , ui + vj ]i,j ,

λ [Bi, ui]i :
.
= [Bi, λ ui]i,

(4.2)

for every [Bi, ui]i, [Cj , vj ]j ∈ Pcm/ ∼ and λ ∈ R. We only check that the sum operator is

well-defined; the proof of the well-posedness of the multiplication by scalars follows along the

same lines. Suppose that
{

(Bi, ui)
}
i
∼
{

(B′k, u
′
k)
}
k

and
{

(Cj , vj)
}
j
∼
{

(C ′`, v
′
`)
}
`
, in other

words D(ui−u′k) = 0 m-a.e. on Bi∩B′k and D(vj−v′`) = 0 m-a.e. on Cj ∩C ′` for every choice

of i, j, k, `, whence accordingly

D
(
(ui + vj)− (u′k + v′`)

) L5
≤ D(ui − u′k) +D(vj − v′`) = 0 m-a.e. on (Bi ∩Cj) ∩ (B′k ∩C ′`).

This shows that
{

(Bi ∩ Cj , ui + vj)
}
i,j
∼
{

(B′k ∩ C ′`, u′k + v′`)
}
k,`

, thus proving that the sum

operator defined in (4.2) is well-posed. Now let us define

(4.3)
∥∥[Bi, ui]i

∥∥
Lp(T ∗X;D)

.
=

n∑
i=1

(∫
Bi

(Dui)
p dm

)1/p

for every [Bi, ui]i ∈ Pcm/ ∼ .

Such definition is well-posed: if
{

(Bi, ui)
}
i
∼
{

(Cj , vj)
}
j

then for all i, j it holds that

|Dui −Dvj |
L5
≤ D(ui − vj) = 0 m-a.e. on Bi ∩ Cj ,
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i.e. that the equality Dui = Dvj is satisfied m-a.e. on Bi ∩ Cj . Therefore one has that

∑
i

(∫
Bi

(Dui)
p dm

)1/p

=
∑
i,j

(∫
Bi∩Cj

(Dui)
p dm

)1/p

=
∑
i,j

(∫
Bi∩Cj

(Dvj)
p dm

)1/p

=
∑
j

(∫
Cj

(Dvj)
p dm

)1/p

,

which grants that ‖ · ‖Lp(T ∗X;D) in (4.3) is well-defined. The fact that it is a norm on Pcm/ ∼
easily follows from standard verifications. Hence let us define

Lp(T ∗X;D)
.
= completion of

(
Pcm/ ∼, ‖ · ‖Lp(T ∗X;D)

)
,

d : Sp(X;D)→ Lp(T ∗X;D), du := [X, u] for every u ∈ Sp(X;D).

Observe that Lp(T ∗X;D) is a Banach space and that d is a linear operator. Furthermore,

given any [Bi, ui]i ∈ Pcm/ ∼ and h =
∑

j λj χCj ∈ Sf(X), where (λj)j ⊆ R and (Cj)j is a

Borel partition of X, we set ∣∣[Bi, ui]i∣∣ .= ∑
i

χBi Dui,

h [Bi, ui]i
.
= [Bi ∩ Cj , λj ui]i,j .

One can readily prove that such operations, which are well-posed again by the pointwise

locality of D, can be uniquely extended to a pointwise norm | · | : Lp(T ∗X;D) → Lp(m)+

and to a multiplication by L∞-functions L∞(m) × Lp(T ∗X;D) → Lp(T ∗X;D), respectively.

Therefore the space Lp(T ∗X;D) turns out to be an Lp(m)-normed L∞(m)-module when

equipped with the operations described so far. In order to conclude, it suffices to notice that

|du| =
∣∣[X, u]

∣∣ = Du holds m-a.e. for every u ∈ Sp(X;D)

and that [Bi, ui]i =
∑

i
χBi dui for all [Bi, ui]i ∈ Pcm/ ∼, giving i) and ii), respectively. �

An important property of the cotangent module is the closure of the differential operator:

Theorem 4.2 (Closure of the differential) Let (X, d,m) be a metric measure space and

let p ∈ (1,∞). Consider a pointwise local D-structure on (X, d,m). Then the differential

operator d is closed, i.e. if a sequence (un)n ⊆ Sp(X;D) converges in Lploc(m) to u ∈ Lploc(m)

and dun ⇀ ω weakly in Lp(T ∗X;D) for a suitable limit ω ∈ Lp(T ∗X;D), then u ∈ Sp(X;D)

and du = ω.

Proof. Since d is linear, we can assume with no loss of generality that dun → ω in Lp(T ∗X;D)

by Mazur lemma, so that d(un−um)→ ω−dum in Lp(T ∗X;D) for any m ∈ N. In particular,

one has un−um → u−um in Lploc(m) and D(un−um) =
∣∣d(un−um)

∣∣→ |ω−dum| in Lp(m)

as n→∞ for all m ∈ N, whence u−um ∈ Sp(X;D) and D(u−um) ≤ |ω−dum| holds m-a.e.

for all m ∈ N by A5 and L5. Therefore u = (u− u0) + u0 ∈ Sp(X;D) and

lim
m→∞

‖du− dum‖Lp(T ∗X;D) = lim
m→∞

∥∥D(u− um)
∥∥
Lp(m)

≤ lim
m→∞

‖ω − dum‖Lp(T ∗X;D)

= lim
m→∞

lim
n→∞

‖dun − dum‖Lp(T ∗X;D) = 0,

which grants that dum → du in Lp(T ∗X;D) as m→∞ and accordingly that du = ω. �
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Furthermore, the differential operator satisfies the following calculus rules:

Proposition 4.3 (Calculus rules for du) Let (X, d,m) be any metric measure space and

let p ∈ (1,∞). Consider a pointwise local D-structure on (X, d,m). Then the following hold:

i) Let u ∈ Sp(X;D) and let N ⊆ R be a Borel set with L1(N) = 0. Then χu−1(N) du = 0.

ii) Chain rule. Let u ∈ Sp(X;D) and ϕ ∈ LIP(R) be given. Recall that ϕ ◦ u ∈ Sp(X) by

Proposition 2.13. Then

(4.4) d(ϕ ◦ u) = ϕ′ ◦ udu.

iii) Leibniz rule. Let u, v ∈ Sp(X;D)∩L∞(m) be given. Recall that uv ∈ Sp(X;D)∩L∞(m)

by Proposition 2.13. Then

(4.5) d(uv) = udv + v du.

Proof.

i) We have that |du| = Du = 0 holds m-a.e. on u−1(N) by item i) of Proposition 2.13, thus

accordingly χu−1(N) du = 0, as required.

ii) If ϕ is an affine function, say ϕ(t) = α t+β, then d(ϕ◦u) = d(αu+β) = α du = ϕ′ ◦udu.

Now suppose that ϕ is a piecewise affine function. Say that (In)n is a sequence of intervals

whose union covers the whole real line R and that (ψn)n is a sequence of affine functions such

that ϕ|In = ψn holds for every n ∈ N. Since ϕ′ and ψ′n coincide L1-a.e. in the interior of In,

we have that d(ϕ ◦ f) = d(ψn ◦ f) = ψ′n ◦ f df = ϕ′ ◦ f df holds m-a.e. on f−1(In) for all n,

so that d(ϕ ◦ u) = ϕ′ ◦ udu is verified m-a.e. on
⋃
n u
−1(In) = X.

To prove the case of a general Lipschitz function ϕ : R→ R, we want to approximate ϕ

with a sequence of piecewise affine functions: for any n ∈ N, let us denote by ϕn the function

that coincides with ϕ at
{
k/2n : k ∈ Z

}
and that is affine on the interval

[
k/2n, (k+ 1)/2n

]
for every k ∈ Z. It is clear that Lip(ϕn) ≤ Lip(ϕ) for all n ∈ N. Moreover, one can

readily check that, up to a not relabeled subsequence, ϕn → ϕ uniformly on R and ϕ′n → ϕ′

pointwise L1-almost everywhere. The former grants that ϕn ◦ u → ϕ ◦ u in Lploc(m). Given

that |ϕ′n−ϕ′|p◦u (Du)p ≤ 2p Lip(ϕ)p (Du)p ∈ L1(m) for all n ∈ N and |ϕ′n−ϕ′|p◦u (Du)p → 0

pointwise m-a.e. by the latter above together with i), we obtain
∫
|ϕ′n−ϕ′|p ◦u (Du)p dm→ 0

as n→∞ by the dominated convergence theorem. In other words, ϕ′n ◦ udu→ ϕ′ ◦ udu in

the strong topology of Lp(T ∗X;D). Hence Theorem 2.22 ensures that d(ϕ ◦ u) = ϕ′ ◦ u du,

thus proving the chain rule ii) for any ϕ ∈ LIP(R).

iii) In the case u, v ≥ 1, we argue as in the proof of Proposition 2.13 to deduce from ii) that

d(uv)

uv
= d log(uv) = d

(
log(u) + log(v)

)
= d log(u) + d log(v) =

du

u
+

dv

v
,

whence we get d(uv) = udv + v du by multiplying both sides by uv.

In the general case u, v ∈ L∞(m), choose a constant C > 0 so big that u+ C, v + C ≥ 1.

By the case treated above, we know that

d
(
(u+ C)(v + C)

)
= (u+ C) d(v + C) + (v + C) d(u+ C)

= (u+ C) dv + (v + C) du

= u dv + v du+ C d(u+ v),

(4.6)
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while a direct computation yields

(4.7) d
(
(u+ C)(v + C)

)
= d

(
uv + C(u+ v) + C2

)
= d(uv) + C d(u+ v).

By subtracting (4.7) from (4.6), we finally obtain that d(uv) = u dv+ v du, as required. This

completes the proof of the Lebniz rule iii). �

Hereafter, we shall only consider the D-structure obtained by considering weak upper

gradients and p = 2. In this case, the cotangent module of (X, d,m) will be just denoted by

(4.8) L2(T ∗X)
.
= L2(T ∗X;Dwug).

In order to stress the dependence on the measure m, we shall sometimes write L2
m(T ∗X).

Analogously, the differential df of a Sobolev function f ∈ S2(X) will be sometimes denoted

by dmf . From now on, we shall follow [Gig17b] unless otherwise specified. Let us define

L0(T ∗X)
.
= L0-completion of L2(T ∗X),

Lp(T ∗X)
.
=
{
ω ∈ L0(T ∗X)

∣∣ |ω| ∈ Lp(m)
}

for every p ∈ [1,∞].
(4.9)

It turns out that Lp(T ∗X) has a natural structure of Lp(m)-normed L∞(m)-module.

Remark 4.4 Observe that the modules Lp(T ∗X) and Lp(T ∗X;Dwug) might be different, the

reason being that – as alredy pointed out in Remark 2.29 – the Sobolev class Sp(X) could

depend on the exponent p. �

Remark 4.5 If M is a smooth Finsler manifold, then L2(T ∗M) can be identified – in light

of Remark 2.26 – with the space of L2-sections of the cotangent bundle T ∗M of M . �

A standard cut-off and truncation argument gives the following result:

Proposition 4.6 Let (X, d,m) be a metric measure space. Then

(4.10)
{

df
∣∣ f ∈W 1,2(X)

}
generates L2(T ∗X) on X.

In particular, if W 1,2(X) is separable, then L2(T ∗X) is separable as well.

By duality we can thus introduce the space of ‘2-integrable vector fields’ over X:

Definition 4.7 (Tangent module) Let (X, d,m) be any metric measure space. Then we

define the tangent module L2(TX) of X as the dual of L2(T ∗X) in the sense of modules. Its

elements are called vector fields. We shall sometimes write L2
m(TX) instead of L2(TX).

An L2-derivation on X is any linear map L : S2(X) → L1(m) for which there exists

some function g ∈ L2(m) satisfying
∣∣L(f)

∣∣ ≤ g |Df | in the m-a.e. sense for every f ∈ S2(X).

The relation between L2-derivations and vector fields is explained by the following result, for

whose proof we refer to [Gig17a, Theorem 1.20]:

Proposition 4.8 Let (X, d,m) be a metric measure space. Given any v ∈ L2(TX), it holds

that v ◦ d : S2(X)→ L1(m) is an L2-derivation on X. Conversely, given any L2-derivation L

on X, there exists a unique vector field v ∈ L2(TX) such that L = v ◦ d.
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A metric measure space (X, d,m) is infinitesimally Hilbertian if and only if its associated

cotangent module L2(T ∗X) is a Hilbert module. Hence the following definition is meaningful:

Definition 4.9 (Gradient) Let (X, d,m) be an infinitesimally Hilbertian metric measure

space. Let f ∈ S2(X) be given. Then we denote by ∇f ∈ L2(TX) the element corresponding

to df ∈ L2(T ∗X) via the Riesz isomorphism (cf. Theorem 3.25) and we call it gradient of f .

Remark 4.10 (Calculus rules for ∇f) We immediately deduce from the calculus rules

for the differential (see Proposition 4.3) that

∇(ϕ ◦ f) = ϕ′ ◦ f ∇f for every f ∈ S2(X) and ϕ ∈ LIP(R),

∇(fg) = f ∇g + g∇f for every f, g ∈ S2(X) ∩ L∞(m),
(4.11)

which are called chain rule and Leibniz rule for the gradient, respectively. �

The following two remarks are taken from the paper [GP16b].

Remark 4.11 (Localisation of the cotangent module) Let (X, d,m) be a metric mea-

sure space. Fix an open set Ω ⊆ X and define m̃
.
= m|Ω. Then the cotangent module L2

m̃(T ∗X)

can be canonically identified with L2
m(T ∗X)|Ω, in the following sense: there exists a (unique)

linear isomorphism ι : L2
m̃(T ∗X)→ L2

m(T ∗X)|Ω such that∣∣ι(v)
∣∣ = |v| m̃-a.e. for every v ∈ L2

m̃(T ∗X),

ι(dm̃f) = dmf for every f ∈W 1,2
m (X) with d

(
spt(f),X \ Ω

)
> 0.

(4.12)

First of all, observe that the second line in (4.12) makes sense, because any map f ∈W 1,2
m (X)

with d
(
spt(f),X\Ω

)
> 0 belongs to W 1,2

m̃
(X) and satisfies |Df |m̃ = |Df |m in the m̃-a.e. sense.

This can be proved by arguing as in [AGS14b, Theorem 4.19] and [Gig15, Proposition 2.6].

Let us denote by F the family of all maps f as above. Then the set F is dense in W 1,2
m̃

(X),

as follows by a standard cut-off argument, so that accordingly L2
m̃(T ∗X) is generated by the

1-forms dm̃f with f ∈ F . Analogously, the set {dmf : f ∈ F} generates L2
m(T ∗X)|Ω. Now let

us define ι
(∑n

i=1
χAi dm̃fi

) .
=
∑n

i=1
χAi dmfi for every 1-form

∑n
i=1

χAi dm̃fi, where (Ai)
n
i=1

is a Borel partition of Ω and f1, . . . , fn ∈ F . Hence ι can be uniquely extended to a linear

isomorphism ι : L2
m̃(T ∗X)→ L2

m(T ∗X)|Ω satisfying (4.12), which proves the above claim.

Therefore it immediately follows that there exists a (uniquely determined) linear and

continuous isomorphism ι : L2
m̃(TX)→ L2

m(TX)|Ω such that

(4.13) ι(ω)
(
ι(v)

)
= ω(v) m̃-a.e. in X, for every ω ∈ L2

m̃(T ∗X) and v ∈ L2
m̃(TX).

In particular, the equality
∣∣ι(v)

∣∣ = |v| is satisfied m̃-a.e. in X for every v ∈ L2
m̃(TX). �

Remark 4.12 (Cotangent module on the Euclidean space) Fix any k ∈ N and let us

consider the Euclidean space (Rk, dEucl,Lk). We denote by L2(Rk,Rk) the standard space of

2-integrable vector fields on Rk and by L2(Rk, (Rk)∗) its dual, i.e. the space of 2-integrable

1-forms on Rk. Notice that the module dual of L2(Rk, (Rk)∗) is L2(Rk,Rk).
We know that the Sobolev space W 1,2(Rk) coincides with the classically defined one

via distributional derivatives. For any f ∈ W 1,2(Rk), we denote by df its distributional

differential, which naturally belongs to L2(Rk, (Rk)∗). Its pointwise norm |df | coincides a.e.

with the minimal weak upper gradient |Df | of f (see [AGS14a]). It is readily verified that the



68 Chapter 4 • Differential calculus on RCD spaces

1-forms of the kind
∑n

i=1
χAi dfi – with (Ai)

n
i=1 Borel partition of Rk and (fi)

n
i=1 ⊂W 1,2(Rk)

– are dense in L2(Rk, (Rk)∗). Thanks to Theorem 4.1, these facts are sufficient to conclude

that the ‘concrete’ space of 2-integrable 1-forms L2(Rk, (Rk)∗) and the abstract cotangent

module L2(T ∗Rk) can be canonically identified (via the isomorphism sending df to df).

Once this identification is done, it also follows that the space of L2 vector fields L2(Rk,Rk)
can be canonically identified with the tangent module L2(TRk). Such identification allows us

to identify, for a given Borel set E ⊆ Rk, the restricted module L2(TRk)|E with L2(E,Rk).
Finally, we point out that for every function f ∈ LIP(Rk) ∩W 1,2(Rk) it holds that

(4.14) |df | = lip(f) is satisfied Lk-a.e. in Rk,

which represents a reinforcement of property (2.23). �

The notion of divergence can be obtained by taking the adjoint of the differential.

Definition 4.13 (Divergence) Let (X, d,m) be a metric measure space. Then we say that

a vector field v ∈ L2(TX) has divergence in L2(m) – briefly, v ∈ D(div) – provided there

exists a function g ∈ L2(m) such that

(4.15)

∫
fg dm = −

∫
df(v) dm for every f ∈W 1,2(X).

The function g, which is uniquely determined, is denoted by div(v).

Remark 4.14 Given any v ∈ D(div) and f ∈ LIPb(X), it holds that gv ∈ D(div) and

(4.16) div(fv) = df(v) + f div(v).

Indeed: take g ∈W 1,2(X) and call gn
.
= (g ∧ n)∨ (−n) ∈W 1,2(X)∩L∞(m) for n ∈ N. Then

(4.17)

∫
gn
[
df(v) + f div(v)

]
dm

(4.15)
=

∫ [
gn df(v)− d(fgn)(v)

]
dm

(4.5)
= −

∫
gn df(v) dm.

By letting n→∞ in (4.17), we conclude that formula (4.16) is satisfied. �

Nevertheless, we will mainly work with a more general notion: that of measure-valued

divergence (cf. [GP16a]). For an earlier approach to this sort of definition, we refer to [GM13].

Definition 4.15 (Measure-valued divergence) Let (X, d,m) be a metric measure space

with (X, d) proper. Let Ω ⊆ X be an open set. Then we say that a vector field v ∈ L2(TX) has

measure-valued divergence in Ω – briefly, v ∈ D(divm,Ω) – provided there exists a Radon

measure µ on Ω such that

(4.18)

∫
df(v) dm = −

∫
f dµ for every f ∈ LIPc(Ω).

The measure µ, which is uniquely determined, is denoted by divm|Ω(v). In the case Ω = X, we

shall simply write D(divm) and divm(v) instead of D(divm,Ω) and divm|Ω(v), respectively.

We have the following two basic calculus rules for the divergence, which are both conse-

quences of the Leibniz rule for the differential.
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Proposition 4.16 Let (X, d,m) be a metric measure space with (X, d) proper. Let Ω ⊆ X be

an open set and let v ∈ D(divm,Ω). Fix any g ∈ LIPb(X). Then gv ∈ D(divm,Ω) and

(4.19) divm|Ω(gv) = g divm|Ω(v) + dg(v)m|Ω.

Proof. Observe that for any f ∈ LIPc(Ω) it holds that

−
∫
f d
(
g divm|Ω(v) + dg(v)m|Ω

) (4.18)
=

∫
d(fg)(v)− fdg(v) dm

(4.5)
=

∫
df(gv) dm,

whence the statement follows. �

Proposition 4.17 Let (X, d,m) be a metric measure space with (X, d) proper. Let Ω1,Ω2 be

open subsets of X and let v ∈ D(divm,Ω1) ∩D(divm,Ω1) be given. Then

(4.20)
(
divm|Ω1

(v)
)
|Ω1∩Ω2

=
(
divm|Ω2

(v)
)
|Ω1∩Ω2

.

Moreover, it holds that v ∈ D(divm,Ω1 ∪ Ω2) and

(4.21)
(
divm|Ω1∪Ω2

(v)
)
|Ωi = divm|Ωi(v) for i = 1, 2.

Proof. To prove (4.20), it is sufficient to consider Lipschitz functions with support in Ω1∩Ω2

– that are dense in Cc(Ω1 ∩ Ω2) – in the definition of divm|Ω1
(v) and divm|Ω2

(v). In order

to show (4.21), take any Lipschitz function f : X → R having compact support contained

in Ω
.
= Ω1 ∪ Ω2 and a Lipschitz partition of unity χ1, χ2 : X → [0, 1] of the space spt(f)

subordinate to the cover {Ω1,Ω2}. By letting µ be the measure defined by (4.21), one has

−
∫
f dµ = −

∫
fχ1 d

(
divm|Ω1

(v)
)
−
∫
fχ2 d

(
divm|Ω2

(v)
)

=

∫ (
d(fχ1) + d(fχ2)

)
(v) dm

=

∫
df(v) dm,

where we used the fact that d(χ1 + χ2) = d1 = 0. This proves the validity of (4.21). �

We finally conclude the present subsection by introducing the notion of Laplacian.

Definition 4.18 (Laplacian) Let (X, d,m) be an infinitesimally Hilbertian metric measure

space and f ∈ W 1,2(X). Then we say that f has Laplacian in L2(m) – briefly, f ∈ D(∆) –

provided there exists a function h ∈ L2(m) such that

(4.22)

∫
hg dm = −

∫
〈∇f,∇g〉dm for every g ∈W 1,2(X).

The function h, which is uniquely determined, is denoted by ∆f .

It can be readily checked that for any f ∈W 1,2(X) one has

(4.23) f ∈ D(∆) ⇐⇒ ∇f ∈ D(div).

In this case, it holds that ∆f = div(∇f). In particular, D(div) is dense in L2(TX) by (4.16).

Remark 4.19 (Calculus rules for ∆f) One can easily prove the following calculus rules:

∆(ϕ ◦ f) = ϕ′ ◦ f ∆f + ϕ′′ ◦ f |∇f |2,
∆(fg) = f ∆g + g∆f + 2 〈∇f,∇g〉,

(4.24)

for every f, g ∈ D(∆) ∩ LIPb(X) and ϕ ∈ C2(R). �
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4.1.2 Speed of a test plan

Let (X, d,m) be a given metric measure space. Let us fix a test plan π on X. Then it

holds that
(
Γ(X), dΓ(X),π

)
is a metric measure space as well. Moreover, each evaluation

map et has bounded compression from
(
Γ(X), dΓ(X),π

)
to (X, d,m), whence it makes sense

to consider the pullback e∗tL
2(TX) of the tangent module – thus obtaining an L2(π)-normed

L∞(π)-module. Observe that e∗tL
2(TX) is a Hilbert module as soon as the space (X, d,m) is

infinitesimally Hilbertian (by Remark 3.29).

Under suitable assumptions on (X, d,m), we have at our disposal a notion of ‘speed’ π′t
of a test plan π at time t, as described by the following result. For the proof of such fact, we

refer to [Gig17b, Theorem 2.3.18] or to [Gig17a, Theorem/Definition 1.32].

Theorem 4.20 (Speed of a test plan) Let (X, d,m) be a metric measure space such that

the tangent module L2(TX) is separable. Let π be a test plan on X. Then there exists a

unique (up to L1-a.e. equality) family π′t ∈ e∗tL
2(TX), t ∈ [0, 1], such that

(4.25) lim
h→0

f ◦ et+h − f ◦ et
h

= (e∗tdf)(π′t) for L1-a.e. t ∈ [0, 1]

for every f ∈W 1,2(X), where the limit is intended in the strong topology of L1(π). Moreover,

the Borel function (γ, t) 7→ |π′t|(γ) satisfies for L1-a.e. t ∈ [0, 1] the following property:

(4.26) |π′t|(γ) = |γ̇t| for π-a.e. γ.

The following technical fact will be needed in Chapter 6:

Proposition 4.21 Let (X, d,m) be a metric measure space such that L2(TX) is separable,

let π be a test plan on X and let f ∈W 1,2(X). Then the almost everywhere defined map

(4.27) [0, 1] 3 t 7−→ (e∗tdf)(π′t) ∈ L1(π)

is a.e. equivalent to a Borel map.

Proof. For every h ∈ (0, 1), the map [0, 1−h] 3 t 7→ (f ◦et+h−f ◦et)/h ∈ L1(π) is continuous.

Thus by classical arguments the set of t’s for which the limit as h → 0 exists is Borel. In

addition, the limit function – set to 0 when the limit does not exist – is Borel. �

In the sequel, we will mostly focus our attention on those test plans π that are concen-

trated on an equiLipschitz family of curves. As illustrated by the next definition, we will

refer to them as ‘Lipschitz test plans’. The ensuing discussion is taken from [GP17].

Definition 4.22 (Lipschitz test plan) Let (X, d,m) be a metric measure space. Let π be a

test plan on X. Then we say that π is a Lipschitz test plan on X provided ms ∈ L∞(π×L1).

Let us define L(π)
.
= ‖ms‖L∞(π×L1). In other words, L(π) is the smallest constant L ≥ 0 such

that π is concentrated on the family of all L-Lipschitz curves in X.

Remark 4.23 Given any metric measure space (X, d,m) with L2(TX) separable and any

Lipschitz test plan π on X, it holds that

(4.28) |π′t| ≤ L(π) π-a.e. on Γ(X) for a.e. t ∈ [0, 1],

as one can immediately infer from the very definition of Lipschitz test plan. �
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Whenever the test plan π is Lipschitz, one has (e∗tdf)(π′t) ∈ L2(π) for all f ∈ W 1,2(X).

One is led to wonder whether in this case the L1(π)-limit in (4.25) takes place also in L2(π).

The answer is affirmative, as shown by the following simple result:

Proposition 4.24 Let (X, d,m) be a metric measure space with L2(TX) separable. Let π be

a Lipschitz test plan on X. Let f ∈W 1,2(X). Then t 7→ f ◦ et ∈ L2(π) is Lipschitz and

(4.29)
d

dt
(f ◦ et) = (e∗tdf)(π′t) for L1-a.e. t ∈ [0, 1],

where the derivative is taken in the Banach space L2(π).

Proof. Given any t, s ∈ [0, 1] with s < t, one has that∥∥f ◦ et − f ◦ es
∥∥2

L2(π)
=

∫ ∣∣f(γt)− f(γs)
∣∣2 dπ(γ)

≤
∫ (∫ t

s
|Df |(γr) |γ̇r| dr

)2

dπ(γ)

≤ (t− s) L(π)2

∫∫ t

s
|Df |2(γr) dr dπ(γ)

≤ C(π) L(π)2 ‖f‖2W 1,2(X) (t− s)2,

which shows that t 7→ f ◦ et ∈ L2(π) is Lipschitz. In particular, it is differentiable at almost

every t ∈ [0, 1] by Theorem C.4, so that (4.29) follows from (4.25). �

4.1.3 Tangent module on the weighted Euclidean space

The material contained in this subsection is entirely taken from [GP16a].

Let d ∈ N \ {0} be fixed. Consider the Euclidean space Rd, equipped with the Euclidean

distance dEucl and with any non-negative Radon measure µ. Then we have (at least) two

different ways of speaking about ‘L2(µ)-vector fields’ on (Rd, dEucl, µ):

• the tangent module associated to (Rd, dEucl, µ), which will be denoted by L2
µ(TRd),

• the space L2(Rd,Rd;µ) of all L2(µ)-maps from Rd to itself.

Our main concern here is to give an answer to the following question:

Which is the relation between L2
µ(TRd) and L2(Rd,Rd;µ)?

In general, these two spaces are different: for instance, if µ is a Dirac delta then L2(Rd,Rd;µ)

has dimension d, while L2
µ(TRd) reduces to the zero space. Nevertheless, there is always a

canonical way to isometrically embed L2
µ(TRd) into L2(Rd,Rd;µ), as we are going to prove.

It can be readily seen that the spaces L2(Rd, (Rd)∗;µ) and L2(Rd,Rd;µ) have a natural

structure of L2(µ)-normed L∞(µ)-module. More precisely, they are both Hilbert modules,

one the dual of the other. In order to keep a distinguished notation, their elements will

typically be underlined, while those of L2
µ(T ∗Rd) and L2

µ(TRd) will be not.

For instance, given any function f ∈ C1
c (Rd), we shall denote by df ∈ L2(Rd, (Rd)∗;µ) its

‘classical’ differential and by df ∈ L2
µ(T ∗Rd) its differential in the sense of modules. One has

(4.30) |df | ≤ lip(f) = |df | µ-a.e. in Rd,

as a consequence of property (2.23).
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Proposition 4.25 There exists a unique L∞(µ)-linear and continuous operator

(4.31) P : L2(Rd, (Rd)∗;µ) −→ L2
µ(T ∗Rd)

such that P (df) = df for every f ∈ C1
c (Rd). Moreover, it holds that

(4.32)
∣∣P (ω)

∣∣ ≤ |ω| µ-a.e. in Rd for every ω ∈ L2(Rd, (Rd)∗;µ).

Proof. First of all, let us define the vector space V ⊆ L2(Rd, (Rd)∗;µ) as

V
.
=

{ n∑
i=1

χAi dfi

∣∣∣∣ n ∈ N+, (Ai)
n
i=1 Borel partition of Rd, (fi)

n
i=1 ⊆ C1

c (Rd)
}
.

We define the operator P : V → L2
µ(T ∗Rd) in the following way:

P

( n∑
i=1

χAi dfi

)
.
=

n∑
i=1

χAi dfi for every

n∑
i=1

χAi dfi ∈ V.

In particular, P (df) = df for all f ∈ C1
c (Rd). Note that (4.30) gives the µ-a.e. inequality

(4.33)

∣∣∣∣ n∑
i=1

χAi dfi

∣∣∣∣ =
n∑
i=1

χAi |dfi| ≤
n∑
i=1

χAi |dfi| =
∣∣∣∣ n∑
i=1

χAi dfi

∣∣∣∣.
This grants that the map P is well-defined, linear and continuous. Given that the space V is

dense in L2(Rd, (Rd)∗;µ), we deduce that P can be uniquely extended to a linear continuous

operator P : L2(Rd, (Rd)∗;µ)→ L2
µ(T ∗Rd). The fact that such extension is L∞(µ)-linear can

be checked by first noticing that P properly behaves with respect to multiplication by simple

functions, then arguing by approximation. Finally, property (4.33) says that (4.32) holds for

every ω ∈ V , whence also for any ω ∈ L2(Rd, (Rd)∗;µ) by density of V . �

By duality with the map P , it holds that there exists a unique L∞(µ)-linear continuous

operator ι : L2
µ(TRd)→ L2(Rd,Rd;µ) satisfying

(4.34) ω
(
ι(v)

)
= P (ω)(v) for every v ∈ L2

µ(TRd) and ω ∈ L2(Rd, (Rd)∗;µ).

Furthermore, the bound in (4.32) grants that

(4.35)
∣∣ι(v)

∣∣ ≤ |v| holds µ-a.e. in Rd for every v ∈ L2
µ(TRd).

We want to prove that equality holds in (4.35), i.e. that ι is actually an isometric embedding.

This will be achieved by showing that P is a quotient map, more specifically that it is

surjective and that it satisfies the following property:

(4.36) ∀ω ∈ L2
µ(T ∗Rd) ∃ω ∈ P−1(ω) : |ω| = |ω| µ-a.e. in Rd.

We shall need the following lemma about the structure of Sobolev spaces over weighted Rd.

Lemma 4.26 (Density in energy of C1 functions) Let f ∈ W 1,2(Rd, dEucl, µ) be given.

Then there exists a sequence (fn)n ⊆ C1
c (Rd) such that fn → f and |dfn| → |df | in L2(µ).
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Proof. We know from Theorem 2.27 that there exists a sequence (gn)n of compactly supported

Lipschitz functions gn : Rd → R such that gn → f and lipa(gn)→ |df | in L2(µ). Choose any

standard family (ρk)k∈N+ of mollifiers such that spt(ρk) ⊆ B1/k(0). Now let n ∈ N be fixed.

We define gkn ∈ C1
c (Rd) for any k ∈ N+ as follows:

gkn(x)
.
= (gn ∗ ρk)(x) =

∫
gn(z) ρk(x− z) dz for every x ∈ Rd.

It is well-known that spt(gkn) ⊆ B1/k

(
spt(gn)

)
for every k ∈ N+ and that gkn uniformly

converges to gn as k →∞, whence accordingly gkn → gn in L2(µ) since µ is a Radon measure.

Moreover, if we choose r > 1
k and x, y ∈ Rd such that 0 < |x− y| < r, then it holds that∣∣gkn(x)− gkn(y)

∣∣
|x− y|

≤ 1

|x− y|

∫
Br(0)

∣∣gn(x− z)− gn(y − z)
∣∣ ρk(z) dz ≤ Lip

(
gn|B2r(x)

) ∫
ρk(z) dz

= Lip
(
gn|B2r(x)

)
.

By first letting y → x and then k → ∞, we deduce that limk |d gkn|(x) ≤ Lip
(
gn|B2r(x)

)
for

every x ∈ Rd and r > 0. By taking the infimum among all r > 0 we thus obtain that

(4.37) lim
k→∞

|d gkn|(x) ≤ lipa(gn)(x) for every x ∈ Rd.

Observe that also |d gkn| ≤ Lip(gn)χB1(spt(gn)) for every k ∈ N+, so that by applying the

reverse Fatou lemma to (4.37) we get the inequality limk

∥∥|d gkn|∥∥L2(µ)
≤
∥∥lipa(gn)

∥∥
L2(µ)

.

Hence a diagonalisation argument gives the existence of a sequence (kn)n such that fn
.
= gknn

satisfies

(4.38) lim
n→∞

‖fn − f‖L2(µ) = 0 and lim
n→∞

∥∥|dfn|∥∥L2(µ)
≤
∥∥|df |∥∥

L2(µ)
.

In particular, the sequence
(
|dfn|

)
n

is bounded in L2(µ). By recalling (4.30), we see that the

sequence
(
|dfn|

)
n

is bounded in L2(µ) as well. Therefore (up to passing to a not relabeled

subsequence) it holds that

|dfn|⇀ G weakly in L2(µ),

|dfn|⇀ G′ weakly in L2(µ),

fn(x)→ f(x) for µ-a.e. x ∈ Rd,

for suitable functions G,G′ ∈ L2(µ) such that G ≤ G′ holds µ-a.e. in Rd. Note that item i)

of Theorem 2.22 grants that |df | ≤ G, whence the second property in (4.38) gives∥∥|df |∥∥
L2(µ)

≤ ‖G′‖L2(µ) ≤ lim
n→∞

∥∥|dfn|∥∥L2(µ)
≤ lim

n→∞

∥∥|dfn|∥∥L2(µ)
≤
∥∥|df |∥∥

L2(µ)
,

which forces the equality limn

∥∥|dfn|∥∥L2(µ)
=
∥∥|df |∥∥

L2(µ)
= ‖G′‖L2(µ). Hence G′ = |df | and

accordingly |dfn| → |df | in L2(µ), as required. �

Theorem 4.27 (L2
µ(TRd) isometrically embeds into L2(Rd,Rd;µ)) The operator P as

in Proposition 4.25 is a quotient map and its adjoint operator ι : L2
µ(TRd) → L2(Rd,Rd;µ)

is a module morphism preserving the pointwise norm.
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Proof. First of all, we show that df belongs to the image of P for every f ∈W 1,2(Rd, dEucl, µ).

To this aim, pick (fn)n ⊆ C1
c (Rd) as in Lemma 4.26 and notice that (dfn)n is a bounded

sequence in L2(Rd, (Rd)∗;µ). Being such space reflexive, we have (up to a not relabeled

subsequence) that dfn ⇀ ω for some ω ∈ L2(Rd, (Rd)∗;µ). Since the map P is linear and

continuous, we know that dfn = P (dfn) ⇀ P (ω) weakly in L2
µ(T ∗Rd), whence the closure of

the differential (cf. Theorem 2.22) grants that df = P (ω). Hence df is in the image of P .

We claim that |ω| ≤ |df | holds µ-a.e. in Rd: if not, there exists a Borel set A ⊆ Rd such

that µ(A) > 0 and |df |(x) < |ω|(x) for µ-a.e. x ∈ A, whence the fact that χA dfn ⇀ χA ω

weakly in L2(Rd, (Rd)∗;µ) and the strong L2(µ)-convergence of |dfn| to |df | (that is granted

by Lemma 4.26) yield the inequalities∫
A
|df |2 dµ <

∫
A
|ω|2 dµ ≤ lim

n→∞

∫
A
|dfn|2 dµ =

∫
A
|df |2 dµ,

which lead to a contradiction. Therefore |ω| ≤ |df | is satisfied µ-a.e. in Rd, as claimed above.

Since we have that |df | =
∣∣P (ω)

∣∣ ≤ |ω| holds µ-a.e. in Rd by (4.32), we see that |ω| = |df |,
which shows that property (4.36) is satisfied for ω

.
= df .

Denote by V the space of all ω ∈ L2
µ(T ∗Rd) of the form

∑n
i=1

χAi dfi, where (Ai)i is a

Borel partition of Rd and f1, . . . , fn ∈ W 1,2(Rd, dEucl, µ). Now let ω =
∑n

i=1
χAi dfi ∈ V be

fixed. As proven in the previous paragraph, there exist ω1, . . . , ωn ∈ L2(Rd, (Rd)∗;µ) such

that P (ωi) = dfi and |dfi| = |ωi| for all i = 1, . . . , n. Given that P is a module morphism,

we deduce that P
(∑n

i=1
χAi ωi

)
= ω and

∣∣∑n
i=1

χAi ωi
∣∣ = |ω|, thus proving that the vector

space V is contained in the image of P and that property (4.36) holds for any ω ∈ V .

Now fix ω ∈ L2
µ(T ∗Rd). Since V is dense in L2

µ(T ∗Rd), there exists a sequence (ωn)n ⊆ V
that L2

µ(T ∗Rd)-converges to ω. By the previous case, we know that for any n ∈ N we can

pick ωn ∈ P−1(ωn) such that |ωn| = |ωn|. In particular, the sequence (ωn)n is bounded in the

space L2(Rd, (Rd)∗;µ), whence (up to a not relabeled subsequence) it holds that ωn weakly

converges to some ω ∈ L2(Rd, (Rd)∗;µ). By Mazur lemma, we can also suppose that ωn → ω

strongly in L2(Rd, (Rd)∗;µ), thus accordingly ωn = P (ωn) → P (ω) strongly in L2
µ(T ∗Rd),

which yields P (ω) = ω. Up to a further subsequence, we can even assume that |ωn| → |ω|
and |ωn| → |ω| pointwise µ-a.e. in Rd, so that

|ω|(x) = lim
n→∞

|ωn|(x) = lim
n→∞

|ωn|(x) = |ω|(x) holds for µ-a.e. x ∈ Rd.

Therefore the operator P is surjective and property (4.36) is verified.

We turn to the last part of the statement. It suffices to prove that
∣∣ι(v)

∣∣ = |v| holds µ-a.e.

for every v ∈ L2
µ(TRd). Let v ∈ L2

µ(TRd) and ε > 0 be fixed. Then there exists ω ∈ L2
µ(T ∗Rd)

such that ‖ω‖L2
µ(T ∗Rd) = 1 and

∫
ω(v) dµ ≥ ‖v‖L2

µ(TRd) − ε. Hence, what previously proved

grants the existence of some ω ∈ P−1(ω) for which |ω| = |ω| holds µ-a.e. in Rd. Therefore∥∥ι(v)
∥∥
L2(Rd,Rd;µ)

≥
∫
ω
(
ι(v)

)
dµ

(4.34)
=

∫
P (ω)(v) dµ =

∫
ω(v) dµ ≥ ‖v‖L2

µ(TRd) − ε.

By letting ε ↘ 0 in the previous formula, we see that
∥∥ι(v)

∥∥
L2(Rd,Rd;µ)

≥ ‖v‖L2
µ(TRd). Since

we also have the µ-a.e. inequality
∣∣ι(v)

∣∣ ≤ |v| by (4.35), we finally conclude that the map ι

preserves the pointwise norm, as required. �

Corollary 4.28 Let ι : L2
µ(TRd) ↪→ L2(Rd,Rd;µ) be as in Theorem 4.27. Consider some

vector fields v1, . . . , vn ∈ L2
µ(TRd) that are independent on a Borel set E ⊆ Rd. Then the

vectors ι(v1)(x), . . . , ι(vn)(x) ∈ Rd are linearly independent for µ-a.e. point x ∈ E.
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Proof. Let us choose some Borel representatives ι(v1), . . . , ι(vn) : Rd → Rd of ι(v1), . . . , ι(vn),

respectively. Since v1, . . . , vn are independent on E by hypothesis – whence ι(v1), . . . , ι(vn)

are independent on E by Theorem 4.27 – there exists N ⊆ E Borel such that µ(N) = 0 and

n∑
i=1

qi ι(vi)(x) 6= 0 for every (q1, . . . , qn) ∈ Qn \ {0} and x ∈ E \N.

This clearly grants that ι(v1)(x), . . . , ι(vn)(x) are linearly independent for every x ∈ E \N ,

thus yielding the statement. �

Corollary 4.29 Let µ be any Radon measure on the Euclidean space Rd. Then L2
µ(TRd) is

a separable Hilbert module.

Proof. It can be readily checked that L2(Rd,Rd;µ) is a separable Hilbert module. Then the

statement immediately follows from Theorem 4.27. �

We briefly recall few basic notions about 1-dimensional currents in the Euclidean space.

