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0. Introduction

Abstract:

Three problems are studied in this thesis; the first problem is about four-dimensional

symplectic manifolds. It was formulated by McDuff and Salamon in the very latest edition

of their famous book [McD-Sa-1]. This problem is to prove that the Torelli part of the

symplectic mapping class group of a geometrically ruled surface is trivial. In Section 0 a

partial solution for this problem is given, see Theorem 0.2 . The proof can be found in my

recent joint work with Vsevolod Shevchishin [S-S], though the proof there is a bit sketchy.

The goal of this thesis is to provide the reader with more details.

The second problem is to compute the symplectic mapping class group of the one-point

blow-up of S2×T 2, the direct product of the 2-sphere S2 and the 2-torus T 2. A partial

solution to this problem is given in Section 3, see also my joint work with Shevchishin [S-S].

Namely, it is proved that the abelianization of the corresponding symplectic mapping class

group is Z2, see Theorem 3.3 .

The third problem has nothing to do with symplectic geometry, it is purely topological.

This problem studies necessary and sufficient conditions for the existence of Lorentzian

cobordisms between closed smooth manifolds of arbitrary dimension such that the struc-

ture group of the cobordism is Spin(1,n)0, see Theorem 4.2 . This extends a result of

Gibbons-Hawking on Sl(2,C)-Lorentzian cobordisms between 3-manifolds and results of

Reinhart and Sorkin on the existence of Lorentzian cobordisms. We compute the kernel

of the inclusion forgetful homomorphism from Spin(1,n)0-Lorentzian cobordism ring to

the spin cobordism ring, see Corollary 4.9. The proof is explained very carefully in my

recent joint work with Rafael Torres [S-T]. Here the explanation tends to be briefly, see

[S-T] for more details.
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This thesis is devoted to study four-dimensional symplectic manifolds, focusing on their

symplectomorphisms and symplectic submanifolds. It is intended to bring us one step

closer to a complete description of the homotopy type of the symplectomorphism groups

of some 4-manifolds, with a particular regard to rational and ruled surfaces.

Given a compact closed symplectic manifold (X,ω), the symplectomorphism group

Symp(X,ω) consists of all diffeomorphisms that preserve the symplectic form ω. The

group is equipped naturally with the C∞-topology. By McDuff-Salamon, see [McD-Sa-4],

Remark 9.5.6, this group has the homotopy type of a countable CW-complex. It is an

interesting and important problem in symplectic topology to understand the homotopy

type of this group in detail.

In the case of 2-dimensional manifolds it follows from classical arguments that Symp(X,ω)

is homotopy equivalent to the group Diff+(X) of orientation-preserving diffeomorphisms

of X, and the latter group is very well understood. However, in dimension 4, there is no

general description for Symp(X,ω) (as well as for Diff+(X)), though there are 4-manifolds

for which the homotopy type of Symp(X,ω) can be described. The study of topological

properties of Symp(X,ω) goes back to the seminal paper of Gromov [Gro], where it was

proved that the group Sympc(R4,ω) of compactly supported symplectomorphisms of R4

is contractible, while the group Symp(CP2,ω) is homotopy equivalent to the projective

unitary group PU(3).

Since the foundational paper of Gromov [Gro], symplectomorphism groups of 4-manifolds

have been extensively studied by many mathematicians, see [Ab-McD, AG, AL, McD-B,

Bu, Eli, H-Iv, Kh, LLW, McD-3, Sei1, Sh-4, T] and references therein. Probably one

of the major developments in symplectic topology is Gromov’s technique of pseudoholo-

morphic curves. By using pseudoholomorphic curves, Abreu and McDuff developed a

framework that helps to attack the problem of computing the symplectomorphism groups

for rational and ruled surfaces, and then obtained a number of results toward to this

problem, see [Ab-McD, McD-B]. Although a tremendous amount of work has been done

in this direction, this problem is largely open and it keeps being the subject of vigorous

ongoing activities in symplectic geometry. So far there is no one-size-fits-all method that

would work for every ruled surface. It appears that the more complicated the topology

of a rational or ruled surface gets, the more deeply one should be involved in complex

algebraic geometry [Ab-McD], geometric topology [Lal-Pin, Pin-1], group theory [Li-1],
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Seiberg-Witten invariants [Kh], Gromov-Witten invariants and quantum cohomology [AL]

in order to compute the corresponding symplectomorphism groups. The use of tools of

all these branches of mathematics, on the one hand, makes the theory of symplectomor-

phism groups of rational and ruled surfaces pretty technical, but on the other hand, truly

interdisciplinary and challenging.

Although I have made an effort to illustrate all main ideas of symplectic topology

of ruled surfaces here, the reader will benefit immensely from the following works on

symplectomorphism groups: [Bu, Ev, Sh-4], which are very closely related to the topic of

the thesis. The reader also might find it useful to take a look at McDuff-Salamon books

on symplectic geometry [McD-Sa-1, McD-Sa-3].

0.1. Symplectic isotopy conjecture. Recall that a symplectic manifold is a pair (X,ω),

where X is a smooth manifold and ω is a closed non-degenerate 2-form on X. Here we

assume that X is four-dimensional and closed.

A symplectomorphism of (X,ω) is a diffeomorphism f : X → X such that f ∗ω =

ω. Given a symplectic manifold (X,ω), the set of its symplectomorphisms is naturally

equipped with the C∞-topology and forms a topological group Symp(X,ω). Every sym-

plectic manifold possesses a great amount of symplectomorphisms. Indeed, every smooth

function f ∈ C∞(X) gives rise to a vector field sgradf as follows:

df(ξ) = ω(ξ,sgradf) for arbitrary vector filed ξ.

The flow generated by sgradf preserves the symplectic structure. Therefore every

smooth function f ∈ C∞(X,ω) corresponds to a certain one-dimensional group of sym-

plectomorphisms of (X,ω).

Although the group Symp(X,ω) is infinite-dimensional, it has foreseeable homotopy

groups. The thesis focuses on the symplectic mapping class group π0 Symp(X,ω). A

fundamental problem in symplectic topology is to understand the kernel and the image

of the following homomorphism

π0 Symp(X,ω)→ π0 Diff(X). (0.1)

The kernel of this homomorphism will be called the (reduced) symplectic mapping class

group of X. To say this group is trivial means that every symplectomorphism that is

smoothly isotopic to the identity is isotopic to the identity within the symplectomor-

phism group. There are 4-manifolds for which this kernel is expected to be trivial. It
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was conjectured by McDuff and Salamon that all geometrically ruled surfaces have this

injectivity property, see Problem 14 in [McD-Sa-1].

Problem 0.1 (Symplectic isotopy conjecture for ruled surfaces). Every symplectomorphism

of a geometrically ruled surface is symplectically isotopic to the identity if and only if it

is smoothly isotopic to the identity.

This conjecture is known to hold for S2×S2 and CP2 #CP2. This follows essentially

from the explanation given by Gromov in his seminal paper [Gro]. However, a much more

comprehensive treatment of these cases was worked out by Abreu [AbTh] and Abreu-

McDuff [Ab-McD]. As far as I know, this conjecture is open for the case of irrational

ruled surfaces, though it was partially proved by McDuff under certain constraints on

symplectic forms, see [McD-B]. Here I will give a proof for elliptic ruled surfaces. We

denote by S2×̃T 2 the total space of the non-trivial S2-bundle over T 2.

Theorem 0.2. The Symplectic isotopy conjecture holds for S2×T 2 and S2×̃T 2.

Note that the conjecture was proved by McDuff for S2 × T 2, see Proposition 1.5 in

[McD-B].

Surprisingly, the proof for S2×̃T 2 is much more complicated than for S2×T 2. This is

because a symplectic S2×̃T 2 may contain an embedded symplectic (−1)-torus. In [S-S]

it is shown that if a symplectic 4-manifold (X,ω0) contains a symplectic torus T of self-

intersection number (−1), then one can construct a family of symplectic forms ωt on X

such that ∫
T

ωt < 0 for t sufficiently large.

and an ωt-symplectomorphism EC : X → X called the elliptic twist along T . This sym-

plectomorphism ET is constructed to be smoothly isotopic to the identity. However, it is

possible in principle that such a symplectomorphism ET is not symplectically isotopic to

the identity. While elliptic twists appear to exist for S2×̃T 2, we will prove them to be

symplectically trivial, see Section 2.7.

With the absence of elliptic twists for S2×T 2, it becomes easy to prove the conjecture

for S2×T 2. An argument similar to what is presented in Section 2.7 works, so few details

are given here.