By 1-dimensional current T in Rd we mean any linear continuous functional on the space

of all smooth compactly-supported differential 1-forms on Rd. The boundary ∂T of T is the

0-current (i.e. distribution) defined as 〈∂T, f〉 .= 〈T, df〉 for any smooth function f : Rd → R
having compact support. The mass of T is given by the supremum of 〈T, ω〉 among all the

1-forms ω on Rd such that |ω| ≤ 1 everywhere. By applying Theorem 1.14, we can represent

any 1-dimensional current T with finite mass as T = ~T ‖T‖, where ‖T‖ ≥ 0 is a finite Borel

measure on Rd and ~T ∈ L1
(
Rd,Rd; ‖T‖

)
satisfies

∣∣~T (x)
∣∣ = 1 for ‖T‖-a.e. x ∈ Rd. Then

(4.39) 〈T, ω〉 =

∫ 〈
ω(x), ~T (x)

〉
d‖T‖(x)

for any smooth compactly-supported 1-form ω on Rd. Finally, we say that a 1-dimensional

current T is normal provided both T and ∂T have finite mass. We refer to [Fed69] for more

information about currents in the Euclidean space.

Now consider a Radon measure µ on Rd and the embedding ι : L2
µ(TRd) ↪→ L2(Rd,Rd;µ),

whose existence has been proved in Theorem 4.27. We can further proceed by associating to

each vector field v ∈ L2
µ(TRd) a 1-dimensional current I(v) in Rd, defined as follows:

(4.40)
〈
I(v), ω

〉 .
=

∫
ω
(
ι(v)

)
dµ =

∫
P (ω)(v) dµ

for every smooth compactly-supported 1-form ω on Rd (with P given by Proposition 4.25).

It is clear that I(v) has locally finite mass and that – since ι preserves the pointwise norm –

the mass measure
∥∥I(v)

∥∥ is given by |v|µ. The boundary of I(v) acts on f ∈ C∞c (Rd) as

(4.41)
〈
∂I(v), f

〉
=
〈
I(v),df

〉 (4.40)
=

∫
df
(
ι(v)

)
dµ

(4.34)
=

∫
df(v) dµ.

By looking at the third expression in this chain of equalities, we see that ∂I(v) has locally

finite mass if and only if the distributional divergence of ι(v)µ is a Radon measure. In this

case, such measure coincides with −∂I(v). Finally, by looking at the last term in (4.41) and

comparing it with Definition 4.15, we obtain the following result:

Corollary 4.30 Let v ∈ L2
µ(TRd) be such that ι(v) has compact support. Then I(v) is a

normal current if and only if v ∈ D(divµ). In this case, it holds that ∂I(v) = −divµ(v).
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4.1.4 Maps of bounded deformation

Let us fix two metric measure spaces (X, dX,mX) and (Y, dY,mY).

Definition 4.31 (Map of bounded deformation) Let ϕ : X→ Y be a given Borel map.

Then we say that ϕ is a map of bounded deformation provided it is of bounded compression

(cf. Definition 3.26) and Lipschitz.

Maps of bounded deformation satisfy the following fundamental property:

Proposition 4.32 Let ϕ : X→ Y be a map of bounded deformation. Let f ∈ S2(Y) be fixed.

Then it holds that f ◦ ϕ ∈ S2(X) and

(4.42)
∣∣d(f ◦ ϕ)

∣∣ ≤ Lip(ϕ) |df | ◦ ϕ mX-a.e. in X.

In particular, if f ∈W 1,2(Y) then f ◦ ϕ ∈W 1,2(X).

Proof. Consider the map ϕ̂ : Γ(X)→ Γ(Y) defined as γ 7→ ϕ◦γ. Given any γ ∈ AC
(
[0, 1],X

)
,

it turns out that ϕ̂(γ) ∈ AC
(
[0, 1],Y

)
and that ms

(
ϕ̂(γ), t

)
≤ Lip(ϕ)ms(γ, t) for a.e. t ∈ [0, 1],

whence ϕ̂∗π is a test plan on Y whenever π is a test plan on X. Then for f ∈ S2(Y) one has∫ ∣∣(f ◦ ϕ)(γ1)− (f ◦ ϕ)(γ0)
∣∣dπ(γ) =

∫ ∣∣f(σ1)− f(σ0)
∣∣ d(ϕ̂∗π)(σ)

≤
∫∫ 1

0
|df |(σt)ms(σ, t) dtd(ϕ̂∗π)(σ)

=

∫∫ 1

0

(
|df | ◦ ϕ

)
(γt)ms

(
ϕ̂(γ), t

)
dtdπ(γ)

≤ Lip(ϕ)

∫∫ 1

0

(
|df | ◦ ϕ

)
(γt) |γ̇t| dt dπ(γ).

By arbitrariness of π, we conclude that f ◦ ϕ ∈ S2(X) and that property (4.42) holds. �

In the right hand side of (4.42) the quantity Lip(ϕ) appears. The following result shows

that the global Lipschitz constant can be replaced by a ‘more local’ object; see [GP16b].

Lemma 4.33 Let ϕ : X → Y be a map of bounded deformation. Let E ⊆ X be a Borel set.

Then for any f ∈W 1,2(Y) we have that

(4.43) χE
∣∣d(f ◦ ϕ)

∣∣ ≤ Lip(ϕ;E)χE |df | ◦ ϕ holds mX-a.e. in X.

Proof. Choose a sequence (fn)n ⊆ LIPbs(Y) such that fn → f and lipa(fn)→ |df | in L2(mY).

Let n ∈ N be fixed. Given any x ∈ E and r > 0, there exists a Lipschitz map g ∈ LIP(X)

such that Lip(g) = Lip
(
fn ◦ ϕ;E ∩Br(x)

)
and g = fn ◦ ϕ on E ∩Br(x). Since ϕ

(
E ∩Br(x)

)
is contained in the ball BLip(ϕ)r

(
ϕ(x)

)
, we have that

(4.44) χE∩Br(x)

∣∣d(fn ◦ ϕ)
∣∣ = χE∩Br(x) |dg| ≤ Lip(g) ≤ Lip(ϕ;E) Lip

(
fn;BLip(ϕ)r

(
ϕ(x)

))
holds mX-a.e.. Given that BLip(ϕ)r

(
ϕ(x)

)
⊆ B2Lip(ϕ)r

(
ϕ(y)

)
is satisfied for every y ∈ Br(x),

we deduce from (4.44) and Lindelöf lemma that

(4.45)
∣∣d(fn ◦ ϕ)

∣∣(x) ≤ Lip(ϕ;E) Lip
(
fn;B2Lip(ϕ)r

(
ϕ(x)

))
holds for mX-a.e. x ∈ E.
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By letting r ↘ 0 in (4.45), we thus obtain the mX-a.e. inequality

(4.46) χE
∣∣d(fn ◦ ϕ)

∣∣ ≤ Lip(ϕ;E)χE lipa(fn) ◦ ϕ for every n ∈ N.

Notice that
∣∣d(fn ◦ ϕ)

∣∣ ≤ Lip(ϕ) |dfn| ◦ ϕ ≤ Lip(ϕ) lipa(fn) ◦ ϕ is satisfied mX-a.e., thus

accordingly the set of all functions
∣∣d(fn ◦ ϕ)

∣∣, with n ∈ N, is norm bounded in L2(mX). In

particular, possibly passing to a (not relabeled) subsequence, one has that
∣∣d(fn ◦ ϕ)

∣∣ ⇀ h

weakly in L2(mX) for a suitable map h ∈ L2(mX). By lower semicontinuity of minimal weak

upper gradients, we deduce that
∣∣d(f ◦ ϕ)

∣∣ ≤ h holds mX-a.e.. Since lipa(fn) ◦ ϕ ⇀ |df | ◦ ϕ
weakly in L2(mX), we finally conclude by recalling (4.46) that

χE
∣∣d(f ◦ ϕ)

∣∣ ≤ χE h ≤ Lip(ϕ;E)χE |df | ◦ ϕ holds mX-a.e. in X,

yielding (4.43) and accordingly the statement. �

Theorem 4.34 (Differential of maps of bounded deformation) Suppose that L2(TY)

is separable. Let ϕ : X → Y be a map of bounded deformation. Then there exists a unique

L∞(mX)-linear continuous map dϕ : L2(TX)→ ϕ∗L2(TY), called differential of ϕ, such that

(4.47) (ϕ∗df)
(
dϕ(v)

)
= d(f ◦ ϕ)(v) for every f ∈W 1,2(Y) and v ∈ L2(TX).

Moreover, it holds that

(4.48)
∣∣dϕ(v)

∣∣ ≤ Lip(ϕ) |v| mX-a.e. for every v ∈ L2(TX).

Proof. Fix v ∈ L2(TX). Let us define Lv(ϕ
∗df)

.
= d(f ◦ ϕ)(v) for any f ∈W 1,2(Y). Since

∣∣d(f ◦ ϕ)(v)
∣∣ (4.42)

≤ Lip(ϕ) |df | ◦ ϕ |v| = Lip(ϕ) |ϕ∗df | |v| mX-a.e.,

we see that Lv(ϕ
∗df) is well-posed and that Lv can be uniquely extended to an L∞(mX)-linear

and continuous map Lv : ϕ∗L2(T ∗Y) → L1(mX). Theorem 3.34 grants that Lv corresponds

to an element dϕ(v) ∈ ϕ∗L2(TY), which clearly satisfies properties (4.47) and (4.48). �

Remark 4.35 Without the separability assumption on L2(TY), it is still possible to build

a differential dϕ : L2(TX)→
(
ϕ∗L2(T ∗Y)

)∗
, as shown in the proof of Theorem 4.34. �

It is possible to refine of inequality (4.48) by using Lemma 4.33 (cf. [GP16b]):

Proposition 4.36 Suppose that L2(TY) is separable. Let ϕ : X → Y be a map of bounded

deformation. Fix any Borel set E ⊆ X. Then for any v ∈ L2(TX)|E we have that

(4.49)
∣∣dϕ(v)

∣∣ ≤ Lip(ϕ;E) |v| holds mX-a.e. in E.

Proof. Given any f ∈W 1,2(Y), it mX-a.e. holds that

χE

∣∣∣(ϕ∗df)
(
dϕ(v)

)∣∣∣ = χE
∣∣d(f ◦ ϕ)(v)

∣∣ ≤ χE ∣∣d(f ◦ ϕ)
∣∣ |v| (4.43)

≤ Lip(ϕ;E)χE |df | ◦ ϕ |v|

= Lip(ϕ;E)χE |ϕ∗df | |v|,

which grants that (4.49) holds by L∞(mX)-linearity and continuity of dϕ(v). �
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Let (X, dX,mX), (Y, dY,mY) be metric measure spaces with L2(TY) separable, so that

the module dual of ϕ∗L2(T ∗Y) can be identified with ϕ∗L2(TY) for any map ϕ : X → Y of

bounded deformation (recall Theorem 3.34). We now follow [GP16a]: we claim that

(4.50) ω
(
Prϕ(w)

)
= Prϕ

(
(ϕ∗ω)(w)

)
for every ω ∈ L2(T ∗Y) and w ∈ ϕ∗L2(TY).

To prove it, notice that both sides of the identity are linear continuous with respect to w and

agree on those w’s of the form f ϕ∗v, with f ∈ L∞(mX) and v ∈ L2(TY).

Proposition 4.37 Let (X, dX,mX), (Y, dY,mY) be metric measure spaces such that L2(TY)

is separable. Let ϕ : X → Y be a map of bounded deformation with ϕ∗mX = mY. Suppose

that for some Borel set E ⊆ X we have that ϕ|E is injective with (ϕ|E)−1 Lipschitz. Assume

also that Lipschitz functions on X are dense in W 1,2(X). Then the map

(4.51) L2(TX)|E 3 v 7−→ Prϕ
(
dϕ(v)

)
∈ L2(TY)

is injective. In particular, if v1, . . . , vn ∈ L2(TX) are independent on the set E, then the vector

fields Prϕ
(
dϕ(χE v1)

)
, . . . ,Prϕ

(
dϕ(χE vn)

)
∈ L2(TY) are independent on Imϕ(E) ⊆ Y.

Proof. By inner regularity of mX, we can assume that E is compact. The assumption that

Lipschitz functions on X are dense in W 1,2(X) grants that
{

df : f ∈ LIP(X) ∩W 1,2(X)
}

is

dense in
{

df : f ∈W 1,2(X)
}

with respect to the L2(T ∗X) topology. Recalling that L2(T ∗X)

is generated by the differentials of functions in W 1,2(X), we therefore deduce that

V
.
=

{
χE

n∑
i=1

hi dfi

∣∣∣∣ n ∈ N, (fi)
n
i=1 ⊆ LIP(X) ∩W 1,2(X), (hi)

n
i=1 ⊆ L∞(mX)

}
is dense in L2(T ∗X)|E . Now let f ∈ LIP(X) ∩ W 1,2(X) be fixed. Consider the Lipschitz

function f ◦ (ϕ|E)−1 defined on ϕ(E) and extend it to a Lipschitz function g on Y with

bounded support. Then we have g ∈ W 1,2(Y) and g ◦ ϕ = f on E. This identity and the

locality of the differential imply that χE df = χE d(g ◦ ϕ), so that

V ⊆W .
=
{
L∞(mX)-linear combinations of χE d(g ◦ ϕ), g ∈W 1,2(Y)

}
,

thus accordingly

(4.52) W is dense in L2(T ∗X)|E .

Moreover, we claim that for any f ∈ L1(mX) concentrated on E we have

(4.53) Prϕ(f) = 0 mY-a.e. ⇐⇒ f = 0 mX-a.e..

To prove it, it suffices to define g ∈ L1(mY) as g
.
= χϕ(E) sgn

(
f ◦ (ϕ|E)−1

)
and to notice that

0 =

∫
g Prϕ(f) dmY =

∫
g dϕ∗(fmX) =

∫
g ◦ ϕf dmX =

∫
|f |dmX.

The injectivity claim follows from this fact: given any v ∈ L2(TX)|E , it holds that

Prϕ
(
dϕ(v)

)
= 0 ⇐⇒ ω

(
Prϕ
(
dϕ(v)

))
= 0 for all ω ∈ L2(T ∗Y)

(by (4.50)) ⇐⇒ Prϕ
(
(ϕ∗ω)(dϕ(v))

)
= 0 for all ω ∈ L2(T ∗Y)

(by (4.53)) ⇐⇒ (ϕ∗ω)
(
dϕ(v)

)
= 0 for all ω ∈ L2(T ∗Y)

⇐⇒ (ϕ∗dg)
(
dϕ(v)

)
for all g ∈W 1,2(Y)

(by (4.47)) ⇐⇒ d(g ◦ ϕ)(v) = 0 for all g ∈W 1,2(Y)

(by (4.52)) ⇐⇒ v = 0.
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In order to prove the last claim, just observe that for any f1, . . . , fn ∈ L∞(mY) we have

n∑
i=1

fi Prϕ
(
dϕ(χE vi)

) (3.31)
=

n∑
i=1

Prϕ
(
fi ◦ ϕdϕ(χE vi)

)
= Prϕ

(
dϕ

(
χE

n∑
i=1

fi ◦ ϕvi
))

,

therefore
n∑
i=1

fi Prϕ
(
dϕ(χE vi)

)
= 0 ⇐⇒ χE

n∑
i=1

fi ◦ ϕvi = 0

⇐⇒ fi ◦ ϕ = 0 mX|E-a.e. for all i = 1, . . . , n

⇐⇒ fi = 0 ϕ∗
(
mX|E

)
-a.e. for all i = 1, . . . , n

⇐⇒ fi = 0 mY-a.e. on Imϕ(E) for all i = 1, . . . , n.

Hence also the last statement is achieved, thus completing the proof. �

We conclude the present subsection by pointing out how the measure-valued divergence

(introduced in Definition 4.15) is transformed under maps of bounded deformation:

Proposition 4.38 Let (X, dX,mX), (Y, dY,mY) be metric measure spaces such that (X, dX)

and (Y, dY) are proper. Let ϕ : X→ Y be a map of bounded deformation with mY = ϕ∗mX.

Suppose that the map ϕ is proper, i.e. the set ϕ−1(K) is compact whenever K ⊆ Y is compact.

Then for any v ∈ L2(TX) and f ∈W 1,2(Y) it holds that

(4.54)

∫
df
(
Prϕ
(
dϕ(v)

))
dmY =

∫
d(f ◦ ϕ)(v) dmX.

In particular, if v ∈ D(divmX), then Prϕ
(
dϕ(v)

)
∈ D(divmY) and

(4.55) divmY

(
Prϕ
(
dϕ(v)

))
= ϕ∗

(
divmX(v)

)
.

Proof. Fix f ∈ LIPc(Y). Recalling (4.50) and the definition of dϕ(v), we have that

df
(
Prϕ
(
dϕ(v)

))
= Prϕ

(
(ϕ∗df)

(
dϕ(v)

))
= Prϕ

(
d(f ◦ ϕ)(v)

)
.

By integrating with respect to mY and using the trivial identity
∫
Prϕ(g) dmY =

∫
g dmX,

which is valid for any g ∈ L1(mX), we deduce that∫
df
(
Prϕ
(
dϕ(v)

))
dϕ∗mX =

∫
d(f ◦ ϕ)(v) dmX = −

∫
f ◦ ϕd

(
divmX(v)

)
= −

∫
f dϕ∗

(
divmX(v)

)
.

Since the function f has been arbitrarily chosen, we get the statement. �

4.1.5 An alternative notion of differential for Rd-valued maps

In Chapter 5 we shall deal with maps ϕ defined on some Borel set E ⊆ X and taking values

into the Euclidean space Rk. In addition, the map ϕ : E → ϕ(E) under consideration will

be of bounded deformation, invertible and with inverse of bounded deformation. Thanks to

the high regularity of the target space Rk and to the invertibility of ϕ, it will be possible to

associate to any element v ∈ L2(TX)|E a ‘concrete’ vector field d̂ϕ(v) in L2
(
ϕ(E),Rk

)
.

Such a new notion of differential d̂ϕ – tailored for this kind of maps ϕ – is described by

the following result, which has been originally proved in [GP16b].
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Theorem 4.39 Let (X, d,m) be a metric measure space with W 1,2(X) reflexive. Let E ⊆ X

be a Borel set and ϕ : E → Rk be a Lipschitz map. Suppose there exist L,C > 1 such that

ϕ : E → ϕ(E) is L-biLipschitz,

C−1 Lk|ϕ(E)
≤ ϕ∗

(
m|E

)
≤ CLk|ϕ(E)

.
(4.56)

Then there exists a unique linear and continuous operator d̂ϕ : L2(TX)|E → L2
(
ϕ(E),Rk

)
,

called differential of ϕ, which satisfies the following conditions for any v ∈ L2(TX)|E:

dg
(
d̂ϕ(v)

)
=
(
d(g ◦ ϕ)(v)

)
◦ ϕ−1 for every g ∈ LIPc(Rk),

d̂ϕ(fv) = f ◦ ϕ−1 d̂ϕ(v) for every f ∈ L∞(m),
(4.57)

where ϕ : X→ Rk is any Lipschitz extension of ϕ. Moreover, we have that

(4.58) L−1 |v| ◦ ϕ−1 ≤
∣∣ d̂ϕ(v)

∣∣ ≤ L |v| ◦ ϕ−1 holds Lk-a.e. in ϕ(E)

for every vector field v ∈ L2(TX)|E.

Proof. Fix any Lipschitz extension ϕ : X→ Rk of ϕ. We divide the proof into several steps:

Step 1. We claim that it is enough to prove the statement for m finite. Indeed, suppose the

thesis holds for finite measures and consider any (not necessarily finite) reference measure m

on X. There is a sequence (Kn)n of disjoint compact subsets of E with m
(
E \

⋃
nKn

)
= 0,

by inner regularity of m. Given that m is also outer regular, we can find a sequence (Ωn)n
of open subsets of X such that Kn ⊆ Ωn and m(Ωn) < +∞ for every n ∈ N. Fix any n ∈ N
and call mn

.
= m|Ωn . Hence we can apply the theorem to the map ϕ|Kn , thus obtaining a

linear and continuous operator Tn : L2
mn(TX)|Kn → L2

(
ϕ(Kn),Rk

)
such that the following

conditions are satisfied Lk-a.e. in ϕ(Kn) for any v ∈ L2
mn(TX)|Kn :

dg
(
Tn(v)

)
=
(
d(g ◦ ϕ)(v)

)
◦
(
ϕ|Kn

)−1
for every g ∈ LIPc(Rk),

Tn(fv) = f ◦
(
ϕ|Kn

)−1
Tn(v) for every f ∈ L∞(mn),

L−1 |v| ◦
(
ϕ|Kn

)−1 ≤
∣∣Tn(v)

∣∣ ≤ L |v| ◦
(
ϕ|Kn

)−1
.

(4.59)

Denote by ιn : L2
mn(TX)→ L2

m(TX)|Ωn the isomorphism built in Remark 4.11. Therefore we

can ‘glue’ together the functions Tn obtained above – thanks to the third line in (4.59) – in

the sense that there exists a unique map d̂ϕ : L2
m(TX)|E → L2

(
ϕ(E),Rk

)
such that

χϕ(Kn) d̂ϕ(v) = Tn
(
ι−1
n (χΩnv)

)
Lk-a.e. in ϕ(Kn), for all v ∈ L2

m(TX)|E and n ∈ N.

We then deduce from (4.59) that d̂ϕ is a linear and continuous operator satisfying both (4.57)

and (4.58), as required.

Step 2. From now on, suppose that m is a finite measure. Define µ
.
= ϕ∗m, which is a

finite Borel measure on Rk. In particular, we have that LIPc(Rk) ⊆ W 1,2
µ (Rk). The tangent

module L2
µ(TRk) turns out to be isometrically embedded into the space L2(Rk,Rk;µ) of all

the L2(µ)-vector fields from Rk to itself, as proved in Theorem 4.27, thus L2
µ(TRk) is separable

(Corollary 4.29). Since ϕ is of bounded deformation when viewed as a function from (X, d,m)

to
(
Rk, | · |, µ

)
, we can then consider its differential dϕ : L2(TX)→ ϕ∗L2

µ(TRk). Now let us

fix any vector field v ∈ L2(TX)|E . The family of all finite sums of the form
∑n

i=1
χAi dgi –
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where (Ai)
n
i=1 is a Borel partition of ϕ(E) and (gi)

n
i=1 ⊆ LIPc(Rk) – is a dense vector subspace

of L2
(
ϕ(E), (Rk)∗

)
. Given any such simple 1-form ω =

∑n
i=1

χAi dgi ∈ L2
(
ϕ(E), (Rk)∗

)
, let

(4.60) Tv(ω)
.
=

n∑
i=1

χAi (ϕ∗dµgi)
(
dϕ(v)

)
◦ ϕ−1 ∈ L1

(
ϕ(E)

)
.

The operator Tv is well-defined, as granted by the following Lk|ϕ(E)
-a.e. inequalities:

∣∣Tv(ω)
∣∣ =

n∑
i=1

χAi

∣∣∣(ϕ∗dµgi)(dϕ(v)
)∣∣∣ ◦ ϕ−1 ≤

∣∣dϕ(v)
∣∣ ◦ ϕ−1

n∑
i=1

χAi |dµgi| ◦ ϕ ◦ ϕ−1

≤
∣∣dϕ(v)

∣∣ ◦ ϕ−1
n∑
i=1

χAi lip(gi) =
∣∣dϕ(v)

∣∣ ◦ ϕ−1 |ω|.
(4.61)

Another consequence of property (4.61) is that the operator Tv can be uniquely extended to

a vector field d̂ϕ(v) ∈ L2
(
ϕ(E),Rk

)
, for which

∣∣d̂ϕ(v)
∣∣ ≤ ∣∣dϕ(v)

∣∣◦ϕ−1 holds Lk-a.e. in ϕ(E).

Furthermore, it can be readily verified that d̂ϕ is the unique operator satisfying (4.57).

Step 3. In order to conclude the proof, it only remains to show (4.58). Let v ∈ L2(TX)|E .

It immediately follows from Proposition 4.36 that
∣∣d̂ϕ(v)

∣∣ ≤ L |v| ◦ϕ−1 holds Lk-a.e. in ϕ(E).

To prove the other inequality in (4.58), we need a more refined argument: fix ε > 0. Given

that |v| = ess sup ω(v), where the essential supremum is taken among all the ω ∈ L2(T ∗X)

with |ω| ≤ 1 mX-a.e., there exists ω ∈ L2(T ∗X)|E such that |ω| = 1 and ω(v) ≥ (1− ε) |v| are

verified mX-a.e. in E. Since the simple forms
∑

i
χAi dfi ∈ L2(T ∗X) are dense in L2(T ∗X), we

can apply Egorov theorem to obtain a partition (Kn)n∈N of E (up to mX-negligible sets) into

compact sets and a sequence (fn)n ⊆W 1,2(X) such that |dfn| < 1 and dfn(v) ≥ (1− ε)2 |v|
hold mX-a.e. in Kn for every n ∈ N. By using the reflexivity of W 1,2(X), Theorem 2.27

and Egorov theorem, we can find a partition (Kn
m)m∈N of Kn (up to mX-negligible sets) into

compact sets and a sequence of functions (fnm)m ⊆ LIP(X)∩W 1,2(X) such that lipa(f
n
m) ≤ 1

and dfnm(v) ≥ (1− ε)3 |v| are satisfied mX-a.e. in Kn
m for every m ∈ N. Let us denote by ψnm

the inverse of the map ϕ|Kn
m

: Kn
m → ϕ(Kn

m) and pick any compactly supported Lipschitz

map hnm ∈ LIPc(Rk) such that hnm|ϕ(Kn
m)

= fnm ◦ ψnm. Observe that the following statement is

satisfied Lk-a.e. in the set ϕ(Kn
m):

(4.62) |dhnm|
(4.14)

= lip(hnm)
(1.69)

= lip
(
hnm|ϕ(Kn

m)

) (1.19)

≤ Lip(ψnm) lip(fnm) ◦ ψnm ≤ L.

Moreover, the fact that fnm|Kn
m

= hnm ◦ ϕ|Kn
m

yields χKn
m

dfnm = χKn
m

d(hnm ◦ ϕ), so that∣∣∣(χϕ(Kn
m) dhnm

)(
d̂ϕ(v)

)∣∣∣ = χϕ(Kn
m)

∣∣∣(ϕ∗dµhnm)
(
d̂ϕ(v)

)∣∣∣ ◦ ϕ−1

≥ χϕ(Kn
m)

(
d(hnm ◦ ϕ)(v)

)
◦ ϕ−1

= χϕ(Kn
m)

(
dfnm(v)

)
◦ ϕ−1

≥ (1− ε)3 χϕ(Kn
m) |v| ◦ ϕ−1 holds Lk-a.e. in ϕ(Kn

m).

In particular, (4.62) grants that
∣∣d̂ϕ(v)

∣∣ ≥ (1− ε)3 L−1 |v| ◦ ϕ−1 is satisfied Lk-a.e. in ϕ(Kn
m)

for any n,m ∈ N, hence also L k-a.e. in all of ϕ(E). By letting ε↘ 0, we finally obtain that

the inequality
∣∣d̂ϕ(v)

∣∣ ≥ L−1 |v| ◦ ϕ−1 holds Lk-a.e. in ϕ(E), concluding the proof of (4.58).

Therefore the statement is finally achieved. �
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4.2 Second-order differential structure of RCD spaces

4.2.1 Definition of RCD space

The theory of synthetic Ricci curvature bounds for nonsmooth spaces has seen impressive

developments in the last few years. In this subsection we just briefly recall the most important

ideas behind these notions, referring to the surveys [Amb18, Vil16, Vil17] for a thorough

account about their history and their main properties.

The first concept of lower Ricci curvature bounds for possibly nonsmooth structures is

the so-called Ricci limit, which has been introduced by J. Cheeger and T. Colding in [CC96].

Such spaces are obtained as Gromov-Hausdorff limits of a sequence of smooth Riemannian

manifolds with a uniform lower bound on the Ricci curvature. The structural properties of

Ricci limits are deeply investigated in the papers [CC97, CC00a, CC00b, CN12].

Besides this ‘extrinsic’ approach (i.e. obtained via approximation with smooth objects),

several ‘intrinsic’ approaches (i.e. obtained without referring to Riemannian manifolds) made

their appearance in the literature during the last decade. In general, such notions are usu-

ally referred to as curvature-dimension conditions. As we are going to briefly describe, the

corresponding theories can be divided into two main groups:

• Lagrangian approach. One can impose lower Ricci curvature bounds on metric

measure spaces by requiring convexity of suitable integral functionals along geodesics

in the Wasserstein space (cf. Subsection 1.3.2 for this optimal transport terminology).

The idea of looking at convexity along W2-geodesics is due to McCann [McC97]. Sturm

[Stu06a, Stu06b] and Lott-Villani [LV07] independently proposed the first definition

of curvature-dimension condition – called CD(K,N) condition – by taking inspiration

from the results about Riemannian manifolds achieved in [CEMS01, OV00, vRS09]. The

term CD(K,N) indicates that, in some generalised sense, the Ricci curvature is bounded

from below by K ∈ R and the dimension is bounded from above by N ∈ [1,∞]. In order

to have better tensorisation and globalisation properties, a weaker curvature-dimension

condition – called reduced curvature-dimension condition or CD∗(K,N) condition – has

been introduced by K. Bacher and K. T. Sturm in [BS10]. Moreover, another variant

of CD space is the entropic CDe(K,N) space, introduced in [EKS14].

Nevertheless, we point out that all the several notions of CD space mentioned so far allow

for Finsler structures. The intention to select a class of spaces that rules out all Finsler

manifolds led to the definition of RCD(K,N) space, see [AGS14b, AGMR15, Gig15],

where the added letter R stands for ‘Riemannian’. Shortly said, an RCD space is an

infinitesimally Hilbertian CD space (recall Definition 2.25). In a similar fashion, one

can define the class of RCD∗(K,N) spaces. It has been proven by F. Cavalletti and E.

Milman in [CM16] that the RCD(K,N) condition and the RCD∗(K,N) condition are

actually equivalent (whenever the reference measure is finite).

• Eulerian approach. It is also possible to define a curvature-dimension condition at

the level of Dirichlet forms and Γ-calculus, thus leading to the Bakry-Émery theory.

This method – originally proposed by D. Bakry and M. Émery in [Bak85, BÉ85] – has

been motivated by the study of hypercontractivity for diffusion processes. In our metric

measure space setting, the key concept is the so-called BE(K,N) condition, introduced

by L. Ambrosio, N. Gigli and G. Savaré in [AGS15]. Informally speaking, this approach
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consists of a suitable weak formulation of the Bochner inequality, which is capable of

encoding both the Ricci curvature bound and the dimension one at the same time. The

BE condition and the RCD one are equivalent, as shown in [EKS14] and [AMS15]; a

precursor of the proof of such equivalence is given by K. Kuwada’s paper [Kuw10]. This

is the language we shall adopt in the present thesis (cf. Definitions 4.40 and 4.41).

A fundamental feature of the class of RCD(K,N) spaces is that it is closed under measured

Gromov-Hausdorff convergence, thus in particular it contains all the Ricci limit spaces. We

refer to [Amb18] for a comprehensive discussion about the several geometric properties and

functional inequalities that are available in the CD/RCD framework.

We now give the definition of RCD(K,∞) space (following the axiomatisation of [AGS15],

but formulated in terms of the language of normed modules).

Definition 4.40 (RCD(K,∞) space) Let K ∈ R. Then a metric measure space (X, d,m)

is said to be an RCD(K,∞) space provided the following properties are satisfied:

i) The space (X, d,m) is infinitesimally Hilbertian.

ii) There exist C > 0 and x̄ ∈ X such that m
(
Br(x̄)

)
≤ eCr2

for every r > 0.

iii) Sobolev-to-Lipschitz property. Every function f ∈ W 1,2(X) with |Df | ∈ L∞(m)

admits a Lipschitz representative f̄ such that Lip(f̄) =
∥∥|Df |∥∥

L∞(m)
.

iv) Weak Bochner inequality. Given any f ∈ D(∆) and g ∈ D(∆) ∩ L∞(m)+ such

that ∆f ∈W 1,2(X) and ∆g ∈ L∞(m), it holds that

(4.63)
1

2

∫
|Df |2 ∆g dm ≥

∫ [
〈∇f,∇∆f〉+K |Df |2

]
g dm.

By building on top on the previous definition, we can also introduce the finite-dimensional

refinement of the RCD condition (again taken from [AGS15]).

Definition 4.41 (RCD(K,N) space) Let K ∈ R and N ∈ [1,∞). Then a metric measure

space (X, d,m) is said to be an RCD(K,N) space provided it is an RCD(K,∞) space and it

satisfies the following variant of the weak Bochner inequality:

(4.64)
1

2

∫
|Df |2 ∆g dm ≥

∫ [
(∆f)2/N + 〈∇f,∇∆f〉+K |Df |2

]
g dm

for every f ∈ D(∆) and g ∈ D(∆) ∩ L∞(m)+ such that ∆f ∈W 1,2(X) and ∆g ∈ L∞(m).

Remark 4.42 Let (X, d,m) be an RCD(K,N) space, for some K ∈ R and N ∈ [1,∞). Let

us consider any two measures µ, ν ∈ P2(X) with bounded support such that µ, ν ≤ Cm.

Then the family OptGeo(µ, ν) consists of a unique element π, which satisfies

(4.65) (et)∗π ≤ λCm for every t ∈ [0, 1],

where the constant λ ≥ 1 depends just on K, N and diam
(
spt(µ) ∪ spt(ν)

)
. More generally,

it holds that π is a test plan. For a proof of these facts, see [GRS16, Lemma 3.2]. �
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4.2.2 Hessian and covariant derivative

Let (X, d,m) be a fixed RCD(K,∞) space, for some K ∈ R. A fundamental notion that we

need in order to develop a second-order differential calculus on X is that of test function,

which has been introduced in [Sav14]:

(4.66) TestF(X)
.
=
{
f ∈ D(∆) ∩ LIP(X) ∩ L∞(m)

∣∣∣ ∆f ∈W 1,2(X)
}
.

The presence of many test functions is granted by the regularising properties of the heat

flow, which we are now going to briefly describe. The heat flow on (X, d,m) is the gradient

flow (ht) of the Dirichlet energy f 7→ E2(f)
.
= 1

2

∫
|Df |2 dm (cf. the monography [AGS08]),

meaning that for any f ∈ L2(m) it holds that [0,+∞) 3 t 7→ htf ∈ L2(m) is the unique

continuous curve with h0f = f that is absolutely continuous in (0,+∞) and satisfies

(4.67)
d

dt
htf = ∆htf for a.e. t > 0.

The heat flow fulfils the weak maximum principle: if a function f ∈ L2(m) satisfies f ≤ C in

the m-a.e. sense for some constant C ∈ R, then for any t ≥ 0 the inequality htf ≤ C holds

m-a.e.. This grants that the heat flow operator can be extended to the space L1(m)+L∞(m).

Two fundamental properties of the heat flow on RCD spaces are the following:

• Bakry-Émery estimate. Given any f ∈W 1,2(X) and t ≥ 0, it holds that

(4.68) |Dhtf |2 ≤ e−2Kt ht
(
|Df |2

)
in the m-a.e. sense.

• L∞-to-Lipschitz regularisation. If f ∈ L∞(m) and t > 0, then htf ∈ LIP(X) and

(4.69)

(
2

∫ t

0
e2Ks ds

)1/2

Lip(htf) ≤ ‖f‖L∞(m).

We now collect those properties of the family TestF(X) that will be needed in the sequel:

Proposition 4.43 The following properties hold:

i) The family TestF(X) is dense in W 1,2(X).

ii) It holds that 〈∇f,∇g〉 ∈W 1,2(X) whenever f, g ∈ TestF(X).

iii) The space TestF(X) is an algebra.

In order to introduce the Hessian of a Sobolev function, we need the notion of tensor

product of Hilbert modules – already described in Subsection 3.1.5. For the sake of brevity,

we shall make use of the following shorthand notation:

L2
(
(T ∗)⊗2X

) .
= L2(T ∗X)⊗2 = L2(T ∗X)⊗ L2(T ∗X),

L2(T⊗2X)
.
= L2(TX)⊗2 = L2(TX)⊗ L2(TX).

(4.70)

Then the space W 2,2(X) is defined as follows:
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Definition 4.44 (Hessian) Let f ∈ W 1,2(X) be given. Then we say that the function f

belongs to the space W 2,2(X) provided there exists a tensor A ∈ L2
(
(T ∗)⊗2X

)
such that

2

∫
hA(∇g1,∇g2) dm

=−
∫
〈∇f,∇g1〉 div(h∇g2) + 〈∇f,∇g2〉 div(h∇g1) + h

〈
∇f,∇〈∇g1,∇g2〉

〉
dm

(4.71)

holds for every g1, g2 ∈ TestF(X) and h ∈ LIPb(X). The element A ∈ L2
(
(T ∗)⊗2X

)
, which

is uniquely determined, is called Hessian of f and denoted by Hess(f). Moreover, we endow

the vector space W 2,2(X) with the norm ‖ · ‖W 2,2(X), given by

(4.72) ‖f‖W 2,2(X)
.
=
√
‖f‖2L2(m) + ‖df‖2L2(T ∗X) +

∥∥Hess(f)
∥∥
L2((T ∗)⊗2X)

for every f ∈W 2,2(X).

The main properties of W 2,2(X) and of the Hessian are given by the following result:

Proposition 4.45 The following properties hold:

i) It holds that W 2,2(X) is a separable Hilbert space.

ii) The Hessian is a closed operator, i.e.

(4.73)
{(
f,Hess(f)

) ∣∣∣ f ∈W 2,2(X)
}

is closed in W 1,2(X)× L2
(
(T ∗)⊗2X

)
.

iii) The Hessian is symmetric, i.e. Hess(f)t = Hess(f) for every f ∈W 2,2(X).

The fact that the space W 2,2(X) is sufficiently vast is ensured by the following theorem:

Theorem 4.46 It holds that D(∆) ⊆W 2,2(X) and

(4.74)

∫ ∣∣Hess(f)
∣∣2
HS

dm ≤
∫

(∆f)2 −K |∇f |2 dm for every f ∈ D(∆).

In particular, we have that TestF(X) is contained in W 2,2(X). Nevertheless, we do not

know whether it is dense in W 2,2(X), whence the following definition is meaningful:

Definition 4.47 We define the space H2,2(X) as the W 2,2(X)-closure of TestF(X).

We conclude the discussion about the Hessian by recalling some calculus rules:

Proposition 4.48 (Calculus rules for the Hessian) The following hold:

i) Product rule for functions. Let f, g ∈W 2,2(X)∩LIPb(X) be given. Then it holds

that fg ∈W 2,2(X) and

(4.75) Hess(fg) = f Hess(g) + gHess(f) + df ⊗ dg + dg ⊗ df m-a.e. in X.

ii) Chain rule. Let f ∈W 2,2(X)∩LIP(X) be given. Take ϕ ∈ C2(R) with ϕ′, ϕ′′ bounded

and ϕ(0) = 0. Then it holds that ϕ ◦ f ∈W 2,2(X) and

(4.76) Hess(ϕ ◦ f) = ϕ′′ ◦ f df ⊗ df + ϕ′ ◦ f Hess(f) m-a.e. in X.
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iii) Product rule for gradients. Let f, g ∈ H2,2(X)∩ LIP(X) be given. Then it holds

that 〈∇f,∇g〉 ∈W 1,2(X) and

(4.77) d〈∇f,∇g〉 = Hess(f)(∇g, ·) + Hess(g)(∇f, ·) m-a.e. in X.

With the notion of Hessian at disposal, we can give the definition of covariant derivative:

Definition 4.49 (Covariant derivative) Let v ∈ L2(TX) be given. Then we say that v

belongs to the space W 1,2
C (TX) provided there exists a tensor T ∈ L2(T⊗2X) such that

(4.78)

∫
hT : (∇f ⊗∇g) dm = −

∫
〈v,∇g〉 div(h∇f)− hHess(g)(v,∇f) dm

for every f, g ∈ TestF(X) and h ∈ LIPb(X). The element T ∈ L2(T⊗2X), which is uniquely

determined, is called covariant derivative of v and denoted by ∇v. Moreover, we endow the

vector space W 1,2
C (TX) with the norm ‖ · ‖

W 1,2
C (TX)

, given by

(4.79) ‖v‖
W 1,2

C (TX)

.
=
√
‖v‖2L2(TX) + ‖∇v‖2L2(T⊗2X) for every v ∈W 1,2

C (TX).

We also introduce the class TestV(X) ⊆ L2(TX) of test vector fields on X:

(4.80) TestV(X)
.
=

{ n∑
i=1

gi∇fi
∣∣∣∣ (fi)

n
i=1, (gi)

n
i=1 ⊆ TestF(X)

}
.

It can be readily proved that TestV(X) is dense in L2(TX).

Proposition 4.50 The following properties hold:

i) It holds that W 1,2
C (TX) is a separable Hilbert space.

ii) The covariant derivative is a closed operator, i.e.

(4.81)
{

(v,∇v)
∣∣ v ∈W 1,2

C (TX)
}

is closed in L2(TX)× L2(T⊗2X).

iii) Given any f ∈W 2,2(X), we have that ∇f ∈W 1,2
C (TX) and

(4.82) ∇(∇f) = Hess(f)],

where L2
(
(T ∗)⊗2X

)
3 A 7→ A] ∈ L2(T⊗2X) denotes the Riesz isomorphism.

iv) It holds that TestV(X) ⊆W 1,2
C (TX) and

(4.83) ∇v =
n∑
i=1

∇gi ⊗∇fi + gi Hess(fi)
] for every v =

n∑
i=1

gi∇fi ∈ TestV(X).

In particular, the space W 1,2
C (TX) is dense in L2(TX).

Since it is not known whether TestV(X) is dense in W 1,2
C (TX), we give this definition:

Definition 4.51 We define the space H1,2
C (TX) as the W 1,2

C (TX)-closure of TestV(X).
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We now introduce a useful notation: given any v ∈W 1,2
C (TX) and z ∈ L0(TX), we define

the vector field ∇zv ∈ L0(TX) as the unique element of L0(TX) satisfying

(4.84) 〈∇zv, w〉 = ∇v : (z ⊗ w) m-a.e. in X for every w ∈ L0(TX).

Therefore the L0(m)-linear continuous operator L0(TX) 3 z 7→ ∇zv ∈ L0(TX) satisfies

(4.85) |∇zv| ≤ |∇v|HS |z| m-a.e. in X for every z ∈ L0(TX).

In particular, one has that ∇zv ∈ L2(TX) whenever z ∈ L∞(TX).

We now collect the main calculus rules for the covariant derivative:

Proposition 4.52 (Calculus rules for the covariant derivative) The following hold:

i) Leibniz rule. Let v ∈W 1,2
C (TX)∩L∞(TX) and f ∈W 1,2(X)∩L∞(m) be given. Then

it holds that fv ∈W 1,2
C (TX) and

(4.86) ∇(fv) = ∇f ⊗ v + f ∇v.

ii) Compatibility with the metric. Let us consider v ∈W 1,2
C (TX) and w ∈ H1,2

C (TX)

such that v, w ∈ L∞(TX). Then 〈v, w〉 ∈W 1,2(X) and

(4.87) d〈v, w〉(z) = 〈∇zv, w〉+ 〈v,∇zw〉 m-a.e. in X for every z ∈ L2(TX).

iii) Torsion-free identity. Let f ∈ H2,2(X)∩LIP(X) and v, w ∈W 1,2
C (TX)∩L∞(TX).

Then it holds that df(v), df(w) ∈W 1,2(X) and

(4.88) d
(
df(w)

)
(v)− d

(
df(v)

)
(w) = df(∇vw −∇wv) m-a.e. in X.

Remark 4.53 We define the Lie bracket of two vector fields v, w ∈W 1,2
C (TX) as

(4.89) [v, w]
.
= ∇vw −∇wv ∈ L1(TX).

Moreover, we shall denote v(f)
.
= df(v) for any f ∈ W 1,2(X) and v ∈ L2(TX). Hence the

torsion-free identity (4.88) can be rewritten in the following compact form:

(4.90) v
(
w(f)

)
− w

(
v(f)

)
= [v, w](f) m-a.e. in X

for every f ∈ H2,2(X) ∩ LIP(X) and v, w ∈W 1,2
C (TX) ∩ L∞(TX). �

In particular, item ii) of Proposition 4.52 grants that for any v ∈ H1,2
C (TX) ∩ L∞(TX)

one has |v|2 ∈W 1,2(X) and

(4.91) d|v|2(w) = 2 〈∇wv, v〉 m-a.e. for every w ∈ L0(TX),

whence
∣∣D|v|2∣∣ ≤ 2 |∇v|HS |v| holds m-a.e. in X. This in turn implies the following fact (that

is proven, for instance, in the paper [DGP18]):

Lemma 4.54 Let v ∈ H1,2
C (TX) be fixed. Then |v| ∈W 1,2(X) and

(4.92)
∣∣D|v|∣∣ ≤ |∇v|HS holds m-a.e. in X.
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Proof. First of all, we prove the statement for v ∈ TestV(X). Given any ε > 0, let us define

the Lipschitz function ϕε : [0,+∞)→ R as ϕε(t)
.
=
√
t+ ε for any t ≥ 0. Hence by applying

the chain rule for minimal weak upper gradients we see that ϕε ◦ |v|2 ∈ S2(X) and

∣∣D(ϕε ◦ |v|2)
∣∣ = ϕ′ε ◦ |v|2

∣∣D|v|2∣∣ =

∣∣D|v|2∣∣
2
√
|v|2 + ε

≤ |v|√
|v|2 + ε

|∇v|HS ≤ |∇v|HS.

This grants the existence of G ∈ L2(m) and a sequence εj ↘ 0 such that
∣∣D(ϕεj ◦ |v|2)

∣∣⇀ G

weakly in L2(m) as j → ∞ and G ≤ |∇v|HS in the m-a.e. sense. Since ϕεj ◦ |v|2 → |v|
pointwise m-a.e. as j →∞, we deduce from the lower semicontinuity of minimal weak upper

gradients that |v| ∈W 1,2(X) and that
∣∣D|v|∣∣ ≤ |∇v|HS holds m-a.e. in X.

Now fix any v ∈ H1,2
C (TX). Pick a sequence (vn)n ⊆ TestV(X) that W 1,2

C (TX)-converges

to v. In particular, |vn| → |v| and |∇vn|HS → |∇v|HS in L2(m). By the first part of the proof

we know that |vn| ∈W 1,2(X) and
∣∣D|vn|∣∣ ≤ |∇vn|HS for all n ∈ N, thus accordingly (up to a

not relabeled subsequence) we have that
∣∣D|vn|∣∣⇀ H weakly in L2(m), for some H ∈ L2(m)

such that H ≤ |∇v|HS holds m-a.e. in X. Again by lower semicontinuity of minimal weak

upper gradients, we conclude that |v| ∈ W 1,2(X) with
∣∣D|v|∣∣ ≤ |∇v|HS in the m-a.e. sense,

proving the statement. �

We conclude by pointing out that many other second-order notions can be built over

an RCD space: for instance, the exterior derivative, the de Rham cohomology and the Ricci

curvature tensor. Since we will not need such theories in this thesis, we do not add any

further detail and we refer to [Gig17a] for the related discussion.



5
Structure of strongly m-rectifiable spaces

Contents

5.1 Definition and basic properties of strong m-rectifiability . . . . . 91

5.2 Finite-dimensional RCD spaces are strongly m-rectifiable . . . . . 95

5.3 Equivalence of two different notions of tangent module . . . . . 99

5.3.1 Gromov-Hausdorff tangent bundle TGHX . . . . . . . . . . . . . . . 99

5.3.2 Equivalence between L2(TX) and L2(TGHX) . . . . . . . . . . . . . 102

5.3.3 Geometric interpretation of TGHX . . . . . . . . . . . . . . . . . . . 104

In the context of metric geometry, there is a well-established notion of tangent space at a

point: the pointed-Gromov-Hausdorff limit of the rescalings of the space around the chosen

point. On the other hand, an abstract concept of tangent bundle can be given on any metric

measure space, as seen in Chapter 4 (recall the notion of tangent module). However, without

any regularity assumption the ‘geometric’ approach and the ‘analytical’ one might be totally

unrelated. For instance, the pGH limits of the blow-ups can fail to exist or the tangent

module can be trivial (e.g. if the space admits no non-constant Lipschitz curves, then the

Sobolev space is trivial and gives no information about the underlying space). The purpose

of this chapter is to introduce and study a class of metric measure spaces – called ‘strongly

m-rectifiable spaces’ – for which the two approaches are in fact equivalent.

A metric measure space (X, d,m) is said to be strongly m-rectifiable provided its associated

Sobolev space W 1,2(X) is reflexive (that is a technical assumption) and for every ε > 0 it is

possible to cover m-almost all of X with a sequence (Ui)i of Borel sets having the following

property: there exists a map ϕi : Ui → Rki , for some ki ∈ N, which is (1+ε)-biLipschitz with

its image and satisfies (ϕi)∗
(
m|Ui

)
� Lki . Any such couple (Ui, ϕi) is called ε-chart, while

the collection
{

(Ui, ϕi)
}
i

is said to be an ε-atlas, with a clear reminiscence of the differential

geometric language. Section 5.1 will be devoted to the definition of strong m-rectifiability

and to its basic properties.

89
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In order to describe the crucial structural property of strongly m-rectifiable spaces – which

is the main topic of Section 5.3 – we first need to introduce some notation. Given (X, d,m)

as above and calling (Ek)k∈N the dimensional decomposition of its tangent module L2(TX),

it is possible to show (by using the ε-charts) that for m-a.e. point x ∈ Ek the pmG-tangent

cone at x contains exactly the (normalised) k-dimensional Euclidean space. By ‘patching

together’ these Euclidean blow-ups of X around its points, we obtain the Gromov-Hausdorff

tangent bundle TGHX; more precisely, we have that TGHX is a measurable Hilbert bundle in

the sense of Definition 3.56. Then we can consider the space L2(TGHX) of all 2-integrable

sections of TGHX (which is denoted by Γ2(TGHX) in the language of Section 3.2). Hence the

key property of strongly m-rectifiable spaces (see Theorem 5.21 below) is the following: the

normed modules L2(TGHX) and L2(TX) are isometrically isomorphic.

We point out that the chosen structure on the Gromov-Hausdorff tangent bundle TGHX

is canonical, in a sense that is illustrated by the ensuing discussion.

Suppose to have a metric space (X, d) such that for every x ∈ X the tangent space at

the point x (in the sense of pointed-Gromov-Hausdorff limit) is the Euclidean space of a

certain fixed dimension k. Then obviously all such tangent spaces would be isometric and

we might want to identify all of them with a given fixed Rk. Once these identifications are

chosen, given x ∈ X and v ∈ Rk we might think of v as an element of the tangent space at x.

Therefore a vector field should be thought of as a map from X to Rk. However, the choice

of the identifications/isometries of the abstract tangent spaces with the fixed Rk is highly

arbitrary and affects the structure that one is building. In fact, in general there is no solution

to this problem, in the sense that there is no canonical choice of these identifications. The

problem is that – by its very definition – a pointed-Gromov-Hausdorff limit is the isometric

class of a metric space rather than a ‘concrete’ one.

As we shall see, the situation changes if we work on a strongly m-rectifiable metric measure

space: much like in the smooth setting the charts of a manifold are used to give structure to

the tangent bundle, in this case the presence of charts

• allows for a canonical identification of the tangent spaces,

• ensures existence and uniqueness of a measurable structure on the resulting bundle.

Let us remark that – while the initial definition of the Gromov-Hausdorff tangent bundle

(and in particular of its measurable structure) is simply given by a product – in fact (as we

will show in Subsection 5.3.3) such measurable structure is natural, because it is compatible

with ‘taking all pGH-limits at the same time’; see Theorem 5.23 for the details.

The motivating examples of strongly m-rectifiable space are the finite-dimensional RCD

spaces, as we are now going to describe; such results will be presented in Section 5.2.

It has been proved by A. Mondino and A. Naber in the paper [MN14] that any RCD(K,N)

space (X, d,m), with K ∈ R and N ∈ (1,∞), is ‘rectifiable as a metric space’, in the following

sense: given any ε > 0, there exists a sequence (Ui, ϕi)i∈N such that (Ui)i∈N is a Borel

partition of X (up to m-negligible sets) and each map ϕi : Ui → Rki (for some ki ≤ N) is

(1 + ε)-biLipschitz with its image. Nevertheless, in [MN14] the behaviour of the reference

measure m under the maps ϕi’s is not investigated. The main result of Section 5.2 (namely

Theorem 5.16) says that the maps ϕi’s of Mondino-Naber satisfy (ϕi)∗
(
m|Ui) � L

ki , thus

proving that any RCD(K,N) space X is strongly m-rectifiable. Notice that our result is
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equivalent to the fact that the restriction of m to Ui is absolutely continuous with respect

to the ki-dimensional Hausdorff measure. We point out that similar structural results have

been independently achieved in [DPMR17] and [KM18].

In the case of Ricci limit spaces, the analogue of Theorem 5.16 was already known from

the work of Cheeger-Colding [CC00a]. However, the technique used therein is not applicable

to our setting, the problem being that in [CC00a] the spaces under consideration are limits

of manifolds equipped with the volume measure – a fact leading to some cancellations that

do not occur in the weighted case. Specifically, the key lemma [CC00a, Lemma 1.14] does

not hold on weighted Riemannian manifolds, thus a fortiori cannot hold on RCD spaces.

Our proof combines a deep result on Radon measures in the Euclidean space – obtained

by G. De Philippis and F. Rindler in [DPR16] – with the construction by Mondino-Naber and

the Laplacian comparison estimates for distance functions obtained by N. Gigli in [Gig15].

The results of Sections 5.1 and 5.3 are taken from [GP16b], while the content of Section

5.2 can be found in [GP16a].

5.1 Definition and basic properties of strong m-rectifiability

We introduce a new class of metric measure spaces, called ‘strongly m-rectifiable’ spaces.

Roughly speaking, these spaces can be partitioned (up to negligible sets) into countably

many Borel sets, which are biLipschitz equivalent to suitable subsets of the Euclidean space,

by means of maps that also keep under control the measure. Our interest in this class of

spaces is mainly motivated by the fact that – as we shall prove in Subsection 5.2 – any

finite-dimensional RCD space turns out to be strongly m-rectifiable.

For the sake of simplicity, it is convenient to use the following notation: given any measure

space (X,A,m), we say that (Ei)i∈N ⊆ A is an m-partition of E ∈ A provided it is a partition

of some F ∈ A such that F ⊆ E and m(E \ F ) = 0. Moreover, given two m-partitions (Ei)i
and (Fj)j of E, we say that (Fj)j is a refinement of (Ei)i if for every j ∈ N with Fj 6= ∅ there

exists (a unique) i ∈ N such that Fj ⊆ Ei.

Definition 5.1 (Strongly m-rectifiable space) A metric measure space (X, d,m) is said

to be m-rectifiable provided it can be written as a countable disjoint union
⋃
k∈NAk of suitable

sets (Ak)k ⊆ B(X), such that the following condition is satisfied: given any k ∈ N, there exists

an m-partition (Ui)i∈N ⊆ B(X) of Ak and a sequence (ϕi)i∈N of maps ϕi : Ui → Rk such that

ϕi : Ui → ϕi(Ui) is biLipschitz,

(ϕi)∗
(
m|Ui

)
� Lk

(5.1)

for every i ∈ N. The partition X =
⋃
k∈NAk – which is clearly unique up to modification of

negligible sets – is called dimensional decomposition of X.

Moreover, the space (X, d,m) is said to be strongly m-rectifiable provided for every ε > 0

the (Ui, ϕi)’s can be chosen so that the ϕi’s are (1 + ε)-biLipschitz.

Remark 5.2 Given an m-rectifiable space (X, d,m) with dimensional decomposition (Ak)k,

we have that each set Ak is countably Hk-rectifiable. Moreover, it follows from (B.6) and
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(5.1) that there exists a sequence (Nk)k of Borel sets Nk ⊆ Ak with m(Nk) = 0 such that

(5.2) m|Ak\Nk = θkHk|Ak\Nk for every k ∈ N,

where the density θk is a suitable Borel map θk : Ak \Nk → (0,+∞). �

When working on m-rectifiable spaces, it is natural to adopt the following terminology,

which is inspired by the language of differential geometry:

Definition 5.3 (Charts and atlases) Let (X, d,m) be a m-rectifiable space. A chart on X

is a couple (U,ϕ), where U ∈ B(Ak) for some k ∈ N and ϕ : U → Rk satisfies

ϕ : U → ϕ(U) is biLipschitz,

C−1 Lk|ϕ(U)
≤ ϕ∗

(
m|U

)
≤ C Lk|ϕ(U)

,
(5.3)

for a suitable constant C ≥ 1. An atlas on (X, d,m) is a family A =
⋃
k∈N

{
(Uki , ϕ

k
i )
}
i∈N of

charts on (X, d,m) such that (Uki )i∈N is an m-partition of Ak for every k ∈ N.

Moreover, the chart (U,ϕ) is said to be an ε-chart provided the map ϕ : U → ϕ(U) is

(1 + ε)-biLipschitz and an atlas is said to be an ε-atlas provided all of its charts are ε-charts.

We collect few simple facts about atlases which we shall frequently use in what follows:

i) Any m-rectifiable space admits an atlas and any strongly m-rectifiable space admits

an ε-atlas for every ε > 0. Indeed, given any (Ui, ϕi) as in (5.1), we can consider the

density ρi of ϕ∗
(
m|Ui

)
with respect to the Lebesgue measure and the sets

Ui,j
.
= ϕ−1

i

(
{2j ≤ ρi < 2j+1}

)
for every j ∈ Z.

It is clear that
(
Uij , ϕi|Ui,j

)
is a chart for every j ∈ Z and that the Uij ’s provide an

m-partition of Ui, so that repeating the construction for every i yields the desired atlas.

ii) Let (Ui, ϕi)i∈N be an atlas on X. Given any i ∈ N, take an m-partition (Uij)j∈N of Ui.

Then
(
Uij , ϕi|Uij

)
i,j∈N is an atlas as well. In particular – by inner regularity of m –

every m-rectifiable space admits an atlas whose charts are defined on compact sets.

A first property of m-rectifiable spaces, whose proof is based upon the notion of differential

introduced in Theorem 4.39, is given by the following result.

Theorem 5.4 (Dimensional decomposition of the tangent module) Let (X, d,m) be

an m-rectifiable space, with W 1,2(X) reflexive. Let (Ak)k be its dimensional decomposition.

Then for every k ∈ N such that m(Ak) > 0 we have that L2(TX) has dimension k on Ak.

Proof. Let A =
{

(Uki , ϕ
k
i )
}
k,i

be an atlas on X. The claim is equivalent to the fact that for

every Uki with m(Uki ) > 0 the dimension of L2(TX) on Uki is k. Consider the differential

d̂ϕki : L2(TX)|Uki
−→ L2

(
ϕki (U

k
i ),Rk

)
in the sense of Theorem 4.39. Such operator is continuous, invertible, with continuous inverse

and sends hv to h ◦ (ϕki )
−1 d̂ϕki (v). It is then clear that L2(TX)|Uki

and L2
(
ϕki (U

k
i ),Rk

)
have

the same dimension. Since the latter has dimension k, the conclusion follows. �
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Remark 5.5 Using the finite dimensionality results obtained by Cheeger in [Che99], it is not

hard to see that the dimensional decomposition (Ak)k of a PI space (i.e. a doubling metric

measure space supporting a weak (1, 2)-Poincaré inequality) that is also m-rectifiable must

be so that m(Ak) = 0 for all k sufficiently large. �

Proposition 5.6 Let (X, d,m) be an m-rectifiable space. Then X is a Vitali space (recall

Definition 1.33). In particular, given any Borel set E ⊆ X, it holds that m-a.e. point x ∈ E
is of density 1 for E (by Corollary 1.36).

Proof. By recalling (1.62), it is sufficient to prove that m is pointwise doubling at m-almost

every point of X. To this aim, call (Ak)k the dimensional decomposition of X and fix k ∈ N.

Let (Nk)k be as in Remark 5.2 and call A′k
.
= Ak \Nk for all k ∈ N. We claim that

(5.4) lim
r→0

m
(
B2r(x) \A′k

)
ωk 2k rk

= 0 holds for Hk-a.e. x ∈ A′k.

We argue by contradiction: if not, there exist a Borel set P ⊆ A′k with Hk(P ) > 0 and a

constant λ > 0 such that limr↘0 m
(
B2r(x) \ A′k

)
/(ωk 2k rk) ≥ λ holds for any point x ∈ P .

Hence (B.7) with µ
.
= m|X\A′k

yields λHk(P ) ≤ m(P \A′k) = 0, which leads to a contradiction.

Therefore (B.8) and (5.4) grant that for Hk-a.e. x ∈ A′k (thus also m-a.e. x ∈ A′k) it holds

lim
r↘0

m
(
B2r(x)

)
m
(
Br(x)

) ≤ lim
r↘0

m
(
B2r(x) ∩A′k

)
m
(
Br(x) ∩A′k

) + lim
r↘0

m
(
B2r(x) \A′k

)
m
(
Br(x) ∩A′k

) = 2k,

thus proving the statement. �

When we restrict our attention to the smaller class of strongly m-rectifiable spaces, we have

a stronger geometric characterisation of the tangent module. Subsection 5.3.2 will be entirely

devoted to describe such result. In order to further develop our theory in that direction, we

need to provide any strongly m-rectifiable space (X, d,m) with a special sequence of atlases,

which are aligned in a suitable sense.

Definition 5.7 (Aligned family of atlases) Let (X, d,m) be a strongly m-rectifiable space.

Let εn ↘ 0 and δn ↘ 0. Let (An)n∈N be a sequence of atlases on X. Then we say that (An)n
is an aligned family of atlases of parameters εn and δn provided the following conditions hold:

i) Each An =
{

(Uk,ni , ϕk,ni )
}
k,i

is an εn-atlas and the domains Uk,ni are compact.

ii) The family (Uk,ni )k,i is a refinement of (Uk,n−1
j )k,j for any n ∈ N+.

iii) If n ∈ N+, k ∈ N and i, j ∈ N satisfy Uk,ni ⊆ Uk,n−1
j , then

(5.5)

∥∥∥∥d
(

idRk − ϕ
k,n−1
j ◦

(
ϕk,ni

)−1
)

(y)

∥∥∥∥ ≤ δn for Lk-a.e. y ∈ ϕk,ni (Uk,ni ).

The discussions made before grant that any strongly m-rectifiable space admits atlases

satisfying i) and ii). In fact, as we shall see in a moment, also iii) can be fulfilled by an

appropriate choice of atlases, but in order to show this we need a small digression.

Recall that O(Rk) denotes the group of linear isometries of Rk. For ε > 0, let us define

(5.6) Oε(Rk) .
=
{
T : Rk → Rk linear, invertible and such that ‖T‖, ‖T−1‖ ≤ 1 + ε

}
.

Notice that the space Oε(Rk) – being closed and bounded – is compact for every ε > 0 and

that O(Rk) =
⋂
ε>0O

ε(Rk). Then we have the following simple result:
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Proposition 5.8 Let k ∈ N and δ > 0 be given. Then there exist a constant ε > 0 and a

Borel mapping R : Oε(Rk)→ O(Rk) with finite image such that

(5.7)
∥∥T −R(T )

∥∥ ≤ δ for every T ∈ Oε(Rk).

Proof. Since the space O(Rk) is compact, there exist T1, . . . , Tn ∈ O(Rk) such that

O(Rk) ⊆ Uδ
.
=

n⋃
i=1

Bδ(Ti).

We claim that there exists ε > 0 such that Oε(Rk) ⊂ Uδ and argue by contradiction. If not,

the compact set Kε .
= Oε(Rk) \ Uδ would be not empty for every ε > 0. Since Kε ⊂ Kε′

for any ε ≤ ε′, the family Kε has the finite intersection property, but on the other hand the

identity O(Rk) =
⋂
ε>0O

ε(Rk) yields
⋂
ε>0K

ε = ∅, which leads to a contradiction. Thus

there exists ε > 0 such that Oε(Rk) ⊆ Uδ. For such ε, we define R : Oε(Rk)→ O(Rk) to be

equal to T1 on Bδ(T1), then recursively to be equal to Tn on Bδ(Tn) \
⋃
i<nBδ(Ti). �

By using Proposition 5.8, it is possible to show that any strongly m-rectifiable space

admits an aligned family of atlases:

Theorem 5.9 Let (X, d,m) be a strongly m-rectifiable metric measure space. Let εn ↘ 0

and δn ↘ 0 be two given sequences. Then X admits an aligned family (An)n of atlases of

parameters εn and δn.

Proof. Let (Ak)k be the dimensional decomposition of X and notice that to conclude it is

sufficient to build, for every k ∈ N, aligned charts as in iii) of Definition 5.7 covering m-almost

all of Ak. For any given k, n ∈ N, let ε′n,k > 0 be associated to δn and k as in Proposition 5.8

and choose ε̄n,k > 0 such that

(5.8) ε̄n,k ≤ εn and (1 + ε̄n−1,k)(1 + ε̄n,k) ≤ 1 + ε′n,k for every k, n ∈ N.

We now construct the required aligned family (An)n of atlases by recursion: start by observing

that, since (X, d,m) is strongly m-rectifiable, there exists an atlas A0 such that the charts with

domain included in Ak are ε̄0,k-biLipschitz. Now assume that for some n ∈ N we have already

defined A0, . . . ,An−1 satisfying the alignment conditions and say that An−1 =
{

(Uki , ϕ
k
i )
}
k,i

.

Again using the strong m-rectifiability of X, find an atlas
{

(V k
j , ψ

k
j )
}
k,j

whose domains (V k
j )k,j

constitute a refinement of the domains (Uki )k,i of An−1 and such that those charts with domain

included in Ak are ε̄n,k-biLipschitz.

Fix k, j ∈ N and let i ∈ N be the unique index such that V k
j ⊆ Uki . For the sake of brevity,

let us denote by τ the transition map ϕki ◦ (ψkj )−1 : ψkj (V k
j )→ ϕki (V

k
j ) and observe that it is

(1+ε′n,k)-biLipschitz by (5.8). Hence its differential dτ satisfies
∥∥dτ(y)

∥∥,∥∥dτ(y)−1
∥∥ ≤ 1+ε′n,k,

or equivalently dτ(y) ∈ Oε
′
n,k(Rk), for Lk-a.e. point y ∈ ψkj (V k

j ).

Let R : Oε
′
n,k(Rk)→ O(Rk) be given by Proposition 5.8 (with δ

.
= δn) and let us denote

by F kj ⊆ O(Rk) its finite image. For any T ∈ F kj , we define PT
.
= (R ◦ dτ)−1(T ) ⊆ Rk, so

that (PT )T∈Fkj
is an Lk-partition of ψkj (V k

j ). For Lk-a.e. point y ∈ T (PT ) ⊆ Rk we have that
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∥∥∥d
(
ϕki ◦

(
T ◦ ψkj

)−1 − idRk
)
(y)
∥∥∥ =

∥∥∥d
(
τ ◦ T−1 − idRk

)
(y)
∥∥∥

=
∥∥∥d
(
(τ − T ) ◦ T−1

)
(y)
∥∥∥

≤
∥∥∥dτ

(
T−1(y)

)
− T

∥∥∥∥∥T−1
∥∥

=
∥∥∥dτ

(
T−1(y)

)
− T

∥∥∥
(because T−1(y) ∈ PT ) =

∥∥∥dτ
(
T−1(y)

)
−R

(
dτ
(
T−1(y)

))∥∥∥
(by definition of R) ≤ δn.

(5.9)

We therefore define

(5.10) U
k
j,T

.
= (ψkj )−1(PT ) and ϕkj,T

.
= T ◦ ψkj |

U
k
j,T

for every T ∈ F kj ,

so that accordingly

(5.11) An
.
=
{(
U
k
j,T , ϕ

k
j,T

) ∣∣∣ k, j ∈ N, T ∈ F kj
}

is an atlas on (X, d,m), which fulfills ii), iii) of Definition 5.7 and such that the charts with

domain included in Ak are ε̄n,k-biLipschitz. Up to a further refining, we can assume that

the charts in An have compact domain. Given that ε̄n,k ≤ εn holds for every k, n ∈ N, the

statement is proved. �

5.2 Finite-dimensional RCD spaces are strongly m-rectifiable

Let (X, d,m) be a fixed RCD(K,N) space, for some K ∈ R and N ∈ (1,∞). The aim of this

section is to prove that the space (X, d,m) is strongly m-rectifiable.

We shall use the shorthand notation dx to indicate the distance function X 3 y 7→ d(x, y)

from a given point x ∈ X. We start with a simple statement concerning the minimal weak

upper gradient of the distance function from a point:

Proposition 5.10 Let x ∈ X be given. Then it holds that

(5.12) |Ddx| = 1 m-a.e. in X.

Proof. Any RCD(K,N) space is doubling and supports a weak (1, 2)-Poincaré inequality

(as proven in [Stu06b] and [Raj12], respectively). Moreover, recall that the local Lipschitz

constant of dx is identically equal to 1, as it follows from Remark 1.12 and the fact any

RCD(K,N) space is geodesic. Hence the statement is a consequence of Remark 2.23. �

Remark 5.11 We refer to the proof of [GP16a, Proposition 3.1] for an alternative argument,

which does not use the results in [Che99], but relies instead on the additional regularity of

both the space and the function under consideration. �

The ‘metric rectifiability’ of finite-dimensional RCD spaces has been proved in [MN14].

We now recall the main result of such paper; some of the claims we make are implicit in the

various proofs of [MN14], thus we highlight where such passages appear.
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Theorem 5.12 (Rectifiability of RCD spaces) There exists a Borel partition (Ai)
n
i=1 of

the space X – for some n ∈ N with n ≤ N – such that the following property holds: given

any i = 1, . . . , n and ε > 0, there exist an m-partition (U εi,j)j∈N ⊆ B(X) of the set Ai and a

family
{
xεi,j,k : j ∈ N, k = 1, . . . , i

}
of points of X such that

(5.13)
∣∣∣〈∇dxεi,j,k ,∇dxεi,j,k′〉∣∣∣ ≤ ε m-a.e. on U εi,j for every k 6= k′

and so that each map ϕεi,j : X→ Ri, given by ϕεi,j(x)
.
=
(
dxεi,j,1(x), . . . , dxεi,j,i(x)

)
, satisfies

(5.14) ϕεi,j |Uεi,j : U εi,j −→ ϕεi,j(U
ε
i,j) is (1 + ε)-biLipschitz.

Proof. The fact that X can be covered by Borel charts (1 + ε)-biLipschitz to subsets of the

Euclidean space is the main result in [MN14]. The fact that the coordinates of the charts are

distance functions is part of the construction, see [MN14, Theorem 6.5]; more precisely, in

[MN14] the coordinates are distance functions plus well-chosen constants, so that 0 is always

an element of the image, but this has no effect for our discussion.

Thus we are left to prove inequality (5.13). Looking at the construction of the sets U εi,j
in [MN14], we see that they are contained in the set of x’s such that

(5.15) sup
r′∈(0,r)

1

m
(
Br′(x)

) ∫
Br′ (x)

∑
1≤k≤k′≤i

∣∣∣∣D(dxεi,j,k + dxε
i,j,k′√

2
− dxε

i,j,k,k′

)∣∣∣∣2 dm ≤ ε1,

where r, ε1 > 0 are bounded from above in terms of K,N, ε and the points xεi,j,k,k′ are built

together with the xεi,j,k’s (in [MN14] the points xi,j,k, xi,j,k′ , xi,j,k,k′ are called pi, pj , pi + pj ,

respectively). We remark that the choice of r, ε1 affects the construction of the sets U εi,j and

of the points xεi,j,k. In any case, ε1 can be chosen to be smaller than ε2/(
√

2 + 1)2.

Notice that in [MN14] the distance in (5.15) is scaled by a factor r, whose only effect is

that r′ varies in (0, 1) rather than in (0, r). The validity of (5.15) comes from:

• the definition of maximal function – called Mk – in [MN14, Equation/Definition (67)],

• the fact that the sets Ukε1,δ1 , introduced in [MN14, Equation/Definition (70)], are con-

tained in {Mk ≤ ε1} by definition,

• the fact that the charts in [MN14, Theorem 6.5] are defined on Bd̃
δ1
∩ Ukε1,δ1 ⊆ U

k
ε1,δ1

.

We come back to the proof of (5.13). Recall that – being the measure m doubling – the

Lebesgue differentiation theorem holds. Hence from (5.15) and the discussion thereafter we

see that, up to properly choosing ε1 and thus U εi,j , x
ε
i,j,k, x

ε
i,j,k,k′ , we can assume that

∣∣∣∣D(dxεi,j,k + dxε
i,j,k′√

2
− dxε

i,j,k,k′

)∣∣∣∣2 ≤ ∣∣∣∣ ε√
2 + 1

∣∣∣∣2 holds m-a.e. on U εi,j .

Thus to conclude it is sufficient to prove that, given any x1, x2, y ∈ X, we have that∣∣∣∣D(dx1 + dx2√
2

− dy

)∣∣∣∣ ≤ ε√
2 + 1

=⇒
∣∣〈∇dx1 ,∇dx2〉

∣∣ ≤ ε.
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This follows with minor algebraic manipulations from the identity (5.12):

∣∣〈∇dx1 ,∇dx2〉
∣∣ =

∣∣∣∣∣
∣∣∣∣D(dx1 + dx2√

2

)∣∣∣∣2 − |Ddx1 |2 + |Ddx2 |2

2

∣∣∣∣∣
=

∣∣∣∣∣
∣∣∣∣D(dx1 + dx2√

2

)∣∣∣∣2 − 1

∣∣∣∣∣
=

∣∣∣∣∣
∣∣∣∣D(dx1 + dx2√

2

)∣∣∣∣2 − |Ddy|2
∣∣∣∣∣

=

∣∣∣∣∣
〈
∇
(
dx1 + dx2√

2
+ dy

)
,∇
(
dx1 + dx2√

2
+ dy

)〉∣∣∣∣∣
≤ (
√

2 + 1)

∣∣∣∣∣D
(
dx1 + dx2√

2
− dy

)∣∣∣∣∣.
Hence the statement is achieved. �

A key tool we shall make use of is the following structural theorem about Radon measures

on the Euclidean space, proven in [DPR16]. We point out that such statement is only one

of the several consequences of the main deep result in [DPR16]. Recall that the language of

1-dimensional currents in Rd has been briefly illustrated in the last part of Subsection 4.1.3.

Theorem 5.13 Let (Ti)
d
i=1 be 1-dimensional normal currents in Rd, written as Ti = ~Ti ‖Ti‖.

Let µ be a Radon measure on Rd. Suppose that:

i) We have µ� ‖Ti‖ for every i = 1, . . . , d.

ii) The vectors ~T1(x), . . . , ~Td(x) ∈ Rd are linearly independent for µ-a.e. x ∈ Rd.

Then µ is absolutely continuous with respect to the Lebesgue measure on Rd.

The last result we shall need is the Laplacian comparison estimate for distance functions,

obtained in [Gig15]. Such result holds in the sharp form, but we recall it in its qualitative

form, which is sufficient for our purposes:

Theorem 5.14 Let x ∈ X be fixed. Then the distributional Laplacian of dx in X \ {x} is a

measure, i.e. there exists a Radon measure µ on X such that

(5.16)

∫
〈∇f,∇dx〉 dm = −

∫
f dm for every f ∈ LIPbs(X) with spt(f) ⊆ X \ {x}.

When read in terms of measure-valued divergence, the above theorem yields:

Corollary 5.15 Let x ∈ X be fixed. Choose any ψ ∈ LIPc(X) satisfying spt(ψ) ⊆ X \ {x}.
Then the vector field ψ∇dx ∈ L2(TX) belongs to D(divm).

Proof. Since |ψ∇dx| ≤ |ψ|, it is clear that ψ∇dx ∈ L2(TX). Theorem 5.14 above, the very

definition of measure-valued divergence and the Leibniz rule given in Proposition 4.16 ensure

that ψ∇dx ∈ D
(
divm,X \ {x}

)
. On the other hand, the vector field ψ∇dx is equal to 0 on

some neighbourhood of x by construction, therefore it has null measure-valued divergence in

such neighbourhood. Then the conclusion comes from Proposition 4.17. �
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We now have at our disposal all the ingredients to prove the main result of this section:

Theorem 5.16 Given any ε ∈ (0, 1/N), let us consider (U εi,j , ϕ
ε
i,j)i,j as in Theorem 5.12.

Then it holds that

(5.17) (ϕεi,j)∗(m|Uεi,j )� L
i for every i, j.

In particular, any RCD(K,N) space – with K ∈ R and N ∈ (1,∞) – is strongly m-rectifiable.

Proof. By inner regularity of m applied to the sets U εi,j \ {xεi,j,1, . . . , xεi,j,i}, we can assume

that the U εi,j ’s are compact and that xεi,j,k /∈ U εi,j for every k = 1, . . . , i. Now fix i, j. For the

sake of brevity, we write ϕ,U, x1, . . . , xi in place of ϕεi,j , U
ε
i,j , x

ε
i,j,1, . . . , x

ε
i,j,i, respectively.

Step 1. Let (ψδ)δ>0 be a family of Lipschitz [0, 1]-valued maps on X with compact support,

which pointwise converge to χU as δ ↘ 0. Consider the vector fields

vδk
.
= ψδ∇dxk ∈ L

2(TX) for every k = 1, . . . , i.

By Corollary 5.15, we know that vδk ∈ D(divm). Now observe that ϕ : X→ Ri is a Lipschitz

and proper map (i.e. the preimage of a compact set is compact), thus µ
.
= ϕ∗m is a Radon

measure on Ri. If we equip Ri with such measure we have that ϕ : X → Ri has bounded

deformation. By Proposition 4.38 we know that the vector fields

uδk
.
= Prϕ

(
dϕ(vδk)

)
∈ L2

µ(TRi)

belong to D(divµ). Let us consider the embedding ι : L2
µ(TRd)→ L2(Rd,Rd;µ) introduced

in Theorem 4.27 and the map I defined in (4.40). Since the ι(uδk)’s have compact support,

we see from Corollary 4.30 that the 1-dimensional currents

I(uδk) =
−−−→
I(uδk)

∥∥I(uδk)
∥∥ =

ι(uδk)

|uδk|
(
|uδk|µ

)
for any k = 1, . . . , i

are normal. We also notice that it trivially holds

(5.18) µ|{|uδk|>0}
� |uδk|µ =

∥∥I(uδk)
∥∥ for every k = 1, . . . , i.

Step 2. We claim that:

(5.19) The vector fields ∇dx1 , . . . ,∇dxi ∈ L2
loc(TX) are independent on U.

To prove it we shall use the hypothesis ε < 1/N . Let f1, . . . , fi ∈ L∞(m) be chosen so that

the identity
∑i

k=1 fk∇dxk = 0 is verified m-a.e. on U and observe that

0 =
〈
∇dxk ,

i∑
k′=1

fk′ ∇dxk′
〉

= fk |Ddxk |
2 +

∑
k′ 6=k

fk′ 〈∇dxk ,∇dxk′ 〉 m-a.e. on U.

From (5.12), (5.13) and the fact that ε < 1/N , we deduce that

|fk| = |fk| |Ddxk |
2 ≤

∑
k′ 6=k
|fk′ |

∣∣〈∇dxk ,∇dxk′ 〉∣∣ ≤ 1

N

∑
k′ 6=k
|fk′ | m-a.e. on U.

By adding up in k = 1, . . . , i, we infer that
∑

k |fk| ≤
i−1
N

∑
k |fk| holds m-a.e. on U . Since

by Theorem 5.12 we have i ≤ N , this forces
∑

k |fk| = 0 to hold m-a.e. on U , which is (5.19).
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Now notice that Theorem 5.12 grants that ϕ : X→ Ri is of bounded deformation (having

equipped Ri with the measure µ = ϕ∗m), partially invertible on U and such that
(
ϕ|U
)−1

is

Lipschitz. Recall that Lipschitz functions are dense in W 1,2(X), cf. Theorem 2.27. Therefore

Proposition 4.37 grants that the vector fields

u0
k
.
= Prϕ

(
dϕ(χU∇dxk)

)
∈ L2

µ(TRi) for any k = 1, . . . , i

are independent on Imϕ(U), which by Corollary 4.28 implies that

(5.20) ι(u0
1)(x), . . . , ι(u0

i )(x) ∈ Ri are linearly independent for µ-a.e. x ∈ Imϕ(U).

Step 3. The fact that the family (ψδ)δ>0 is equibounded in L∞(m) and pointwise converging

to χU implies that vδk → χU∇dxk in L2(TX) for every k = 1, . . . , i. By continuity of dϕ and

of Prϕ, we deduce that for any k = 1, . . . , i we have uδk → u0
k in L2

µ(TRi) as δ ↘ 0, thus

Theorem 4.27 grants that ι(uδk) → ι(u0
k) in L2(Ri,Ri;µ) as δ ↘ 0. For any δ ≥ 0, let us

define the Borel set Aδ ⊆ Ri – up to µ-negligible sets – as

Aδ
.
=
{
x ∈ Ri

∣∣∣; ι(uδ1)(x), . . . , ι(uδi )(x) are linearly independent
}
.

Since being an independent family is an open condition, the convergence just proved ensures

that for any δn ↘ 0 we have

(5.21) µ
(
A0 \

⋃
n∈N

Aδn
)

= 0.

For any given δ > 0, we apply Theorem 5.13 to the currents I(uδk): since the vectors ι(uδk)

are all nonzero µ-a.e. on Aδ, we have that µ|Aδ � µ|{|uδk|>0}
for every k = 1, . . . , i, whence

µ|Aδn � L
i for every n ∈ N

by (5.18) and Theorem 5.13. Then from (5.21) we deduce that

µ|A0
� Li.

On the other hand, property (5.20) grants that (up to µ-negligible sets) it holds A0 ⊇ Imϕ(U),

which together with the above implies that

Prϕ(χU )µ� Li.

Given that ϕ∗
(
m|U

)
= Prϕ(χU )µ, the proof is finally achieved. �

5.3 Equivalence of two different notions of tangent module

5.3.1 Gromov-Hausdorff tangent bundle TGHX

Let us fix a strongly m-rectifiable metric measure space (X, d,m). Denote by A = (Ak)k∈N its

dimensional decomposition. Then we define the Gromov-Hausdorff tangent bundle on X as:
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Definition 5.17 (GH tangent bundle) We define the Gromov-Hausdorff tangent bundle

of (X, d,m) as the measurable Hilbert bundle TGHX =
(
TGHX, A, π,n

)
on (X, d,m), given by

(5.22) TGHX
.
=
⊔
k∈N

Ak × Rk and n(x, v)
.
= |v|Rk for every k ∈ N and (x, v) ∈ Ak × Rk.

The module Γ2(TGHX) of all L2-sections of such bundle is called Gromov-Hausdorff tangent

module and is denoted by L2(TGHX).

The choice of the measurable structureMGH(X)
.
=
⋂
k(ιk)∗B(Ak×Rk) on TGHX – where

by ιk : Ak ×Rk ↪→ TGHX we mean the inclusion – could seem to be näıve, but we now prove

that it is the only one coherent with some (thus any) atlas on (X, d,m), in the sense that we

are now going to describe in details.

Fix an ε-atlas A =
{

(Uki , ϕ
k
i )
}
k,i

on (X, d,m). For any k, i ∈ N, choose Cki ≥ 1 such that

(5.23) (Cki )−1 Lk|ϕki (Uki )
≤ (ϕki )∗

(
m|Uki

)
≤ Cki Lk|ϕki (Uki )

.

Fix any sequence of radii rj ↘ 0 and define ϕ̂kij : Uki × Uki → Ak × Rk as

(5.24) ϕ̂kij(x̄, x)
.
=

(
x̄ ,
ϕki (x)− ϕki (x̄)

rj

)
for every (x̄, x) ∈ Uki × Uki .

For the sake of brevity, for k, i, j ∈ N let us call

W k
ij
.
= ϕ̂kij(U

k
i × Uki ),

W k .
=
⋃

i,j∈N
W k
ij

(5.25)

and notice that simple computations yield

ϕ̂kij : Uki × Uki →W k
ij is

√
1 + (1 + ε)2/(rj)2 -biLipschitz,

(rj)
k

Cki
(m⊗ Lk)|Wk

ij

≤
(
ϕ̂kij
)
∗
(
(m⊗m)|Uki ×Uki

)
≤ (rj)

k Cki (m⊗ Lk)|Wk
ij

.
(5.26)

In particular, W k
ij ∈ B(Ak × Rk) for every k, i, j, thus accordingly also W k ∈ B(Ak × Rk).