The methods to be used to prove Theorem 0.2 were introduced by Abreu-McDuff

[Ab-McD] and then extended further by McDuff [McD-B].
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0.2. The Diagram. One can attack the problem of computing a symplectic mapping

class group π0 Symp(X,ω) by using the fibration first introduced by Kronheimer [Kh].

This fibration is as follows:

Symp(X,ω)∩Diff0(X)→Diff0(X)→ Ω(X,ω), (0.2)

where Diff0(X) is the identity component of the group of diffeomorphisms ofX and Ω(X,ω)

is the space of all symplectic forms on X in the class of [ω]. Here the last arrow stands

for the map

Diff0(X)
ϕ−→ Ω(X,ω) : f → f∗ω. (0.3)

To shorten notation, we write Symp∗(X,ω) instead of Symp(X,ω)∩Diff0(X). Clearly, we

have this homotopy fibration sequence

. . .→ π1(Diff0(X))
ϕ∗−→ π1(Ω(X,ω))

∂−→ π0(Symp∗(X,ω))→ 0, (0.4)

where by ∂ we denote the boundary homomorphism.

Let us define and denote by J (X,ω) the space of those J for which there exists a taming

symplectic form ωJ ∈ Ω(X,ω).

Lemma 0.3 (McDuff, see [McD-B]). The space J (X,ω) is canonically homotopy equiv-

alent to Ω(X,ω).

Proof. This proof is taken from [McD-B]. Let us consider the space of pairs

(Ω,J ) = { (ω,J) ∈ Ω(X,ω)×J (X,ω) | ω tames J } .

This space is naturally equipped with two projections

(Ω,J ) J (X,ω)

Ω(X,ω)

p2

p1
ψ (0.5)

Both p1 and p2 are projections with contractible fibers. The reader is invited to check

that both p1 and p2 do satisfy the homotopy lifting property.

Given ω ∈ Ω(X,ω), then p−1
1 (ω) is the space of ω-tamed almost-complex structures. It

is Gromov’s observation that the latter space is contractible.

On the other hand, given J ∈ J (X,ω), then p−1
2 (J) is nothing but the space of sym-

plectic forms which tame J . The latter space is convex and hence contractible.
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Since p1 and p2 are homotopy equivalences, there is a unique homotopy equivalence

ψ : Ω(X,ω)→J (X,ω). (0.6)

such that (0.5) becomes a homotopy commutative diagram. �

Further, let us consider one more homotopy commutative diagram

Diff0(X) Ω(X,ω)

J (X,ω),

ϕ

ν
ψ (0.7)

where the diagonal arrow is for the map

ν : Diff0(X)→J (X,ω) with ν : f 7→ f∗J, (0.8)

for an arbitrarily chosen ω-tamed almost-complex structure J . Following the fundamental

idea of Gromov’s theory [Gro] we study the space J (X,ω) rather than Ω(X,ω). We see

from the following diagram

. . . −−−→ π1(Diff0(X))
ϕ∗−−−→ π1(Ω(X,ω))

∂−−−→ π0(Symp∗(X,ω)) −−−→ 0

id

y ψ∗

y
. . . −−−→ π1(Diff0(X))

ν∗−−−→ π1(J (X,ω)),

(0.9)

that each loop in J (X,ω) contributes to the symplectic mapping class group of X, pro-

vided this loop does not come from Diff0(X). We will refer to (0.9) as a fundamental

diagram. It will become our main tool to prove Theorem 0.2. The reader is referred to

[McD-B] for more extensive discussion of the topic.

In what follows we work with a slightly bigger space J k(X,ω) of Ck-smooth almost-

complex structures. The reason to do this is that the space J k(X,ω) is a Banach manifold

while the space of C∞-smooth structures J (X,ω) is not of that kind. What we prove for

πi(J k(X,ω)) works perfectly for πi(J (X,ω)) because the inclusion J (X,ω) ↪→J k(X,ω)

induces the weak homotopy equivalence πi(J (X,ω))→ πi(J k(X,ω)).

1. Short intro to Gromov’s theory

Let us review some basic statements on pseudoholomorphic curves. The reader is

referred to [Iv-Sh-1] for a comprehensive introduction to Gromov’s theory of pseudoholo-

morphic curves, where the Gromov compactness theorem and a number of other important

statements were generalized as much as reasonable.
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1.1. Basic. Recall that an almost-complex structure J on a manifold X is an endomor-

phism of J : TX → TX such that J2 = −id. An almost-complex structure J on a

symplectic manifold (X,ω) is called ω-tamed if

ω(Jξ,ξ)> 0 for arbitrary non-zero vector field ξ.

It is very well-known that the space Jω of ω-tamed almost-complex structures is non-

empty and contractible, see e.g. [Iv-Sh-1]. In particular, every two ω-tamed almost-

complex structures J0 and J1 can be connected by a homotopy (by path) Jt, t ∈ [0,1],

inside Jω. A relative analogue of this states that, for a given compact K ⊂ X and an

ω-tamed almost-complex structure J defined over K, one can always extend J to be

an ω-tamed almost-complex structure over the whole X. Moreover, the space J K
ω of

such extensions is contractible. In particular, every two extensions J0,J1 ∈ J K
ω can be

connected by a homotopy (by path) Jt ∈ J K
ω .

A parametrized J-holomorphic curve in X is a C1-map u : S → X from a (connected)

Riemann surface S with a complex structure j on S to (X,J) that satisfy the Cauchy-

Riemann equation:

∂Ju=
1

2
(du◦ j−J ◦du) = 0. (1.1)

Through out this work we mainly consider (but not restrict ourselves to) the case of

embedded curves, i.e. we assume that u : S→X is an embedding.

In what follows we need an appropriate version of the elliptic regularity property for

pseudoholomorphic curves.

Take α that satisfy 0 < α < 1. Let ∆ ⊂ C be a unit disk, and let Ck,α(∆,C) be the

space of Ck-functions from ∆ to C with k-th derivative Hölder continuous, exponent α.

One puts

‖f‖k,α := ‖f‖Ck + supx 6=y

∥∥Dkf(x)−Dkf(y)
∥∥

|x−y|α
,

so Ck,α(∆,C) becomes a Banach space. Here Dkf denotes the vector of derivatives of f

of order k. In a similar way, one can define the space Ck,α(S,X) of Ck,α-smooth maps

from S to X, as well as the space of Ck,α-smooth almost-complex structures on X.

Theorem 1.1 (Elliptic regularity, see e.g. [Iv-Sh-1], Corollary 3.2.2). If J is Ck,α-smooth,

then every J-holomorphic curve is Ck+1,α-smooth.
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Since we work with smooth almost-complex structure, we can restrict attention to

smooth curves.

Although a definition was given for parametrized curves, what we are really interested in

is something different. Let us take S to be CP1, and let C := u(S). We say that C is a non-

parametrized J-curve and denote by C := [C] the homology class given by u. From the

topological point of view it becomes much more convenient to work with non-parametrized

curves, simply because the space of parametrized curves is too big. Indeed, consider the

spaceMJ(C) of J-holomorphic curves u : S → X such that [u(S)] = C. If u ∈MJ(C),

then u ◦ g ∈ MJ(C), where g ∈ PSL(2,C). Therefore the group G = PSL(2,C) acts

freely onMJ(C) by reparametrization; the quotient MJ(C) :=MJ(C)/G is nothing but

the space of non-parametrized J-curves, and it appears to be not that big, see §1.5.

The situation becomes more subtle when S is of genus greater than zero. This is because

non-zero genus surfaces have many complex structures. However, when it goes to non-

parametrized curves of non-zero genus it does not really matter what complex structure

is chosen on S. We count them as if they were biholomorphic. A little technical work is

needed to define the moduli space of non-parametrized curves properly, see [Iv-Sh-1].

It follows very easily from the definition of the tameness condition that every J-

holomorphic emdedding u : S → X with J ∈ Jω is symplectic. To some extent, the

converse is also true: every Ck+1-smooth symplectic embedding is J-holomorphic for an

appropriate Ck-smooth ω-tamed almost-complex structure, though for immersions the

situation is a bit more complicated.

Lemma 1.2 (see e.g. [Iv-Sh-1], Lemma 1.4.2). Let u : S → X be an ω-symplectic C1-

smooth immersion such that u(S) has only simple transversal positive self-intersections,

then there exists an ω-tamed almost-complex structure J on X and a complex structure j

on S such that u : (S,j)→ (X,J) becomes J-holomorphic.