Finally, let us define Nk
.
= (Ak × Rk) \W k.

Lemma 5.18 With the notation just introduced, for every k ∈ N we have that

(5.27) (m⊗ Lk)(Nk) = 0.

Proof. For k ∈ N, we put

Dk
.
=
⋃
i∈N

{
x ∈ Uki

∣∣∣ ϕki (x) is a point of density 1 for ϕki (U
k
i )
}
.

From (5.23) and (1.65), we see that m(Ak \Dk) = 0, hence for every i,m, h ∈ N and x̄ ∈ Dk

there is j ∈ N such that

1 ≥
Lk
(
ϕki (Uki )−ϕki (x̄)

rj
∩Bm(0)

)
Lk
(
Bm(0)

) =
Lk
(
ϕki (U

k
i ) ∩Bmrj

(
ϕki (x̄)

))
Lk
(
Bmrj

(
ϕki (x̄)

)) > 1− 1

h
,
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whence Lk
(
Bm(0) \

⋃
j

(
ϕki (U

k
i )−ϕki (x̄)

)
/rj

)
= 0 for all i,m ∈ N and x̄ ∈ Dk. Therefore by

Fubini theorem we deduce that

(m⊗ Lk)
((
Ak ×Bm(0)

)
\W k

)
=
∑
i∈N

(m⊗ Lk)
((
Uki ×Bm(0)

)
\W k

)
≤
∑
i∈N

∫
Dk

Lk
(
Bm(0) \

⋃
j

(
ϕki (U

k
i )− ϕki (x̄)

)
/rj

)
dm(x̄) = 0,

so that (m⊗ Lk)(Nk) = limm(m⊗ Lk)
((
Ak ×Bm(0)

)
\W k

)
= 0. �

We now endow TGHX with a new σ-algebra M
(
A , (rj)

)
, depending on the atlas A and

the sequence (rj)j . Denote by ῑk : Nk ↪→ TGHX the inclusion maps, then let us define

(5.28) M
(
A , (rj)

) .
=
⋂
k∈N

(
(ῑk)∗B(Nk) ∩

⋂
i,j∈N

(ιk ◦ ϕ̂kij)∗B(Uki × Uki )

)
.

Equivalently, a subset E of TGHX belongs toM
(
A , (rj)

)
if and only if E ∩Nk ∈ B(Nk) for

every k ∈ N and (ϕ̂kij)
−1
(
E ∩ (Ak × Rk)

)
∈ B(Uki × Uki ) for every k, i, j.

Finally, the fact that our choice of the σ-algebraMGH(X) on TGHX is canonical is encoded

in the following proposition:

Proposition 5.19 Let (X, d,m) be a strongly m-rectifiable metric measure space, let A an

ε-atlas and let rj ↘ 0 be a given sequence. Then

(5.29) MGH(X) =M
(
A , (rj)

)
.

Proof. If E ∈ MGH(X) then ι−1
k (E) ∈ B(Ak × Rk) for every k ∈ N, so accordingly E ∩Nk

belongs to B(Nk) and (ϕ̂kij)
−1
(
ι−1
k (E)

)
belongs to B(Uki ×Uki ) for every k, i, j, which proves

that E ∈M
(
A , (rj)

)
.

Conversely, let E ∈M
(
A , (rj)

)
. Hence E ∩Nk ∈ B(Nk) ⊆ B(Ak × Rk), while

F kij
.
= (ϕ̂kij)

−1
(
ι−1
k (E)

)
∈ B(Uki × Uki )

implies that E ∩W k
ij = ϕ̂kij(F

k
ij) ∈ B(Ak × Rk). Thus

ι−1
k (E) = (E ∩Nk) ∪

⋃
i,j

(E ∩W k
ij) ∈ B(Ak × Rk)

for every k ∈ N, which is equivalent to saying that E ∈MGH(X). �

Remark 5.20 This last proposition does not use the strong m-rectifiability of the space but

only its m-rectifiability, as seen by the fact that we did not consider any sequence of εn-atlases.

We chose this presentation because the reason for the introduction of the Gromov-Hausdorff

tangent module is in the statement contained in Subsection 5.3.2, which grants that the space

of its sections is isometric to the abstract tangent module L2(TX) – a result that we can have

only for strongly m-rectifiable spaces. �
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5.3.2 Equivalence between L2(TX) and L2(TGHX)

The main result of this section is the following: the two different notions of tangent modules

described so far – namely the ‘analytic’ tangent module L2(TX) and the ‘geometric’ Gromov-

Hausdorff tangent module L2(TGHX) – can be actually identified. More precisely, given a

strongly m-rectifiable space X whose associated Sobolev space is reflexive, there exists an

isomorphism between L2(TX) and L2(TGHX) which preserves the pointwise norm. Moreover,

such isomorphism can be canonically chosen once an aligned sequence of atlases is given.

Notice that Theorem 5.4 (which is valid on more general m-rectifiable spaces) is equivalent

to the fact that there exists a morphism of L2(TX) into L2(TGHX) with continuous inverse,

thus in particular changing the pointwise norm by a bounded factor. Thus Theorem 5.21

below can be seen as the improvement of Theorem 5.4, which shows that for strongly m-

rectifiable spaces such factor can be taken to be 1.

Theorem 5.21 (Equivalence of L2(TX) and L2(TGHX)) Let (X, d,m) be any strongly m-

rectifiable space such that W 1,2(X) is reflexive. Then there exists an isometric isomorphism

of modules I : L2(TX)→ L2(TGHX), so that in particular it holds that

(5.30)
∣∣I (v)

∣∣ = |v| m-a.e. in X for every v ∈ L2(TX).

Proof. Consider an aligned family (An)n of atlases An =
{

(Uk,ni , ϕk,ni )
}
k,i

on (X, d,m), of

parameters εn
.
= 1/2n and δn

.
= 1/2n, whose existence is guaranteed by Theorem 5.9. Now

let v ∈ L2(TX) and n ∈ N be fixed. For k, i ∈ N, we put V k,n
i

.
= ϕk,ni

(
Uk,ni

)
∈ B(Rk). Recall

that ϕk,ni : Uk,ni → V k,n
i and its inverse are maps of bounded deformation. Thus it makes

sense to consider d̂ϕk,ni
(
χ
Uk,ni

v
)
∈ L2(V k,n

i ,Rk) (recall Theorem 4.39) and we can define

wk,ni (x)
.
=

{ (
d̂ϕk,ni (χ

Uk,ni
v)
)(
ϕk,ni (x)

)
0

for m-a.e. x ∈ Uk,ni ,

for m-a.e. x ∈ X \ Uk,ni .

The bound (4.58) gives

(5.31) |wk,ni |(x) ≤ Lip(ϕk,ni ) |v|(x) for m-a.e. x ∈ Uk,ni ,

so that ‖wk,ni ‖L2(TGHX) ≤ (1 + 2−n)
∥∥|v|∥∥

L2(Uk,ni )
. In particular, the series

∑
i,k w

k,n
i converges

in L2(TGHX) to some vector field In(v) whose norm is bounded by (1 + 2−n)
∥∥|v|∥∥

L2(X)
and

that satisfies

(5.32) χ
Uk,ni

In(v) = wk,ni for every k, i ∈ N.

It is then clear that In : L2(TX) → L2(TGHX) is L∞(m)-linear, continuous and satisfying

the inequality
∣∣In(v)

∣∣ ≤ (1 + 2−n
)
|v| in the m-a.e. sense for all v ∈ L2(TX). We claim that:

(5.33) The sequence (In)n is Cauchy with respect to the operator norm.

In order to prove this, let us take v ∈ L2(TX) and k, i, j ∈ N with Uk,n+1
i ⊆ Uk,nj . For m-a.e.
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point x ∈ Uk,n+1
i , putting for brevity y

.
= ϕk,n+1

i (x), it holds that

∣∣In+1(v)−In(v)
∣∣(x) =

∣∣∣∣(d̂ϕk,n+1
i

(
χ
Uk,n+1
i

v
))(

ϕk,n+1
i (x)

)
−
(

d̂ϕk,nj
(
χ
Uk,n+1
i

v
))(

ϕk,nj (x)
)∣∣∣∣

((4.57), (4.58)) ≤
∥∥∥∥d
(

id
V k,n+1
i

− ϕk,nj ◦
(
ϕk,n+1
i

)−1
)

(y)

∥∥∥∥ ∣∣∣d̂ϕk,n+1
i

(
χ
Uk,n+1
i

v
)∣∣∣(y)

(δn+1 = 2−n−1) ≤ 1

2n+1

∣∣∣d̂ϕk,n+1
i

(
χ
Uk,n+1
i

v
)∣∣∣(ϕk,n+1

i (x)
)

(εn+1 = 2−n−1) ≤ 1

2n+1

(
1 +

1

2n+1

)
|v|(x) ≤ 1

2n
|v|(x).

It follows that
∥∥In+1(v)−In(v)

∥∥
L2(TGHX)

≤ 2−n ‖v‖L2(TX), which by arbitrariness of v

means that it holds ∥∥In+1 −In

∥∥ ≤ 1

2n
,

where the norm in the left hand side is the operator one. Hence
∑∞

n=0

∥∥In+1 −In

∥∥ < +∞
and the claim (5.33) is proved.

Let I : L2(TX)→ L2(TGHX) be the limit of (In)n and notice that – being the limit of

L∞(m)-linear maps – it is also L∞(m)-linear. Moreover, the fact that In(v)→ I (v) strongly

in L2(TGHX) implies that
∣∣In(v)

∣∣ → ∣∣I (v)
∣∣ in L2(X), whence – up to subsequences – we

have that

(5.34)
∣∣I (v)

∣∣(x) = lim
n→∞

∣∣In(v)
∣∣(x) ≤ lim

n→∞

(
1 +

1

2n

)
|v|(x) = |v|(x) for m-a.e. x ∈ X.

In order to prove that I is actually an isometric isomorphism that preserves the pointwise

norm, we explicitly exhibit its inverse functional J . In analogy with the construction just

done, for any w ∈ L2(TGHX) and n ∈ N one can build a unique Jn(w) ∈ L2(TX) such that

(5.35) χ
Uk,ni

Jn(w) =
(

d̂ϕk,ni
)−1
(
w ◦

(
ϕk,ni

)−1
)

for every k, i ∈ N.

By means of the same arguments used above, we can prove that Jn : L2(TGHX)→ L2(TX)

is L∞(m)-linear continuous and converges to a limit functional J : L2(TGHX)→ L2(TX) in

the operator norm as n→∞. The operator J is L∞(m)-linear and satisfies

(5.36)
∣∣J (w)

∣∣ ≤ |w| m-a.e. for every w ∈ L2(TGHX).

Our aim is now to prove that I , J are one the inverse of the other.

Let v ∈ L2(TX) and n ∈ N be fixed. For any k, i ∈ N, we have that (5.32) and (5.35) give

χ
Uk,ni

Jn

(
In(v)

)
= χ

Uk,ni
Jn

(
χ
Uk,ni

In(v)
)

= χ
Uk,ni

Jn

(
d̂ϕk,ni

(
χ
Uk,ni

v
)
◦ ϕk,ni

)
=
(

d̂ϕk,ni
)−1
(

d̂ϕk,ni
(
χ
Uk,ni

v
))

= χ
Uk,ni

v,

therefore Jn ◦ In = idL2(TX). In an analogous way, also In ◦Jn = idL2(TGHX). Thus for

every n ∈ N we have that∥∥J ◦I − idL2(TX)

∥∥ =
∥∥J ◦I −Jn ◦In

∥∥
≤
∥∥J ◦

(
I −In

)∥∥+
∥∥(J −Jn

)
◦In

∥∥
≤‖J ‖

∥∥I −In

∥∥+
∥∥J −Jn

∥∥ sup
n
‖In‖,
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so that by letting n→∞ we conclude that J ◦I = idL2(TX). A symmetric argument yields

also the identity I ◦J = idL2(TGHX). To conclude, note that for any v ∈ L2(TX) we have

|v| =
∣∣J (

I (v)
)∣∣ (5.36)

≤
∣∣I (v)

∣∣ (5.34)

≤ |v| m-a.e. in X.

Hence all inequalities are actually equalities, yielding (5.30) and the conclusion. �

Corollary 5.22 Let (X, d,m) be a strongly m-rectifiable space such that W 1,2(X) is reflexive.

Then (X, d,m) is infinitesimally Hilbertian.

Proof. One can readily show that any couple of vector fields v, w ∈ L2(TGHX) satisfies (3.11).

Hence the space L2(TX) is a Hilbert module, as a consequence of Theorem 5.21. Therefore

the metric measure space (X, d,m) is infinitesimally Hilbertian, as required. �

5.3.3 Geometric interpretation of TGHX

Let us now focus on metric measure spaces (X, d,m) satisfying the following properties:

(X, d,m) is a strongly m-rectifiable space which satisfies (1.66),

having constant dimension k ∈ N and whose reference measure is

given by m = θHk, for some continuous density θ : X→ (0,+∞).

(5.37)

Consider a family An =
{

(Uni , ϕ
n
i )
}
i∈N of εn-atlases on (X, d,m), with compact domains Uni .

We can use the atlases to build Borel maps Ψn : X ×
(

1
rn

X
)
→ TGHX which are ‘bundle

maps’, i.e. which fix the first coordinate and that are approximate isometries as maps on the

second variable, in the following way. We first recall that for any closed subset U of X there

exists a Borel map PU : X→ U such that

d
(
x, PU (x)

)
≤ 2 d(x, U) for every x ∈ X.

This can be built – for instance – by first considering a countable dense subset (xn)n of U ,

then by declaring PU (x)
.
= x for x ∈ U and

PU (x)
.
= xn, where n is the least number such that d(x, xn) ≤ 2 d(x, U),

for x /∈ U . Then given a sequence rn ↘ 0 we set

(5.38) Φn(x, y)
.
=
ϕni
(
PUni (y)

)
− ϕni (x)

rn
∈ Rk for every x ∈ Uni and y ∈ X,

while Φn(x, y)
.
= 0Rk if x /∈

⋃
i U

n
i . Finally, we define

Ψn(x, y)
.
=
(
x,Φn(x, y)

)
for every x, y ∈ X.

Notice that the map Ψn is Borel for every n ∈ N. In the next theorem we show that

for m-a.e. x ∈ X the maps y 7→ Φn(x, y) provide approximate measured isometries from X

rescaled by a factor 1
rn

to Rk, thus showing not only that the tangent space of X at x is Rk,
but also that there is a ‘compatible’ choice of approximate isometries making the resulting

global maps (i.e. Ψn) Borel.
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Theorem 5.23 Let (X, d,m) be a space satisfying (5.37). Fix εn ↘ 0. Let An =
{

(Uni , ϕ
n
i )
}
i

be a family of εn-atlases with compact domains Uni . Then there exists a sequence rn ↘ 0

such that, defining Φn as in (5.38), for m-a.e. x ∈ X the following holds: for every R > ε > 0

there is n̄ ∈ N so that for every n ≥ n̄ we have∣∣∣∣∣∣Φn(x, y0)− Φn(x, y1)
∣∣
Rk −

d(y0, y1)

rn

∣∣∣∣ ≤ ε for every y0, y1 ∈ BrnR(x),

BR−ε(0Rk) ⊆ Bε
({

Φn(x, y) : y ∈ BrnR(x)
})
,

Φn(x, ·)∗
(
mx
rn |BrnR(x)

)
⇀ ω−1

k L
k
|BR(0)

as n→∞.

(5.39)

In particular, the space
(
X, d/rn,m

x
rn , x

)
pmGH-converges to

(
Rk, dRk ,Lk/ωk, 0

)
as n→∞.

Proof. For any i, n ∈ N, let us set V n
i

.
= ϕni (Uni ). From (5.3) we see that for m-a.e. x ∈ Uni

the point ϕni (x) is of density 1 for V n
i . Let us call D′ the set of all the points x ∈ X that

satisfy Hk
(
Br(x) ∩ Uni(n)

)
/(ωk r

k) → 1 as r ↘ 0 for every n ∈ N, where i(n) ∈ N is chosen

so that x ∈ Uni(n). Given that each domain Uni is countably Hk-rectifiable, we deduce from

Theorem B.2 that Hk(X \D′) = 0. Hence the set

D
.
= D′ ∩

⋂
n

⋃
i

{
x ∈ Uni

∣∣∣ x, ϕni (x) are points of density 1 for Uni , V
n
i , respectively

}
is Borel and m(X \D) = 0. Fix x̄ ∈ D and R > ε > 0. Let i(n) ∈ N be such that x̄ ∈ Uni(n).

For brevity, we call Bn
.
= BrnR(x̄), Un

.
= Uni(n), Vn

.
= V n

i(n) and ϕn
.
= ϕni(n). Let us denote

avgn
.
=

1

Hk(Bn ∩ Un)

∫
Bn∩Un

θ dHk for every n ∈ N.

Step 1. Fix ε̄ < ε/max{4R,R − ε} positive and repeatedly apply property (1.66) to x̄, Un
and to ϕn(x̄), Vn, with ε̄ in place of ε, to find a sequence rn ↘ 0 such that for n ∈ N it holds

d
(
y, PUn(y)

)
≤ 2 ε̄ rnR for every y ∈ Bn,

dRk(z, Vn) ≤ ε̄
∣∣z − ϕn(x̄)

∣∣ for every z ∈ BrnR
(
ϕn(x̄)

)
.

(5.40)

Furthermore, since x̄ ∈ D and the map θ is continuous, we can also require that

lim
n→∞

Hk(Bn ∩ Un)

ωk rknR
k

= lim
n→∞

(1 + εn)k Lk
(
Vn ∩BrnR/(1+εn)

(
ϕn(x̄)

))
ωk rknR

k
= 1,∣∣θ(x)− avgn

∣∣ ≤ 1

n
for every n ∈ N+ and x ∈ Bn ∩ Un,

lim
n→∞

m(Bn ∩ Un)

m
(
Brn(x̄)

) = Rk.

(5.41)

From the fact that ϕn is (1 + εn)-biLipschitz, we see that for any y0, y1 ∈ Bn it holds that∣∣Φn(x̄, y0)− Φn(x̄, y1)
∣∣
Rk ≤

1 + εn
rn

d
(
PUn(y0), PUn(y1)

)
(by (5.40)) ≤ 1 + εn

rn

(
d(y0, y1) + 4 ε̄ rnR

)
.

Similarly, we get
∣∣Φn(x̄, y0)− Φn(x̄, y1)

∣∣
Rk ≥

1
(1+εn)rn

(
d(y0, y1)− 4 ε̄ rnR

)
, thus∣∣∣∣∣∣Φn(x̄, y0)− Φn(x̄, y1)

∣∣− d(y0, y1)

rn

∣∣∣∣ ≤ 2R max

{
2(1 + εn)ε̄+ εn,

2ε̄+ εn
1 + εn

}
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for every y0, y1 ∈ BrnR(x̄). Since ε̄ < ε/(4R), this is sufficient to show that the first claim in

(5.39) is fulfilled for n large enough.

Step 2. For the second condition in (5.39), pick any w ∈ Rk such that |w| < R − ε and let

us put zn
.
= ϕn(x̄) + rnw. Thus the point zn belongs to BrnR

(
ϕn(x̄)

)
. From the second line

in (5.40) and the compactness of Un, we deduce that there exists yn ∈ Un such that

(5.42)
∣∣zn − ϕn(yn)

∣∣ ≤ ε̄ rn|w|.
Since the right hand side is bounded from above by ε̄ rnR, for n sufficiently large it is bounded

above by ε, so that to conclude it suffices to show that – independently on the choice of w

– for all n sufficiently large it holds that yn ∈ Bn. To see this, recall that the inverse of the

map ϕn is (1 + εn)-Lipschitz to get that

d(x̄, yn) ≤ (1 + εn)
∣∣ϕn(x̄)− ϕn(yn)

∣∣ ≤ (1 + εn)
(∣∣ϕn(x̄)− zn

∣∣+
∣∣zn − ϕn(yn)

∣∣)
(by (5.42)) ≤ rn(1 + εn)(1 + ε̄) |w| ≤ rn(1 + εn)(1 + ε̄)(R− ε).

Since ε̄ < ε/(R − ε) we have that (1 + ε̄)(R − ε) < R, therefore for n sufficiently large we

have that rn(1 + εn)(1 + ε̄)(R− ε) < rnR, which concludes the proof of the second condition

in (5.39).

Step 3. Let us now denote ψn
.
= ϕn ◦PUn −ϕn(x̄), so that Φn(x̄, ·) = ψn/rn. We have that

(5.43) Lk
(
ψn(Bn ∩ Un)

rn
∆BR(0)

)
−→ 0 when n→∞,

as one can easily prove by using (5.41), which grants that Hk(Bn ∩ Un)/Hk(Bn)→ 1.

To prove the third claim in (5.39), fix f ∈ Cc(Rk). Observe that
∫
f dΦn(x̄, ·)∗

(
mx̄
rn |Bn

)
can be written as Q1(n)m(Bn ∩ Un)/m

(
Brn(x̄)

)
+Q2(n) +Q3(n), where

Q1(n)
.
=

1

Hk(Bn ∩ Un)

∫
f( · /rn) d(ψn)∗

(
Hk|Bn∩Un

)
,

Q2(n)
.
=

1

m
(
Brn(x̄)

) ∫
Bn∩Un

f ◦ Φn(x̄, ·)
(
θ − avgn

)
dHk,

Q3(n)
.
=

1

m
(
Brn(x̄)

) ∫
Bn\Un

f ◦ Φn(x̄, ·) dm.

First of all, it directly follows from the last two statements in (5.41) that∣∣Q2(n)
∣∣ ≤ 1

n

m(Bn ∩ Un)

m
(
Brn(x̄)

) max
Rk
|f | −→ 0,

∣∣Q3(n)
∣∣ ≤ m(Bn \ Un)

m
(
Brn(x̄)

) max
Rk
|f | −→ 0.

(5.44)

Moreover, (B.6) yields (1 + εn)−k Lk|ψn(Bn∩Un)
≤ (ψn)∗

(
Hk|Bn∩Un

)
≤ (1 + εn)k Lk|ψn(Bn∩Un)

,

thus accordingly it holds that

(5.45)
(1 + εn)−k rkn
Hk(Bn ∩ Un)

∫
ψn(Bn∩Un)

rn

f dLk ≤ Q1(n) ≤ (1 + εn)k rkn
Hk(Bn ∩ Un)

∫
ψn(Bn∩Un)

rn

f dLk.

Finally, by recalling (5.43) we can immediately deduce that∣∣∣∣ ∫ψn(Bn∩Un)
rn

f dLk −
∫
BR(0)

f dLk
∣∣∣∣ ≤ Lk (ψn(Bn ∩ Un)

rn
∆BR(0)

)
max
Rk
|f | −→ 0.
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Therefore the first line in (5.41) gives Q1(n) → (ωk R
k)−1

∫
BR(0) f dLk, which together with

(5.44) and the third line in (5.41) grant that ω−1
k

∫
BR(0) f dLk = limn

∫
f dΦn(x̄, ·)∗

(
mx̄
rn |Bn

)
.

This means that Φn(x, ·)∗
(
mx̄
rn |Bn

)
⇀ ω−1

k L
k|BR(0)

, thus proving the statement. �

By putting together several results obtained so far, it is then easy to prove the following:

Theorem 5.24 (Euclidean tangent cone) Let (X, d,m) be a strongly m-rectifiable space,

whose dimensional decomposition is denoted by (Ak)k∈N. Then for every k ∈ N it holds that

(5.46) Tan[X, d,m, x] =
{[

Rk, dRk ,Lk/ωk, 0
]}

for m-a.e. x ∈ Ak.

Proof. Let the sequence (Nk)k be as in Remark 5.2 and define A′k
.
= Ak \Nk for every k ∈ N.

Fix k ∈ N and write m|A′k
= θkHk|A′k

for a suitable Borel density θk : A′k → (0,+∞). Let

Aik
.
=
{
x ∈ A′k

∣∣ 2i ≤ θk(x) < 2i+1
}

for every i ∈ Z,

then (Aik)i constitutes a Borel partition of A′k. Thus fix i ∈ Z. By arguing as in the proof

of Proposition 5.6, one can see that limr→0 m
(
Br(x)

)
/(ωk r

k) = θk(x) for m-a.e. x ∈ Aik. By

applying Lusin theorem and Egorov theorem, we can cover m-a.a. of Aik with countably many

compact sets Aijk ⊆ A
i
k, where j ∈ N, in such a way that the maps θk|

Aijk
are continuous and

∣∣∣∣∣m
(
Br(x)

)
ωk rk

− θk(x)

∣∣∣∣∣ < 2i−1 for every x ∈ Aijk and r > 0 smaller than some rijk > 0.

In particular, it holds that

ωk r
k 2i−1 < m

(
Br(x)

)
< 5ωk r

k 2i−1 for every x ∈ Aijk and r < rijk .

Therefore Aijk fulfills the hypotheses of Lemma 1.37, so accordingly each space Aijk (with the

restricted distance and measure) satisfies (5.37). So Theorem 5.23 and Proposition 1.43 give

Tan
[
Aijk , d|Aijk ×Aijk

, m|
Aijk
, x
]

=
{[

Rk, dRk , Lk/ωk, 0
]}

for m-a.e. x ∈ Aijk ,

since rn ↘ 0 in Theorem 5.23 can be actually chosen among the subsequences of any fixed

sequence converging to 0 and the pmG topology is metrizable, cf. [GMS15, Theorem 3.15].

Given that m-a.e. point of Aijk is of density 1 for Aijk itself and m is pointwise doubling at

m-a.e point by Proposition 5.6, we deduce from Proposition 1.41 that
[
Rk, dRk ,Lk/ωk, 0

]
is

the unique element of Tan[X, d,m, x] for m-a.e. x ∈ Aijk . By arbitrariness of i and j, we finally

conclude that (5.46) is satisfied, thus proving the statement. �
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As already seen in Section 4.2, a second-order differential calculus can be built over any

RCD(K,∞) space (X, d,m). In particular, there is a well-defined notion of covariant derivative

for vector fields on X. In the classical smooth Riemannian framework, covariant derivative

and parallel transport are two closely related concepts, thus – given the existence of covariant

derivative on RCD spaces – it is natural to ask: is there a notion of parallel transport in the

same setting? In this chapter we address such question, our main results being the following:

• We provide a precise framework and give a rigorous meaning to the ‘PDE’ defining the

parallel transport (see Definitions 6.19, 6.22 and 6.26).

• By the nature of our definition, norm-preservation and linearity of the parallel transport

can be immediately derived; these in turn will give uniqueness (see Corollary 6.28).

• On RCD spaces satisfying a certain regularity property, we are able to prove existence

of the parallel transport (see Subsection 6.2.2). The regularity condition that we need

109
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concerns the existence of Sobolev vector fields with bounded covariant derivative (see

Definition 6.34 for the precise assumption).

We believe that in fact the parallel transport exists on any RCD space, but we are currently

unable to get the full proof – so that the theory of parallel transport on RCD spaces is still

incomplete. An insight on why this should not be too easy to prove is the following: on a space

where the parallel transport exists, the dimension of the tangent module must be constant

(see Theorem 6.32) and thanks to the results of Chapter 5 this would in turn imply that

the dimension of the pmGH-limits of the rescaled space is constant. This very same result

has been extremely elusive even in the context of Ricci limit spaces and has been obtained

by Colding-Naber in [CN12]; in the RCD setting, the problem of the constant dimension has

been brilliantly solved by E. Brué and D. Semola in [BS18a].

Moreover, we remark that the assumptions we shall make in order to obtain existence

of the parallel transport are rather ad hoc and not really interesting from a geometric per-

spective: the intent with our existence result is just to show that the approach we propose is

non-void. Let us also mention that in Subsection 6.3 (see Theorem 6.39) we prove that any

RCD(K,∞) space admits a basis of the tangent module made of vector fields in H1,2
C (TX).

This means that if we relax the condition of ‘bounded covariant derivative’ into ‘2-integrable

covariant derivative’, then every RCD space meets the requirement.

Let us now briefly describe our approach. The crucial idea is that we do not study the

problem of parallel transport along a single Lipschitz curve, but rather we investigate the

problem along π-a.e. curve at the same time, where π is a given Lipschitz test plan over X

(recall Definition 4.22). The advantage of working with these plans rather than with single

curves is that they are naturally linked to the Sobolev calculus and thus to the functional-

analytic machinery described in Chapter 4.

Let us now pretend – for the sake of this introduction – that our space X is in fact a

smooth Riemannian manifold. In this case, a time-dependent vector field (vt) along π is

(roughly said) given by a choice of time-dependent vector fields (vγt ) on X for π-a.e. curve γ.

Then we say that (vt) is a parallel transport along π provided for π-a.e. curve γ the vector

field t 7→ vγt (γt) is a parallel transport along γ. This happens if and only if

for π-a.e. γ we have that ∂tv
γ
t +∇γ′tv

γ
t = 0 for a.e. t.

A relevant part of this chapter is devoted to showing that the above PDE can be stated even

in our non-smooth setting, the key point being that it is possible to define a closed operator

acting on 2-integrable vector fields along π that plays the role of (∂t +∇γ′t); for more details,

see Definitions 6.17, 6.19 and Proposition 6.20.

We conclude by recalling that A. Petrunin proved in [Pet98] that a certain notion of

parallel transport exists along geodesics on Alexandrov spaces (i.e. metric spaces having a

synthetic notion of sectional curvature bounded from below, see for instance [BBI01]), while

uniqueness for his construction is still an open problem. It would be also interesting to

compare our notion of parallel transport with the one proposed by Petrunin (we point out

that any Alexandrov space is an RCD space, cf. [Pet10]).

The whole discussion contained in this chapter is taken from the paper [GP17].
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6.1 Introduction of appropriate functional spaces

Throughout all this section, (X, d,m) is a given RCD(K,∞) space for some K ∈ R, while π is

any fixed test plan over (X, d,m). Recall the classes TestF(X) of test functions and TestV(X)

of test vector fields, defined in (4.66) and (4.80), respectively.

6.1.1 Test vector fields along π

To begin with, we define the space of vector fields along π as

(6.1) VF(π)
.
=
∏
t∈[0,1]

e∗tL
2(TX).

In other words, VF(π) is the collection of all maps assigning to each t ∈ [0, 1] an element of

the module e∗tL
2(TX); it is a vector space with respect to the natural pointwise operations.

To each V ∈ VF(π) we associate the function [[V ]] : [0, 1]→ [0,+∞), defined by

(6.2) [[V ]]t
.
= ‖Vt‖e∗tL2(TX) for every t ∈ [0, 1].

The subspace TestVF(π) ⊂ VF(π) of test vector fields along π is defined as

(6.3) TestVF(π)
.
=

{
t 7→

n∑
i=1

ϕi(t)χAi e∗t vi

∣∣∣∣ n ∈ N+, Ai ∈ B
(
Γ(X)

)
, ϕi ∈ LIP

(
[0, 1]

)
and vi ∈ TestV(X) for every i = 1, . . . , n

}
.

Since TestV(X) ⊆ L∞(TX) by definition, we deduce that for any V ∈ TestVF(π) the

function (γ, t) 7→ |Vt|(γ) belongs to L∞(L1 × π).

Proposition 6.1 (Continuity of test vector fields along π) For V,W ∈ TestVF(π) it

holds that the mapping

(6.4) [0, 1] 3 t 7−→ 〈Vt,Wt〉 ∈ L1(π) is continuous.

In particular, the function [[V ]] : [0, 1]→ [0,+∞) is continuous for every V ∈ TestVF(π).

Proof. By linearity, it is clear that it is sufficient to prove the claim for vector fields V , W of

the form V = χA e∗t v, W = χB e∗tw – where v, w ∈ TestV(X). In this case, the claim (6.4) is

a direct consequence of the equality

〈Vt,Wt〉 = χA∩B 〈v, w〉 ◦ et

and Theorem 2.15. The last statement follows by choosing W = V . �

We now define two norms on the space TestVF(π):

‖V ‖L 2(π)
.
=

√∫ 1

0
[[V ]]2t dt,

‖V ‖C (π)
.
= max

t∈[0,1]
[[V ]]t.

(6.5)

Proposition 6.1 ensures that t 7→ [[V ]]t is Borel, thus ‖ · ‖L 2(π) is well-defined; routine com-

putations show that ‖ · ‖L 2(π), ‖ · ‖C (π) are norms on TestVF(π) with ‖ · ‖L 2(π) ≤ ‖ · ‖C (π).
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We now want to show that
(
TestVF(π), ‖ · ‖C (π)

)
is separable by exhibiting a countable

dense subset. To this aim, we first choose three countable families F1 ⊆
{

open sets of Γ(X)
}

,

F2 ⊆ LIP
(
[0, 1]

)
and F3 ⊆ TestV(X) such that:

Given A ⊆ Γ(X) Borel and ε > 0, there exists U ∈ F1 with π(A∆U) < ε,

F2 is dense in C([0, 1]) and stable by product and Q-linear combinations,

F3 is a Q-vector space of functions in W 1,2(X) whose gradients generate L2(TX).

We proceed in the following way:

F1: Since Γ(X) is separable, there exists a countable family F̃1 of open subsets of Γ(X) that

is a neighbourhood basis for each point γ ∈ Γ(X). Let us denote by F1 the set of finite

unions of elements of F̃1, so that F1 is countable. Fix A ∈ B
(
Γ(X)

)
and ε > 0. The

measure π is regular, since
(
Γ(X), dΓ(X)

)
is complete and separable. By inner regularity

of π, there exists a compact subsetK ⊆ A such that π(A\K) < ε/2. By outer regularity

of π, there exists V ⊆ Γ(X) open such that K ⊆ V and π(V \K) < ε/2. We can then

associate to any γ ∈ K a set Uγ ∈ F̃1 such that γ ∈ Uγ ⊆ V . By compactness of K,

one has K ⊆ Uγ1 ∪ . . . ∪ Uγn ⊆ V for some finite choice γ1, . . . , γn ∈ K. Therefore let

us call U
.
= Uγ1 ∪ . . . ∪ Uγn ∈ F1. We have that

π(A∆U) = π(A \ U) + π(U \A) ≤ π(A \K) + π(V \K) < ε.

F2: The existence of such F2 stems from the separability of C
(
[0, 1]

)
.

F3: Since (X, d,m) is infinitesimally Hilbertian, we have that W 1,2(X) is reflexive and there-

fore separable by (2.27). Let F3 be any countable dense Q-vector subspace of W 1,2(X).

Since gradients of functions in W 1,2(X) generate the tangent module L2(TX), the same

holds for functions in F3.

We now define the class TestVFN(π) of test vector fields along π as

(6.6) TestVFN(π)
.
=

{
t 7→

n∑
i=1

ψi(t)χUi e∗t∇fi
∣∣∣∣ n ∈ N+ and Ui ∈ F1, ψi ∈ F2,

fi ∈ F3 for every i = 1, . . . , n

}
.

Clearly TestVFN(π) is a countable subset of TestVF(π). Notice that the inequalities

[[χA e∗t v − χA e∗tw]]t ≤
√
C(π) ‖v − w‖L2(TX),

[[χA e∗t v − χU e∗t v]]t ≤
√
π(A∆U) ‖v‖L∞(TX),

are valid for any t ∈ [0, 1], A,U ⊆ Γ(X) Borel and v, w ∈ L2(TX), whence by recalling the

very definition of pullback module we see that:

(6.7) For any t ∈ [0, 1], the set
{
Wt

∣∣W ∈ TestVFN(π)
}

is dense in e∗tL
2(TX).

Lemma 6.2 (Separability of TestVF(π)) The family TestVFN(π) is dense in TestVF(π)

with respect to the norm ‖ · ‖C (π), thus also with respect to the norm ‖ · ‖L 2(π).



6.1. Introduction of appropriate functional spaces 113

Proof. Let V ∈ TestVF(π) be arbitrary. Let ε > 0 and t0 ∈ [0, 1]. There is W ∈ TestVFN(π)

such that [[V −W ]]t0 < ε by (6.7). Since t 7→ [[V −W ]]2t = [[V ]]2t + [[W ]]2t − 2
∫
〈Vt,Wt〉 dπ is

a continuous function, we see that [[V −W ]]t < ε for every t in a neighbourhood of t0. By

compactness of [0, 1], we can find a finite number of open intervals I1, . . . , In covering [0, 1]

and elements W1, . . . ,Wn ∈ TestVFN(π) such that

(6.8) [[V −Wi]]t < ε for every i = 1, . . . , n and t ∈ Ii ∩ [0, 1].

By multiplying Wi by an appropriate function in F2, we can also assume that

(6.9) [[Wi]]t < ‖V ‖C (π) + 2ε for every t ∈ [0, 1].

Let (φi)i be a Lipschitz partition of the unity subordinate to the cover made with the Ii’s.

Moreover, for any i let ψi ∈ F2 be such that
∣∣φi(t)− ψi(t)∣∣ < ε for every t ∈ [0, 1]. Then we

have that
(
t 7→Wt

.
=
∑

i ψi(t)Wi,t

)
∈ TestVFN(π) and

[[V −W ]]t ≤ [[V −
∑

iφi(t)Wi]]t + [[
∑

i

(
ψi(t)− φi(t)

)
Wi]]t

(6.8),(6.9)

≤ ε+ ε(‖V ‖C (π) + 2ε)

for any t ∈ [0, 1]. The conclusion follows from the arbitrariness of ε > 0. �

6.1.2 The space L 2(π)

Let us define the class of Borel vector fields along the test plan π:

Definition 6.3 (Borel vector fields along π) We say that V ∈ VF(π) is Borel provided

(6.10) [0, 1] 3 t 7−→
∫
〈Vt,Wt〉 dπ is a Borel function

for every W ∈ TestVFN(π).

Notice that – thanks to Lemma 6.2 – this notion would remain unaltered if we required

the identity (6.10) to hold for any W ∈ TestVF(π). Furthermore, Proposition 6.1 ensures

that test vector fields are Borel. We have the following basic result:

Proposition 6.4 Let V ∈ VF(π) be Borel. Then the map [[V ]] : [0, 1]→ [0,∞) is Borel.

Proof. From (6.7) we deduce that

[[V ]]2t = sup
W∈TestVFN(π)

(
2

∫
〈Vt,Wt〉 dπ − [[W ]]2t

)
for every t ∈ [0, 1],

whence the statement follows. �

We can now define the space L 2(π) in the following way:

Definition 6.5 (The space L 2(π)) The space L 2(π) is the space of all V ∈ VF(π) with

(6.11) ‖V ‖2L 2(π)
.
=

∫ 1

0
[[V ]]2t dt =

∫ 1

0

∫
|Vt|2 dπ dt < +∞,

where we identify V, Ṽ ∈ VF(π) if Vt = Ṽt for a.e. t ∈ [0, 1].
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Clearly
(
L 2(π), ‖ · ‖L 2(π)

)
is a normed space, wherein TestVF(π) is embedded. By

adapting the classical arguments concerning the standard L2-spaces, we obtain the following:

Proposition 6.6 The normed space L 2(π) is a Hilbert space. Moreover, if Vn → V strongly

in L 2(π), then there is a subsequence such that Vn,t → Vt in e∗tL
2(TX) for a.e. t ∈ [0, 1].

Proof. It is clear that the L 2(π)-norm comes from the scalar product

〈V,W 〉L 2(π)
.
=

∫ 1

0

∫
〈Vt,Wt〉dπ dt.

To conclude the proof, we show that if (Vn)n is a sequence of Borel vector fields in L 2(π)

such that
∑

n ‖Vn+1 − Vn‖L 2(π) < ∞, then such sequence has a limit V ∈ L 2(π) and for

almost every t ∈ [0, 1] it holds that Vn,t → Vt in e∗tL
2(TX).

Define the Borel function g : [0, 1]→ [0,+∞] as g
.
=
∑

n[[Vn+1 − Vn]]. Notice that, since

∥∥∥ N∑
n=1

[[Vn+1 − Vn]]
∥∥∥
L2(0,1)

≤
N∑
n=1

‖Vn+1 − Vn‖L 2(π) ≤
∞∑
n=1

‖Vn+1 − Vn‖L 2(π) <∞

for every N ∈ N, we have that g ∈ L2(0, 1). Let N
.
=
{
t ∈ [0, 1] : g(t) = +∞

}
and observe

that for every t ∈ [0, 1] \N it holds that

(6.12)
∞∑
n=1

‖Vn+1,t − Vn,t‖e∗tL2(TX) =
∞∑
n=1

[[Vn+1 − Vn]]t = g(t) <∞,

proving that (Vn,t)n is a Cauchy sequence in e∗tL
2(TX). Then define

Vt
.
=

{
limn Vn,t ∈ e∗tL

2(TX)

0 ∈ e∗tL
2(TX)

if t ∈ [0, 1] \N,
if t ∈ N.

For every W ∈ TestVF(π) we have
∫
〈Vt,Wt〉dπ = limn

∫
〈Vn,t,Wt〉 dπ for all t ∈ [0, 1] \N ,

hence the function [0, 1] 3 t 7→
∫
〈Vt,Wt〉dπ is Borel and – by arbitrariness of W – this shows

that V is Borel. Since trivially we have [[V ]]t ≤ [[V1]]t +
∑∞

n=1[[Vn+1 − Vn]]t, by (6.12) we see

that V ∈ L 2(π). To check that Vn → V in L 2(π) we use the fact that, again by (6.12), the

sequence [[V − Vn]]t is dominated in L2(0, 1) and that for every t ∈ [0, 1] \N it holds

lim
n→∞

[[V − Vn]]t ≤ lim
n→∞

lim
m→∞

m∑
i=n

[[Vi+1 − Vi]]t
(6.12)

= 0,

so that the conclusion follows by the dominated convergence theorem. �

Proposition 6.7 (Density of TestVFN(π) in L 2(π)) It holds that the space TestVFN(π)

is dense in L 2(π). In particular, the space L 2(π) is separable.

Proof. Let (Zk)k be an enumeration of the elements of TestVFN(π). Now pick a Borel vector

field V ∈ L 2(π) and choose ε > 0. Then let G̃k
.
=
{
t ∈ [0, 1] : [[V − Zk]]t < ε

}
for all k ∈ N.

We put G1
.
= G̃1 and Gk

.
= G̃k \ (G̃1 ∪ . . .∪ G̃k−1) for k > 1. Then (6.7) grants that (Gk)k≥1

constitutes a Borel partition of [0, 1].
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For m ∈ N ∪ {∞} define Wm ∈ L 2(π) as Wm,t
.
=
∑m

k=1
χGk(t)Zk,t. Observe that we

have ‖W∞ − V ‖L 2(π) < ε by definition of Gk. Moreover, for each m ≥ 1 one has that

‖Wm −W∞‖2L 2(π) =

∞∑
k=m+1

∫
Gk

[[Zk]]
2
t dt ≤

∫
⋃
k>mGk

2
(
[[V ]]2t + ε2

)
dt,

so that accordingly limm→∞ ‖Wm −W∞‖L 2(π) = 0 by dominated convergence theorem.

Hence to conclude it is sufficient to show that each Wm belongs to the L 2(π)-closure

of TestVFN(π). In turn, this would follow if we proved that for any Z ∈ TestVFN(π) and

any Borel set G ⊆ [0, 1] the vector field χG Z belongs to the L 2(π)-closure of TestVFN(π).

To see this, simply let (ϕn)n ⊆ LIP(
[
0, 1]

)
be uniformly bounded and a.e. converging to χG.

Note that ϕn Z ∈ TestVF(π) and that an application of the dominated convergence theorem

shows that ϕn Z → χG Z in L 2(π). This completes the proof. �

Now consider the speed π′t, associated to any test plan π by Theorem 4.20.

Proposition 6.8 The (equivalence class up to a.e. equality of the) map t 7→ π′t is an element

of the space L 2(π).

Proof. We have that π′t ∈ e∗tL
2(TX) for a.e. t ∈ [0, 1]. Moreover,∫ 1

0

∫
|π′t|

2
dπ dt

(4.26)
=

∫ 1

0

∫
|γ̇t|2 dπ(γ) dt < +∞

by the very definition of test plan. Hence we only need to show that t 7→ π′t has a Borel

representative, in the sense of Definition 6.3.

Notice that for any f ∈W 1,2(X) by Proposition 4.21 we have that the map t 7→ (e∗tdf)(π′t)

admits a Borel representative. Therefore the same holds for the map t 7→ ψ(t)χU 〈e∗t∇f,π′t〉
for every ψ ∈ LIP

(
[0, 1]

)
and U ⊆ Γ(X) Borel. Hence there is a Borel negligible set N ⊆ [0, 1]

such that for every V ∈ TestVFN(π) the function t 7→
∫
〈Vt,π′t〉dπ, set to 0 on N , is Borel.

This is sufficient to conclude. �

We conclude the subsection by pointing out that L 2(π) can be also seen as the pullback

of L2(TX) via the evaluation map e : Γ(X)× [0, 1]→ X, defined as e(γ, t)
.
= γt. To this aim,

let us start by defining the following operations:

i) Given any f ∈ L∞(π × L1) and V ∈ L 2(π), we define fV ∈ L 2(π) as

(6.13) (fV )t
.
= f(·, t)Vt for L1-a.e. t ∈ [0, 1].

ii) To each V ∈ L 2(π) we associate the function |V | ∈ L2(π × L1), defined by

(6.14) |V |(γ, t) .
= |Vt|(γ) for (π × L1)-a.e. (γ, t) ∈ Γ(X)× [0, 1].

It is clear that these operations give L 2(π) the structure of an L2(π×L1)-normed module.

We define the linear continuous operator Φ : L2(TX)→ L 2(π) as

(6.15) Φ(v)t
.
= e∗t v for L1-a.e. t ∈ [0, 1].

We then have the following identification:
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Proposition 6.9 (L 2(π) as pullback) It holds that
(
L 2(π),Φ

) ∼= (e∗L2(TX), e∗
)
, i.e.∣∣Φ(v)

∣∣ = |v| ◦ e holds (π × L1)-a.e. for any v ∈ L2(TX),{
Φ(v)

∣∣ v ∈ L2(TX)
}

generates L 2(π) as a module.
(6.16)

Proof. The first in (6.16) follows by noticing that
∣∣Φ(v)

∣∣(γ, t) = |e∗t v|(γ) =
(
|v| ◦e

)
(γ, t) holds

for (π × L1)-a.e. (γ, t), the second one stems from the density of TestVF(π) in L 2(π). �

Notice that the notion of pullback module
(
e∗L2(TX), e∗

)
makes no (explicit) reference

to the concept of ‘test vector field’, as defined in Subsection 6.1.1. Thus this last proposition

is also telling us that the choice of using these test objects to check Borel regularity – which

a priori might seem arbitrary – leads in fact to a canonical interpretation of L 2(π).

Remark 6.10 (L 2(π) as direct integral) The construction of L 2(π) can be summarized

by saying that such space is the direct integral of the e∗tL
2(TX)’s, the space of Borel vector

fields being the so-called ‘measurable sections’ and the set TestVFN(π) being the one used

to check measurability. �

6.1.3 The space C (π)

Here we introduce and briefly study those vector fields in VF(π) which are ‘continuous in

time’. We start with the following definition:

Definition 6.11 (The space C (π)) Let V ∈ VF(π) be given. Then we say that V is a

continuous vector field along π provided

(6.17) [0, 1] 3 t 7−→
∫
〈Vt,Wt〉 dπ is continuous

for every W ∈ TestVFN(π) and

(6.18) [0, 1] 3 t 7−→ [[V ]]t is continuous.

We denote the family of all continuous vector fields by C (π). For every V ∈ C (π), we set

(6.19) ‖V ‖C (π)
.
= max

t∈[0,1]
[[V ]]t.

Lemma 6.2 ensures that this definition would be unaltered if we required (6.17) to hold

for any W ∈ TestVF(π). Moreover, Proposition 6.1 grants that TestVF(π) ⊆ C (π).

It is not obvious that C (π) is a vector space, the problem being in checking that (6.18)

holds for any linear combination. This will be a consequence of the density of TestVFN(π)

in C (π), which is part of the content of the next result:

Proposition 6.12 It holds that the space
(
C (π), ‖ · ‖C (π)

)
is a separable Banach space,

wherein the set TestVFN(π) is dense.

Proof. Let V1, V2 ∈ C (π) be given. Notice that – by using (6.17), (6.18) and by arguing

exactly as in the proof of Lemma 6.2 – we can find (W1,n)n, (W2,n)n ⊆ TestVFN(π) such that

the functions t 7→ [[Vi −Wi,n]]t uniformly converge to 0 as n→∞ for i = 1, 2.

Now observe that – since W1,n + W2,n ∈ TestVFN(π) – the function t 7→ [[W1,n + W2,n]]t
is continuous and for every t ∈ [0, 1] we have∣∣[[V1 + V2]]t − [[W1,n +W2,n]]t

∣∣ ≤ [[V1 −W1,n + V2 −W2,n]]t ≤ [[V1 −W1,n]]t + [[V2 −W2,n]]t.
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Hence t 7→ [[V1 + V2]]t is the uniform limit of continuous functions and thus continuous itself.

Since trivially C (π) is closed by multiplication by scalars, we proved that it is a vector space.

That ‖ · ‖C (π) is a complete norm on it is trivial and the density of TestVFN(π) has already

been shown. Hence the proof is finished. �

A useful consequence of the density of test vector fields is the following strengthening of

the continuity property:

Corollary 6.13 Let V ∈ C (π) be given. Then the map t 7→ |Vt|2 ∈ L1(π) is continuous.

Proof. For V ∈ TestVF(π) the claim has been proved in Proposition 6.1. Now notice that

for V,W ∈ C (π) we have∫ ∣∣|Vt|2 − |Wt|2
∣∣dπ ≤ ∫ |Vt +Wt| |Vt −Wt|dπ ≤

(
‖V ‖C (π) + ‖W‖C (π)

)
[[V −W ]]t,

so if Vn → V in C (π) then
(
t 7→ |Vn,t|2

)
∈ L1(π) uniformly converge to

(
t 7→ |Vt|2

)
∈ L1(π).

The conclusion then follows from the density of TestVF(π) in C (π). �

6.1.4 The spaces W 1,2(π) and H 1,2(π)

Throughout all this section, we shall further make the assumption that the test plan π is

Lipschitz (in the sense of Definition 4.22).

Let v ∈W 1,2
C (TX) be given. Notice that the map from L0(TX) to e∗tL

0(TX) defined by

(6.20) w 7−→ e∗t (∇wv)

satisfies the inequality

(6.21)
∣∣e∗t (∇wv)

∣∣ ≤ |∇v|HS ◦ et |w| ◦ et in the π-a.e. sense.

Hence by the universal property of the pullback – given in Proposition 3.31 – we know that

there exists a unique L0(π)-linear and continuous operator from e∗tL
0(TX) to e∗tL

0(TX),

which we shall call Cov(v, ·), such that

(6.22) Cov(v, e∗tw) = e∗t (∇wv) for every w ∈ L0(TX)

and such operator satisfies the bound

(6.23)
∣∣Cov(v,W )

∣∣ ≤ |∇v|HS ◦ et|W | in the π-a.e. sense.

We shall be interested in such covariant differentiation along the speed of our test plan: for

every t ∈ [0, 1] such that π′t exists, we define the map Covt : W 1,2
C (TX)→ e∗tL

0(TX) as

(6.24) Covt(v)
.
= Cov(v,π′t).

We point out the following simple fact:

Proposition 6.14 For every t ∈ [0, 1] such that π′t exists, the operator Covt is linear and

continuous from W 1,2
C (TX) to e∗tL

2(TX). Moreover, for every v ∈W 1,2
C (TX) the (equivalence

class up to a.e. equality of the) map t 7→ Covt(v) ∈ e∗tL
2(TX) is an element of L 2(π).
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Proof. The continuity of Covt as map from W 1,2
C (TX) to e∗tL

2(TX) is a direct consequence

of the bounds (6.23) and our assumption that π is a Lipschitz test plan:

‖Covt(v)‖2e∗tL2(TX) =

∫ ∣∣Covt(v)
∣∣2 dπ

(6.23)

≤
∫
|∇v|2HS ◦ et |π′t|2 dπ ≤ C(π) L(π)2 ‖v‖2

W 1,2
C (TX)

.

Thanks to this bound, to conclude it suffices to show that for any vector field v ∈W 1,2
C (TX)

the map t 7→ Covt(v) = Cov(v,π′t) is a.e. equal to a Borel element of VF(π). Taking into

account that
(
t 7→ π′t

)
∈ L 2(π) by Proposition 6.8, that TestVF(π) is dense in L 2(π), the

second claim in Proposition 6.6 and the bound (6.23), we see that to conclude it is sufficient

to show that t 7→ Cov(v, Vt) is a Borel vector field in VF(π) for any V ∈ TestVF(π).

Fix such V , say Vt =
∑

i φi(t)χAi e∗t vi. Let
(
t 7→ Wt =

∑
j ψj(t)χBj e∗twj

)
∈ TestVF(π)

be arbitrary. Notice that, since |vi|, |wj | ∈ L2(m) ∩ L∞(m), we have that 〈vi,∇wjv〉 ∈ L1(m)

and thus by Theorem 2.15 we deduce that the map t 7→ 〈vi,∇wjv〉 ◦ et ∈ L1(π) is continuous

for every choice of i, j. Therefore

t 7−→
∫ 〈

Vt,Covt(v,Wt)
〉

dπ =
∑
i,j

ϕi(t)ψj(t)

∫
χAi∩Bj 〈vi,∇wjv〉 ◦ et dπ

is continuous, establishing – as W is arbitrary – the Borel regularity of t 7→ Cov(v, Vt). �

The ‘compatibility with the metric’ of the covariant derivative yields the following simple

but crucial lemma:

Lemma 6.15 Let v, w ∈ TestV(X) be given. Then the map
(
t 7→ 〈v, w〉 ◦ et

)
∈ L2(π), which

is Lipschitz by Proposition 4.24, satisfies the identity

(6.25)
d

dt
〈v, w〉 ◦ et =

〈
Covπ(v)t, e

∗
tw
〉

+
〈
e∗t v,Covπ(w)t

〉
for L1-a.e. t ∈ [0, 1],

where the derivative is intended in the strong topology of L2(π).

Proof. Recall from item ii) of Proposition 4.52 that it holds

d〈v, w〉(z) = 〈∇zv, w〉+ 〈v,∇zw〉 m-a.e. for every z ∈ L0(TX).

From the defining property of pointwise norm in the pullback and by polarization, we obtain

that 〈e∗t v1, e
∗
t v2〉 = 〈v1, v2〉 ◦ et for every v1, v2 ∈ L0(TX). Thus we have that the identity

(6.26)
(
e∗td〈v, w〉

)
(Z) =

〈
Covt(v, Z), e∗tw

〉
+
〈
e∗t v,Covt(w,Z)

〉
holds for every Z ∈ e∗tL

2(TX) of the form Zt = e∗t z for some z ∈ L2(TX). Since both sides of

this identity are L∞(π)-linear and continuous in Z, we see that (6.26) holds for Z ∈ e∗tL
2(TX)

generic. The conclusion comes by picking Z = π′t and recalling Proposition 4.24. �

We want to introduce a new differential operator, initially defined only on TestVF(π) and

then extended to more general vector fields. To this aim, the following lemma will be useful:

Lemma 6.16 Let (ϕi)i, (ψj)j ⊆ LIP
(
[0, 1]

)
, let (Ai)i, (Bj)j be Borel partitions of Γ(X) and

let (vi)i, (wj)j ⊆ TestV(X), where i = 1, . . . , n and j = 1, . . . ,m. Assume that

(6.27)

n∑
i=1

χAiϕi(t) e∗t vi =

m∑
j=1

χBjψj(t) e∗twj for every t ∈ [0, 1].
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Then for a.e. t ∈ [0, 1] it holds that

n∑
i=1

χAiϕ
′
i(t) e∗t vi =

m∑
j=1

χBjψ
′
j(t) e∗twj ,

n∑
i=1

χAiϕi(t) Covt(vi) =
m∑
j=1

χBjψj(t) Covt(wj).

(6.28)

Proof. For the first claim in (6.28), note that our assumption (6.27) and Proposition 6.9 yield∑
i

χAi×[0,1](·, t)ϕi(t) e∗vi =
∑
j

χBj×[0,1](·, t)ψj(t) e∗wj

as elements of e∗L2(TX) ∼= L 2(π), thus we can differentiate in time and conclude by using

again Proposition 6.9.

For the second claim in (6.28), start by noticing that our assumption (6.27) and the very

definition of pullback imply that – for any i, j and t ∈ [0, 1]– it holds χC ϕi(t) vi = χC ψj(t)wj ,

where we set C
.
=
{

d(et)∗(χAi∩Bjπ)/d(et)∗π > 0
}

. This identity and the locality of the

covariant derivative give that χC ϕi(t)∇zvi = χC ψj(t)∇zwj for every z ∈ L2(TX). By

applying the pullback map on both sides and noticing that χC ◦ et ≥ χAi∩Bj , we deduce that

χAi∩Bj ϕi(t) Cov(vi, Z) = χAi∩Bj ψj(t) Cov(wj , Z)

for every Z of the form Zt = e∗t z. From the L∞(π)-linearity in Z of both sides and the

arbitrariness of i, j, the conclusion follows. �

We can now define the convective derivative of a test vector field:

Definition 6.17 (Convective derivative along a test plan) We define the convective

derivative operator D̃π : TestVF(π)→ L 2(π) as follows: to the element V ∈ TestVF(π), of

the form Vt =
∑n

i=1 ϕi(t)χAi e∗t vi, we associate the vector field D̃πV ∈ L 2(π) given by

(6.29) (D̃πV )t
.
=

n∑
i=1

χAi

(
ϕ′i(t) e∗t vi + ϕi(t) Covt(vi)

)
for L1-a.e. t ∈ [0, 1].

For the sake of simplicity, we will briefly write D̃πVt instead of (D̃πV )t.

Notice that Lemma 6.16 ensures that the right hand side of (6.29) depends only on V

and not on the way we write it as Vt =
∑n

i=1 ϕi(t)χAi e∗t vi. The fact that the right hand side

of (6.29) defines a Borel vector field in VF(π) follows directly from Proposition 6.14; to see

that it belongs to L 2(π), notice that
(
t 7→ e∗t vi

)
,Covπ(vi) ∈ L 2(π) for every i and that the

functions ϕi’s are Lipschitz. Hence the definition is well-posed and D̃π is a linear operator.

The convective derivative has the following simple and crucial property, which is a direct

consequence of Lemma 6.15.

Proposition 6.18 Let V,W ∈ TestVF(π). Then the map t 7→ 〈Vt,Wt〉 ∈ L2(π) is Lipschitz

and satisfies the identity

(6.30)
d

dt
〈Vt,Wt〉 = 〈D̃πVt,Wt〉+ 〈Vt, D̃πWt〉 for L1-a.e. t ∈ [0, 1],

where the derivative is intended in the strong topology of L2(π).
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Proof. By bilinearity, in order to prove (6.30) it suffices to consider the case Vt = ϕ(t)χA e∗t v

and Wt = ψ(t)χB e∗tw for v, w ∈ TestV(X). Lemma 6.15 ensures that

[0, 1] 3 t 7−→ 〈e∗t v, e∗tw〉 = 〈v, w〉 ◦ et ∈ L2(π) is a Lipschitz map

and it is thus clear that t 7→ 〈Vt,Wt〉 = χA∩B ϕ(t)ψ(t) 〈e∗t v, e∗tw〉 is Lipschitz as well. The

identity (6.30) now follows from (6.25) and the Leibniz rule. �

This last proposition will allow us to ‘integrate by parts’ and to extend the definition of

convective derivative to ‘Sobolev vector fields along π’.

Let us define the support spt(V ) of a test vector field V ∈ TestVF(π) as the closure of

the set of t’s with Vt 6= 0. We introduce the space of sections with compact support in (0, 1):

(6.31) TestVFc(π)
.
=
{
V ∈ TestVF(π)

∣∣ spt(V ) ⊆ (0, 1)
}
.

A simple cut-off argument shows that TestVFc(π) is L 2(π)-dense in TestVF(π), whence

accordingly also in L 2(π). With this said, we can give the following definition:

Definition 6.19 (The space W 1,2(π)) The Sobolev space W 1,2(π) is the vector subspace

of L 2(π) consisting of all those V ∈ L 2(π) for which there exists Z ∈ L 2(π) satisfying

(6.32)

∫ 1

0

∫
〈Vt, D̃πWt〉 dπ dt = −

∫ 1

0

∫
〈Zt,Wt〉 dπ dt for every W ∈ TestVFc(π).

In this case the section Z, whose uniqueness is granted by density of TestVFc(π) in L 2(π),

can be unambiguously denoted by DπV and called convective derivative of V . We endow the

space W 1,2(π) with the norm ‖ · ‖W 1,2(π), defined by

(6.33) ‖V ‖W 1,2(π)
.
=
√
‖V ‖2L 2(π) + ‖DπV ‖2L 2(π) for every V ∈ W 1,2(π).

As we are going to see, this choice of terminology is consistent with that Definition 6.17:

Proposition 6.20 Let V ∈ TestVF(π) be given. Then V ∈ W 1,2(π) and DπV = D̃πV .

Proof. Fix W ∈ TestVFc(π). We know from Proposition 6.18 that [0, 1] 3 t 7→
∫
〈Vt,Wt〉 dπ

is an absolutely continuous function, so that (6.30) gives, after integration, that

0 =

∫
〈V1,W1〉 dπ −

∫
〈V0,W0〉dπ =

∫ 1

0

∫
〈D̃πVt,Wt〉dπ dt+

∫ 1

0

∫
〈Vt, D̃πWt〉dπ dt.

This proves that V satisfies (6.32) with Z = D̃πV . �

Proposition 6.21 (Basic properties of W 1,2(π)) The following hold:

i) The operator Dπ is closed from L 2(π) into itself, i.e. its graph is closed in the product

space L 2(π)×L 2(π).

ii) The space W 1,2(π) is a separable Hilbert space.
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iii) Let V,Z ∈ L 2(π) be given. Then we have V ∈ W 1,2(π) and Z = DπV if and only if

the map t 7→ 〈Vt,Wt〉 belongs to W 1,1
(
[0, 1], L1(π)

)
, with derivative given by

(6.34)
d

dt
〈Vt,Wt〉 = 〈Vt,DπWt〉+ 〈Zt,Wt〉 for L1-a.e. t ∈ [0, 1],

for every W ∈ TestVF(π).

Proof. We divide the proof into some steps:

i) Let (Vn)n ⊆ W 1,2(π) be a sequence such that Vn → V and DπVn → Z in L 2(π), for

suitable vector fields V,Z ∈ L 2(π). Then for arbitrary W ∈ TestVFc(π) we have that∫ 1

0

∫
〈Vt,DπWt〉dπ dt = lim

n→∞

∫ 1

0

∫
〈V n
t ,DπWt〉 dπ dt = − lim

n→∞

∫ 1

0

∫
〈DπV

n
t ,Wt〉 dπ dt

= −
∫ 1

0

∫
〈Zt,Wt〉dπ dt,

proving that V ∈ W 1,2(π) with DπV = Z, which was the claim.

ii) Consequence of what just proved and the fact that the map

W 1,2(π) 3 V 7−→ (V,DπV ) ∈ L 2(π)×L 2(π)

is an isometry, provided we endow L 2(π)×L 2(π) with the norm∥∥(V,Z)
∥∥ .

=
√
‖V ‖2L 2(π) + ‖Z‖2L 2(π),

which is separable by Proposition 6.7.

iii) The ‘if’ trivially follows from (6.34) by integration. For the ‘only if’, fix W ∈ TestVF(π),

let ϕ ∈ C1
c (0, 1) and let Γ ⊆ Γ(X) be Borel. Then t 7→ ϕ(t)χΓWt is in TestVFc(π) and a

direct computation shows that Dπ(ϕχΓW )t = ϕ′(t)χΓWt+ϕ(t)χΓ DπWt. Hence by writing

the defining property (6.32) (with ϕχΓW in place of W ) we get – after rearrangement – that∫ 1

0
ϕ′(t)

∫
Γ
〈Vt,Wt〉dπ dt = −

∫ 1

0
ϕ(t)

∫
Γ
〈Vt,DπWt〉+ 〈Zt,Wt〉 dπ dt.

The arbitrariness of ϕ,Γ and Proposition C.3 yield the claim. �

We just proved that TestVF(π) is contained in W 1,2(π), but we do not know if it is dense.

Therefore the following definition is meaningful:

Definition 6.22 (The space H 1,2(π)) We define H 1,2(π) as the W 1,2(π)-closure of the

space TestVF(π).

Clearly, H 1,2(π) is a separable Hilbert space. A key feature of the elements of H 1,2(π)

is that they admit a continuous representative (much like Sobolev functions on intervals):

Theorem 6.23 The inclusion TestVF(π) ↪→ C (π) uniquely extends to a linear, continuous

and injective operator ι : H 1,2(π)→ C (π).

Proof. We claim that

(6.35) ‖V ‖C (π) ≤
√

2 ‖V ‖W 1,2(π) for every V ∈ TestVF(π).
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By density of TestVF(π) in H 1,2(π), this is enough to get existence of the operator ι. Thus

let V ∈ TestVF(π), pick W = V in (6.30) and integrate in [t1, t2] ⊆ [0, 1] with respect to π

to obtain that∣∣∣[[V ]]2t2 − [[V ]]2t1

∣∣∣ = 2

∣∣∣∣ ∫ t2

t1

∫
〈Vt,DπVt〉 dπ dt

∣∣∣∣
≤ 2

∫ t2

t1

∫
|Vt| |DπVt|dπ dt ≤ ‖V ‖2L 2(π) + ‖DπV ‖2L 2(π).

Hence for any t ∈ [0, 1] one has that

[[V ]]2t =

∫ 1

0
[[V ]]2t ds ≤

∫ 1

0

∣∣[[V ]]2t − [[V ]]2s
∣∣ ds+ ‖V ‖2L 2(π) ≤ 2 ‖V ‖2W 1,2(π),

which is our claim (6.35).

In order to prove injectivity, choose V ∈ H 1,2(π) such that ι(V ) = 0. Let us pick any

sequence (Vn)n ⊆ TestVF(π) which is W 1,2(π)-converging to V and notice that – up to

passing to a subsequence and by using Proposition 6.6 – we can assume that V n
t → Vt for

almost every t ∈ [0, 1]. By continuity of the operator ι, one also has that

‖V n‖C (π) =
∥∥ι(V n)− ι(V )

∥∥
C (π)

−→ 0

and thus in particular V n
t → 0 for all t ∈ [0, 1]. Therefore Vt = 0 for L1-a.e. t ∈ [0, 1], yielding

the required injectivity of ι. �

Whenever we will consider an element V of H 1,2(π), we will always implicitly refer to

its unique continuous representative ι(V ) ∈ C (π).

Among the several properties of the test sections that can be carried over to the elements

of H 1,2(π), the most important one is the Leibniz formula for convective derivatives:

Proposition 6.24 (Leibniz formula for Dπ) Let V ∈ W 1,2(π) and W ∈H 1,2(π). Then

the map t 7→ 〈Vt,Wt〉 is in W 1,1
(
[0, 1], L1(π)

)
and its derivative is given by

(6.36)
d

dt
〈Vt,Wt〉 = 〈DπVt,Wt〉+ 〈Vt,DπWt〉 for L1-a.e. t ∈ [0, 1].

Proof. For W ∈ TestVF(π) the claim is a direct consequence of point iii) of Proposition 6.21.

The general case can be achieved by approximation, just noticing that the simple inequalities∥∥〈Vt,Wt〉
∥∥
L1(π×L1)

≤ ‖V ‖L 2(π) ‖W‖L 2(π),∥∥〈DπVt,Wt〉+ 〈Vt,DπWt〉
∥∥
L1(π×L1)

≤ 2 ‖V ‖W 1,2(π) ‖W‖W 1,2(π)

allow us to pass to the limit in the distributional formulation of d
dt 〈Vt,Wt〉 as the element W

varies in H 1,2(π). �

In the next proposition we collect some examples of elements of H 1,2(π):

Proposition 6.25 The following hold:

i) Given any w ∈ H1,2
C (TX), we have that the vector field t 7→ Wt

.
= e∗tw belongs to the

space H 1,2(π) and satifies

(6.37) DπWt = Covt(w) for L1-a.e. t ∈ [0, 1].
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ii) Let W ∈H 1,2(π) be such that |W |, |DπW | ∈ L∞(π ×L1) and a ∈W 1,2
(
[0, 1], L2(π)

)
.

Then aW ∈H 1,2(π) and

(6.38) Dπ(aW )t = a′tWt + at DπWt for L1-a.e. t ∈ [0, 1].

Moreover, if W ∈ C (π) and a ∈ AC2
(
[0, 1], L2(π)

)
, then aW ∈ C (π).

Proof. We divide the proof into some steps:

i) If w ∈ TestV(X) then W ∈ TestVF(π) by definition and in this case formula (6.37)

holds by the definition (6.29) and by Proposition 6.20. The general case can be obtained by

approximating w with vector fields in TestV(X) with respect to the W 1,2
C (TX) topology, by

using the bounds∫ 1

0

∫ ∣∣e∗t (v)
∣∣2 dπ dt =

∫ 1

0

∫
|v|2 ◦ et dπ dt ≤ C(π) ‖v‖2

W 1,2
C (TX)

,∫ 1

0

∫ ∣∣Covπ(v)t
∣∣2 dπ dt

(6.23)

≤ C(π) L(π)2 ‖v‖2
W 1,2

C (TX)

and by recalling the closure of the operator Dπ.

ii) The claim about continuity is obvious, so we concentrate on the other one. Assume at

first that a belongs to the space A, defined as

A .
=

{ n∑
i=1

ϕi χEi

∣∣∣∣ n ∈ N, ϕi ∈ LIP([0, 1]), (Ei)i Borel partition of Γ(X)
}

and that W ∈ TestVF(π). In this case aW belongs to TestVF(π) as well and formula (6.38)

is a direct consequence of the definitions. Then by using the trivial bounds

‖aW‖L 2(π) ≤ ‖a‖L∞(π×L1) ‖W‖L 2(π),∥∥a′W + aDπW
∥∥

L 2(π)
≤
(
‖a‖L∞(π×L1) + ‖a′‖L∞(π×L1)

)
‖W‖W 1,2(π),

the W 1,2(π)-density of TestVF(π) in H 1,2(π) and the closure of the operator Dπ, we conclude

that aW ∈H 1,2(π) for every a ∈ A and W ∈H 1,2(π), and that (6.38) holds in this case.

Now let W be as in the assumptions and observe that we also have the bounds

‖aW‖L 2(π) ≤ ‖a‖L2([0,1],L2(π))

∥∥|W |∥∥
L∞(π×L1)

,∥∥a′W + aDπW
∥∥

L 2(π)
≤ ‖a‖W 1,2([0,1],L2(π))

(∥∥|W |∥∥
L∞(π×L1)

+
∥∥|DπW |

∥∥
L∞(π×L1)

)
.

Therefore – by using again the closure of Dπ – we see that to conclude it is sufficient to prove

that A is dense in W 1,2
(
[0, 1], L2(π)

)
. To this aim, we argue as follows: for every n ∈ N, let

us take a Borel partition (Eni )i∈N of spt(π) ⊆ Γ(X), made of sets with positive π-measure

and diameter ≤ 1
n . Then for every n,N ∈ N let PNn : L2(π)→ L2(π) be defined by

PNn (f)
.
=

N∑
i=1

χEni
1

π(Eni )

∫
Eni

f dπ.

It is clear that PNn has operator norm ≤ 1 for every n,N ∈ N and an application of the

dominated convergence theorem shows that

(6.39) lim
n→∞

lim
N
PNn (f) = f
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for every f ∈ Cb

(
Γ(X)

)
, the limits being intended in L2(π). Therefore (6.39) also holds for

every f ∈ L2(π). The linearity and continuity of PNn grant that if t 7→ at belongs to the

space W 1,2
(
[0, 1], L2(π)

)
, then t 7→ PNn (a)t

.
= PNn (at) is in W 1,2

(
[0, 1], L2(π)

)
as well and

(6.40)
(
PNn (a)

)′
t

= PNn (a′t) for L1-a.e. t ∈ [0, 1].

All these considerations imply that

lim
n→∞

lim
N→∞

PNn (a) = a in W 1,2
(
[0, 1], L2(π)

)
for every a ∈W 1,2

(
[0, 1], L2(π)

)
, thus to conclude it is sufficient to prove that PNn (a) belongs

to the W 1,2
(
[0, 1], L2(π)

)
-closure of A for every n,N ∈ N and a ∈W 1,2

(
[0, 1], L2(π)

)
.

Finally, it is clear by construction and by (6.40) that we can write PNn (a) =
∑N

i=1 gi χEni
for some gi ∈W 1,2(0, 1). Given any i = 1, . . . , N , we can find a sequence (gi,j)j ⊆ LIP

(
[0, 1]

)
that W 1,2([0, 1])-converges to gi. Note that∥∥∥∥ N∑

i=1

(gi,j − gi)χEni

∥∥∥∥2

W 1,2([0,1],L2(π))

=

N∑
i=1

π(Eni ) ‖gi,j − gi‖2W 1,2(0,1) −→ 0 as j →∞.

Since
∑N

i=1 gi,j χEni ∈ A for every j, the proof is completed. �

6.2 Parallel transport on RCD spaces

6.2.1 Definition and basic properties of parallel transport

By relying upon the machinery developed in the Section 6.1, we propose a notion of parallel

transport for RCD spaces. Let (X, d,m) be a fixed RCD(K,∞) space, for some K ∈ R.

We shall frequently use the fact that, since H 1,2(π) is continuously embedded into C (π)

by Theorem 6.23, any vector field V ∈H 1,2(π) has pointwise values Vt ∈ e∗tL
2(TX) defined

at every time t ∈ [0, 1].

Definition 6.26 (Parallel transport) Let π be a Lipschitz test plan on X. Then a parallel

transport along π is an element V ∈H 1,2(π) such that DπV = 0.

The linearity of the requirement DπV = 0 ensures that the set of parallel transports forms

a vector space. From Proposition 6.24 we deduce the following simple but crucial result:

Proposition 6.27 (Norm preservation) Let V be a parallel transport along a Lipschitz

test plan π on X. Then the map t 7→ |Vt|2 ∈ L1(π) is constant.

Proof. We know from Corollary 6.13 that the map t 7→ |Vt|2 ∈ L1(π) is continuous. Hence

the choice W = V in Proposition 6.24 tells that such map is absolutely continuous, with

derivative given by

d

dt
|Vt|2 = 2 〈DπVt, Vt〉 = 0 for L1-a.e. t ∈ [0, 1].

This is sufficient to conclude. �
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Linearity and norm preservation imply uniqueness:

Corollary 6.28 (Uniqueness of parallel transport) Let π be a Lipschitz test plan on X.

Let V1, V2 be parallel transports along π with V1,t0 = V2,t0 for some t0 ∈ [0, 1]. Then V1 = V2.

Proof. Since Dπ(V1 − V2) = DπV1 − DπV2 = 0, we have that V1 − V2 is a parallel transport

and by assumption we know that |V1,t0−V2,t0 | = 0 in the π-a.e. sense. Thus Proposition 6.27

grants that for every t ∈ [0, 1] it π-a.e. holds that |V1,t − V2,t| = 0, i.e. V1,t = V2,t. �

Remark 6.29 We emphasise that the norm preservation property is a consequence of the

Leibniz formula in Proposition 6.24. We do not know if such formula holds for V,W ∈ W 1,2(π)

and this is why we defined the parallel transport as an element of H 1,2(π) with null convective

derivative, as opposed to an element of W 1,2(π) with the same property. �

We now assume existence of parallel transport along some/all Lipschitz test plans and

see what can be derived from such assumption. First of all, we show that a parallel transport

sends bases into bases:

Proposition 6.30 Let π be a Lipschitz test plan on X with this property: given any t ∈ [0, 1]

and V̄t ∈ e∗tL
2(TX), there exists a (unique) parallel transport V along π such that Vt = V̄t.

Call (En)n∈N∪{∞} the dimensional decomposition of e∗0L
2(TX) and choose any orthonormal

basis (V̄n)n∈N of e∗0L
2(TX), i.e. V̄1, . . . , V̄n is an orthonormal basis for e∗0L

2(TX) on En for

any n ∈ N. Denote by t 7→ Vn,t the parallel transport of V̄n along π. Then for every t ∈ [0, 1]

it holds that the partition (En)n∈N∪{∞} is also the dimensional decomposition of e∗tL
2(TX)

and that the set (Vn,t)n∈N is an orthonormal basis of e∗tL
2(TX).

Proof. For every t, s ∈ [0, 1], let us consider the map sending V̄ ∈ e∗tL
2(TX) to Vs ∈ e∗sL

2(TX),

where V ∈ H 1,2(π) is the parallel transport along π such that Vt = V̄ . Proposition 6.27

ensures that this map preserves the pointwise norm. Since it is clearly linear, it is easily

verified that it is an isomorphism of e∗tL
2(TX) and e∗sL

2(TX). The conclusions follow. �

We shall apply the previous result to show that – under the same assumptions – we have

the equality W 1,2(π) = H 1,2(π):

Proposition 6.31 (H = W ) Let π be a Lipschitz test plan on X with the following property:

given any t ∈ [0, 1] and V̄t ∈ e∗tL
2(TX), there exists a (unique) parallel transport V along π

such that Vt = V̄t. Then H 1,2(π) = W 1,2(π).

Proof. Fix V ∈ W 1,2(π). Choose an orthonormal basis (V̄i)i∈N ⊆ e∗0L
2(TX) of e∗0L

2(TX) and

call t 7→ Vi,t the parallel transport of V̄i along π. Then by Proposition 6.30 we see that

(6.41) Vt =
∑
i∈N

ai,tVi,t where we set ai,t
.
= 〈Vt, Vi,t〉 for a.e. t ∈ [0, 1],

being intended that the series absolutely converges in e∗tL
2(TX) for almost every t ∈ [0, 1].

By Proposition 6.24, we see that t 7→ ai,t is in W 1,1
(
[0, 1], L1(π)

)
, with derivative given by

(6.42) a′i,t = 〈DπVt, Vi,t〉.

In particular, since |Vi,t| ≤ 1 we see that ai,t, a
′
i,t ∈ L2

(
[0, 1], L2(π)

)
and in turn this implies

– by Proposition C.3 – that the mapping t 7→ ai,t belongs to W 1,2
(
[0, 1], L2(π

)
). This fact
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and item ii) of Proposition 6.25 give that
(
t 7→ ai,tVi,t

)
∈ H 1,2(π) for every i ∈ N, thus

accordingly we have
(
t 7→

∑n
i=0 ai,tVi,t

)
∈H 1,2(π) for any n ∈ N.

Hence to conclude it is sufficient to show that these partial sums form a W 1,2(π)-Cauchy

sequence, as then it is clear from (6.41) that the limit coincides with V . From (6.41) and

(6.42) we have that∑
i∈N

∫∫ 1

0
|ai,t|2 + |a′i,t|2 dt dπ = ‖V ‖2L 2(π) + ‖DπV ‖2L 2(π) < +∞.

Since we also have the identity∥∥∥∥ m∑
i=n

ai Vi

∥∥∥∥2

W 1,2(π)

=

∥∥∥∥ m∑
i=n

ai Vi

∥∥∥∥2

L 2(π)

+

∥∥∥∥ m∑
i=n

a′i Vi

∥∥∥∥2

L 2(π)

=
m∑
i=n

∫∫ 1

0
|ai,t|2 + |a′i,t|2 dt dπ,

the conclusion follows. �

We shall now prove that if the parallel transport exists along all Lipschitz test plans, then

the dimension of X – intended as the dimension of the tangent module – must be constant.

Theorem 6.32 (From parallel transport to constant dimension) Suppose that, given

any Lipschitz test plan π on X, any t ∈ [0, 1] and any V̄ ∈ e∗tL
2(TX), there exists the parallel

transport V along π with Vt = V̄ . Then the tangent module L2(TX) has constant dimension,

i.e. in its dimensional decomposition (Ei)i∈N∪{∞} one of the Ei’s has full measure.

Proof. We argue by contradiction: assume to have m(Ei),m(Ej) > 0 for some i, j ∈ N∪{∞}
with i 6= j. Let F0 ⊆ Ei, F1 ⊆ Ej be bounded Borel sets of positive (finite) measure. Consider

µ0
.
= m(F0)−1 m|F0

,

µ1
.
= m(F1)−1 m|F1

.

Let π be the unique optimal geodesic plan connecting them and recall that it is a test plan

(cf. Remark 4.42). Since π
(
e−1

0 (F0)
)

= µ0(F0) = 1 and the dimension of L2(TX) on F0 is i,

by Theorem 3.38 we see that for the dimensional decomposition (Ẽ0
n)n∈N∪{∞} of e∗0L

2(TX)

we have that π(Ẽ0
i ) = 1 and π(Ẽ0

k) = 0 for every k 6= i. Similarly, for the dimensional

decomposition (Ẽ1
n)n∈N∪{∞} of e∗1L

2(TX) we have π(Ẽ1
j ) = 1 and π(Ẽ1

k) = 0 for every k 6= j.

In particular, it holds that

(6.43) π
(
Ẽ0
i ∆ Ẽ1

i

)
= π(Ẽ0

i ) = 1 > 0.

Now notice that – from basic considerations about optimal transport – we have that π is

concentrated on geodesics starting from F0 and ending in F1. The constant speed of any such

geodesic is bounded from above by supx∈F0, y∈F1
d(x, y) < ∞, so that π is a Lipschitz test

plan. Therefore Proposition 6.30 grants that the dimensional decomposition of e∗tL
2(TX)

does not depend on t. This contradicts (6.43), whence the proof is achieved. �

Remark 6.33 It has been recently proved in [BS18a] that any finite-dimensional RCD space

has constant dimension, in the sense of Theorem 6.32. As already mentioned in the Introduc-

tion,this represented one of the most important open problems in the theory of RCD spaces.

The proof relies upon some regularity estimates for the regular Lagrangian flows, that have

been obtained in [BS18b]. �
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6.2.2 Existence of the parallel transport in a special case

It is unclear whether on general RCD spaces the parallel transport exists. Aim of the present

subsection is to show at least that the theory we propose is not empty, i.e. that – under

suitable assumptions on the space – the parallel transport exists. We will not insist in trying

to make such assumptions as general as possible (for instance, the ‘good base’ defined below

could consist of different vector fields on different open sets covering our space), as our main

concern is just to show that in some circumstances our notion of parallel transport can be

shown to exist.

We shall work with spaces admitting the following sort of basis for the tangent module:

Definition 6.34 (Good basis) Let (X, d,m) be a given RCD(K,N) space, for some K ∈ R
and N ∈ (1,∞). Let us denote by (Ak)

n
k=1 the dimensional decomposition of X. Then a

family W = {w1, . . . , wn} ⊆ H1,2
C (TX) of Sobolev vector fields on X is said to be a good basis

for L2(TX) provided there exists M > 0 such that the following properties are satisfied:

i) For any k = 1, . . . , n, we have that w1, . . . , wk constitute a basis for L2(TX) on Ak and

(6.44)

{
|wi| ∈ (M−1,M),∣∣〈wi, wj〉∣∣ < 1

M2k

m-a.e. in Ak for every i, j = 1, . . . , k with i 6= j.

ii) It holds that

(6.45) |∇wi|HS ≤M m-a.e. in X for every i = 1, . . . , n.

Let us notice that the ‘hard’ assumption here is given by point ii) – perhaps coupled with

the lower bound in i) – which imposes an L∞ bound on the covariant derivative, when in our

setting the L2 ones are more natural (compare with Theorem 6.39 below). Let us mention,

in particular, that for spaces admitting a good basis it is not hard to prove – regardless of

parallel transport – that the dimension is constant, as we shall see in Proposition 6.36.

Let us start the technical work with the following simple lemma:

Lemma 6.35 Let H be a Hilbert L2(m)-normed L∞(m)-module. Fix a Borel subset A of X

and a constant M > 1. Let k ∈ N. Suppose that there exist w1, . . . , wk ∈H such that

(6.46)

{
|wi| ∈ (M−1,M)∣∣〈wi, wj〉∣∣ ≤ 1

M2k

hold m-a.e. in A, for every i, j = 1, . . . , k with i 6= j.