1.2. Positivity of Intersections. If x ∈ X is a self-intersection point of a J-curve u,

x = u(z1) = u(x2), z1, z2 ∈ S, z1 6= z2, or an intersection point of two J-curves u1 and

u2, z1 ∈ S1, z2 ∈ S2, such that the tangent planes du(Txi) ⊂ TxX are transversal to each

other and complex w.r.t. Jx in TxX, then the intersection number of planes du(Tzi) at

x is positive. This positivity intersection property will be constantly used in the sequel,
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without any particular reference. Note, however, that it is possible for two symplectic

planes in R4 to intersect each other negatively.

1.3. Adjunction formula. If u : S → X is J-holomorphic, and C := u(S), define the

virtual genus of C to be

g(C) = 1 +
1

2
([C]2−K∗X(C)), (1.2)

where K∗X is for the anti-canonical class of (X,J). The so-called adjunction inequality

holds

g(C)> g(S) = genus of S (1.3)

with the equality iff u is an embedding. In the latter case this equality is called the

adjunction formula.

Example: let u : S→X be J-holomorphic, and take S to be CP1. If [C]2−K∗X(C) =−2,

then u should be an embedding! We will use the adjunction formula literally in every

section, often without mentioning it specifically.

1.4. Sard’s Lemma. The purpose of this subsection is to recall Sard’s lemma for infinite-

dimensional manifolds. The lemma was proved by Smale in his seminal paper [Sm], and

it is known to be an important tool in studying elliptic equations and, in particular, the

Cauchy-Riemann equation. Here we present a very short summary of the results of [Sm],

no details are given here.

Recall that a Fredholm operator is a continuous linear map L : E1 → E2 from one

Banach space to another with the properties:

(1) dimKerL <∞

(2) ImL is closed

(3) dimCokerL <∞

If L is Fredholm, then its index is defined to be equal to

indL := dimKerL−dimCokerL.

The set F(E1,E2) of Fredholm operators is open in the space of all continuous operators

L(E1,E2) in the norm topology. Furthermore the index is a locally constant function on

F(E1,E2). See e.g. [McD-Sa-4].

We now consider differentiable Banach manifolds X and Y . We will assume our mani-

folds to be connected and to have countable base.
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A Fredholm map is a C1-map f : X → Y such that at each x ∈ M , the derivative

f∗(x) : TxX → Tf(x)Y is a Fredholm operator. The index of f is defined to be the index

of f∗(x) for some x ∈X. Since X is connected, the definition does not depend on x.

Let f : X → Y be a C1-map. A point x ∈ X is called a regular point of f if f∗(x) is

an epimorphism and is singular if not regular. The images of singular points under f are

called singular values and their complement the regular values.

Theorem 1.3 (Smale, [Sm], Theorem 1.3). Let f : X → Y be a Cq-Fredholm map with

q >max(indf,0). Then the regular values of f are almost all of Y .

This theorem implies

Theorem 1.4 (Smale, [Sm], Corollary 1.5). If f : X → Y is a Cq-Fredholm map with

q >max(indf,0), then for almost all y ∈ Y , f−1(y) is a submanifold of X whose dimension

is equal to index of f or it is empty.

If fact, a more general statement holds true. Let f : X → Y be a C1-map and g : Z→ Y

be a C1-embedding. We shall say that f is transversal to g if for each y ∈ g(Z) and x ∈X,

f(x) = y the spaces Imf∗(x), Tyg(Z), span the tangent space TyY .

Theorem 1.5 (Smale, [Sm], Theorems 3.1 & 3.3). Let f : X → Y be a Cq-Fredholm map

and g : Z→ Y be a C1-embedding of a finite dimensional manifold Z with

q >max(indf +dimZ,0).

i) Then there exists a C1-approximation g′ of g such that f is transversal to g′. Fur-

thermore if f is transversal to the restriction of g to a closed subset A of Y , then g′ may

be chosen so that g′ = g on A.

ii) If f is transversal to g, then f−1(g(Z)) is a submanifold of X of dimension equal to

indf +dimZ.

In his paper [Sm], Smale describes a notion of a generalized degree for a proper Fredholm

map. Here we give a short summary of his construction for the case indf = 0. Let

f : X → Y be a proper C2-Fredholm map, indf = 0. Given a generic y ∈ Y , then f−1(y)

is discrete, and if f is proper, is a finite number of points. We define a generalized degree

of f to be the number of point of f−1(y) modulo 2

deg (f) = #f−1(y) mod 2.
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To see that deg (f) is independent of y let y1, be another regular value of f and suppose

g : I → Y is an embedded path with g(0) = y, g(1) = y1. By Theorem 1.5 we suppose f is

transversal to g, so f−1(g(I)) is a one-dimensional manifold. This gives us the invariance

of deg (f).

1.5. Compactness. In general, the moduli space of non-parametrized curves MJ(C)

fails to be compact. However, Gromov’s compactness theorem asserts that it can be

compactified in some nice way. It states that if a sequence Ji of Ck,α-structures converges

uniformly to an ω-tamed almost-complex structure J∞, and if ui : S → X, Ci := ui(S)

are (non-parametrized, and, for simplicity, embedded) Ji-holomorphic curves, then there

exists a subsequence Cj that converges to a J∞-holomorphic curve or a cusp-curve C∞.

To say that C∞ is a cusp-curve means that it may be non-smooth, reducible, or having

multiple components.

Here the concept of convergence is understood with respect to the Gromov topology on

the space of stable maps. For a precise definition of this convergence with estimates in

neighbourhoods of vanishing circles the reader is referred to [Iv-Sh-1]. Note, however, that

it is fine for our purpose to use the cycle topology . A sequence Ci of pseudoholomorphic

curves is said to converge to C∞ with respect to the cycle topology if

lim
i→∞

∫
Ci

ϕ=

∫
C∞

ϕ

for every 2-form ϕ on X. In fact, even a less subtle topology, the Hausdorff topology,

would do. We may equip X with some Riemannian metric, so it becomes a complete

metric space. Then a sequence Ci of pseudoholomorphic curves is said to converge to C∞

with respect to the Hausdorff topology if

lim
i→∞

dist(Ci,C∞) = 0.

Although the limit C∞ need not be embedded, the elliptic regularity ensures that C∞

has reasonable smoothness, provided J∞ is smooth.

Importantly, if all Ci are of homology class C ∈ H2(X;Z), then so is C∞. Thus, if we

take Ji = J , then the theorem ensures some compactification for MJ(C), by cusp-curves.

Note that if every J-curve of class C ∈ H2(X;Z) is embedded, then the moduli space

MJ(C) is automatically compact. An important example of this phenomenon is given

by irrational geometrically ruled surfaces, which are orientable S2-bundles over compact

Riemann surfaces of non-zero genus, see Theorem 2.8 .
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1.6. Universal moduli space. Here and below “smoothness” means some Ck,α-smoothness

with 0< α < 1 and k natural sufficiently large.

Let J be an open subset in the Banach manifold of all Ck,α-smooth almost-complex

structures on X for k sufficiently large. The interesting examples are given by the set

Jω of ω-tamed almost-complex structures, or, even more useful for us, by the J (X,ω)

of those structures which are tamed by some form in Ω(X,ω); in the latter example the

symplectic forms need not be the same.

Fix also a homology class C ∈ H2(X;Z). Denote by M (C), or by M for short, the

space of pairs (J,C), where J ∈ J , C is a non-parametrized immersed irreducible non-

multiple J-holomorphic curve of genus g and of class C. The space M (C) is a smooth

Banach manifold and the natural projection pr : M (C)→J is a smooth Fredholm map

of R-index

ind(pr) = 2(K∗X(C) +g−1) , (1.4)

where as usual K∗X is for the anti-canonical class of J ∈ J ; it does not actually depend

on J ∈ J , provided that J is connected.

We normally denote MJ(C) := pr−1(J), or by MJ for short. In the case of a path

h : I →J with Jt := h(t), t ∈ I we denote

Mh := {(C,Jt, t) | t ∈ I, Jt = h(t), (C,Jt) ∈MJt} .