Given any h1, . . . , hk ∈ L0
(
m|A

)
, let us define w

.
=
∑k

i=1 hiwi ∈H 0, where H 0 denotes the

L0-completion of H . Then it holds that

(6.47)
1

M2 k

k∑
i=1

|hi|2 ≤ |w|2 ≤M2 k

k∑
i=1

|hi|2 m-a.e. in A,

thus in particular w ∈H |A if and only if hi ∈ L2
(
m|A

)
for every i = 1, . . . , k.
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Proof. For the second inequality in (6.47), note that 〈wi, wj〉 ≤M2 m-a.e. on A for every i, j,

thus accordingly

|w|2 =

∣∣∣∣ k∑
i=1

hiwi

∣∣∣∣2 =

k∑
i,j=1

hi hj 〈wi, wj〉 ≤M2
k∑

i,j=1

1

2
|hi|2 +

1

2
|hj |2 = M2 k

k∑
i=1

|hi|2.

For the first inequality in (6.47), we recall that |wi| > M−1 and 〈wi, wj〉 ≥ − 1
M2 k

hold m-a.e.

on A for i 6= j to deduce that

|w|2 =

∣∣∣∣ k∑
i=1

hiwi

∣∣∣∣2 =
k∑
i=1

|hi|2 |wi|2 +
∑
i 6=j

hi hj 〈wi, wj〉 ≥
1

M2

k∑
i=1

|hi|2 −
1

M2 k

∑
i 6=j
|hi hj |

≥ 1

M2

k∑
i=1

|hi|2 −
1

M2 k

∑
i 6=j

1

2
|hi|2 +

1

2
|hj |2 =

1

M2k

k∑
i=1

|hi|2.

Therefore the statement is achieved. �

The constant dimension now easily follows – without using [BS18a] – from Lemma 6.35

and the fact that if a good basis exists, then there is another one for which the functions

〈wi, wj〉 are Lipschitz, as shown in the proof of the following proposition.

Proposition 6.36 Let (X, d,m) be an RCD(K,N) space admitting a good basis for L2(TX).

Then the tangent module has constant dimension, meaning that in its dimensional decompo-

sition (Ek)
n
k=1 one of the Ek’s has full measure.

Proof. Let k ∈ N be the maximal index such that m(Ek) > 0; its existence follows from

the finiteness results in [Han18] and [GP16b]. To conclude, it is enough to show that on a

neighbourhood of Ek the tangent module has dimension ≥ k. Let (wi)
k
i=1 be a good basis

and let f ∈ C∞c (R) be such that f(z) = z for every z ∈ [0,M ]. Let us consider the vector

fields w̃i
.
= f

(
|wi|2

)
wi. Note that f

(
|wi|2

)
∈W 1,2(X) with

∇f
(
|wi|2

)
= 2 f ′

(
|wi|2

)
∇wi(·, wi),

hence by (6.45) and the choice of f we see that f
(
|wi|2

)
is bounded with bounded gradient.

It follows that w̃i ∈ H1,2
C (TX) with

∇w̃i = ∇f
(
|wi|2

)
⊗ wi + f

(
|wi|2

)
∇wi,

so that from the expression of∇f(|wi|2) we deduce that w̃i is bounded with bounded covariant

derivative. Hence each gi,j
.
= 〈w̃i, w̃j〉 belongs to W 1,2(X) and is bounded with bounded

gradient as well. By the Sobolev-to-Lipschitz property (recall item iii) of Definition 4.40) we

deduce that gi,j has a Lipschitz – in particular continuous – representative. By construction,

the bounds (6.44) hold on Ek for the w̃i’s, hence the continuity of gi,j grants that they

hold also on some neighbourhood of Ek. By Lemma 6.35, this is sufficient to conclude that

the vector fields w̃i are independent – by the first in (6.47) – on such neighbourhood, thus

concluding the proof of the statement. �

We now prove existence of the parallel transport for the class of those RCD spaces that

admit a good basis for their tangent module. In the proof we shall use, for simplicity, the

fact just proved that the dimension must be constant, but actually the same argument works

even without knowing a priori this fact (this remark is perhaps irrelevant, since constant

dimension follows so directly from the existence of a good basis).
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Theorem 6.37 (Existence of the parallel transport) Let (X, d,m) be any RCD(K,N)

space, with K ∈ R and N ∈ (1,∞), that admits a good basis. Let π be a Lipschitz test plan

on X and fix V̄ ∈ e∗0L
2(TX). Then there exists the parallel transport V ∈ H 1,2(π) along π

such that V0 = V̄ .

Proof. We know by Proposition 6.36 that the dimension of the tangent module must be

constant. From this fact and Definition 6.34, we see that there exist w1, . . . , wn ∈ H1,2
C (TX),

for some n ∈ N+, such that (6.44) and (6.45) hold on X. Put Wi,t
.
= e∗twi for all t ∈ [0, 1].

By item i) of Proposition 6.25 we have that Wi ∈H 1,2(π) with

DπWi,t = Covt(wi),

therefore from (6.23), (6.45) and the assumption that π is Lipschitz we get

(6.48) |DπWi,t| ≤M L(π).

Moreover, by the defining property of the pullback map and from (6.44) we know that for

every t ∈ [0, 1] it holds{
|Wi,t| ∈ (M−1,M),∣∣〈Wi,t,Wj,t〉

∣∣ ≤ (M2 k)−1 π-a.e. for every i, j = 1, . . . , n with i 6= j,

thus accordingly Lemma 6.35 grants the existence of suitable functions ḡ1, . . . , ḡn ∈ L2(π)

that satisfy V̄ =
∑n

i=1 ḡi e∗0wi. A similar argument applied to the pullback of the map e

(recall Proposition 6.9 and the definition (6.13)) – and based on the bound (6.48) – shows

that there are functions Hi,j ∈ L∞(π × L1) such that

(6.49) DπWi,t =
∑
j

Hi,j,tWj,t for a.e. t ∈ [0, 1].

It will be technically convenient to fix once and for all Borel representatives of these functions

– still denoted by Hi,j – such that

(6.50) sup
γ,t

∣∣Hi,j,t(γ)
∣∣ = ‖Hi,j‖L∞(π×L1) for every i = 1, . . . , n.

We shall look for a parallel transport of the form V
.
=
∑

i giWi with gi ∈ AC2
(
[0, 1], L2(π)

)
.

Notice that Lemma 6.35 grants that any such V belongs to H 1,2(π) with

DπVt
(6.38)

=
n∑
i=1

g′i,tWi,t +
n∑
i=1

gi,t DπWi,t
(6.49)

=
n∑
i=1

g′i,tWi,t +
n∑

i,j=1

gi,tHi,j,tWj,t

=

n∑
i=1

(
g′i,t +

n∑
j=1

Hj,i,t gj,t

)
Wi,t for a.e. t ∈ [0, 1].

Hence our V is the desired parallel transport if and only if g1, . . . , gn solve the system

(6.51)

{
gi,0 = ḡi,

g′i,t +
∑n

j=1Hj,i,t gj,t = 0 for a.e. t
for every i = 1, . . . , n.

To solve the previous system, we shall apply Theorem C.6 to the Banach (in fact, Hilbert)

space B .
=
[
L2(π)

]n
equipped with the norm

‖f‖B
.
=

( n∑
i=1

∫
|fi|2 dπ

)1/2

for every f = (f1, . . . , fn) ∈ B.



130 Chapter 6 • A notion of parallel transport for RCD spaces

For every t ∈ [0, 1], let us define λt ∈ End(B) as

(λtf)i
.
= −

n∑
j=1

Hj,i,t fj for every i = 1, . . . , n and f = (f1, . . . , fn) ∈ B,

so that the system (6.51) can be equivalently rewritten in the compact form{
g0 = g,

g′t = λtgt
for a.e. t ∈ [0, 1],

where g
.
= (ḡ1, . . . , ḡn). Theorem C.6 grants that a solution in LIP

(
[0, 1],B

)
⊆ AC2

(
[0, 1],B

)
exists provided the λt’s are equibounded and t 7→ λtf is strongly measurable for every f ∈ B.

The former follows from

∥∥λtf∥∥2

B =

n∑
i=1

∥∥∥∥ n∑
j=1

Hj,i,t fj

∥∥∥∥2

L2(π)

≤ n
n∑

i,j=1

∥∥Hj,i,t fj
∥∥2

L2(π)

≤ nmax
i,j,t
‖Hj,i,t‖2L∞(π)

n∑
i,j=1

‖fj‖2L2(π)

(6.50)

≤ n2 max
i,j
‖Hi,j‖2L∞(π×L1) ‖f‖

2
B.

For the latter, notice that since B is separable it is sufficient to prove that for any f ∈ B the

map t 7→ λtf ∈ B is weakly measurable. Given that B is also Hilbert, we just need to show

that for any f, g ∈ B the function t 7→ 〈λtf, g〉B ∈ R is measurable. Since we have that

〈λtf, g〉B = −
n∑

i,j=1

∫
Hj,i,t fj gi dπ,

the conclusion follows from Fubini theorem. �

6.3 Sobolev basis of the tangent module

In this conclusive section we show that one can always build a basis of the tangent module

of an RCD space which has Sobolev regularity, as opposed to just L2 regularity. The basic

idea used in the construction is based on the observation that ‘being a basis’ is a non-linear

requirement. Technically speaking, the crucial argument is contained in the following lemma:

Lemma 6.38 Let (X, d,m) be an RCD(K,∞) space, for some K ∈ R. Let w ∈ L2(TX) be

given. Then there exists v ∈ H1,2
C (TX) such that 〈v, w〉 6= 0 holds m-a.e. on

{
|w| 6= 0

}
.

Proof. We can assume w 6= 0 or otherwise there is nothing to prove; then replacing if

necessary w with
(
χ{|w|≤1}+χ{|w|>1}|w|−1

)
w, we can assume that |w| ≤ 1 holds m-a.e. in X.

Let (wn)n ⊆ TestV(X) be L2(TX)-converging to w and m̃ a Borel probability measure on X

such that m� m̃ ≤ Cm for some C > 0. Then 〈wn, w〉 → |w|2 in L2(m̃), thus accordingly

(6.52) mn
.
= m̃

({
|〈wn, w〉| > 0

})
−→ m∞

.
= m̃

({
|w| > 0

})
.

We now observe that:

For every v, w̃ ∈ L2(TX) and a > 0 there exists b ∈ (0, a)

such that m̃
({
|〈w̃, w〉| > 0

}
∩
{
〈v + bw̃, w〉 = 0

})
= 0.

(6.53)
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Indeed – setting for brevity Eb
.
=
{
|〈w̃, w〉| > 0

}
∩
{
〈v + bw̃, w〉 = 0

}
– we have that

m̃
(
Eb ∩ Eb′

)
≤ m̃

({
|〈w̃, w〉| > 0

}
∩
{

(b− b′)〈w̃, w〉 = 0
})

= 0 whenever b 6= b′,

so that the claim follows from the finiteness of m̃ and the fact that the set (0, a) is uncountable.

Now let us set αn
.
=
∥∥|wn|∥∥L∞(X)

+ ‖wn‖W 1,2
C (TX)

. We can recursively define decreasing

sequences (βn)n, (γn)n ⊆ (0,∞) with β1 = 1 and such that for any n ∈ N we have{
3βn+1 ≤ γn+1 ≤ βn,
m̃(En) ≥ mn/

(
1 + 1

n

)
,

where we set En
.
=
{∣∣〈∑n

i=1
βi
αi
wi, w

〉∣∣ ≥ γn+1

}
.

To see that this is possible, let β1
.
= 1 and notice that trivially{∣∣〈 β1

α1
w1, w

〉∣∣ > 0
}

=
{
|〈w1, w〉| > 0

}
,

so that for γ2 ∈ (0, β1) sufficiently small the above holds. Now assume that βn−1 and γn
have been already chosen. We use property (6.53) for v

.
=
∑n−1

i=1
βi
αi
wi, w̃

.
= wn and a

.
= γn/3

to find βn
.
= b < γn/3 such that m̃

({
|〈
∑n

i=1
βi
αi
wi, w〉| > 0

})
≥ m̃

({
|〈wn, w〉| > 0

})
= mn.

Hence for γn+1 ∈ (0, βn) sufficiently small the above claim holds.

We claim that the vector v
.
=
∑

i≥1
βi
αi
wi satisfies the conclusion of the statement and

start by observing that βi ≤ 3−i, thus accordingly∥∥ βi
αi
wi
∥∥
W 1,2

C (TX)
≤ 3−i ‖αi−1wi‖W 1,2

C (TX)
≤ 3−i

by definition of αi. Hence the series converges in W 1,2
C (TX), so that v is well-defined and

belongs to H1,2
C (TX). Now notice that by construction and (6.52) we have that m̃(En)→ m∞

and m̃
(
En \

{
|w| > 0

})
= 0, so that m̃

({
|w| > 0

}
\
⋃
nEn

)
= 0. Hence to conclude it is

sufficient to show that for every n ≥ 1 one has that 〈v, w〉 6= 0 holds m̃-a.e. on En. Fix n ≥ 1,

let m > n and observe that – by definition of the αi’s and the βi’s – we have that∣∣〈 βmαm wm, w〉∣∣ ≤ 3n−m+1 βn+1

∣∣〈α−1
m wm, w〉

∣∣ ≤ 3n−m+1 βn+1 holds m̃-a.e. in X,

so that
∣∣∑

m>n 〈
βm
αm

wm, w〉
∣∣ ≤ 3

2 βn+1 ≤ 1
2 γn+1. On the other hand, we have by construction

that
∣∣∑n

i=1 〈
βi
αi
wi, w〉

∣∣ ≥ γn+1 holds m̃-a.e. on En. Finally, this grants that |〈v, w〉| ≥ 1
2 γn+1

is verified m̃-a.e. on En. Therefore the proof is achieved. �

By repeatedly applying Lemma 6.38, we can find a family of H1,2
C (TX)-Sobolev generators

of the tangent module on any RCD(K,∞) space X, as follows:

Theorem 6.39 (Sobolev base of the tangent module) Let (X, d,m) be an RCD(K,∞)

space, for some constant K ∈ R. Suppose that the dimensional decomposition of X is given

by (An)n∈N. Then there exists a sequence of vector fields (vn)n≥1 ⊆ H1,2
C (TX) such that

(6.54) v1, . . . , vn is a local basis for L2(TX) on An for every n ∈ N+.

Proof. The statement can be equivalently rewritten in the following way:

(6.55) v1, . . . , vn are independent on
⋃
k≥n

Ak for every n ∈ N+.
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We build the sequence (vn)n by means of a recursive argument. First of all, choose a vector

field w ∈ L2(TX) such that 0 < |w| ≤ 1 m-a.e. in
⋃
k≥1Ak, then pick v1 ∈ H1,2

C (TX) such

that 〈v1, w〉 6= 0 m-a.e. in
⋃
k≥1Ak, whose existence is granted by Lemma 6.38. Thus in

particular we have |v1| > 0 m-a.e. in
⋃
k≥1Ak, proving (6.55) for n = 1. Now suppose to have

already found v1, . . . , vn satisfying the required property. It can be easily seen that there

exists w ∈ L2(TX) such that 〈v1, w〉 = . . . = 〈vn, w〉 = 0 and 0 < |w| ≤ 1 hold m-a.e. in

the set
⋃
k>nAk. Hence Lemma 6.38 ensures the existence of a vector field vn+1 ∈ H1,2

C (TX)

such that 〈vn+1, w〉 6= 0 m-a.e. in
⋃
k>nAk.

Now take any f1, . . . , fn+1 ∈ L∞(m) such that
∑n+1

i=1 fi vi = 0 m-a.e. in
⋃
k>nAk, thus

one has fn+1〈vn+1, w〉 =
∑n+1

i=1 fi〈vi, w〉 = 0 m-a.e. in
⋃
k>nAk, from which we can deduce

that fn+1 = 0 holds m-a.e. in
⋃
k>nAk. Therefore

∑n
i=1 fi vi = 0 m-a.e. in

⋃
k>nAk and

accordingly also f1 = . . . = fn = 0 m-a.e. in
⋃
k>nAk, as a consequence of the independence

of v1, . . . , vn. This grants that the vector fields v1, . . . , vn+1 are independent on
⋃
k>nAk,

proving (6.55) for n+ 1. The statement is then achieved. �
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The purpose of this chapter is to explain in which sense any Sobolev vector field on an

RCD(K,∞) space (X, d,m) – more precisely, any element of the space H1,2
C (TX) – admits a

(unique) quasi-continuous representative. The whole discussion is taken from [DGP18].

Consider a metric measure space (X, d,m) and the variational 2-capacity associated to

the Sobolev space W 1,2(X), which will be shortly called capacity and denoted by Cap (cf.

Subsection 7.1.1). We recall that a function f : X → R is quasi-continuous if for any ε > 0

we can find an open subset Ω of X with Cap(Ω) < ε such that f is continuous when restricted

to X \Ω. Then it is well-known that – provided continuous functions are dense in W 1,2(X) –

any Sobolev function has a (unique up to Cap-a.e. equality) quasi-continuous representative.

This means that an element of W 1,2(X) is ‘more regular’ than a generic element of L2(m),

since it is defined not only m-a.e. but also Cap-a.e. (it is worth to point out that m� Cap).

A natural question arises: given an RCD(K,∞) space (X, d,m) and some Sobolev vector

field v over X, is it possible to speak about ‘quasi-continuous representative’ of v? As we are

going to see, the answer is positive. However, it is still unclear whether this theory could

133
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shed new light on the ‘fine’ properties of RCD spaces.

We now briefly describe some technical details of our construction. We denote by L0(Cap)

the space of all equivalence classes (up to Cap-a.e. equality) of Borel functions on X. It turns

out that L0(Cap) has a natural structure of topological ring (cf. Definition 7.6), whence we

can give a meaningful definition of L0(Cap)-normed L0(Cap)-module (or normed Cap-module

for brevity); cf. Definition 7.21. The axiomatisation of normed Cap-module mimics that of

L0(m)-normed L0(m)-module, but with the capacity in place of the reference measure m, so

that – morally speaking – the elements of a normed Cap-module are defined Cap-a.e..

The only normed Cap-module we shall actually exhibit is the tangent Cap-module, which

is introduced in Theorem 7.25 and denoted by L0
Cap(TX). The idea is the following: given

any test function f ∈ TestF(X), we already know that its minimal weak upper gradient |Df |
belongs to the Sobolev space W 1,2(X) (cf. Subsection 4.2.2); this tells us that, heuristically,

the ‘gradient of f ’ is defined Cap-a.e., thus also the limits of L0(Cap)-linear combinations of

‘gradients’ of test functions (that constitute the tangent module) are defined Cap-a.e..

Given a test function f ∈ TestF(X), we denote by ∇̄f the gradient of f as an element

of L0
Cap(TX). Then we can give the definition of quasi-continuous vector field over X in

the following way: we say that an element v ∈ L0
Cap(TX) is quasi-continuous provided the

function |v − ∇̄f | is quasi-continuous for every f ∈ TestF(X); cf. Definition 7.29.

Therefore the main result of the chapter states the following:

Any element of H1,2
C (TX) has a quasi-continuous representative in L0

Cap(TX).

We refer to Theorem 7.34 for the precise formulation and the proof of such result.

7.1 Capacity on metric measure spaces

7.1.1 Definition and main properties of capacity

Let (X, d,m) be a fixed metric measure space. We briefly recall the definition of capacity in

this context and its main properties; the forthcoming discussion is mainly taken from [BH91].

Definition 7.1 (Capacity) Let E be a given subset of X. Let us denote

(7.1) FE
.
=
{
f ∈W 1,2(X)

∣∣∣ f ≥ 1 m-a.e. on some open neighbourhood of E
}
.

Then the capacity of the set E is defined as the quantity Cap(E) ∈ [0,+∞], given by

(7.2) Cap(E)
.
= inf

f∈FE
‖f‖2W 1,2(X),

with the convention that Cap(E)
.
= +∞ whenever the family FE is empty.

In the following result we collect the main properties of the capacity; cf. Appendix A for

the language of outer measures that will be used.

Proposition 7.2 The capacity Cap is a submodular outer measure on the space X. More-

over, it satisfies the following properties:

i) m(E) ≤ Cap(E) for every Borel subset E of X.
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ii) Cap is continuous from below, i.e.

(7.3) Cap

( ⋃
n∈N

En

)
= lim

n→∞
Cap(En)

for any increasing sequence (En)n of subsets of X.

iii) Given any x ∈ X and 0 < r < R, it holds that

(7.4) Cap
(
Br(x)

)
≤
(

1 +
1

(R− r)2

)
m
(
BR(x)

)
.

Proof. The only statement that is not proven in [BH91, Proposition 8.1.3] is item iii). To

show its validity, fix x ∈ X and 0 < r < R. Given any λ ∈ (0, R− r), define fλ ∈ FBr(x) as

fλ
.
=

(
1−

d
(
· , Br(x)

)
λ

)+

.

Notice that fλ ≤ 1, |Dfλ| ≤ 1/λ hold m-a.e. on X and spt(fλ) ⊆ BR(x), whence accordingly

Cap
(
Br(x)

)
≤ ‖fλ‖2W 1,2(X) = ‖f‖2L2(m) +

∥∥|Df |∥∥2

L2(m)
≤ m

(
BR(x)

)
+

m
(
BR(x)

)
λ2

.

By letting λ↗ R− r in the previous inequality, we thus obtain (7.4). �

Remark 7.3 (The capacity is σ-finite) It follows from item iii) of Proposition 7.2 that

there exists a partition (Ak)k∈N of X into bounded Borel sets satisfying 0 < Cap(Ak) < +∞
for every k ∈ N and with the following property: there exists a point x̄ ∈ X such that the

ball Bk(x̄) is contained in A1 ∪ . . . ∪Ak for every k ∈ N. �

Example 7.4 Consider the open segment S
.
= (0, 1) in R (equipped with Euclidean distance

and Lebesgue measure). Given any n ≥ 2, denote by Pn ⊆ S the singleton {1/n}. One can

check that 0 < Cap(Pn) < Cap(S), but that Cap(S \Pn) = Cap(S). In other words, we have

that
∫
χS\Pn dCap =

∫
χS dCap and Cap

(
{χS\Pn 6= χS}

)
> 0. This shows that for µ

.
= Cap

and f ≤ g the converse of item iv) of Proposition A.1 fails. �

Remark 7.5 In this context, the monotone convergence theorem can be easily shown to

hold. Namely, given functions f, fn : X→ [0,+∞], n ∈ N we have that

(7.5) fn(x)↗ f(x) for Cap-a.e. x ∈ X =⇒
∫
f dCap = lim

n→∞

∫
fn dCap.

In order to prove it, call F the set of points x ∈ X with fn(x)↗ f(x), thus Cap(X \ F ) = 0.

For any fixed t ≥ 0, we have that the sequence of sets {χF fn > t} is increasing with respect

to n and satisfies
⋃
n{χF fn > t} = {χF f > t}. Hence by applying the monotone convergence

theorem (for the Lebesgue measure) and item iv) of Proposition A.1 we conclude that∫
f dCap =

∫
F
f dCap =

∫ +∞

0
Cap

(
{χF f > t}

)
dt = lim

n→∞

∫ +∞

0
Cap

(
{χF fn > t}

)
dt

= lim
n→∞

∫
F
fn dCap = lim

n→∞

∫
fn dCap,

thus proving that the claim (7.5) is verified.
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On the other hand, an analogue of the dominated convergence theorem cannot hold, as

shown by the following counterexample. For any n ≥ 2, let us consider the point Pn in R
defined in Example 7.4. Since the capacity in the space R is translation-invariant, one has

that Cap(Pn) = Cap(P2) > 0 for all n ≥ 2. Moreover, we have limn χPn(x) = 0 for all x ∈ R
and χPn ≤ χ(0,1) for all n ≥ 2, with

∫
χ(0,1) dCap = Cap

(
(0, 1)

)
< +∞. Nevertheless, it holds

that
∫
χPn dCap ≡ Cap(P2) does not converge to 0 as n→∞, thus proving the failure of the

dominated convergence theorem. In order to provide such a counterexample, we exploited the

fact that the capacity is not σ-additive; indeed, we built a sequence of pairwise disjoint sets,

all having the same positive capacity, which are contained in a fixed set of finite capacity. The

lack of a result such as the dominated convergence theorem explains the technical difficulties

we will find in the proofs of Proposition 7.7 and Theorem 7.10. �

7.1.2 The space L0(Cap)

It makes sense to consider the integral associated to Cap and that such integral is subadditive,

by Proposition 7.2 and Theorem A.3. In light of this, the following definition is meaningful:

Definition 7.6 (The space L0(Cap)) Given any two functions f, g : X → R, we will say

that f = g in the Cap-a.e. sense provided Cap
(
{f 6= g}

)
= 0. We define L0(Cap) as the space

of all the equivalence classes – up to Cap-a.e. equality – of Borel functions on X. It turns

out that L0(Cap) is both a topological vector space and a topological ring when endowed with

the usual pointwise operations and the distance

(7.6) dCap(f, g)
.
=
∑
k∈N

1

2k
(
Cap(Ak) ∨ 1

) ∫
Ak

|f − g| ∧ 1 dCap for every f, g ∈ L0(Cap),

where (Ak)k is any fixed Borel partition of X as in Remark 7.3.

Note that the integral
∫
Ak
|f−g|∧1 dCap is well-defined, since its value does not depend on

the particular representatives of f and g, as granted by item iv) of Proposition A.1. Moreover,

we point out that the fact that dCap satisfies the triangle inequality is a consequence of the

subadditivity of the integral associated with the capacity.

The next result shows that, even if the choice of the particular sequence (Ak)k might

affect the distance dCap, its induced topology remains unaltered.

Proposition 7.7 Let (fn)n ⊆ L0(Cap) be given. Then the following are equivalent:

i) limn,m dCap(fn, fm) = 0,

ii) limn,m Cap
(
E ∩

{
|fn − fm| > ε

})
= 0 for any ε > 0 and any bounded set E ⊆ X.

Proof. We separately prove the two implications:

i) =⇒ ii) Fix any 0 < ε < 1 and a bounded set E ⊆ X. Choose k ∈ N such that E ⊆ Bk(x̄),

so that E ⊆ A1∪ . . .∪Ak. Since dCap(fn, fm)
n,m→ 0, we have limn,m

∫
Ai
|fn−fm|∧1 dCap = 0

for all i = 1, . . . , k. Therefore we conclude that

lim
n,m→∞

εCap
(
E ∩

{
|fn − fm| > ε

})
≤ lim

n,m→∞
ε

k∑
i=1

Cap
(
Ai ∩

{
|fn − fm| > ε

})
≤

k∑
i=1

lim
n,m→∞

∫
Ai

|fn − fm| ∧ 1 dCap = 0.
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ii) =⇒ i) Let ε > 0 be fixed. Choose k ∈ N with 2−k ≤ ε. By our hypothesis, there is n̄ ∈ N
such that Cap

(
Ai ∩

{
|fn − fm| > ε

})
≤ εCap(Ai) for every n,m ≥ n̄ and i = 1, . . . , k. Let

us call Bnm
i

.
= Ai ∩

{
|fn − fm| > ε

}
and Cnmi

.
= Ai \ Bnm

i . Therefore for any n,m ≥ n̄ it

holds that

dCap(fn, fm) ≤
k∑
i=1

1

2i Cap(Ai)

∫
Ai

|fn − fm| ∧ 1 dCap +
∞∑

i=k+1

1

2i

≤
k∑
i=1

1

2i Cap(Ai)

[∫
Bnmi

|fn − fm| ∧ 1 dCap +

∫
Cnmi

|fn − fm| ∧ 1 dCap

]
+ ε

≤
k∑
i=1

1

2i Cap(Ai)

[
Cap(Bnm

i ) + εCap(Ai)
]

+ ε ≤ 3 ε,

proving that limn,m dCap(fn, fm) = 0, as required. �

We omit the proof of the following result, since it is analogous to that of Proposition 7.7.

Proposition 7.8 Let f ∈ L0(Cap) and (fn)n ⊆ L0(Cap). Then the following are equivalent:

i) limn dCap(fn, f) = 0,

ii) limn Cap
(
E ∩

{
|fn − f | > ε

})
= 0 for any ε > 0 and any bounded set E ⊆ X.

Remark 7.9 It can be readily checked that any converging sequence in L0(Cap) admits a

pointwise Cap-a.e. converging subsequence. Namely, if dCap(fn, f)
n→ 0 for some f ∈ L0(Cap)

and (fn)n ⊆ L0(Cap), then there exists a subsequence (fni)i of (fn)n such that fni(x)→ f(x)

is verified as i→∞ for Cap-a.e. x ∈ X.

On the other hand, the converse implication is in general false, as shown by the following

counterexample. Consider Pn as in Example 7.4 for any n ≥ 2. We have that fn
.
= χPn

pointwise converges to 0 as n→∞. However, it holds that

Cap
(
(0, 1) ∩

{
|fn| > 1/2

})
= Cap(Pn) ≡ Cap(P2) > 0

does not converge to 0, thus we do not have limn dCap(fn, 0) = 0 by Proposition 7.8. �

We now prove that
(
L0(Cap), dCap

)
is complete. Observe that Propositions 7.7 and 7.8

ensure that such completeness does not depend on the particular choice of (Ak)k.

Theorem 7.10 The metric space
(
L0(Cap), dCap

)
is complete.

Proof. Let (fn)n be a dCap-Cauchy sequence of Borel functions fn : X→ R. Fix any k ∈ N.

Let (fni)i be an arbitrary subsequence of (fn)n. Up to passing to a further (not relabeled)

subsequence, it holds that

(7.7) Cap
(
Ak ∩

{
|fni − fni+1 | > 2−i

})
≤ 2−i for every i ∈ N.

Let us call Fi
.
= Ak ∩

{
|fni −fni+1 | > 2−i

}
for every i ∈ N and F

.
=
⋂
i∈N
⋃
j≥i Fj . Given that

we have
∑

i∈N Cap(Fi) < +∞ by (7.7), we deduce from Lemma A.4 that Cap(F ) = 0. Note

that if x ∈ Ak \F =
⋃
i∈N
⋂
j≥iAk \Fj , then there is i ∈ N such that

∣∣fnj (x)−fnj+1(x)
∣∣ ≤ 2−j
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for all j ≥ i, which grants that
(
fni(x)

)
i
⊆ R is a Cauchy sequence for every x ∈ Ak \ F .

Therefore we define the Borel function gk : Ak → R as

gk(x)
.
=

{
limi fni(x)

0

if x ∈ Ak \ F,
if x ∈ F.

Now fix any ε > 0. Choose ī ∈ N such that
∑

i≥ī 2−i ≤ ε. If i ≥ ī and x ∈
⋂
j≥iAk\Fj (thus in

particular x /∈ F ), hence one has
∣∣fni(x)−gk(x)

∣∣ ≤∑j≥i
∣∣fnj (x)−fnj+1(x)

∣∣ ≤∑j≥i 2−j ≤ ε.
This implies that

(7.8) Ak ∩
{
|fni − gk| > ε

}
⊆
⋃
j≥i

Fj for every i ≥ ī.

Then Cap
(
Ak ∩

{
|fni − gk| > ε

})
≤
∑

j≥i Cap(Fj) ≤
∑

j≥i 2−j holds for every i ≥ ī, thus

accordingly

(7.9) lim
i→∞

Cap
(
Ak ∩

{
|fni − gk| > ε

})
= 0 for every ε > 0.

We proved this property for some subsequence of a given subsequence (fni)i of (fn)n, hence

this shows that

(7.10) lim
n→∞

Cap
(
Ak ∩

{
|fn − gk| > ε

})
= 0 for every ε > 0.

Now let us define the Borel function f : X → R as f :=
∑

k∈N χAk g
k. Notice that the

equality Ak ∩
{
|fn − f | > ε

}
= Ak ∩

{
|fn − gk| > ε

}
and property (7.10) yield

lim
n→∞

Cap
(
Ak ∩

{
|fn − f | > ε

})
= 0 for every k ∈ N and ε > 0.

Since any bounded subset of X is contained in the union of finitely many Ak’s, we immediately

deduce that limn Cap
(
E ∩

{
|fn − f | > ε

})
= 0 whenever ε > 0 and E ⊆ X is bounded. This

grants that limn dCap(fn, f) = 0 by Proposition 7.8, thus proving that
(
L0(Cap), dCap

)
is a

complete metric space and accordingly the statement. �

In the next section, we shall need the density result we are now going to present.

Proposition 7.11 The space Sf(X) of simple functions, which for this chapter is defined as

(7.11) Sf(X)
.
=

{ ∞∑
n=1

αn χEn

∣∣∣∣ (αn)n∈N ⊆ R and (En)n∈N
is a Borel partition of X

}
,

is dense in
(
L0(Cap), dCap

)
.

Proof. Fix f ∈ L0(Cap) and ε > 0. Choose a Borel representative f̄ : X → R of f . For any

integer i ∈ Z, let us define Ei
.
= f̄−1

(
[i ε, (i+1) ε)

)
. Then (Ei)i∈Z constitutes a partition of X

into Borel sets, so that ḡ
.
=
∑

i∈Z i ε χEi is a well-defined Borel function that belongs to Sf(X).

Finally, it holds that
∣∣f̄(x) − ḡ(x)

∣∣ < ε for every x ∈ X, which grants that dCap(f, g) ≤ ε,

where g ∈ L0(Cap) denotes the equivalence class of ḡ. Hence the statement follows. �



7.1. Capacity on metric measure spaces 139

7.1.3 Quasi-continuous representative of a Sobolev function

We conclude the present section by investigating the notion of quasi-continuous function and

its main properties. We refer to [BH91] for a more detailed discussion about this topic.

Definition 7.12 (Quasi-continuity for functions) We say that a function f : X→ R is

quasi-continuous provided for every ε > 0 there exists an open set Ω ⊆ X with Cap(Ω) < ε

such that f |X\Ω : X \ Ω → R is continuous. Moreover, we denote by Cqc(X) ⊆ L0(Cap) the

set of all equivalence classes – up to Cap-a.e. equality – of Borel quasi-continuous functions.

The well-posedness of the definition of Cqc(X) stems from the following result:

Lemma 7.13 Let f, f̃ : X → R be two functions that coincide Cap-a.e. on X. Then f is

quasi-continuous if and only if f̃ is quasi-continuous.

It can be readily checked that sums and products of two quasi-continuous functions are

quasi-continuous functions as well. More generally, given any n ∈ N and any continuous

function Φ : Rn → R, it holds that the function X 3 x 7→ Φ
(
f1(x), . . . , fn(x)

)
is quasi-

continuous whenever f1, . . . , fn : X→ R are quasi-continuous functions.

Remark 7.14 Let f : X → R be a given quasi-continuous function. The very definition of

quasi-continuity grants the existence of an increasing sequence (Cn)n of closed subsets of X

with limn Cap(X \ Cn) = 0 such that f is continuous on each Cn. Then N
.
=
⋂
n X \ Cn is a

Borel set with null capacity – in particular, we have m(N) = 0 by item i) of Proposition 7.2

– and f is Borel on X \N . This proves that any quasi-continuous function is m-measurable

and Cap-a.e. equivalent to a Borel function. �

Since m is absolutely continuous with respect to Cap, there is a natural projection map

(7.12) Π : L0(Cap) −→ L0(m).

Namely, we define Π
(
[f ]Cap

) .
= [f ]m for every Borel function f : X → R, where by [f ]Cap

(resp. [f ]m) we intend the equivalence class up to Cap-a.e. (resp. m-a.e.) equality of f .

Proposition 7.15 (Uniqueness of the quasi-continuous representative) Fix any two

quasi-continuous functions f, g on X. Then f = g m-a.e. on X implies f = g Cap-a.e. on X.

In other words,

(7.13) Π|Cqc(X)
: Cqc(X) −→ L0(m) is an injective map.

Theorem 7.16 (Quasi-continuous representative of Sobolev functions) We assume

that the space C(X) ∩W 1,2(X) is dense in W 1,2(X). Then there exists a unique map

(7.14) T : W 1,2(X) −→ Cqc(X)

such that the composition Π ◦ T : W 1,2(X)→ L0(m) is the inclusion map W 1,2(X) ⊆ L0(m).

Moreover, T is linear and
∣∣T (f)

∣∣ = T
(
|f |
)

holds for every f ∈W 1,2(X).

We conclude the section by recalling the notion of quasi-uniform convergence and two

important results concerning such concept.
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Definition 7.17 (Quasi-uniform convergence) Let fn : X → R, n ∈ N ∪ {∞} be any

functions. Then we say that fn quasi-uniformly converges to f∞ as n→∞ if for any ε > 0

there exists an open set Ω ⊆ X with Cap(Ω) < ε such that fn → f∞ uniformly on X \ Ω.

Remark 7.18 Note that the quasi-uniform convergence is invariant under Cap-a.e. modifi-

cations. Namely, given any functions fn, gn : X→ R, n ∈ N ∪ {∞} such that fn = gn in the

Cap-a.e. sense for all n ∈ N ∪ {∞}, it can be readily checked that fn → f∞ quasi-uniformly

if and only if gn → g∞ quasi-uniformly. In particular, this grants that – as in the next result

– it makes sense to speak about quasi-uniform convergence for elements of L0(Cap). �

Proposition 7.19 Let (fn)n ⊆ W 1,2(X) be a sequence that W 1,2(X)-converges to some

limit function f ∈ W 1,2(X). Then there exists a subsequence (fni)i such that T (fni) quasi-

uniformly converges to T (f) as i→∞.

Lemma 7.20 Let (fn)n ⊆ L0(Cap) be a sequence such that fn → f quasi-uniformly for some

limit function f ∈ L0(Cap). Then limn dCap(fn, f)→ 0.

Proof. Let fn, f be fixed representatives. Pick any ε > 0. Let us choose any open set Ω ⊆ X

with Cap(Ω) < ε such that fn → f uniformly on the set X \Ω. Then there exists n̄ ∈ N such

that supX\Ω |fn − f | ≤ ε holds for every n ≥ n̄. Given dCap as in (7.6), we thus have that

dCap(fn, f) ≤
∑
k∈N

Cap(Ak ∩ Ω)

2k
+
∑
k∈N

1

2k Cap(Ak)

∫
Ak\Ω

ε dCap ≤ 2 ε

holds for every n ≥ n̄. Therefore limn dCap(fn, f) = 0, as required. �

7.2 Quasi-continuous vector fields on RCD spaces

7.2.1 Normed Cap-modules

In the present section, we shall use the term normed m-module in place of L0(m)-normed

L0(m)-module and we will typically denote by Mm any such object. Here we introduce a

new notion of normed module – called normed Cap-module – in which the measure under

consideration is the capacity Cap instead of the reference measure m.

Let (X, d,m) be a metric measure space and (Ak)k a partition of X as in Remark 7.3.

Definition 7.21 (Normed Cap-module) We say that a quadruple
(
MCap, τ, · , | · |

)
is a

normed Cap-module over (X, d,m) provided the following hold:

i) (MCap, τ) is a topological vector space.

ii) The bilinear map · : L0(Cap)×MCap →MCap satisfies f · (g ·v) = (fg) ·v and 1 ·v = v

for every f, g ∈ L0(Cap) and v ∈MCap.

iii) The map | · | : MCap → L0(Cap), called pointwise norm, satisfies

|v| ≥ 0 for every v ∈MCap, with equality if and only if v = 0,

|v + w| ≤ |v|+ |w| for every v, w ∈MCap,

|f · v| = |f ||v| for every v ∈MCap and f ∈ L0(Cap),

(7.15)

where all equalities and inequalities are intended in the Cap-a.e. sense.
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iv) The distance dMCap
on MCap, given by

(7.16) dMCap
(v, w)

.
=
∑
k∈N

1

2k
(
Cap(Ak) ∨ 1

) ∫
Ak

|v − w| ∧ 1 dCap

for every v, w ∈MCap, is complete and induces the topology τ .

The relation with the normed m-modules is explained by the following result:

Proposition 7.22 Let MCap be a normed Cap-module over (X, d,m). We define an equiva-

lence relation ∼m on MCap as follows: given any v, w ∈MCap, we declare that

(7.17) v ∼m w ⇐⇒ |v − w| = 0 m-a.e. in X.

Then the quotient Mm
.
= MCap/ ∼m inherits a natural structure of normed m-module.

Proof. Let us denote by [v]m ∈Mm the equivalence class of v ∈MCap. Given [v]m, [w]m ∈Mm

and [f ]m ∈ L0(m), we define

[v]m + [w]m
.
= [v + w]m ∈Mm,

[f ]m · [v]m
.
=
[
[f ]Cap · v

]
m
∈Mm,∣∣[v]m

∣∣ .= Π
(
|v|
)
∈ L0(m).

Hence standard verifications show that the above operations are well-posed and endow Mm

with a normed m-module structure. �

Remark 7.23 In analogy with the case of normed m-modules, one could be tempted to

define the dual of a normed Cap-module MCap as the space of all L0(Cap)-linear continuous

operators L : MCap → L0(Cap) and to declare that the pointwise norm |L| of any such L is

the minimal element of L0(Cap) (where minimality is intended in the Cap-a.e. sense) such

that the inequality |L| ≥ L(v) holds Cap-a.e. for any v ∈MCap that Cap-a.e. satisfies |v| ≤ 1.

Technically speaking, for normed m-modules this can be achieved by using the notion

of essential supremum of a family of Borel functions. Nevertheless, it seems that this tool

cannot be adapted to the situation in which we want to consider the capacity instead of the

reference measure, as suggested by Example 7.4. �

Definition 7.24 Let HCap be a normed Cap-module over (X, d,m). Then we say that HCap

is a Hilbert module provided

(7.18) |v + w|2 + |v − w|2 = 2 |v|2 + 2 |w|2 holds Cap-a.e. in X

for every v, w ∈HCap.

By polarisation, we define a pointwise scalar product 〈·, ·〉 : HCap×HCap → L0(Cap) as

(7.19) 〈v, w〉 .= |v + w|2 − |v|2 − |w|2

2
Cap-a.e. in X.

Then the operator 〈·, ·〉 is L0(Cap)-bilinear and satisfies∣∣〈v, w〉∣∣ ≤ |v||w|
〈v, v〉 = |v|2

Cap-a.e. for every v, w ∈HCap.(7.20)
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7.2.2 The tangent Cap-module

Let (X, d,m) be a given RCD(K,∞) space, for some constant K ∈ R. We point out that

we are in a position to apply Theorem 7.16 above, since Lipschitz functions with bounded

support are dense in W 1,2(X) by Theorem 2.27.