Lemma 1.6 (see [Sh-4], Lemma 1.1). i) In the case ind(pr) 6 0 the map pr : M → J

is a smooth immersion of codimension −ind(pr), and an embedding in the case when

pseudoholomorphic curves C in M are embedded and C2 < 0; the image pr(M ) can be

naturally cooriented.

ii) In the case ind(pr) > 0 and M is non-empty, there is a subset Jreg ⊂ J of second

Baire category such that for every J ∈ Jreg the set MJ is a naturally oriented smooth

manifold of dimension ind(pr), for a generic path h : I → J the space Mh is a smooth

manifold of dimension ind(pr) + 1, and so on.

iii) If, in addition to ii) , C is CP1, then Jreg = J .

1.7. Counting tori. Given a class C ∈H2(X;Z), we study the space MJ , or briefly M ,

of non-parametrized J-curves representing the class C in X. It follows from Lemma 1.6

that, for a sufficiently generic almost-complex structure J on X, the space M is in fact
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a compact (strictly speaking, it can be compactified) manifold of dimension dimM =

K∗X(C) +C2.

Assume that the class C can be represented by a smooth symplectic torus of self-

intersection number 0, then, for generic J , the moduli space M is an oriented 0-dimensional

manifold, and hence its points can be counted, with signs to be determined by the orien-

tation of M ; see [Tb] where it is explained how this orientation is chosen. This counting

is especially easy to do when every J-holomorphic representative of C is irreducible. For-

tunately for us, we only will deal with an irreducible case, see section §2.4. The result of

this counting is the Gromov invariant

Gr(C) = #M .

Importantly, if J is integrable, all points of M have positive signs, so a good strategy for

counting curves is to work with J integrable. This been said, keep in mind that “generic

J” might not be "the integrable choice of J". Indeed, let us consider X ∼= CP1×E, where

E is some smooth elliptic curve; being fibered by elliptic curves, X has infinitely many

holomorphic tori homologous to each other, and these tori are of self-intersection number

zero. Be that as it may, the general theory promises that we should have finitely many

J-tori for J generically chosen.

To achieve transversality one has to find a complex structure J such that every J-

torus of class C has the holomorphically non-trivial normal bundle; this also ensures that

(X,J) contains only finitely many holomorphic tori of class C, see [McD-E] where the

tori counting technique discussed in details and it is explained how to deal with multiple

tori. A toy example of computation for Gr is given in §2.2.

1.8. Symplectic economics. Here we give a brief description of the inflation technique

developed by Lalonde-McDuff [La-McD] and McDuff [McD-B], and a generalization of

this procedure given by Buşe, see [Bu].

Theorem 1.7 (Inflation). Let J be an ω0-tamed almost complex structure on a symplectic

4-manifold (X,ω0) that admits an embedded J-holomorphic curve C with [C] · [C] > 0.

Then there is a family ωt, t> 0, of symplectic forms that all tame J and have cohomology

class

[ωt] = [ω0] + tPD([C]),

where PD([C]) is Poincaré dual to [C].
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For negative curves a somewhat reverse procedure exists, called negative inflation or

deflation.

Theorem 1.8 (Deflation). Let J be an ω0-tamed almost complex structure on a symplectic

4-manifold (X,ω0) that admits an embedded J-holomorphic curve C with [C] · [C] = −m.

Then there is a family ωt of symplectic forms that all tame J and have cohomology class

[ωt] = [ω0] + tPD([C])

for all 06 t <
ω0([C])

m
.

2. Elliptic geometrically ruled surfaces

2.1. General remarks. A complex surface X is ruled means that there exists a holo-

morphic map π :X → Y to a Riemann surface Y such that each fiber π−1(y) is a rational

curve; if, in addition, each fiber is irreducible, then X is called geometrically ruled. A

ruled surface is obtained by blowing up a geometrically ruled surface. Note however that

a geometrically ruled surface needs not be minimal (the blow up of CP2, denoted by

CP2 #CP2, is de facto a unique example of a geometrically ruled surface that is not a

minimal one). Unless otherwise noted, all ruled surfaces are assumed to be geometrically

ruled. One can speak of the genus of the ruled surface X, meaning thereby the genus of

Y . We thus have rational ruled surfaces, elliptic ruled surfaces and so on.

Topologically, there are two types of orientable S2-bundles over a Riemann surface: the

product S2×Y and the nontrivial bundle S2×̃Y . The product bundle admits sections Y2k

of even self-intersection number [Y2k]
2 = 2k, and the skew-product admits sections Y2k+1

of odd self-intersection number [Y2k+1]2 = 2k+ 1. We will choose the basis Y = [Y0],S =

[pt×S2] for H2(S2×Y ;Z), and use the basis Y − = [Y−1],Y + = [Y1] for H2(S2×̃Y ;Z). To

simplify notations, we denote both the classes S and Y +−Y −, which are the fiber classes

of the ruling, by F . Further, the class Y + +Y −, which is a class for a bisection of X,

will be of particular interest for us, and will be widely used in forthcoming computations;

we denote this class by B. Throughout this paper we will freely identify homology and

cohomology by Poincaré duality.

Clearly, we have [Y2k] = Y + kF and [Y2k+1] = Y + + k (Y + +Y −). This can be seen

by evaluating the intersection forms for these 4-manifolds on the given basis:

QS2×Y =

(
0 1
1 0

)
, QS2×̃Y =

(
1 0
0 −1

)
.
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Observe that these forms are non-isomorphic. That is why the manifolds S2 × Y and

S2×̃Y are non-diffeomorphic. One more way to express the difference between them is

to note that the product S2×Y is a spin 4-manifold, but the skew-product S2×̃Y is not

of that kind. This divergence, however, is sort of fragile: only one blow-up is needed to

make them diffeomorphic: S2×Y #CP2 ' S2×̃Y #CP2.

This section is mainly about the non-spin elliptic ruled surface S2×̃T 2. When study

this manifold we sometimes use the notations T+ and T− instead of Y + and Y − for the

standard homology basis in H2(S2×̃T 2;Z).

From the algebro-geometric viewpoint every such X is a holomorphic CP1-bundle over

a Riemann surface Y whose structure group is PGl(2,C). Biholomorphic classification

of ruled surfaces is well understood, at least for low values of the genus. Below we recall

part of the classification of elliptic ruled surfaces given by Atiyah in [At-2]; this being

the first step towards understanding almost complex geometry of these surfaces. We also

provided a short summary of Suwa’s results: i) an explicit construction of a complex

analytic family of ruled surfaces, where one can see the jump phenomenon of complex

structures, see §2.3, ii) an examination of those complex surfaces which are both ruled

and admit an elliptic pencil, see Theorem 2.3.

It maybe should be mentioned that no matter what complex structure we are dealing

with, the formula describing the anticanonical class of a geometrically ruled surface is as

follows:

K∗X(S2×Y ) = 2Y +χ(Y )S, K∗X(S2×̃Y ) = (1 +χ(Y ))Y + + (1−χ(Y ))Y −. (2.1)

The symplectic geometry of ruled surfaces has been extensively studied by many au-

thors, see [AGK, Li-Li, Li-Liu-1, Li-Liu-2] and references therein. Ruled surfaces are of

great interest from the symplectic point of view mainly because of the following significant

result due to Lalonde-McDuff, see [La-McD].

Theorem 2.1 (The classification of ruled 4-manifolds). Let X be oriented diffeomorphic

to a minimal rational or ruled surface, and let ξ ∈ H2(X). Then there is a symplectic

form (even a Kähler one) on X in the class ξ iff ξ2 > 0. Moreover, any two symplectic

forms in class ξ are diffeomorphic.

Thus all symplectic properties of ruled surfaces depend only on the cohomology class

of a symplectic form. In particular, the symplectic blow-up of a symplectic ruled surface
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depends only on the size of the exceptional curve; this does not hold for a general sym-

plectic 4-manifold, where one can possibly find two symplectic balls of the same volume

that are not translated to each other by means of a symplectomorphism.

Let (X,ωµ) be a symplectic ruled 4-manifold (S2×̃T 2,ωµ), where ωµ is a symplectic

structure of the cohomology class [ωµ] = T+− µT−, µ ∈ (−1,1). Here the coefficient

of T+ is 1 because one can always rescale a symplectic form ω on X to get
∫
T+
ω = 1.

By Theorem 2.1 (X,ωµ) is well-defined up to symplectomorphism. As promised in the

introduction, we will prove that π0(Symp∗(X,ωµ)) is trivial.

Given µ > 0, then the space (X,ωµ) contains a symplectic (−1)-torus. This simplifies

life drastically. Following McDuff [McD-B], we will show that the group π0(Symp∗(X,ξ))

coincides with the mapping class group of certain diffeomorphisms, see Lemma 2.16; the

latter group can be computed to be trivial by standard topological technique, see Propo-

sition 2.12.

When µ 6 0, we first embed J (X,ωµ) in the bigger space J . We then show that i)

π1(Diff(X))→ π1(J ) is epimorpic, ii) J (X,ωµ) is complenet of J to a certain codimension

2 divisor in J , and finally prove that π1(Diff(X))→ π1(J (X,ωµ)) is epimorpic as well.

Let (X,ωλ) be a symplectic ruled 4-manifold (S2 × T 2,ωλ), where [ωλ] = T + λS,

λ ∈ (0,+∞). We will prove π0(Symp∗(X,ωλ)) = 0 for every λ positive. The reader is

invited to look at the proof for S2×̃T 2 first. Then it will be explained how this proof can

be adapted for S2×T 2.

As it was mentioned, the 4-manifold S2×T 2 is spin. We say “spin case” when indicate

that we are considering S2× T 2. The manifold S2×̃T 2 is no spin and unless otherwise

noted, it is the one we refer to when say “non-spin case”.

To study homotopy groups one needs to choose some basepoint. We first take the

connected component of Ω(X,ωµ) that contains ωµ and use the same notation Ω(X,ωµ)

for this component. We do the same for J (X,ωµ). Now Ω(X,ωµ) is connected, and the

group π1(Ω(X,ωµ)) does not depend on a basepoint. We have an obvious choice of a

basepoint for Ω(X,ωµ), since X is equipped with the form ωµ. What remains is to choose

a basepoint for J (X,ωµ). By Theorem 2.1 every symplectic form on X is Kähler, so there

exists at least one integrable complex structure J ∈ J (X,ωµ) such that (X,ωµ,J) is a

Kähler manifold. It seems aesthetically correct to choose J to be a basepoint of J (X,ωµ)

for our forthcoming computations.
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2.2. Classification of complex surfaces ruled over elliptic curves. Here we very

briefly describe possible complex structures on elliptic ruled surfaces and study some of

their properties.

LetX be diffeomorphic to either S2×Y 2 or S2×̃Y 2. The Enriques-Kodaira classification

of complex surfaces (see e.g.[BHPV]) ensures the following:

(1) Every complex surface X of this diffeomorphism type is algebraic and hence

Kähler.

(2) Every such complex surfaceX is ruled, i.e. there exists a holomorphic map π : X →

Y such that Y is a complex curve, and each fiber π−1(y) is an irreducible rational

curve. Note that, with the single exception of CP1×CP1, a ruled surface admits

at most one ruling.

It was shown by Atiyah [At-2] that every holomorphic CP1-bundle over a curve Y

with structure group the projective group PGl(2,C) admits a holomorphic section, and

hence the structure group of such bundle can be reduced to the affine group Aff(1,C)⊂

PGl(2,C).

All of what is said works perfectly for any ruled surface, no matter the genus. Keep in

mind, however, that everything below is for genus one surfaces. It was Atiyah who gave

a classification of ruled surfaces with the base elliptic curve. The description presented

here is taken from [Sw].

Theorem 2.2 (Atiyah). Every PGl(2,C)-bundle over an elliptic curve can expressed

uniquely as one of the following:

i) a C∗-bundle of nonpositive degree,

ii) A,

iii) ASpin,

where ASpin and A are affine bundles.

We shall proceed with a little discussion of these bundles:

i) With a bit luck the structure group of a CP1-bundle can be reduced further to

C∗ ⊂Aff(1,C)⊂ PGl(2,C). We now give an explicit description of such bundles.

Let y ∈ Y be a point on the curve Y , and let {V0,V1} be an open cover of Y such

that V0 = Y \{y} and V1 is a small neighbourhood of y, so the domain V0∩V1 =: V̂ is a

punctured disk. We choose a multivalued coordinate u on Y centered at y.
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A surface Xk associated to the line bundle O(ky) (or if desired, a C∗-bundle) can be

described as follows:

X :=
(
V0×CP1

)
∪
(
V1×CP1

)
/∼,

where (u,z0) ∈ V1×CP1 and (u,z1) ∈ V2×CP1 are identified iff u ∈ V̂ , z1 = z0u
k. Here

z0, z1 are inhomogeneous coordinates on CP1’s.

Clearly, the biholomorphism (z0,u)→ (z−1
0 ,u), (z1,u)→ (z−1

1 ,u) mapsXk toX−k. Thus

it is sufficient to consider only values of k that are nonpositive.

There is a natural C∗-action on Xk via g ·(z0,u) := (gz0,u), g ·(z1,u) := (gz1,u) for each

g ∈ C∗. The fixed point set of this action consists of two mutually disjoint sections Yk

and Y−k defined respectively by z0 = z1 = 0 and z0 = z1 = ∞. We have [Yk]
2 = k and

[Y−k]
2 =−k.

It is very well known that any line bundle L of degree deg (L) = k 6= 0 is isomorphic

to O(ky) for some y ∈ Y . Thus all the ruled surfaces associated with line bundles of

non-zero degree k are biholomorphic to one and the same surface Xk.

On the other hand, the parity of the degree of the underlying line bundle is a topological

invariant of a ruled surface. More precisely, a ruled surfaceX associated with a line bundle

L is diffeomorphic to Y ×S2 for deg (L) even, and to Y ×̃S2 for deg (L) odd.

ii) Again, we start with an explicit description of the ruled surface XA associated with

the affine bundle A. Let {V0,V1, V̂ } be the open cover of Y as before, u be a coordinate

on Y centered at y, and z0, z1 be fiber coordinates. Define

XA :=
(
V0×CP1

)
∪
(
V1×CP1

)
/∼,

where (z0,u)∼ (z0,u) for u ∈ V̂ and z0 = z1u+u−1.

There is an obvious section Y1 defined by the equation z0 = z1 = ∞, but in contrast

to C∗-bundles, the surface XA contains no section disjoint from that one. This can be

shown by means of direct computation in local coordinates, but one easily deduce this

from Theorem 2.3 below.

We will make repeated use of the following geometric characterization of XA, whose

proof is given in [Sw], see Theorem 5 .

Theorem 2.3. The surface XA associated with the affine bundle A has fibering of smooth

elliptic curves. The elliptic structure is uniquely specified by XA: the base curve is the
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rational one, a general fiber is a torus in class 2Y + + 2Y −, there are 3 double fibers, and

there are no other multiple fibers.

The following corollary will be used later. The reader is invited to look at [McD-D] for

the definition of the Gromov invariants and some examples of their computation.

Corollary 2.4. Gr(Y + +Y −) = 3.

Proof. There are no smooth curves in class Y + +Y − apart from those three curves

which are the double fibers of the elliptic fibration described above. Since each of these

curves is a double fiber of an elliptic fibering, its normal bundle is isomorphic to the square

root of the trivial bundle and hence the transversality property holds for it, see §1.7 and

[McD-E]. �

Based on this theorem, Suwa then gives another construction of XA. We mention this

construction here because it appears to have interest for the sequel.

Let us identify Y with the quotient C/Λ, where Λ is a lattice in C, a discrete additive

subgroup Z⊕Z⊂ C. Consider the representation

Z⊕Z→ PGl(2,C) : (n,m)→ fngm, (2.2)

where f,g ∈ PGl(2,C) form a pair of nonidentity distinct commuting involutions, say

f : z→−z, g : z→ 1

z
. (2.3)

The product C×CP1 can be equipped with a free Z2 action in such a way that Z2 acts

as a translation on the the first factor, and by automorphisms f,g on the second one.

It is clear that the quotient XA := C×Z2 CP1 is an elliptic ruled surface equipped with

the ruling XA → C/Λ. This surface is non-spin, for an explanation, see [Sw], where

this is proved by constructing a section for XA of odd self-intersection number, see also

[McD-Sa-1] for one different explanation, see Exercises 6.13 and 6.14.

Further, because Z2 acts by elements of order 2, this gives rise to an effective action

of T = C/2Λ, which is a complex torus, on XA. The desired fibering is constructed by

means of this action. It consists of regular fibers, where the action is free, and of three

multiple fibers, whose isotropy groups correspond to the three pairwise different order two

subgroups of T .

iii) The ruled surface associated to ASpin is diffeomorphic to S2× T 2, thus it is not

discussed here, but see [Sw].
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Summarizing our above observations we see that X ∼= S2×̃T 2 admits countably many

complex structures. These structures are as follows:

• the structures J ∈ J1−2k, k > 0, such that the ruled surface (X,J), which is

biholomorphic to X1−2k, contains a section of self-intersection number 1−2k, and

• the affine structures J ∈ JA such that the ruled surface J ∈ (X,J), which is

biholomorphic to XA, contains no sections of negative self-intersection number

but does contain a triple of smooth bisections.