We use the notation L0
m(TX) to indicate the tangent m-module over X. We now introduce

the so-called tangent Cap-module L0
Cap(TX) over X, which is a normed Cap-module in the

sense of Definition 7.21.

Theorem 7.25 (Tangent Cap-module) Let (X, d,m) be an RCD(K,∞) space. Then there

exists a unique couple
(
L0

Cap(TX), ∇̄
)
, where L0

Cap(TX) is a normed Cap-module over X and

the operator ∇̄ : TestF(X)→ L0
Cap(TX) is linear, such that the following properties hold:

i) For any f ∈ TestF(X) we have that the equality |∇̄f | = T
(
|Df |

)
holds Cap-a.e. on X

(note that |Df | ∈W 1,2(X) as a consequence of Lemma 4.54).

ii) The space of
∑

n∈N χEn∇̄fn, with (fn)n ⊆ TestF(X) and (En)n Borel partition of X, is

dense in L0
Cap(TX).

Uniqueness is intended up to unique isomorphism: given another couple (MCap, ∇̄′) with the

same properties, there exists a unique isomorphism Φ : L0
Cap(TX)→MCap with Φ ◦ ∇̄ = ∇̄′.

The space L0
Cap(TX) is called tangent Cap-module associated to (X, d,m), while its ele-

ments are said to be Cap-vector fields on X. Moreover, the operator ∇̄ is called gradient.

Proof. We first prove the uniqueness part of the statement and then the existence one.

Uniqueness. Consider any simple vector field v ∈ L0
Cap(TX), i.e. v =

∑
n∈N χEn∇̄fn for

some (fn)n ⊆ TestF(X) and (En)n Borel partition of X. We are thus forced to set

(7.21) Φ(v)
.
=
∑
n∈N

χEn∇̄′fn ∈MCap.

Such definition is well-posed, as granted by the Cap-a.e. equalities∣∣∣∣∣∑
n∈N

χEn∇̄′fn

∣∣∣∣∣ =
∑
n∈N

χEn |∇̄′fn| =
∑
n∈N

χEn |Dfn| =
∑
n∈N

χEn |∇̄fn| = |v|,

which also show that Φ preserves the pointwise norm of simple vector fields. In particular,

the map Φ is linear and continuous, whence it can be uniquely extended to a linear and

continuous operator Φ : L0
Cap(TX) →MCap by density of simple vector fields in L0

Cap(TX).

It follows from Remark 7.9 that Φ preserves the pointwise norm. Moreover, we know from

the definition (7.21) that Φ(fv) = f Φ(v) is satisfied for any simple f and v, whence for

all f ∈ L0(Cap) and v ∈ L0
Cap(TX) by Proposition 7.11. To conclude, just notice that the

image of Φ is dense in MCap by density of simple vector fields in MCap, thus accordingly Φ is

surjective (as its image is closed, being Φ an isometry). Therefore we proved that there exists

a unique module isomorphism Φ : L0
Cap(TX)→MCap such that Φ ◦ ∇̄ = ∇̄′, as required.

Existence. We define the ‘pre-tangent module’ Ptm as the set of all sequences (En, fn)n,

where (fn)n ⊆ TestF(X) and (En)n is a Borel partition of X. We now define an equivalence

relation ∼ on Ptm: we declare that (En, fn)n ∼ (Fm, gm)m provided

T
(
|D(fn − gm)|

)
= 0 holds Cap-a.e. on En ∩ Fm for every n,m ∈ N.
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The equivalence class of (En, fn)n will be denoted by [En, fn]n. Moreover, let us define

α [En, fn]n + β [Fm, gm]m
.
= [En ∩ Fm, α fn + β gm]n,m

for every α, β ∈ R and [En, fn]n, [Fm, gm]m ∈ Ptm/ ∼, so that Ptm/ ∼ inherits a vector space

structure; well-posedness of these operations is granted by the locality property of minimal

weak upper gradients and by Theorem 7.16. We define the pointwise norm of any given

element [En, fn]n ∈ Ptm/ ∼ as

(7.22)
∣∣[En, fn]n

∣∣ .= ∑
n∈N

χEnT
(
|Dfn|

)
∈ L0(Cap).

Then we define L0
Cap(TX) as the completion of the metric space

(
Ptm/ ∼ , dL0

Cap(TX)

)
, where

(7.23) dL0
Cap(TX)(v, w)

.
=
∑
k∈N

1

2k
(
Cap(Ak) ∨ 1

) ∫
Ak

|v−w| ∧ 1 dCap for all v, w ∈ Ptm/ ∼,

while we set ∇̄f .
= [X, f ] ∈ L0

Cap(TX) for every test function f ∈ TestF(X), thus obtaining a

linear operator ∇̄ : TestF(X)→ L0
Cap(TX). Item i) of the statement is thus clearly satisfied.

Observe that [En, fn]n =
∑

n∈N χEn∇̄fn for every [En, fn]n ∈ Ptm/ ∼, so that also item ii)

is verified, as a consequence of the density of Ptm/ ∼ in L0
Cap(TX). Now let us define the

multiplication operator · : Sf(X)× (Ptm/ ∼)→ Ptm/ ∼ as follows:

(7.24)

(∑
m∈N

αm χFm

)
· [En, fn]n

.
= [En ∩ Fm, αm fn]n,m ∈ Ptm/ ∼ .

Therefore the maps that are defined in (3.41) and (7.24) can be uniquely extended by con-

tinuity to a pointwise norm operator | · | : L0
Cap(TX) → L0(Cap) and a multiplication by

L0(Cap)-functions · : L0(Cap)×L0
Cap(TX)→ L0

Cap(TX), respectively. It also turns out that

the distance dL0
Cap(TX) is expressed by the formula in (7.23) for any v, w ∈ L0

Cap(TX), as one

can readily deduce from Remark 7.9. Finally, standard verifications show that L0
Cap(TX) is

a normed Cap-module over (X, d,m), thus concluding the proof. �

Remark 7.26 An analogous construction has been carried out in Theorem 4.1 to define

the cotangent m-module L0
m(T ∗X), while the tangent m-module L0

m(TX) was obtained in

Definition 4.7 from the cotangent one by duality. However, since we cannot consider duals of

normed Cap-modules (as pointed out in Remark 7.23), we opted for a different axiomatisation.

We just point out the fact that – since RCD spaces are infinitesimally Hilbertian – the

modules L0
m(T ∗X) and L0

m(TX) can be canonically identified via the Riesz isomorphism. �

Proposition 7.27 The tangent Cap-module L0
Cap(TX) is a Hilbert module.

Proof. Given any f, g ∈ TestF(X), we deduce from item i) of Theorem 7.25 and the last

statement of Theorem 7.16 that

|∇̄f + ∇̄g|2 + |∇̄f − ∇̄g|2 = T
(
|D(f + g)|2 + |D(f − g)|2

)
= T

(
2 |Df |2 + 2 |Dg|2

)
= 2 |∇̄f |2 + 2 |∇̄g|2.

This grants that the pointwise parallelogram identity (7.18) is satisfied whenever v, w are

L0(Cap)-linear combinations of elements of
{
∇̄f : f ∈ TestF(X)

}
, whence also for any two

Cap-vector fields v, w ∈ L0
Cap(TX) by approximation. This proves that L0

Cap(TX) is a Hilbert

module, as required. �
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The next result illustrates the relation that subsists between tangent Cap-module and

tangent m-module. The projection Π̄ we are going to describe represents a generalisation of

the projection Π introduced in (7.12).

Proposition 7.28 There is a unique linear continuous operator Π̄ : L0
Cap(TX) → L0

m(TX)

that satisfies the following properties:

i) Π̄(∇̄f) = ∇f for every f ∈ TestF(X).

ii) Π̄(gv) = Π(g) Π̄(v) for every g ∈ L0(Cap) and v ∈ L0
Cap(TX).

Moreover, the operator Π̄ satisfies the equality

(7.25)
∣∣Π̄(v)

∣∣ = Π
(
|v|
)

m-a.e. for every v ∈ L0
Cap(TX).

Proof. Given a Borel partition (En)n∈N of X and (vn)n∈N ⊆ L0
Cap(TX), we are forced to set

(7.26) Π̄

(∑
n∈N

[χEn ]Cap∇̄fn
)
.
=
∑
n∈N

[χEn ]m∇fn.

The well-posedness of such definition stems from the following m-a.e. equalities:∣∣∣∣∑
n∈N

[χEn ]m∇fn
∣∣∣∣ =

∑
n∈N

[χEn ]m |Dfn| =
∑
n∈N

Π
(
[χEn ]Cap

)
Π
(
T
(
|Dfn|

))
= Π

(∑
n∈N

[χEn ]Cap T
(
|Dfn|

))
= Π

(∑
n∈N

[χEn ]Cap |∇̄fn|
)

= Π

(∣∣∣∑
n∈N

[χEn ]Cap∇̄fn
∣∣∣).

(7.27)

Moreover, we also infer that such map Π̄ – which is linear by construction – is also contin-

uous, whence it admits a unique linear and continuous extension Π̄ : L0
Cap(TX)→ L0

m(TX).

Property i) is clearly satisfied by (7.26). From the linearity of ∇ and ∇̄, we deduce that

property ii) holds for any simple function g ∈ L0(Cap), thus also for any g ∈ L0(Cap) by

approximation. Finally, again by approximation we see that (7.25) follows from (7.27). �

7.2.3 Quasi-continuity of Sobolev vector fields on RCD spaces

Let (X, d,m) be an RCD(K,∞) space, for some K ∈ R. The aim of this conclusive subsection

is to prove that any element of the space H1,2
C (TX) admits a quasi-continuous representative,

in a suitable sense. We begin with the definition of quasi-continuous vector field on X:

Definition 7.29 (Quasi-continuity for vector fields) Let v ∈ L0
Cap(TX) be given. Then

we say that v is quasi-continuous provided

(7.28) |v − ∇̄f | ∈ Cqc(X) for every f ∈ TestF(X).

We denote by Cqc(TX) ⊆ L0
Cap(TX) the set of all quasi-continuous Cap-vector fields on X.

The well-posedness of the previous definition immediately follows from Lemma 7.13.
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Remark 7.30 It is well-known that a vector field v : Rn → Rn in the Euclidean space is

quasi-continuous if and only if Rn 3 x 7→
∣∣v(x)−∇f(x)

∣∣ is quasi-continuous for every smooth

function f : Rn → R. This served as a motivation for our definition and shows its consistency

with the classical notion of quasi-continuous vector field in the smooth setting. �

Lemma 7.31 The family Cqc(TX) ⊆ L0
Cap(TX) contains the set

(7.29) TestV̄(X)
.
=

{ n∑
i=1

T (gi)∇̄fi
∣∣∣∣ n ∈ N, (fi)

n
i=1, (gi)

n
i=1 ⊆ TestF(X)

}
.

Moreover, it holds that |v| ∈ Cqc(X) for every v ∈ Cqc(TX).

Proof. In order to prove the first statement, let us fix v =
∑n

i=1 T (gi)∇̄fi ∈ TestV̄(X). Given

any fn+1 ∈ TestF(X) and called gn+1 ≡ −1, it clearly holds that

|v − ∇̄fn+1|2 =
n+1∑
i,j=1

T (gi)T (gj) 〈∇̄fi, ∇̄fj〉

=
n+1∑
i,j=1

T (gi)T (gj)

∣∣∇̄(fi + fj)
∣∣2 − |∇̄fi|2 − |∇̄fj |2

2

=
n+1∑
i,j=1

T (gi)T (gj)
T
(∣∣D(fi + fj)

∣∣2)− T (|Dfi|2)− T (|Dfj |2)
2

∈ Cqc(X).

Therefore |v−∇̄fn+1| ∈ Cqc(X) for every fn+1 ∈ TestF(X) and accordingly v ∈ Cqc(TX). The

last statement is trivial: since the identically null function 0 belongs to TestF(X), one has

that |v| = |v − ∇̄0| ∈ Cqc(X) for all v ∈ Cqc(TX). �

Remark 7.32 It is not clear whether in general Cqc(TX) is a vector space. �

Proposition 7.33 Let V ⊆ Cqc(TX) be any given vector subspace of L0
Cap(TX). Then the

map Π̄|V : V → L0
m(TX) is injective.

Proof. Let v, w ∈ V be such that Π̄(v) = Π̄(w). In other words, we have that

Π
(
|v − w|

) (7.25)
=

∣∣Π̄(v − w)
∣∣ = 0 holds m-a.e. in X,

whence Proposition 7.15 grants that |v−w| = 0 holds Cap-a.e. in X. This shows that v = w,

thus proving the claim. �

Finally, we are ready to state and prove the main result of the chapter: any element of the

space H1,2
C (TX) admits a quasi-continuous representative in Cqc(TX), in the sense described

above. This is a generalisation of Theorem 7.16 to vector fields over an RCD space.

Theorem 7.34 (Quasi-continuous representative of Sobolev vector field) Let us fix

an RCD(K,∞) space (X, d,m), for some K ∈ R. Then there exists a unique map

(7.30) T̄ : H1,2
C (TX) −→ Cqc(TX)

such that Π̄ ◦ T̄ : H1,2
C (TX) → L0

m(TX) coincides with the inclusion H1,2
C (TX) ⊆ L0

m(TX).

Moreover, T̄ is linear and
∣∣T̄ (v)

∣∣ = T
(
|v|
)

holds for every v ∈ H1,2
C (TX).
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Proof. Fix v ∈ H1,2
C (TX). Pick (v̄n)n ⊆ TestV̄(X) such that vn

.
= Π̄(v̄n) → v in W 1,2

C (TX).

We know from Lemma 4.54 that |vn − v| ∈ W 1,2(X) and
∣∣D|vn − v|∣∣ ≤ ∣∣∇(vn − v)

∣∣
HS

m-a.e.

for all n ∈ N, thus accordingly |vn − v| → 0 in W 1,2(X) as n → ∞. Proposition 7.19 grants

that – up to a (not relabeled) subsequence – we have that T
(
|vn − v|

)
→ 0 quasi-uniformly

as n→∞, whence T
(
|vn−vm|

)
→ 0 quasi-uniformly as n,m→∞. Thus Lemma 7.20 yields

dL0
Cap(TX)(v̄n, v̄m) = dCap

(
T
(
|vn − vm|

)
, 0
)
−→ 0 as n,m→∞.

This shows that (v̄n)n ⊆ L0
Cap(TX) is Cauchy, thus it converges to some v̄ ∈ L0

Cap(TX).

Hence one has Π̄(v̄) = Π̄
(

limn v̄n
)

= limn Π̄(v̄n) = limn vn = v, so that we define T̄ (v)
.
= v̄.

Proposition 7.33 grants that the map T̄ : H1,2
C (TX) → Cqc(TX) is well-defined and is the

unique map such that Π̄ ◦ T̄ coincides with the inclusion H1,2
C (TX) ⊆ L0

m(TX). Finally, the

last two statements follow from linearity of Π̄, Theorem 7.16 and Proposition 7.33. �

Remark 7.35 We point out that T̄
(
TestV(X)

)
= TestV̄(X). �
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Let (X, dX,m) be a metric measure space and let (Y, dY) be a complete and separable

metric space. We shall also fix p = 2 for simplicity. There are several possible definitions of the

concept of Sobolev map from X to Y. Here we work with the one based on post-composition

(see [HKST15] for historical remarks): we say that f belongs to S2(X; Y) provided there

exists G ∈ L2(m) such that for any Lipschitz function ϕ : Y → R we have ϕ ◦ f ∈ S2(X) and∣∣D(ϕ ◦ f)
∣∣ ≤ Lip(ϕ)G in the m-a.e. sense.

The least such G is denoted by |Df | and called minimal weak upper gradient of the map f .

Since Y has no linear structure, the set S2(X; Y) is not a vector space in general. We refer

to Section 8.1 below for the relative discussion.

The question we address in this chapter – entirely taken from [GPS18] – is the following:

in analogy with the fact that ‘behind’ the minimal weak upper gradient |Df | of a real-valued

Sobolev function there is an abstract differential df , does there exist a notion of differential

for metric-valued Sobolev maps?

Let us now motivate our interest in such problem. In the celebrated paper [ES64], J. Eells

and J. H. Sampson proved the Lipschitz regularity of harmonic maps between Riemannian

147



148 Chapter 8 • Differential of metric-valued Sobolev maps

manifolds, when the target manifold N has non-positive curvature and is simply connected;

the Lipschitz estimate is given in terms of a lower Ricci curvature bound and an upper

dimension bound on the source manifold M . A key point in their proof is the establishment of

the so-called Bochner-Eells-Sampson formula for maps f : M → N , which can be informally

stated in the following way:

(8.1) ∆
|df |2

2
≥ ∇f(∆f) +K |df |2,

where |df | is the Hilbert-Schmidt norm of the differential of f and K ∈ R is a lower bound

for the Ricci curvature of M ; let us remain vague about the meaning of the term ∇f(∆f).

A direct consequence of (8.1) is that if f is harmonic, then

(8.2) ∆
|df |2

2
≥ K |df |2.

This bound and Moser’s iteration technique show that |df | is locally bounded from above

in the domain of definition of f , thus showing the local Lipschitz regularity of f (the upper

dimension bound for M enters into play in the constants appearing in Moser’s argument).

Since the Lipschitz regularity of harmonic maps does not depend on the smoothness of

M and N , but only on the stated curvature bounds, it is natural to ask whether the same

results hold by only assuming the appropriate curvature bounds on the source space and the

target space – without any reference to smoothness. Efforts in this direction have been made

by Gromov-Schoen in [GS92], by Korevaar-Shoen in [KS93] and by Zhang-Zhu in [ZZ18].

The most general result is in [ZZ18], where the authors handle the case of source spaces that

are finite-dimensional Alexandrov spaces with (sectional) curvature bounded from below and

targets that are CAT(0) spaces (i.e. metric spaces with non-positive sectional curvature).

Still, given Eells-Sampson’s result, the natural synthetic setting appears to be that of maps

from an RCD(K,N) space to a CAT(0) space. The content of this chapter aims at being

a first step in the direction of obtaining (8.1) for maps from RCD(K,N) spaces to CAT(0)

spaces (cf. also [GT18]). If successful, this would easily imply the desired Lipschitz regularity

for harmonic maps and at the same time improve the understanding of the subject even in

previously studied non-smooth settings. The very first step to tackle in order to write down

(8.1) is to understand what the differential ‘df ’ is, which is what we are going to do.

Let u ∈ S2(X; Y) be a Sobolev map. As we will see in Subsection 8.1, a special measure

on Y associated to u is given by µ
.
= u∗

(
|Du|2 m

)
. The importance of this measure is due to

the fact that it has nice composition properties (cf. Proposition 8.3), which will allow us to

define the differential

du : L0(TX)→
(
u∗L0

µ(T ∗Y)
)∗

of u as an appropriate adjoint of the well-posed map df 7→ d(f ◦ u) (cf. Definition 8.4).

Once this definition is given, we verify that it is compatible with some previously known

notions of differentials in the non-smooth setting:

• The differential of a real-valued Sobolev function on X, as an element of the cotangent

module L0(T ∗X); see Subsection 8.2.1.

• The differential of a map of bounded deformation between metric measure spaces, in

the sense of Theorem 4.34; see Subsection 8.2.2.
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• The ’metric differential’ for metric-valued Lipschitz maps defined on the Euclidean

space, which has been studied in [Kir94] and corresponds to the pointwise magnitude

of the differential of a map (rather than a true differential); see Subsection 8.2.3.

Finally, in Section 8.3 we shall also consider the case of locally Sobolev maps u ∈ S2
loc(X; Y).

More precisely, we will discuss how to define the differential in this situation. The main

complication here is that the weighted pushforward µ = u∗
(
|Du|2 m

)
no longer defines a

σ-finite measure. We shall see that this difficulty can be handled by proving a sort of sheaf

property for pullback of differentials, so that the differential of u can be defined via an

appropriate inverse limit construction.

Although we formulate our results for maps in S2(X; Y), one could use precisely the same

arguments to treat Sobolev maps with general exponent p ∈ (1,∞). In this case, one has to

keep in mind that the constructions using minimal weak upper gradients – in particular the

notion of differential of a Sobolev map – will depend on p. Nevertheless, the exponent p = 2

is sufficient for the applications we have in mind.

8.1 Metric-valued Sobolev maps and their differential

Let (X, dX,m) be a metric measure space and (Y, dY) be a complete separable metric space.

Definition 8.1 (Metric valued Sobolev map) The class S2(X; Y) is defined as the col-

lection of all Borel maps u : X→ Y for which there exists a function G ∈ L2(m)+ such that

for any f ∈ LIP(Y) it holds that f ◦ u ∈ S2(X) and

(8.3)
∣∣d(f ◦ u)

∣∣ ≤ Lip(f)G in the m-a.e. sense.

The minimal function G (in the m-a.e. sense) for which the above holds is denoted by |Du|.

Given any u ∈ S2(X; Y), the class of G ∈ L2(m) for which (8.3) holds is a closed lattice,

hence an m-a.e. minimal element exists and accordingly the definition of |Du| is well-posed.

Our study of the maps in S2(X; Y) begins with the following basic lemma:

Lemma 8.2 Let u ∈ S2(X; Y) and f ∈ LIP(Y) be given. Then

(8.4)
∣∣d(f ◦ u)

∣∣ ≤ lipa(f) ◦ u |Du| in the m-a.e. sense.

Proof. Let (yn)n ⊆ Y be a countable dense set. For any r ∈ Q+, let fr,n ∈ LIP(Y) be

any McShane extension of f |Br(yn)
, i.e. any Lipschitz function defined on the whole Y that

coincides with f on Br(yn) and such that Lip(fr,n) = Lip
(
f ;Br(yn)

)
; recall property (1.21).

Then from (8.3) and the locality of the differential we see that∣∣d(f ◦ u)
∣∣ ≤ Lip

(
f ;Br(yn)

)
|Du| m-a.e. on u−1

(
Br(yn)

)
.

Since for every y ∈ Y we have that lipa(f)(y) = inf Lip
(
f ;Br(yn)

)
– where the infimum is

taken among all n and r such that y ∈ Br(yn) – the conclusion follows. �

Let us fix u ∈ S2(X; Y) and equip the target space Y with the finite Radon measure

(8.5) µ
.
= u∗

(
|Du|2m

)
.
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Notice that for any f ∈ L0(µ) the function f ◦ u is not well-defined up to m-a.e. equality, in

the sense that if f = f̃ holds µ-a.e. then not necessarily f ◦ u = f̃ ◦ u in the m-a.e. sense.

Still, we certainly have f ◦ u = f̃ ◦ u m-a.e. on
{
|Du| > 0

}
. For this reason, we have that

the equality f ◦ u |Du| = f̃ ◦ u |Du| holds m-a.e., or in other words the map f 7→ f ◦ u |Du|
is well-defined from L0(µ) to L0(m). Then the trivial identity

∫ ∣∣f ◦ u |Du|∣∣2 dm =
∫
|f |2 dµ

shows that the operator

(8.6) L2(µ) 3 f 7−→ f ◦ u |Du| ∈ L2(m) is linear and continuous.

Moreover, we define the space LIPbd(Y) as follows:

(8.7) LIPbd(Y)
.
=
{
f : Y → R

∣∣∣ f |B is Lipschitz for any B ⊆ Y bounded
}
.

In particular, any element of LIPbd(Y) is continuous. It is then easy to check that:

For any f ∈ S2(Y, µ) there is a sequence (fn)n ⊆ LIPbd(Y)

µ-a.e. converging to f such that lipa(fn)→ |Df | in L2(µ).
(8.8)

We now turn to our key basic result about pullback of Sobolev functions:

Proposition 8.3 Let u ∈ S2(X; Y) be given. Put µ
.
= u∗

(
|Du|2m

)
and let f ∈ S2(Y, µ).

Then there exists g ∈ S2(X) such that g = f ◦ u holds m-a.e. on
{
|Du| > 0

}
and

(8.9) |dg| ≤ |dµf | ◦ u |Du| in the m-a.e. sense.

More precisely, there exist g ∈ S2(X) and a sequence (fn)n ⊆ LIPbd(Y) such that

fn −→ f in the µ-a.e. sense,

lipa(fn) −→ |dµf | in L2(µ),

fn ◦ u −→ g in the m-a.e. sense,

lipa(fn) ◦ u |Du| −→ |dµf | ◦ u |Du| in L2(m).

(8.10)

Proof. Up to a truncation and diagonalisation argument, we can assume that f ∈ L∞(µ).

Then let (fn)n ⊆ LIPbd(Y) be as in (8.8). Since f is bounded, by truncation we can assume

the fn’s to be uniformly bounded. Thus the first two claims in (8.10) hold and – by taking

(8.6) into account – we see that also the last claim in (8.10) holds. Now observe that if

we could prove that the sequence (fn ◦ u)n has a pointwise m-a.e. limit g, then (8.9) would

follow from Lemma 8.2, property (8.6) and the closure of the differential. Let B ⊆ X be

bounded and Borel. The functions fn ◦ u are equibounded and m(B) <∞, hence (fn ◦ u)n is

bounded in L2
(
m|B

)
. Thus by passing to an appropriate (not relabeled) sequence of convex

combinations – which do not affect the already proven convergences in (8.10) – we obtain

that (fn ◦ u)n has a strong limit in L2
(
m|B

)
. Thus some subsequence converges m-a.e. on B.

Therefore considering a sequence (Bk)k of bounded sets such that X =
⋃
k Bk, we conclude

by a diagonalisation argument. �

Let us notice that, since µ is a finite measure on Y, we have LIP(Y) ⊆ S2(Y, µ). Also:

(8.11) For f ∈ LIP(Y) and g ∈ S2(X) as in Proposition 8.3, we have d(f ◦ u) = dg.

Indeed, the locality of the differential gives d(f ◦ u) = dg on
{
|Du| > 0

}
, while the bounds

(8.4) and (8.9) grant that
∣∣d(f ◦ u)

∣∣ = |dg| = 0 holds m-a.e. on
{
|Du| = 0

}
.
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Observe that for ν
.
= m|{|Du|>0} we have u∗ν � µ, thus u∗L0

µ(T ∗Y) is a well-defined

L0(ν)-normed L0(ν)-module. Recalling the ‘extension’ functor introduced in Remark 3.11,

our definition of the differential du is the following:

Definition 8.4 (Differential of metric-valued Sobolev maps) The differential

(8.12) du : L0(TX) −→ Ext
((
u∗L0

µ(T ∗Y)
)∗)

of a map u ∈ S2(X; Y) is the operator defined in the following way. For any v ∈ L0(TX), the

object du(v) ∈ Ext
((
u∗L0

µ(T ∗Y)
)∗)

is characterised by this property: for any f ∈ S2(Y, µ)

and g ∈ S2(X) as in Proposition 8.3, we have that

(8.13) ext(u∗dµf)
(
du(v)

)
= dg(v) in the m-a.e. sense.

We now verify that this is a good definition and check its very basic properties:

Proposition 8.5 (Well-posedness of du) The definition of du(v) is well-posed and the

map du : L0(TX)→ Ext
((
u∗L0

µ(T ∗Y)
)∗)

is L0(m)-linear continuous. Moreover, it holds

(8.14) |du| = |Du| in the m-a.e. sense.

Proof. Let f ∈ S2(Y, µ) be given. Observe that if g, g′ ∈ S2(X) satisfy the properties listed in

Proposition 8.3, then the locality of the differential and the bound (8.9) show that dg = dg′.

Hence the right hand side of (8.13) depends only on f , u and v. Then notice that again the

bound (8.9) gives∣∣∣ext(u∗dµf)
(
du(v)

)∣∣∣ (8.13)
=

∣∣dg(v)
∣∣ ≤ |dg| |v| (8.9)

≤ |dµf | ◦ u |Du| |v| =
∣∣ext(u∗dµf)

∣∣ |Du| |v|.
Thus the arbitrariness of f ∈ S2(Y, µ), the universal property of the pullback and (3.10)

ensure that du(v) is a well-defined element of
(
Ext

(
u∗L0

µ(T ∗Y)
))∗ ∼ Ext

((
u∗L0

µ(T ∗Y)
)∗)

, as

desired, with

(8.15)
∣∣du(v)

∣∣ ≤ |Du| |v| in the m-a.e. sense.

The fact that du(v) is L0(m)-linear in v is trivial, while the bound (8.15) gives both continuity

and ≤ in (8.14). To get ≥ , let f : Y → R be 1-Lipschitz and notice that since µ(Y) <∞
we also have that f ∈ S2(Y, µ). Notice that since u ∈ S2(X; Y) we have that f ◦ u ∈ S2(X),

thus we can find an element v ∈ L0(TX) such that

(8.16) |v| = 1 and d(f ◦ u)(v) =
∣∣d(f ◦ u)

∣∣ in the m-a.e. sense

(the existence of such v follows by Banach-Alaoglu theorem, see [Gig17b, Corollary 1.2.16]).

Moreover, pick any g ∈ S2(X) as in Proposition 8.3 and observe that∣∣d(f ◦ u)
∣∣ (8.16)

=
∣∣d(f ◦ u)(v)

∣∣ (8.11)
=

∣∣dg(v)
∣∣ (8.13)

=
∣∣ext(u∗dµf)

(
du(v)

)∣∣ ≤ ∣∣ext(u∗dµf)
∣∣ |du| |v|

(8.16)
= |dµf | ◦ u |du| ≤ |du|,

having used the fact that f is 1-Lipschitz in the last step. By arbitrariness of f and the very

definition of |Du| given in Definition 8.1, this establishes ≥ in (8.14). �
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8.2 Consistency with previously known notions

8.2.1 The case Y = R

In this subsection we assume that Y = R and prove that – once few natural identifications

are taken into account – the newly defined differential du is ‘the same’ as the one as defined

by Theorem 4.1, which for the moment we shall denote by du ∈ L0(T ∗X).

To start with, let us observe that directly from the definitions and the chain rule

(8.17) d(f ◦ u) = f ′ ◦ udu for every u ∈ S2(X) and f ∈ C1(R) ∩ LIP(R)

(recall Proposition 4.3), we have that the class S2(X; Y) coincides with S2(X) as soon as Y = R
and that the two notions of minimal weak upper gradient coincide. Now fix any u ∈ S2(X),

define µ
.
= u∗

(
|du|2m

)
and consider the L0(m)-normed L0(m)-module Ext

(
u∗L0

µ(T ∗R)
)
. From

the separability of L0
µ(TR) provided by Corollary 4.29, the characterisation of the dual of the

pullback described in Theorem 3.34 and property (3.10), we see that

Ext
(
u∗L0

µ(TR)
)
∼ Ext

(
u∗L0

µ(T ∗R)
)∗

via the coupling ext(u∗L)
(
ext(u∗v)

) .
= ext

(
L(v) ◦ u

)
. Hence in our situation we shall think

of du as a map from L0(TX) to Ext
(
u∗L0

µ(TR)
)
.

Let us consider the maps P : L0(R,R∗;µ) → L0
µ(T ∗R) and ι : L0

µ(TR) → L0(µ) as in

Theorem 4.27. Put ν
.
= χ{|Du|>0}m and consider the L0(ν)-linear continuous operators

u∗P : u∗L0(R,R∗;µ) −→ u∗L0
µ(T ∗R), u∗ι : u∗L0

µ(TR) −→ u∗L0(µ) ∼ L0(ν)

defined via the universal property of the pullback module. It is then clear that u∗ι is the

adjoint of u∗P , thus we deduce that

(8.18) (u∗Df)
(
(u∗ι)(V )

)
= (u∗dµf)(V ) ν-a.e. for all V ∈ u∗L0

µ(TR) and f ∈ C1
c (R).

Finally, noticing that ext : u∗L0
µ(TR)→ Ext

(
u∗L0

µ(TR)
)

is invertible, we define

(8.19) I : Ext
(
u∗L0

µ(TR)
)
−→ L0(m) as I .

= ext ◦ (u∗ι) ◦ ext−1.

Then we can prove the following result:

Theorem 8.6 With the above notation and assumptions, we have |du| = |du| m-a.e. and

(8.20) I
(
du(v)

)
= du(v) m-a.e. for every v ∈ L0(TX).

Proof. The identity |du| = |du| follows from (8.14) and the fact that for u ∈ S2(X) = S2(X;R)

the two notions of minimal weak upper gradient underlying the two spaces coincide. We turn

to (8.20). For f ∈ C1
c (R), let us denote by Df : R → R∗ its differential and by f ′ : R → R

its derivative. Clearly – up to identifying R and R∗ via the Riesz isomorphism – these two

objects coincide and thus checking first the case h = u∗g we easily get that

(8.21) f ′ ◦ uh = ext(u∗Df)(h) holds m-a.e. in X

for every h ∈ Ext
(
u∗L0(µ)

)
∼ Ext

(
L0(ν)

)
⊆ L0(m). Then for g as in Proposition 8.3 we have

f ′ ◦ u I
(
du(v)

) (8.21)
= ext(u∗Df) I

(
du(v)

) (8.19),(3.10)
= ext

(
(u∗Df)

(
(u∗ι)

(
ext−1(du(v))

)))
(8.18)

= ext
(
(u∗dµf)

(
ext−1(du(v))

)) (3.10)
= ext(u∗dµf)

(
du(v)

) (8.13)
= dg(v)

(8.11)
= d(f ◦ u)(v)

(8.17)
= f ′ ◦ udu(v).

Since
{
f ′ ◦ u : f ∈ C1

c (R)
}

generates L0(m), this is sufficient to establish (8.20). �
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8.2.2 The case u of bounded deformation

In this subsection we also assume that (Y, dY) carries a non-negative Radon measure mY

giving finite mass to bounded sets and study the differential of a map u ∈ S2(X; Y) that is

also of bounded deformation. Let us call mX
.
= m. We can consider the notion of differential

d̂u : L2(TX) −→
(
u∗L2

mY
(T ∗Y)

)∗
defined in Theorem 4.34. We now study the relation between d̂u and du. We start by noticing

that the definition of |Du| trivially gives |Du| ≤ Lip(u) in the mX-a.e. sense, so we have

(8.22) µ = u∗
(
|Du|2mX

)
≤ Lip(u)2 u∗mX ≤ C Lip(u)2 mY.

Furthermore, let us prove the following general statement:

Lemma 8.7 Let µ1, µ2 ≥ 0 be two non-zero Radon measures on the complete space (Y, dY)

with µ1 ≤ µ2. Then S2(Y, µ2) ⊆ S2(Y, µ1) and there exists a unique L0(µ2)-linear continuous

operator P : L0
µ2

(T ∗Y)→ Ext
(
L0
µ1

(T ∗Y)
)

such that

(8.23) P (dµ2f) = ext(dµ1f) for every f ∈ S2(Y, µ2).

Moreover, it holds that
∣∣P (ω)

∣∣ ≤ |ω| in the µ2-a.e. sense for every ω ∈ L0
µ2

(T ∗Y).

Proof. The assumption µ1 ≤ µ2 ensures that the topologies of L2(µ2) and L0(µ2) are stronger

than those of L2(µ1) and L0(µ1), respectively. Thus both the inclusion S2(Y, µ2) ⊆ S2(Y, µ1)

and the µ2-a.e. bound ext
(
|dµ1f |

)
≤ |dµ2f | for f ∈ S2(Y, µ2) follow from the definition of

Sobolev class. In order to conclude, just apply Proposition 3.31 with ϕ the identity operator

and T (dµ2f)
.
= ext(dµ1f) ∈ Ext

(
L0
µ1

(T ∗Y)
)
. �

By applying this lemma to the case under consideration, we get the next result:

Proposition 8.8 There exists a unique L0(mY)-linear and continuous operator

(8.24) π : L0
mY

(T ∗Y) −→ Ext
(
L0
µ(T ∗Y)

)
such that π(dmYf) = ext(dµf) for every f ∈ S2(Y,mY), which also satisfies

∣∣π(ω)
∣∣ ≤ |ω| in

the mY-a.e. sense for all ω ∈ L0
mY

(T ∗Y). Moreover, for any f ∈ S2(Y,mY) and g ∈ S2(X) as

in Proposition 8.3 we have that

(8.25) dg = d(f ◦ u).

Proof. The first part of the statement follows from Lemma 8.7 and (8.22). To prove (8.25),

notice that thanks to the locality of the differential we know that (8.25) holds mX-a.e. on the

set
{
|Du| > 0

}
, while (8.9) shows that dg = 0 mX-a.e. on

{
|Du| = 0

}
. Hence in order to

conclude it is sufficient to prove that
∣∣d(f ◦ u)

∣∣ = 0 mX-a.e. on
{
|Du| = 0

}
. To see this, pick

a sequence (fn)n ⊆ LIPbd(Y) such that fn → f in the mY-a.e. sense and lipa(fn) → |dmYf |
in L2(mY). Then the assumption u∗mX ≤ CmY grants that fn ◦ u → f ◦ u in the mX-a.e.

sense and lipa(fn) ◦ u→ |dmYf | ◦ u in L2(mX). Therefore by passing to the limit in (8.4), we

conclude that
∣∣d(f ◦ u)

∣∣ = 0 is satisfied mX-a.e. on
{
|Du| = 0

}
, as desired. �
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It can be readily verified that the map sending u∗ext(ω) to ext(u∗ω) is an isomorphism

between u∗Ext
(
L0
µ(T ∗Y)

)
and Ext

(
u∗L0

µ(T ∗Y)
)
, hence from Proposition 8.8 above and the

universal property of the pullback we see that there is a unique L0(mX)-linear and continuous

map u∗π : u∗L0
mY

(T ∗Y)→ Ext
(
u∗L0

µ(T ∗Y)
)

such that

(8.26) (u∗π)(u∗dmYf) = ext(u∗dµf) for every f ∈ S2(Y,mY)

and such map satisfies the inequality

(8.27)
∣∣(u∗π)(ω)

∣∣ ≤ |ω| mX-a.e. for every ω ∈ u∗L0
mY

(T ∗Y).

Denoting by (u∗π)∗ :
(
Ext

(
u∗L0

µ(T ∗Y)
))∗ → (

u∗L0
mY

(T ∗Y)
)∗

the adjoint of u∗π, we have:

Theorem 8.9 With the above notation and assumptions, it holds that

(8.28) d̂u(v) = (u∗π)∗
(
du(v)

)
for every v ∈ L0(TX).

Moreover, it holds that

(8.29)
∣∣d̂u(v)

∣∣ ≤ ∣∣du(v)
∣∣ mX-a.e. for every v ∈ L0(TX).

Proof. Let f ∈ S2(Y,mY) and notice that

(u∗dmYf)
(
d̂u(v)

) (4.47)
= d(f ◦ u)(v)

(8.25)
= dg(v)

(8.13)
= ext(u∗dµf)

(
du(v)

)
(8.26)

= (u∗π)(u∗dmYf)
(
du(v)

)
.

Since elements of the form u∗dmYf generate u∗L0
mY

(T ∗Y), this is sufficient to prove (8.28).

Now observe that (8.27) yields
∣∣(u∗π)∗(V )

∣∣ ≤ |V | mX-a.e. for every V ∈
(
Ext

(
u∗L2

µ(T ∗Y)
))∗

by duality, hence (8.29) follows from (8.28). �

Equality in (8.29) can be obtained under appropriate assumptions on either X or Y:

Proposition 8.10 Suppose that either W 1,2(X,mX) or W 1,2(Y, µ) is reflexive. Then

(8.30)
∣∣d̂u(v)

∣∣ =
∣∣du(v)

∣∣ mX-a.e. for every v ∈ L0(TX).

Proof. We separately consider the two cases:

W 1,2(X,mX) is reflexive. By inequality (8.29) and a density argument, to conclude is

sufficient to show that for any f ∈ L∞(µ)∩S2(Y, µ), g ∈ S2(X,mX) as in Proposition 8.3 and

for any v ∈ L∞(TX) with bounded support it holds

(8.31) dg(v) ≤ |dµf | ◦ u
∣∣d̂u(v)

∣∣ in the mX-a.e. sense.

Let us observe that (8.29) and the very definition of |du| give
∣∣d̂u(v)

∣∣ ≤ ∣∣du(v)
∣∣ ≤ |du| |v|

in the m-a.e. sense, hence the mX-a.e. value of G ◦ u
∣∣d̂u(v)

∣∣ is independent of the µ-a.e.

representative of G ∈ L2(µ), thus the right hand side of (8.31) is well-defined mX-a.e. and

vanishes mX-a.e. on the set
{
|du| = 0

}
. Also, the trivial bound∫

|G|2 ◦ u
∣∣d̂u(v)

∣∣2 dmX ≤
∫
|G|2 ◦ u |du|2 |v|2 dmX ≤

∥∥|v|∥∥2

L∞(mX)

∫
|G|2 du∗

(
|du|2m

)
shows that

(8.32) L2(µ) 3 G 7−→ G ◦ u
∣∣d̂u(v)

∣∣ ∈ L2(mX) is linear and continuous.
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Now fix f, v as in (8.31). Let η ∈ LIPbs(X) be identically 1 on the support of v and take a

sequence (fn)n ⊆ LIPbd(Y) as in (8.8) for the space (Y, dY, µ). Since we assumed f to be

bounded, up to a truncation argument we can assume the fn’s to be equibounded. Thus the

functions fn ◦ u are equibounded as well and (by taking into account the Leibniz rule) we

see that η fn ◦ u ∈W 1,2(X,mX) with equibounded norm. Since we assumed such space to be

reflexive, up to passing to a non-relabeled subsequence we can assume that (η fn ◦ u)n has

a W 1,2(X,mX)-weak limit and it is then clear that such limit is η g. Thus we have that the

sequence
(
d(ηfn ◦ u)

)
n

converges to d(η g) weakly in L2(T ∗X) and – by the choices of v, η –

this implies that
(
d(fn ◦ u)(v)

)
n

weakly converges to dg(v) in L2(mX). Now notice that

d(fn ◦ u)(v) = (u∗dmYfn)
(
d̂u(v)

)
≤ |dmYfn| ◦ u

∣∣d̂u(v)
∣∣ ≤ lipa(fn) ◦ u

∣∣d̂u(v)
∣∣.

Property (8.32) and the choice of (fn)n give that the rightmost side of the above converges

to the right hand side of (8.31) in L2(mX), whence we conclude.

W 1,2(Y, µ) is reflexive. As already observed, given any f ∈ W 1,2(Y, µ) we can find a

sequence (fn)n ⊆ LIPbs(Y) ⊆ W 1,2(Y,mY) converging to f in W 1,2(Y, µ) and such that we

have lipa(fn)→ |dµf | in L2(µ). Notice that the definitions of du and d̂u give

ext(u∗dµfn)
(
du(v)

) (8.11)
= d(fn ◦ u)(v) = (u∗dmYfn)

(
d̂u(v)

)
≤
∣∣d̂u(v)

∣∣ |dmYfn| ◦ u

≤
∣∣d̂u(v)

∣∣ lipa(fn) ◦ u.

Since the construction also ensures that u∗dµfn → u∗dµf as n→∞, by passing to the limit

in the above we get that

ext(u∗dµf)
(
du(v)

)
≤
∣∣d̂u(v)

∣∣ |dµf | ◦ u =
∣∣d̂u(v)

∣∣ ∣∣ext(u∗dµf)
∣∣ in the mX-a.e. sense.

By arbitrariness of f ∈W 1,2(Y, µ), this is sufficient to conclude. �

8.2.3 The case X = Rd and u Lipschitz

In this subsection we assume that the source space X is the Euclidean space (Rd, dEucl,Ld)
and that the map u ∈ S2(Rd; Y) is also Lipschitz. In this case, B. Kirchheim proved in [Kir94]

that for Ld-a.e. x ∈ Rd there is a seminorm md(u, x) on Rd – called metric differential – such

that the following property holds:

(8.33) For Ld-a.e. x ∈ Rd md(u, x)(v) = lim
t↘0

dY

(
u(x+ tv), u(x)

)
t

for every v ∈ Rd,

where it is part of the claim the fact that the limit in the right hand side exists.

We now show that such concept is fully compatible with our notion of differential:

Theorem 8.11 Let u : Rd → Y be a Lipschitz map in S2(Rd; Y) and let v ∈ Rd ∼ TRd.
Denote by v̄ ∈ L0(TRd) the vector field constantly equal to v. Then

(8.34)
∣∣du(v̄)

∣∣(x) = md(u, x)(v) for Ld-a.e. x ∈ Rd.

Proof. We separately prove the two inequalities:

≥ Let (yn)n be countable and dense in u(Rd) ⊆ Y. For any n ∈ N, put fn(·) .
= dY(·, yn).
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From the compatibility of the abstract differential with the classical distributional notion in

the case X = Rd and Rademacher theorem, we see that

(8.35) d(fn ◦ u)(v̄) = lim
h→0

(fn ◦ u)(·+ hv)− (fn ◦ u)(·)
h

holds Ld-a.e. in Rd.

For x ∈ Rd, let γx : [0, 1] → Y be the Lipschitz curve defined by γxt
.
= u(x + tv) and let us

put gxn,t
.
= fn ◦ γxt . By [AGS08, Theorem 1.1.2] and its proof we know that for the metric

speed |γ̇xt | it holds that |γ̇xt | = supn
d
dt g

x
n,t for every x ∈ Rd and a.e. t, so that taking (8.35)

into account we obtain

md(u, x+ tv)(v) = |γ̇xt | = sup
n

d

dt
gxn,t = sup

n
d(fn ◦u)(v̄)(x+ tv) for a.e. x ∈ Rd and a.e. t.

Therefore Fubini theorem yields

md(u, ·)(v) = sup
n

d(fn ◦ u)(v̄)
(8.11)

= sup
n

ext(u∗dµfn)
(
du(v̄)

)
≤
∣∣du(v̄)

∣∣ Ld-a.e. in Rd,

having used the trivial µ-a.e. bound |dµfn| ≤ 1 in the last step.

≤ Let f ∈ S2(Y, µ) be arbitrary and let g ∈ S2(X) as in Proposition 8.3. We will show that

(8.36) dg(v) ≤ |dµf | ◦ umd(u, ·)(v) holds Ld-a.e.,

which is sufficient to conclude. The already proven bound ≥ in (8.34) and the same argu-

ments used in studying (8.31) show that the right hand side of (8.36) is well-defined Ld-a.e.

and that

(8.37) L2(µ) 3 G 7−→ G ◦ umd(u, ·)(v) ∈ L2(Rd) is linear and continuous.

Now let (fn)n ⊆ LIPbd(Y) be as in Proposition 8.3. Observe that for every n ∈ N the identity

(8.35) yields for Ld-a.e. x ∈ Rd the following inequalities:

∣∣d(fn ◦ u)(v̄)
∣∣(x) ≤ lipa(fn)

(
u(x)

)
lim
h→0

dY

(
u(x+ hv), u(x)

)
|h|

=
(
lipa(fn) ◦ u

)
(x) md(u, x)(v).

By (8.37) and the choice of (fn)n, we see that the rightmost side of the above converges to

the right hand side of (8.36) in L2(Rd). By following again the arguments in the first part

of the proof of Proposition 8.10 – that are applicable as W 1,2(Rd) is reflexive – we see that

the sequence
(
d(fn ◦ u)(v̄)

)
n

converges to dg(v) in the weak topology of L2(Rd). Hence the

inequality (8.36) is obtained. �

8.3 Differential of locally Sobolev maps between metric spaces

8.3.1 Inverse limits of modules

Here we briefly discuss some properties of inverse limits in the category of L0(m)-normed

L0(m)-modules, where morphisms are L0(m)-linear contractions, i.e. maps T : M → N such

that
∣∣T (v)

∣∣ ≤ |v| holds m-a.e. in X. We start with:
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Proposition 8.12 Let
(
{Mi}i∈I , {P ij}i≤j

)
be an inverse system of L0(m)-normed modules.

Then the inverse limit
(
M , {P i}i∈I

)
exists and for every family I 3 i 7→ vi ∈Mi such that

(8.38) P ij (v
j) = vi and ess sup

i∈I
|vi| ∈ L0(m)

there is a unique v ∈M such that vi = P i(v) for all i ∈ I. Moreover, |v| = ess sup i∈I |vi|.

Proof. The system
(
{Mi}i∈I , {P ij}i≤j

)
is also an inverse system in the category of algebraic

modules over the ring L0(m), in the sense of [Lan84, Chapter III.§10]. Hence – according to

[Lan84, Chapter III, Theorem 10.2] and its proof – the algebraic inverse limit (MAlg, P
i
Alg)

exists and for every family i 7→ vi ∈ Mi there is a unique v ∈ MAlg such that P iAlg(v) = vi

for every i ∈ I. Now define |v| for any v ∈MAlg as

(8.39) |v| .= ess sup
i∈I

∣∣P iAlg(v)
∣∣,

so that |v| : X → [0,+∞] is the equivalence class of a Borel function up to m-a.e. equality.

Furthermore, let us set

M
.
=
{
v ∈MAlg : |v| ∈ L0(m)

}
=
{
v ∈MAlg : |v| < +∞ m-a.e.

}
and P i

.
= P iAlg|M . We claim that (M , P i) is the desired inverse limit and start by noticing

that (8.39) ensures that
∣∣P i(v)

∣∣ ≤ |v| m-a.e., i.e. the P i’s are contractions, as required. Let

us now check that M is an L0(m)-normed L0(m)-module: the only non-trivial thing to verify

is that it is complete, i.e. that if (vn)n is Cauchy in M then it has a limit. Since the P i’s are

contractions, we see that n 7→ P i(vn) is Cauchy in Mi and thus has a limit vi for every i ∈ I.

Passing to the limit in the identity P i(vn) = P ij
(
P j(vn)

)
– valid for every i ≤ j – and using

the continuity of P ij , we deduce that vi = P ij (v
j), whence v

.
= {vi}i∈I ∈MAlg. Since (vn)n is

Cauchy and the pointwise norm in M trivially satisfies the triangle inequality, we see that the

sequence
(
|vn|
)
n

has a limit f in L0(m). Then the bound |vi| = limn

∣∣P i(vn)
∣∣ ≤ limn |vn|

.
= f ,

valid for every i ∈ I, grants that |v| ≤ f and thus v ∈M . Similarly, from∣∣vi − P i(vn)
∣∣ = lim

m→∞

∣∣P i(vm)− P i(vn)
∣∣ ≤ lim

m→∞
|vm − vn|

we deduce that |v − vn| ≤ limm |vm − vn|, whence by passing to the L0(m)-limit in n and by

using that (vn)n is M -Cauchy we conclude that vn → v in M , showing completeness. The

fact that for vi’s as in (8.38) there exists a unique v ∈M projecting on them is consequence

of the construction and from this the universality property of (M , P i) follows. �

It is now easy to check that there exists the inverse limit of a compatible family of maps:

Proposition 8.13 Let
(
{M i}i∈I , {P ij}i≤j

)
,
(
{N i}i∈I , {Qij}i≤j

)
be two inverse systems of

L0(m)-normed L0(m)-modules and call (M , P i), (N , Qi) their inverse limits. For any i ∈ I,

let T i : M i → N i be an L0(m)-linear continuous operator such that the diagram

(8.40)

M j N j

M i N i

T j

P ij Qij

T i
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commutes for all i, j ∈ I with i ≤ j and so that for some ` ∈ L0(m) we have

(8.41)
∣∣T i(vi)∣∣ ≤ ` |vi| m-a.e. for every i ∈ I and vi ∈M i.

Then there exists a unique L0(m)-linear continuous operator T : M → N such that

(8.42)
M i N i

M N

T i

T

P i Qi

is a commutative diagram for every i ∈ I. Moreover, the inequality
∣∣T (v)

∣∣ ≤ ` |v| is satisfied

m-a.e. for every v ∈M .

Proof. Let v ∈M , put wi
.
= T i

(
P i(v)

)
∈ N i and notice that (8.40) yields Qij(w

j) = wi and

(8.41) that |wi| ≤ ` |v| m-a.e. for every i ≤ j. Thus Proposition 8.12 above ensures that there

is a unique T (v) ∈ N such that Qi(T (v)) = wi for every i ∈ I and it satisfies
∣∣T (v)

∣∣ ≤ ` |v|
in the m-a.e. sense. Since the assignment v 7→ T (v) is L0(m)-linear, the proof is done. �

8.3.2 Locally Sobolev maps and their differential

In this subsection we come back to the case of general (X, dX,m), (Y, dY) as in Section 8.1

and study the case of u ∈ S2
loc(X; Y), which is the collection of all maps u such that every

point x ∈ X has a neighbourhood Ux where u coincides m-a.e. with some ux ∈ S2(X; Y).

Then for u ∈ S2
loc(X; Y) the locality of the differential ensures that the formula

(8.43) |Du| .= |Dux| m-a.e. on Ux for every x ∈ X

well-defines a function |Du| ∈ L2
loc(X). For this kind of map u, the measure u∗

(
|Du|2m

)
is

– in general – not anymore σ-finite, hence to define the differential du we need to suitably

adapt the definition previously given. This is the scope of the current subsection.

Let u ∈ S2
loc(X; Y) be fixed. By F(u) we denote the collection of all open sets Ω ⊆ X such

that
∫

Ω |Du|
2 dm < ∞. Since u ∈ S2

loc(X; Y), we see that the family F(u) is a cover of X.

We shall now build two inverse limits of L0(m)-normed L0(m)-modules indexed over F(u),

directed by inclusion. For the first one, define for Ω ∈ F(u) the measure µΩ on Y as

(8.44) µΩ
.
= u∗

(
|Du|2m|Ω

)
.

Thus µΩ is a Radon measure. We can consider the cotangent module L0
µΩ

(T ∗Y) of (Y, dY, µΩ)

and its pullback u∗L0
µΩ

(T ∗Y), which is an L0
(
m|Ω∩{|Du|>0}

)
-normed module. Then we put

(8.45) u∗L0
Ω(T ∗Y)

.
= Ext

(
u∗L0

µΩ
(T ∗Y)

)
.

Observe that for Ω,Ω′ ∈ F(u), Ω′ ⊆ Ω we have µΩ′ ≤ µΩ and thus Lemma 8.7 provides a

canonical ‘projection’ map PΩ′
Ω : L0

µΩ
(T ∗Y) → Ext

(
L0
µΩ′

(T ∗Y)
)
. Then we can consider the

(extended) pullback map u∗PΩ′
Ω : u∗L0

Ω(T ∗Y)→ u∗L0
Ω′(T

∗Y) and notice that – since one has

that PΩ1
Ω2
◦ PΩ2

Ω3
= PΩ1

Ω3
for every Ω1,Ω2,Ω3 ∈ F(u), Ω3 ⊆ Ω2 ⊆ Ω1 – the functoriality of the

pullback grants that ({
u∗L0

Ω(T ∗Y)
}

Ω∈F(u)
,
{
u∗PΩ′

Ω

}
Ω⊆Ω′

)
is an inverse system of L0(m)-normed L0(m)-modules. We call

(
u∗L0

u(T ∗Y), {PΩ}Ω∈F(u)

)
its

inverse limit (recall Proposition 8.12).



8.3. Differential of locally Sobolev maps between metric spaces 159

Remark 8.14 For every f : Y → R Lipschitz with bounded support we have f ∈ S2(Y, µ)

for any finite Radon measure µ and obviously |dµf | ≤ Lip(f) µ-a.e.. Hence there is an

element ω ∈ u∗L0
u(T ∗Y) such that PΩ(ω) = ext(u∗dµΩf) for every Ω ∈ F(u). �

For the second, consider for any open set Ω ⊆ X the module

L0
Ω(T ∗X)

.
= Ext

(
L0
m|Ω(T ∗X)

)
,

which is L0(m)-normed. Since trivially for Ω′ ⊆ Ω we have that m|Ω′ ≤ m|Ω, Lemma 8.7

grants the existence of canonical (extended) ‘projection’ maps QΩ′
Ω : L0

Ω(T ∗X)→ L0
Ω′(T

∗X).

By construction, it is also clear that
({
L0

Ω(T ∗X)
}

Ω∈F(u)
,
{
QΩ′

Ω

}
Ω′⊆Ω

)
is an inverse system of

L0(m)-normed L0(m)-modules. We then have the following non-obvious result:

Lemma 8.15 The inverse limit of the inverse system
({
L0

Ω(T ∗X)
}

Ω∈F(u)
,
{
QΩ′

Ω

}
Ω′⊆Ω

)
is

given by
(
L0(T ∗X),

{
QΩ

X

}
Ω∈F(u)

)
.

Proof. The fact that QΩ′
Ω ◦ QΩ

X = QΩ′
X for Ω′ ⊆ Ω ⊆ X open is a direct consequence of the

definition of the Q’s. For the universality, we recall [AGS14b, Theorem 4.19] and its proof

(the assumption m(X) = 1 plays no role) to get that
∣∣QΩ′

Ω

(
dm|Ωf

)∣∣ =
∣∣dm|Ω′f

∣∣ m-a.e. on Ω′.

Moreover, if f ∈ S2
(
X,m|Ω′

)
has support at positive distance from X\Ω′, then f ∈ S2

(
X,m|Ω

)
as well. It easily follows that QΩ′

Ω : L0
Ω(T ∗X)→ L0

Ω′(T
∗X) has a unique norm-preserving right

inverse; call it PΩ′
Ω . Hence if F(u) 3 Ω 7→ ωΩ ∈ L0

Ω(T ∗X) satisfies QΩ′
Ω (ωΩ) = ωΩ′ for every

choice of Ω,Ω′ ∈ F(u) with Ω′ ⊆ Ω, then it is clear that there exists a unique ω ∈ L0(T ∗X)

such that χΩ ω = PΩ
X (ωΩ) for every Ω ∈ F(u). This is sufficient to conclude the proof of the

statement. �

Let Ω ∈ F(u) and define SΩ :
{

dµΩf : f ∈ S2(Y, µΩ)
}
→ L0

Ω(T ∗X) by putting

(8.46) SΩ(dµΩf)
.
= ext

(
dm|Ωg

)
,

where g is related to f as in Proposition 8.3, in this case applied to the space
(
X, dX,m|Ω

)
.

In particular, the bound (8.9) yields

(8.47)
∣∣SΩ(dµΩf)

∣∣ ≤ χΩ |dµΩf | ◦ u |Du|,

which is easily seen to ensure that the map SΩ is well-posed (i.e. the value of SΩ depends

only on dµΩf and not on f). Thus by the universal property of the pullback we see that there

exists a unique L0(m)-linear continuous map TΩ : u∗L0
Ω(T ∗Y)→ L0

Ω(T ∗X) such that

TΩ

(
ext(u∗dµΩf)

)
= SΩ(dµΩf) for every f ∈ S2(Y, µΩ)

and from (8.47) we deduce that such TΩ satisfies

(8.48)
∣∣TΩ(ω)

∣∣ ≤ |Du| |ω| m-a.e. for every ω ∈ u∗L0
Ω(T ∗Y).

It is now only a matter of keeping track of the various definitions introduced so far, to check

that for every Ω,Ω′ ∈ F(u) with Ω′ ⊆ Ω it holds that

(8.49) TΩ′
(
u∗PΩ′

Ω (ω)
)

= QΩ′
Ω

(
TΩ(ω)

)
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for every ω ∈ u∗L0
Ω(T ∗Y) of the form ω = ext

(
u∗dm|Ωf

)
, for some f ∈ S2(Y, µΩ). Then by

L0(m)-linearity and continuity we see that (8.49) holds for every ω ∈ u∗L0
Ω(T ∗Y), so that

(keeping (8.48) into account) we infer from Proposition 8.13 and Lemma 8.15 that there is a

unique L0(m)-linear and continuous map T : u∗L0
u(T ∗Y)→ L0(T ∗X) such that

(8.50)

L0(T ∗X) L0
Ω(T ∗X)

u∗L0
u(T ∗Y) u∗L0

Ω(T ∗Y)

QΩ
X

PΩ

T TΩ

is a commutative diagram for every Ω ∈ F(u).

We can now give the main definition of this section:

Definition 8.16 The differential du : L0(TX)→
(
u∗L0

u(T ∗Y)
)∗

is the adjoint of T .

Observe that from (8.48) it follows that
∣∣T (ω)

∣∣ ≤ |Du| |ω| for every ω ∈ u∗L0
u(T ∗Y).

Hence by duality we also get that
∣∣du(v)

∣∣ ≤ |Du| |v| m-a.e. for every v ∈ L0(TX), i.e. that the

inequality |du| ≤ |Du| holds m-a.e. in X. Then – arguing as in Proposition 8.5 – we can prove

that actually |du| = |Du| in the m-a.e. sense. Analogously, natural variants of the properties

stated in Subsections 8.2.1, 8.2.2 and 8.2.3 hold for this more general notion of differential.

We omit the details.

We conclude by noticing that if u ∈ S2(X; Y) ⊆ S2
loc(X; Y) then X ∈ F(u), i.e. the

directed family F(u) has a maximum. It is therefore clear that the differential du in the

sense of Definition 8.16 canonically coincides with the one given by Definition 8.4.



A
Integration of outer measures

Given any set X, let us denote by 2X its power set, i.e. the collection of all the subsets of X.

By outer measure on X we intend any set-function µ : 2X → [0,+∞] with µ(∅) = 0 that is

monotone and σ-subadditive, i.e. such that

(A.1) µ(E∞) ≤
∑
n∈N

µ(En) for every (En)n∈N∪{∞} ⊆ 2X with E∞ ⊆
⋃
n∈N

En.

We say that an outer measure µ on X is continuous from below provided

(A.2) µ

( ⋃
n∈N

En

)
= lim

n→∞
µ

( n⋃
i=0

Ei

)
for every sequence (En)n∈N ⊆ 2X.

Observe that the limit in the right hand side of formula (A.2) always exists, because the

sequence n 7→ µ
(⋃

i≤nEi
)

is non-decreasing by monotonicity of µ.

Let us fix a set X and an outer measure µ on X. Then the integral
∫
f dµ of any given

function f : X→ [0,+∞] can be defined as

(A.3)

∫
f dµ

.
=

∫ +∞

0
µ
(
{f > t}

)
dt.

The definition (A.3) of
∫
f dµ is well-posed, since the function t 7→ µ

(
{f > t}

)
∈ [0,+∞] is

non-increasing, thus in particular it is Lebesgue measurable. Given any set E ⊆ X, we define

(A.4)

∫
E
f dµ

.
=

∫
χE f dµ.

In the next result we collect the basic properties of the above-defined integral:

Proposition A.1 Let f, g : X→ [0,+∞] be fixed. Then the following holds:

161
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i)
∫
f dµ ≤

∫
g dµ provided f ≤ g.

ii)
∫
λf dµ = λ

∫
f dµ for every λ > 0.

iii) If µ
(
{f 6= 0}

)
= 0 then

∫
f dµ = 0, while the converse implication holds provided µ is

continuous from below.

iv)
∫
f dµ =

∫
g dµ provided µ

(
{f 6= g}

)
= 0.

Proof. We divide the proof into several steps:

i) Given any t > 0 it clearly holds that {f > t} ⊆ {g > t}, whence µ
(
{f > t}

)
≤ µ

(
{g > t}

)
for all t > 0 and accordingly i) follows.

ii) Observe that∫
λf dµ =

∫ +∞

0
µ
(
{λf > t}

)
dt =

∫ +∞

0
µ
(
{f > t/λ}

)
dt = λ

∫ +∞

0
µ
(
{f > s}

)
ds

= λ

∫
f dµ,

thus proving the validity of ii).

iii) Suppose that µ
(
{f 6= 0}

)
= 0. Then µ

(
{f > t}

)
= 0 as well for all t > 0 by monotonicity

of µ, whence accordingly
∫
f dµ =

∫ +∞
0 µ

(
{f > t}

)
dt = 0. Conversely, suppose that µ is

continuous from below and
∫
f dµ =

∫ +∞
0 µ

(
{f > t}

)
dt = 0. This grants that µ

(
{f > t}

)
= 0

for a.e. t > 0, thus also for every t > 0 by monotonicity of µ. Given that {f > 1/n} ↗ {f 6= 0}
as n→∞, we conclude that µ

(
{f 6= 0}

)
= limn µ

(
{f > 1/n}

)
= 0 by continuity from below

of µ. Therefore property iii) is proved.

iv) For any t > 0 it holds that {f > t} ⊆ {g > t} ∪ {f 6= g}, whence

µ
(
{f > t}

)
≤ µ

(
{g > t}

)
+ µ

(
{f 6= g}

)
= µ

(
{g > t}

)
for all t > 0,

so that
∫
f dµ ≤

∫
g dµ. By interchanging the roles of f and g, we obtain that

∫
g dµ ≤

∫
f dµ,

thus
∫
f dµ =

∫
g dµ. This shows the validity of iv). �

Nevertheless, this notion of integral for outer measures is – in general – not additive.

Even to get just its subadditivity, we need to require the following strong assumption on µ:

Definition A.2 (Submodularity) We say that an outer measure µ is submodular provided

(A.5) µ(E ∪ F ) + µ(E ∩ F ) ≤ µ(E) + µ(F ) for every E,F ⊆ X.

Then a key result is the following, for whose proof we refer to [Den10, Theorem 6.3]:

Theorem A.3 (Subadditivity theorem) Let µ be an outer measure over X. Then µ is

submodular if and only if the integral associated to µ is subadditive, i.e.

(A.6)

∫
(f + g) dµ ≤

∫
f dµ+

∫
g dµ for every f, g : X→ [0,+∞).

We shall also make use of the following simple property of outer measures:

Lemma A.4 (Borel-Cantelli) Let (En)n∈N be subsets of X satisfying
∑

n µ(En) < +∞.

Then µ
(⋂

n∈N
⋃
m≥nEm

)
= 0.
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Proof. Call E
.
=
⋂
n∈N

⋃
m≥nEm. Then µ(E) ≤ µ

(⋃
m≥nEm

)
for all n ∈ N, so that

µ(E) ≤ lim
n→∞

µ

( ⋃
m≥n

Em

)
≤ lim

n→∞

∑
m≥n

µ(Em) = 0,

which proves the statement. �





B
Hausdorff measures

Given any real number k ∈ [0,+∞), let us define

(B.1) ωk
.
=

πk/2

Γ(1 + k/2)
, where Γ(t)

.
=

∫ +∞

0
xt−1 e−x dx.

The function Γ is the so-called gamma function. Recall that Γ(n) = (n − 1)! for all n ∈ N.

In the case k ∈ N, the quantity ωk coincides with the Lk-measure of the unit ball in Rk.

Let (X, d) be a metric space. Given any real number δ ∈ (0,+∞) and any subset E ⊆ X,

we define the quantity Hkδ (E) ∈ [0,+∞] as

(B.2) Hkδ (E)
.
= inf

{
ωk
2k

∞∑
n=0

diam(En)k
∣∣∣∣ E ⊆ ∞⋃

n=0

En, diam(En) < δ for all n ∈ N

}
.

More precisely, in the case k = 0 we make use of the following convention: diam({x})0 .
= 1

for every x ∈ X and diam(∅)0 .
= 0. It holds that each function Hkδ is an outer measure on X.

Let us now associate to any set E ⊆ X the quantity Hk(E) ∈ [0,∞], which is given by

(B.3) Hk(E)
.
= lim

δ↘0
Hkδ (E).

Given that Hkδ (E) is non-increasing with respect to δ, in the above definition limδ↘0 can

be replaced by supδ>0. The function Hk : 2X → [0,+∞], which turns out to be an outer

measure on X, is referred to as the k-dimensional Hausdorff measure on the space (X, d).

An important property of Hk is the following: given k ∈ (0,+∞) and E ⊆ X, one has

(B.4) Hk(E) > 0 =⇒ Hk′(E) = +∞ for every k′ ∈ [0, k).

Given any subset E of X, we define the Hausdorff dimension of E as

(B.5) dimH(E)
.
= inf

{
k ∈ [0,+∞)

∣∣ Hk(E) = 0
}
.
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A consequence of (B.4) is that Hk(E) = +∞ if k < dimH(E) and Hk(E) = 0 if k > dimH(E),

while in general nothing can be said about the value of HdimH(E)(E).

Given two metric spaces (X, dX), (Y, dY) and any k ∈ (0,+∞), it holds that

(B.6) Hk
(
f(A)

)
≤ Lip(f)kHk(A) for every f ∈ LIP(X,Y) and A ⊆ X,

whence in particular dimH
(
f(A)

)
≤ dimH(A). Another important property of Hausdorff

measures is the following, for whose proof we refer to [AT04, Theorem 2.4.3]:

Proposition B.1 Let (X, d, µ) be a metric measure space and k ∈ N. Let A ⊆ X be a Borel

set and λ ∈ (0,+∞). Then

(B.7) lim
r↘0

µ
(
Br(x)

)
ωk rk

≥ λ for every x ∈ A =⇒ λHk(A) ≤ µ(A).

Given a metric space (X, d), we say that a Borel set A ⊆ X is countably Hk-rectifiable provided

there exist a sequence of Borel subsets (Bn)n of Rk and Lipschitz maps fn : Bn → X such

that Hk
(
A \

⋃
n fn(Bn)

)
= 0. A fundamental property of countably Hk-rectifiable sets is:

Theorem B.2 (Spherical density) Let (X, d) be a metric space and k ∈ N. Let A ⊆ X be

a countably Hk-rectifiable set and θ : A → (0,+∞) be a Borel map. Define µ
.
= θHk|A and

suppose that µ is a finite measure. Then

(B.8) lim
r↘0

µ
(
Br(x)

)
ωk rk

= θ(x) holds for Hk-a.e. x ∈ A.

The previous result is proven, for instance, in [AK00, Theorem 5.4].



C
Bochner integral

We recall some basic results about measurability and integration of Banach-valued maps of a

single variable t ∈ [0, 1]. A detailed discussion about this topic can be found e.g. in [DU77].

For the sake of brevity, we shall use the notation L1 to indicate the 1-dimensional Lebesgue

measure restricted to [0, 1], namely

(C.1) L1
.
= L1

|[0,1]
.

Let B be a fixed Banach space. We denote by B′ its dual space. A simple map is any B-valued

mapping y : [0, 1]→ B that can be written in the form

y =
k∑
i=1

χEi vi, for some E1, . . . , Ek ⊆ [0, 1] Borel and v1, . . . , vk ∈ B.

A map y : [0, 1]→ B is said to be strongly measurable provided there exists a sequence (yn)n
of simple maps yn : [0, 1]→ B such that limn

∥∥yn(t)− y(t)
∥∥
B = 0 for L1-a.e. t ∈ [0, 1], while

it is said to be weakly measurable provided [0, 1] 3 t 7→ ω
(
y(t)

)
∈ R is a Borel function for

every ω ∈ B′. It directly follows from the very definition that linear combinations of strongly

(resp. weakly) measurable maps are strongly (resp. weakly) measurable. Moreover, if some

map y : [0, 1]→ B is strongly measurable, then [0, 1] 3 t 7→
∥∥y(t)

∥∥
B ∈ [0,+∞) is Borel.

The relation between the strongly measurable maps and the weakly measurable ones is

fully described by a theorem of Pettis, which states that a map y : [0, 1] → B is strongly

measurable if and only if it is weakly measurable and there exists a Borel set N ⊆ [0, 1] of

null L1-measure such that y
(
[0, 1]\N

)
is a separable subset of B. The latter property is often

referred to as essential separably-valuedness.

We now describe how to define B-valued integrals, the so-called Bochner integrals. First

of all, given any simple map y : [0, 1]→ B – written in the form y =
∑k

i=1
χEi vi – we define

(C.2)

∫ 1

0
y(t) dt

.
=

k∑
i=1

L1(Ei) vi ∈ B.
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It can be readily checked that this definition does not depend on the particular way of

expressing the map y. Further, we say that any strongly measurable function y : [0, 1] → B
is Bochner integrable provided there exists a sequence (yn)n of simple maps yn : [0, 1] → B
such that limn

∫ 1
0

∥∥yn(t)− y(t)
∥∥
B dt = 0. In particular, the sequence

( ∫ 1
0 yn(t) dt

)
n
⊆ B is

Cauchy, so that it makes sense to define

(C.3)

∫ 1

0
y(t) dt

.
= lim

n→∞

∫ 1

0
yn(t) dt ∈ B.

It turns out that the value of
∫ 1

0 y(t) dt just defined is independent of the approximating

simple maps (yn)n and that it satisfies the fundamental inequality

(C.4)

∥∥∥∥∫ 1

0
y(t) dt

∥∥∥∥
B
≤
∫ 1

0

∥∥y(t)
∥∥
B dt.

An alternative characterisation of the B-valued integrable maps is given by the following

theorem, which is due to Bochner: we have that a strongly measurable map y : [0, 1]→ B is

Bochner integrable if and only if it satisfies
∫ 1

0

∥∥y(t)
∥∥
B dt < +∞.

The previous result naturally leads to the notion of B-valued Lp space: given p ∈ [1,∞],

we define Lp
(
[0, 1],B

)
as the space of all (equivalence classes of) those strongly measurable

maps y : [0, 1]→ B for which the quantity ‖y‖Lp([0,1],B) is finite, where

(C.5) ‖y‖Lp([0,1],B)
.
=


(∫ 1

0

∥∥y(t)
∥∥p
B dt

)1/p

if p <∞,

ess sup
t∈[0,1]

∥∥y(t)
∥∥
B if p =∞.

Therefore Lp
(
[0, 1],B

)
itself is a Banach space for any p ∈ [1,∞].

Definition C.1 (Vector-valued Sobolev/AC maps) Let p ∈ [1,∞] be a given exponent.

Then the space W 1,p
(
[0, 1],B

)
consists of all those curves y ∈ Lp

(
[0, 1],B

)
for which there

exists a map y′ ∈ Lp
(
[0, 1],B

)
such that

(C.6)

∫ 1

0
ϕ′(t) y(t) dt = −

∫ 1

0
ϕ(t) y′(t) dt for every ϕ ∈ C∞c (0, 1).

We endow the Sobolev space W 1,p
(
[0, 1],B

)
with the norm

(C.7) ‖y‖W 1,p([0,1],B)
.
=


(
‖y‖pLp([0,1],B) + ‖y′‖pLp([0,1],B)

)1/p
if p <∞,

‖y‖L∞([0,1],B) + ‖y′‖L∞([0,1],B) if p =∞.

Moreover, we define ACp
(
[0, 1],B

)
as the space of all curves y : [0, 1] → B for which there

exists f ∈ Lp(0, 1) such that

(C.8)
∥∥y(t)− y(s)

∥∥
B ≤

∫ t

s
f(r) dr for every t, s ∈ [0, 1] with s < t.

We point out that the above definition of ACp
(
[0, 1],B

)
is consistent with Definition 1.1.
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Proposition C.2 (Absolutely continuous representative) Let y ∈ W 1,p
(
[0, 1],B

)
be

given. Then there exists ỹ ∈ ACp
(
[0, 1],B

)
such that y(t) = ỹ(t) for a.e. t ∈ [0, 1]. Moreover,

such curve ỹ satisfies the identity

(C.9) ỹ(t)− ỹ(s) =

∫ t

s
y′(r) dr for every t, s ∈ [0, 1] with s < t.

Proof. The curve t 7→ z(t)
.
=
∫ t

0 y
′(s) ds belongs to ACp

(
[0, 1],B

)
∩ W 1,p

(
[0, 1],B

)
, thus

in particular the curve t 7→ y(t) − z(t) belongs to W 1,p
(
[0, 1],B

)
and has derivative almost

everywhere equal to 0. Hence to conclude it is sufficient to show that any such curve is a.e.

constant. This follows by noticing that for any ` ∈ B′ the function t 7→ `
(
y(t)− z(t)

)
belongs

to W 1,p(0, 1) (by direct verification) and has derivative a.e. equal to 0. �

Proposition C.3 (Characterization of Sobolev curves) Let y, z ∈ Lp
(
[0, 1],B

)
. Then

the following conditions are equivalent:

i) It holds that y ∈W 1,p
(
[0, 1],B

)
and z = y′.

ii) For some D ⊆ B′ dense, we have ` ◦ y ∈W 1,1(0, 1) with (` ◦ y)′ = ` ◦ z for any ` ∈ D.

In particular, if B = Lq(µ) for some Radon measure µ and some exponent q ∈ [1,∞), then

we have y ∈ W 1,p
(
[0, 1], Lq(µ)

)
and z = y′ if and only if for every Borel set E it holds that

the function t 7→
∫
E y(t) dµ belongs to W 1,1(0, 1) with derivative t 7→

∫
E z(t) dµ.

Proof. By assumption and by using the fact that the Bochner integral commutes with the

application of `, we see that

`

(∫ 1

0
ϕ′(t) y(t) dt

)
= `

(
−
∫ 1

0
ϕ(t) z(t) dt

)
for every ϕ ∈ C∞c (0, 1),

for every ` ∈ D. Then the conclusion follows by density of D in B′.
For the second claim, just observe that the linear span of the set of all characteristic

functions of Borel sets is dense in Lq/(q−1)(µ) ∼= Lq(µ)′. �

It is important to underline that in general absolute continuity does not imply almost

everywhere differentiability: this has to do with the so-called Radon-Nikodým property of

the target Banach space (we refer to [BL98] for a thorough discussion about this topic).

A sufficient condition for this implication to hold is given by the next theorem:

Theorem C.4 Let B be a reflexive Banach space. Let p ∈ [1,∞] and y ∈ ACp
(
[0, 1],B

)
.

Then for a.e. t ∈ [0, 1] it holds that the limit of
(
y(t+ h)− y(t)

)
/h as h→ 0 exists in B.

In particular, we have ACp
(
[0, 1],B

) ∼= W 1,p
(
[0, 1],B

)
, i.e. every absolutely continuous

curve is the (only) continuous representative of a curve in W 1,p
(
[0, 1],B

)
.

Given any Banach space B, we denote by End(B) the space of all linear and continuous

maps of B to itself, which is a Banach space if endowed with the operator norm.

The space Γ(B) = C
(
[0, 1],B

)
is a Banach space with respect to the norm ‖ · ‖Γ(B), given

by ‖y‖Γ(B)
.
= max

{
‖yt‖B : t ∈ [0, 1]

}
for every y ∈ Γ(B).



170 Appendix C • Bochner integral

Theorem C.5 (Integral solutions to vector-valued linear ODEs) Let B be a Banach

space. Let z ∈ Γ(B). Let λ : [0, 1] → End(B) be a bounded function, i.e. there exists c > 0

such that
∥∥λ(t)

∥∥
End(B)

≤ c for every t ∈ [0, 1]. Assume that [0, 1] 3 t 7→ λ(t)v ∈ B is strongly

measurable for every v ∈ B. Then there exists a unique curve y ∈ Γ(B) such that

(C.10) y(t) = z(t) +

∫ t

0
λ(s)y(s) ds for every t ∈ [0, 1].

Moreover, the solution y satisfies ‖y‖Γ(B) ≤ ec ‖z‖Γ(B).

Proof. Given any simple mapping t 7→ yt =
∑k

i=1
χAi(t) vi, with A1, . . . , Ak ∈ B

(
[0, 1]

)
and v1, . . . , vk ∈ B, we have that t 7→ λ(t)yt =

∑k
i=1

χAi(t)λ(t)vi is strongly measurable by

hypothesis on λ. Now fix y ∈ Γ(B). In particular, y : [0, 1]→ B is strongly measurable, hence

there exists a sequence (yk)k of simple maps yk : [0, 1] → B such that limk ‖ykt − yt‖B = 0

holds for L1-a.e. t ∈ [0, 1]. This grants that
∥∥λ(t)ykt − λ(t)yt

∥∥
B ≤ c ‖y

k
t − yt‖B

k→ 0 is satisfied

for L1-a.e. t ∈ [0, 1], thus accordingly the map t 7→ λ(t)yt is strongly measurable as pointwise

limit of strongly measurable functions. Moreover, since
∥∥λ(t)yt

∥∥
B ≤ c ‖y‖Γ(B) for all t ∈ [0, 1],

one has that t 7→ λ(t)yt actually belongs to L∞
(
[0, 1],B

)
. Therefore it makes sense to define

the function Λy : [0, 1]→ B as (Λy)(t)
.
=
∫ t

0 λ(s)ys ds for every t ∈ [0, 1]. Note that

(C.11)
∥∥Λy(t1)− Λy(t0)

∥∥
B ≤ c ‖y‖Γ(B)(t1 − t0) for every t0, t1 ∈ [0, 1] with t0 < t1.

Therefore Λy is Lipschitz with Lip(Λy) ≤ c ‖y‖Γ(B), so that in particular Λy ∈ Γ(B). By

plugging t1 = t and t0 = 0 into (C.11), we deduce that
∥∥Λy(t)

∥∥
B ≤ c ‖y‖Γ(B)t for all t ∈ [0, 1]

and accordingly that ‖Λy‖Γ(B) ≤ c ‖y‖Γ(B). This guarantees that the map Λ : Γ(B) → Γ(B)

is linear and continuous, with ‖Λ‖End(Γ(B)) ≤ c. Now observe that

(C.12) y ∈ Γ(B) satisfies (C.10) ⇐⇒ (idΓ(B) − Λ)(y) = z.

For any n ∈ N+, the iterated operator Λn = Λ ◦ . . . ◦ Λ satisfies

∥∥Λny(t)
∥∥
B ≤ c

∫ t

0

∥∥Λn−1y(tn)
∥∥
B dtn

≤ c2

∫ t

0

∫ tn

0

∥∥Λn−2y(tn−1)
∥∥
B dtn−1 dtn

≤ . . .

≤ cn
∫ t

0

∫ tn

0
. . .

∫ t2

0

∥∥y(t1)
∥∥
B dt1 . . . dtn−1 dtn

≤ cn ‖y‖Γ(B)

∫ t

0

∫ tn

0
. . .

∫ t2

0
dt1 . . . dtn−1 dtn

= cn ‖y‖Γ(B)

tn

n!

for every y ∈ Γ(B) and t ∈ [0, 1], whence ‖Λn‖End(Γ(B)) ≤ cn/n!. Hence idΓ(B)−Λ is invertible

and the operator norm of its inverse (idΓ(B) − Λ)−1 =
∑∞

n=0 Λn is bounded above by ec. In

light of (C.12), we finally conclude that there exists a unique curve y ∈ Γ(B) fulfilling (C.10),

namely y
.
= (idΓ(B) − Λ)−1(z), which also satisfies ‖y‖Γ(B) ≤ ec ‖z‖Γ(B). �

We will actually make use of the following consequence of Theorem C.5:
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Corollary C.6 (Differential solutions to vector-valued linear ODEs) Fix a reflexive

Banach space B. Let y ∈ B be given. Let λ : [0, 1]→ End(B) be a bounded function. Suppose

that the map [0, 1] 3 t 7→ λ(t)v ∈ B is strongly measurable for every v ∈ B. Then there exists

a unique curve y ∈ LIP
(
[0, 1],B

)
such that

(C.13)

{
y′(t) = λ(t)y(t) for L1-a.e. t ∈ [0, 1],

y(0) = ȳ.

Moreover, the solution y satisfies ‖y‖Γ(B) ≤ ec ‖y‖B, where c
.
= maxt∈[0,1]

∥∥λ(t)
∥∥

End(B)
.

Proof. Define z(t)
.
= y for all t ∈ [0, 1]. Consider the curve y ∈ Γ(B) given by Theorem C.5.

For every t, s ∈ [0, 1] with s < t we have that

∥∥y(t)− y(s)
∥∥
B =

∥∥∥∥∫ t

s
λ(r)y(r) dr

∥∥∥∥
B

(C.4)

≤
∫ t

s

∥∥λ(r)y(r)
∥∥
B dr ≤ c

∫ t

s

∥∥y(r)
∥∥
B dr.

Since
∥∥y(·)

∥∥
B ∈ L

∞(0, 1), we deduce that the map y is Lipschitz, so that Theorem C.4 grants

that y is a.e. differentiable. Then (C.13) trivially follows from (C.10).

Conversely, let y ∈ LIP
(
[0, 1],B

)
be any curve such that (C.13) holds true. By integration

we conclude that y satisfies also property (C.10), thus proving uniqueness. �
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flow in metric measure spaces and applications to spaces with Ricci bounds from

below. Invent. Math., 195(2):289–391, (2014).

[AGS14b] Luigi Ambrosio, Nicola Gigli and Giuseppe Savaré. Metric measure
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1983/84, volume 1123 of Lecture Notes in Math., pages 145–174. Springer, Berlin,

(1985).

[BBI01] Dmitri Burago, Yuri Burago and Sergei Ivanov. A course in metric ge-

ometry. volume 33 of Graduate Studies in Mathematics, American Mathematical

Society, Providence, RI, (2001).
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