2.3. One family of ruled surfaces over elliptic base. Here is a construction of a

one-parametric complex-analytic family p : X→ C of non-spin elliptic ruled surfaces, such

that the surfaces p−1(t), t 6= 0, are biholomorphic to XA and p−1(0)∼= X−1.

As before, we take a point y on Y , let u be a coordinate of the center y, and put

{V0,V1, V̂ } to be an open cover for Y such that V0 := Y \{y}, V1 is a small neighbourhood

of y, and V̂ := V0∩V1. Further, let ∆ be a complex plane, and let t be a coordinate on it.

We construct the complex 3-manifold X by patching ∆×V0×CP1 and ∆×V1×CP1 in

such a way that (t,z0,u)∼ (t,z0,u) for u ∈ V̂ and z0 = z1u+ tu−1.

The preimage of 0 and 1 under the natural projection p : X → ∆ are biholomorphic

respectively to X−1 and XA. In fact, it is not hard to see that for each t 6= 0, the surface

p−1(t) is biholomorphic to XA as well. One way to prove this is to use the C∗-action on X

g · (t,z0,u) := (tg−1,gz0,u), g · (t,uz1,u) := (tg−1,gz1,u) for each g ∈ C.

This proves even more than we desired, namely, that there exists a C∗-action on X such

that for each g ∈ C∗ we get a commutative diagram

X
·g−−−→ X

p

y yp
C −−−→

·g
C,

(2.4)

where X
·g−→ X denotes the biholomorphism induced by g ∈ C∗.

The construction of the complex-analytic family X is due to Suwa, see [Sw]. However,

the existence of the C∗-action on X was not mentioned explicitly in his paper.
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2.4. Embedded curves and almost complex structures. In §2.2 the classification

for non-spin elliptic ruled surfaces was given. It turns out that this classification can be

extended to the almost complex geometry of S2×̃T 2.

Let X be diffeomorphic to S2×̃T 2, and let J (X) be the space of almost complex

structures on X that are tamed by some symplectic form; the symplectic forms need not

be the same. Here we use the short notation J for J (X).

Given k > 0, let J1−2k(X) (for shorten, we will refer to it by J1−2k) be the subset

of J ∈ J consisting of elements that admit a smooth irreducible J-holomorphic elliptic

curve in the class T+−kF . By virtue of Lemma 1.6 J1−2k forms a subvariety of J of real

codimension 2·(2k−1).

Further, define JA(X) (or JA, for short) be the subset J ∈ J of those element for

which there exists a smooth irreducible J-holomorphic elliptic curve in the class B.

By pretty straightforward computation one can show that the sets J1−2k are mutually

disjoint, and each J1−2k is disjoint from JA. Further, it is not hard to see that J−1 ⊂ J A
and J1−2(k+1) ⊂ J 1−2k, where J 1−2k is for the closure of J1−2k. A less trivial fact is that

J = JA+
∞⊔
k=1

J1−2k, (2.5)

it can be also stated as follows. Here both “+” and “
⊔
” are for the disjoint union.

Proposition 2.5 (cf. Lemma 4.2 in [McD-B]). Let (X,ω) be a symplectic ruled 4-manifold

diffeomorphic to S2×̃T 2. Then every ω-tamed almost complex structure J admits a smooth

irreducible J-holomorphic representative in either B or T+−kF for some k > 0.

Proof. The proof is analogous to the one of Lemma 4.2 in [McD-B]. Observe that the

expected codimension for the class B is zero. By Lemma 2.4 we have Gr(T+ +T−) > 0.

Hence, JA is an open dense subset of J , and, thanks to the Gromov compactness theorem,

for each J ∈ J the class B has at least one J-holomorphic representative, possibly

singular, reducible or having multiple components.

By virtue of Theorem 2.8, no matter what J was chosen, our manifold X admits the

smooth J-holomorphic ruling π by rational curves in class F .

Since B ·F > 0, it follows from positivity of intersections that any J-holomorphic

representative B of the class B must either intersect a J-holomorphic fiber of π or must

contain this fiber completely.
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a) First assume that B is irreducible. Then it is of genus not greater than 1 because

of the adjunction formula. Assume that B is of genus zero, then it gives some nontrivial

element in π2(X). However, one can use this homotopy exact sequence for π

0 = π3(Y ) −−−→ π2(S2) −−−→ π2(X) −−−→ π2(Y ) = 0 (2.6)

to deduce that every spherical homology class of X is proportional to F . This contradicts

our assumption that B has no fiber components. Therefore B is of genus one. It remains

to apply the adjunction formula one more time to conclude that B is smooth, i.e. J ∈ JA.

b) The curve B is reducible but contains no irreducible components which are the fibers

of π. Then it contains precisely two components B1 and B2, since B ·F = 2. Both the

curves B1 and B2 are smooth sections of π, and hence [Bi] = T+ + kiF , i = 1,2. Since

[B1]+[B2] =B, it follows that k1+k2 =−1, and hence either k1 or k2 is negative. Thus we

have that either B1 or B2 is a smooth J-holomorphic section of negative self-intersection

index.

c) If some of the irreducible components of B are in the fibers class F , then one

can apply arguments similar to that used in a) and b) to prove that the part B′ of B

which contains no fiber components has a section of negative self-intersection index as a

component. �

When X is diffeomorphic to S2×T 2, a somewhat similar statement holds. Namely:

Proposition 2.6 (cf. Lemma 4.2 in [McD-B]). Let (X,ω) be a symplectic ruled 4-manifold

diffeomorphic to S2×T 2. Then every ω-tamed almost complex structure J admits a smooth

irreducible J-holomorphic representative in either T or T −kF for some k > 0.

Proof. The key ingredient here is the fact that Gr(T ) = 2. This number was calculated

by McDuff in [McD-E]. From here, one proceeds analogously to the proof of Proposition

2.5. �

In other words, we show that J decomposes as follows

J = JA+
∞⊔
k=1

J−2k, (2.7)

thus completing the analogy with the non-spin case. Here J−2k ⊂ J is for the subset of

almost-complex structures on X that admit a smooth pseudoholomorphic representative

in class T − kF , and JA consists of structures that have a pseudoholomorphic curve
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of class T . Importantly, J−2k forms a submanifold of J of real codimension 2 · 2k. In

particular, π1(JA)→ π1(J ) is isomorphic in the spin case.

2.5. Rulings and almost complex structures. Let X be a ruled surface equipped

with a ruling π : X → Y , and let J be an almost complex structure on X. We shall say

that J is compatible with the ruling π : X → Y if each fiber π−1(y) is J-holomorphic.

I take the opportunity to thank D.Alekseeva for sharing her proof of the following

statement.

Proposition 2.7. Let J (X,π) be the space of almost complex structures on X compatible

with π.

i) J (X,π) is contractible.

ii) Any structure J ∈ J (X,π), as well as any compact family Jt ∈ J (X,π), is tamed

by some symplectic form.

Proof. i) Let be J(R4,R2) be the space of linear maps J : R4→ R2 such that J2 =−id

and J(R2) = R2, i.e. it is the space of linear complex structures preserving R2. In

addition, we assume R4 and R2 are both oriented and each J ∈ J(R4,R2) induces the

given orientations for both R4 and R2. We now prove the space J(R4,R2) is contractible.

Indeed, let us take J ∈ J(R4,R2). Fix two vectors e1 ∈ R2 and e2 ∈ R4 \R2. The

vectors e1 and Je1 form a positively oriented basis for R2. Therefore Je1 is in the upper

half-plane for e1. Further, the vectors e1,Je1, e2,Je2 form a positively oriented basis for

R4. Therefore Je2 is in the upper half-space for the hyperplane spanned on e1,Je1, e2.

We see that the space J(R4,R2) is homeomorphic to the direct product of two half-

spaces, and hence it is for sure contractible.

To finish the proof of i) we consider the subbundle Vx := Kerdπ(x) ⊂ TxX, x ∈ X, of

the tangent bundle TX of X. Every J ∈ J (X,π) is a section of the bundle J(TX,V )→

X whose fiber over x ∈ X is the space J(TxX,Vx). Since the fibers of J(TX,V ) are

contractible; it follows that the space of section for J(TX,V ) is contractible as well.

ii) Again, we start with some linear algebra. Let V be a 2-subspace of W ∼= R4, and

let J ∈ J(W,V ). Choose a 2-form τ ∈ Λ2(W ) such that the restriction τ |V ∈ Λ2(V ) of

τ to V is positive with respect to the J-orientation of V , i.e. τ(ξ,Jξ) > 0. Clearly, the

subspace H := Kerτ ⊂ W is a complement to V . Further, let σ ∈ Λ2(V ) be any 2-form

such that σ|V vanishes, but σ|H does not. If H is given the orientation induced by σ,
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then the J-orientation of W agrees with that defined by the direct sum decomposition

W ∼= V ⊕H. We now prove that J is tamed by τ +Kσ for K > 0 sufficiently large.

It is easy to show that there exists a basis e1, e2 ∈ V, e3, e4 ∈H for W such that J takes

the form

J =


0 −1 1 0
1 0 0 −1
0 0 0 −1
0 0 1 0

 .
The matrix Ω of τ +Kσ with respect to this basis is block-diagonal, say

Ω =


0 1 0 0
−1 0 0 0
0 0 0 Kσ+ . . .
0 0 −Kσ+ . . . 0

 for σ > 0.

It remains to check that the matrix ΩJ is positive definite, i.e. (ξ,ΩJξ)> 0. A matrix is

positive definite iff its symmetrization is positive definite. It is straightforward to check

that ΩJ + (ΩJ)t is of that kind for K large enough.

Let us go back to the ruled surface X. The theorem of Thurston [Th] (see also Theorem

6.3 in [McD-Sa-1]) ensures the existence of a closed 2-form τ on X such that the restric-

tions of τ to each fiber π−1(y) is non-degenerate. Choose an area form σ on Y . By the

same reasoning as before, any J ∈ J (X,π) is tamed by τ+Kπ∗σ for K large enough. �

The following theorem by McDuff motivates the study of compatible almost complex

structures, see Lemma 4.1 in [McD-B].

Theorem 2.8. Let X be an irrational ruled surface, and let J ∈ J (X). Then there exists

a unique ruling π : X → Y such that J ∈ J (X,π).

2.6. Diffeomorphisms. Let X be diffeomorphic to either Y × S2 or Y ×̃S2, and let

π : X → Y be a smooth ruling; here Y is any Riemann surface. Further, let Fol(X)

be the space of all smooth foliations of X by spheres in the fiber class F .

The group Diff(X) acts transitively on Fol(X) as well as the group Diff0(X) acts transi-

tively on a connected component Fol0(X) of Fol(X). This gives rise to a fibration sequence

D∩Diff0(X)→Diff0(X)→ Fol0(X),

where D is the group of fiberwise diffeomorphisms of X. By the definition of D there

exists a projection homomorphism τ : D → Diff(Y ) such that for every F ∈ D we have a
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commutative diagram

X
F−−−→ X

π

y yπ
Y −−−→

τ(F )
Y,

(2.8)

which induces the corresponding commutative diagram for homology

H1(X;Z)
F∗−−−→ H1(X;Z)

π∗

y yπ∗
H1(Y ;Z) −−−→

τ(F )∗
H1(Y ;Z).

(2.9)

Notice that τ(F ) is isotopic to the identity only if τ(F )∗ = id . Since π∗ is an isomorphism,

it follows that the subgroup D∩Diff0(X) of D is mapped by τ to Diff0(Y ), so we end up

with the restricted projection homomorphism

τ : D∩Diff0(X)→Diff0(Y ). (2.10)

Since we shall exclusively be considering this restricted homomorphism, we use the same

notation τ for this.

Given an isotopy ft ⊂ Diff0(Y ), f0 = id , one can lift it to an isotopy Ft ∈ D ∩

Diff0(X), F0 = id such that τ(Ft) = ft. This immediately implies that the inclusion

Kerτ ∈ D∩Diff0(X) induces an epimorphism

π0(Kerτ)→ π0(D∩Diff0(X)). (2.11)

Because of this property we would like to look at the group Kerτ in more detail, but first

introduce some useful notion.

Let X be a smooth manifold, and let f be a self-diffeomorphism X. Define the mapping

torus T (X,f) as the quotient of X × [0,1] by the identification (x,1) ∼ (f(x),0). For

the diffeomorphism f to be isotopic to identity it is necessary to have the mapping torus

diffeomorphic to T (X, id)∼= X×S1.

Let us go back to the group Kerτ that consists of bundle automorphisms of π : X → Y .

Let F ∈ Kerτ be a bundle automorphism of π, and let γ be a simple closed curve

on Y . By Fγ denote the restriction of F to π−1(γ) ∼= S1 × S2. The mapping torus

T (π−1(γ),Fγ) is either diffeomorphic to S2×T or S2×̃T . In the later case we shall say

that the automorphism F is twisted along γ.
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Lemma 2.9. Let X be diffeomorphic to either Y ×S2 or Y ×̃S2, and let F ∈ Kerτ . Then

F is isotopic to the identity through Kerτ iff Y contains no curve for F to be twisted

along.

Proof. A closed orientable genus g surface Y has a cell structure with one cell, 2g

1-cells, and one 2-cell. Clearly, F can be isotopically deformed to id over the 0-skeleton

of Y . The obstruction for extending this isotopy to the 1-skeleton of Y is a well-defined

cohomology class c(F ) ∈ H1(X;Z2); the obstruction cochain c(F ) is the cochain whose

value on a 1-cell e equals 1 if F is twisted along e and 0 otherwise. It is evident that c(F )

is a cocycle.

By assumption c(F ) = 0. Consequently there is an extension of our isotopy to an

isotopy over a neighbourhood of the 1-skeleton of Y , but such an isotopy always can be

extended to the rest of Y . �

A short way of represent the issue algebraically is by means of the obstruction homo-

morphism

c : Kerτ → H1(X;Z2) (2.12)

defined in the lemma; any two elements F,G ∈ Kerτ are isotopic to each other through

Kerτ iff c(F ) = c(G).

Lemma 2.10. Let X be diffeomorphic to S2×Y , and let F ∈ Kerτ , then Y contains no

curve for F to be twisted along. This means that the obstruction homomorphism is the

null homomorphism.

Proof. The converse would imply that the mapping torus T (X,F ) is not spin, but

T (X, id)∼= S2×Y ×S1 is a spin 5-manifold. �

The following result is due to McDuff [McD-B], but a different proof follows by com-

bining Lemma 2.10 with Lemma 2.9.

Proposition 2.11. Let X be diffeomorphic to S2× Y 2, then the group D∩Diff0(X) is

connected.

In what follows we need a non-spin analogue of this Proposition for the case of elliptic

ruled surfaces.
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Proposition 2.12. Let X be diffeomorphic to S2×̃T 2, then the group D ∩Diff0(X) is

connected.

Proof. Fix any cocycle c ∈ H1(X;Z2) ∼= Z2 ⊕Z2, then we claim there exists F ∈

Kerτ such that c(F ) = c and, moreover, F is isotopic to id through diffeomorphisms in

D∩Diff0(X). It follows from Suwa’s model, see §2.2, that the automorphism group for the

complex ruled surface XA contains the complex torus T as a subgroup. By construction,

it is clear that T is a subgroup of D ∩Diff0(X). Besides that, the 2-torsion subgroup

T2
∼= Z2⊕Z2 of T is a subgroup of Kerτ . We trust the reader to check T2 is mapped

isomorphically by the obstruction homomorphism to H1(X;Z2).

The algebra behind this argument is expressed by a commutative diagram

T2
i−−−→ Kerτ

j−−−→ D∩Diff0(X)y y y
π0(T2)

i∗−−−→ π0(Kerτ)
j∗−−−→ π0(D∩Diff0(X)),

(2.13)

where i∗ is an isomorphism, j∗ ◦ i∗ is the null homomorphism, and therefore j∗ is the

null homomorphism as well. But we already know that j∗ is an isomorphism, and hence

π0(D∩Diff0(X)) is trivial. �

2.7. Finishing the proof. Here is the part where a proof of Theorem 0.2 comes. We

split it into a few pieces. Let X be the symplectic ruled 4-manifold (S2×̃T 2,ωµ), [ωµ] =

T+−µT−. Recall that the space J (X) was defined, see §2.4, to be the space of almost

complex structures on X that are tamed by some symplectic form. Here this definition is

somewhat modified; here we take the connected component of J (X) which contains the

space J (X,ωµ); the same applies to JA and J1−2k.

Lemma 2.13. JA ⊂ J (X,ωµ) for every µ ∈ (−1,1).

Proof. Given µ ∈ (−1,1), we first take some symplectic form ω taming J , and then

rescale it in order to get
∫
T+
ω = 1. Set η :=

∫
T−
ω.

i) If η > µ, we inflate ω along a smooth J-holomorphic curve of class B (such a curve

indeed exists because J ∈ JA), so we obtain a form ωt of the class [ωt] := [ω] + tB. It is

easy to check that
∫
T−
ωt = η− t and

∫
T+
ωt = 1 + t. We rescale ωt one more time to get

ω̂t := ωt

1+t
. We obtain

∫
T−
ω̂t = η−t

1+t
and

∫
T+
ω̂t = 1, which means one should inflate till

t= η−µ
µ+1

. �
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ii) If η < µ, we inflate ω along a J-sphere in class F to get
∫
T+

ωt

1+t
= 1 and

∫
T−

ωt

1+t
= η+t

1+t
,

and so we have to inflate till t= µ−η
1−µ .

Lemma 2.14. JA = J (X,ωµ) for every µ ∈ (−1,0].

Proof. It is clear that J (X,ωµ) does no contain the structures J1−2k for µ ∈ (−1,0],

and hence by (2.5) and Lemma 2.13 the proof follows. �

This means that there is no topology change for the space J (X,ωµ) when µ is being

varied in (−1,0]. In particular,

π1(J (X,ωµ)) = π1(JA(X)) for µ ∈ (−1,0].

Lemma 2.15. J1−2k ⊂ J (X,ωµ) iff µ ∈
(

1− 1

k
,1

)
.

Proof. If J ∈ J1−2k, then it admits a smooth J-holomorphic representative in class

T+− kF . Now the “only if” part is obvious. Indeed, if J is ω-tamed, then
∫
T+−kF ω =

1− k+ kµ > 0. The “if” can be proved by deflating along T+− kF and inflating along

F . �

Combining Lemma 2.13 with Lemma 2.15, as well as the fact that the higher codimension

submanifolds J2k−1, k > 2 do not affect the fundamental group of J (X,ωµ), we see that

there is no topology change in π1(J (X,ωµ)) when µ is being varied in (0,1), i.e. we have

π1(J (X,ωµ)) = π1(J (X)) for µ ∈ (0,1). (2.14)

To derive the symplectic mapping class group the expected way is to use the fundamental

diagram (0.9) which requires to know the image of the homomorphism

ν∗ : π1(Diff0(X))→ π1(J (X)). (2.15)

Lemma 2.16. ν∗ is an epimorphism.

Proof. Though the map ν : Diff0(X)→ J (X) is not fibration, it can be extended to a

homotopy fibration

Diff0(X)→J (X)→ Fol0(X), (2.16)

where the last arrow is a homotopy equivalence, see Theorem 2.8 and Proposition 2.7.

Thus we end up with the homotopy exact sequence

. . .→ π1(Diff0(X))→ π1(J (X))→ π0(D∩Diff0(X)). (2.17)
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If X is of genus 1, the group π0(D∩Diff0(X)) is trivial by Propositions 2.11 and 2.12. This

finishes the proof. �

The following corollary will not be used in the remainder of this thesis, but it is a very

natural application of Lemma 2.16.

Corollary 2.17. The space J (X) is homotopy simple. In other words, π1(J (X)) is

abelian and acts trivially on πn(J (X)).

Proof. The proof is straightforward from Lemma 2.16. �

By virtue of the fundamental diagram (0.9) and (2.14), Lemma 2.16 immediately implies

Proposition 2.18. π0(Symp∗(X,ωµ)) = 0 for every µ ∈ (0,1).

In order to compute the group π0(Symp∗(X,ωµ)) for µ ∈ (−1,0) it is necessary to know

better the fundamental group of JA. The space JA is the complement to (the closure of)

the codimension 2 divisor J−1 in the ambient space J (X). We denote by i the inclusion

i : JA(X)→J (X). (2.18)

By Lemma 2.16 every loop J(t) ∈ π1(JA) can be decomposed into a product J(t) =

J0(t) ·J1(t), where J0(t) ∈ Imν∗, and J1(t) ∈ Ker i∗.

Those loops which lie in Ker i∗ could contribute drastically to the symplectic mapping

class group via the corresponding elliptic twists. But this is what will not happen, because

the following holds.

Lemma 2.19. Ker i∗ ⊂ Imν∗. Here ν∗ is for ν∗ : π1(Diff0(X)) → π1(JA(X)). This

homomorphism is well defined, because the space JA is invariant w.r.t. to the natural

action of Diff0(X).

Proof. Choose some J∗ ∈ J−1, and let ∆ be a 2-disk which intersects J−1 transversally

at the single point J∗. Denote by J(t) the boundary of ∆. By Lemma 2.20 one simply

needs to show that the homotopy class of J(t) comes from the natural action of Diff0(X)

on JA, and the lemma will follow.

If J∗ is integrable, then one can choose ∆ such that J(t) is indeed an oribit of the

action of a certain loop in Diff0(X), see the description of the complex-analytic family

constructed in §2.3. Thus it remains to check that every structure J∗ ∈ J−1 can be
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deformed to be integrable through structures on J−1. This will be proved by Lemma 2.21

below. �

Lemma 2.20. Let x,y ∈ JA, and let H(t) ∈ JA, t ∈ [0,1] be a path joining them

such that H(0) = x, H(1) = y. If a loop J(t) ∈ π1(JA,y), t ∈ [0,1] lies in the im-

age of π1(Diff0(X), id) → π1(JA,y), then H−1 · J ·H ∈ π1(JA,x) lies in the image of

π1(Diff0(X), id)→ π1(JA,x).

Proof. Without loss of generality we assume that there exists a loop f(t) ∈ π1(Diff0, id)

such that J(t) = f∗(t)J(0). Let Hs be the piece of the path H that joins the points

H(0) = x and H(s). To prove the lemma it remains to consider the homotopy

J(s, t) :=H−1
s ·f∗(t)H(s) ·Hs, (2.19)

where J(1, t) =H−1 ·J ·H and J(0, t) = f∗(t)H(0). �

Lemma 2.21. Every connected component of J−1 contains at least one integrable struc-

ture.

Proof. Take a structure J ∈ J−1, and denote by C the corresponding smooth elliptic

curve in class [C] = T−. Let π : X → C be the ruling such that J ∈ J (X,π), see Theorem

2.8. Apart from the section given by C, we now choose one more smooth section C1 of π

such that C1 is disjoint from C; the section C1 need not be holomorphic, but be smooth.

We claim that there exists a unique C∗-action on X such that

(a) it is fiberwise, i.e. this diagram

X
·g−−−→ X

p

y yp
C −−−→

·g
C,

(2.20)

commute for each g ∈ C∗,

(b) it acts on the fibers of π by means of biholomorphisms, and

(c) it fixes both C and C1.

The complement X −C1 is a C-bundle with C being the zero-section; we keep the

notation π for the projection X−C1→ C. Evidently, this bundle inherits the C∗-action

described above. Let us consider the unitary subgroup U(1)-subgroup of C∗, then the

disk bundle π : X −C1 → C posesses a unique U(1)-invariant connection, which gives
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rise to a holomorphic structure (integrable complex structure) J1 on X−C1, see [Gr-Ha].

Note that this structure agrees with J on the fibers of π.

Further, there is a unique compactification of X−C1 by C1 such that J1 extends to this

compactification X with C1 being a holomorphic section, so (X,J1) is a complex ruled

surface with J1 ∈ J (X,π), and, moreover, J1 coincides with J when is restricted to the

bundle TX|C over C.

By Proposition 2.7 there is a symplectic form ω taming both structures J and J1. Given

a symplectic curve, say C, in X, and an almost complex structure, say J , defined along

C (i.e. on TX|C) and tamed by ω. There exists an ω-tamed almost complex structure

on X which extends the given one. Moreover, such an extension is homotopically unique.

In particular, one can always construct a family Jt joining J and J1 such that C is keep

being Jt-holomorphic, and the lemma is proved. �

Summarizing the results of Lemma 2.16 and Lemma 2.19 we obtain

Lemma 2.22. π1(Diff0(X))→ π1(J (X)) is epimorphic.

Again, it is implied by the fundamental diagram (0.9) that the following holds.

Proposition 2.23. π0(Symp∗(X,ωµ)) = 0 for every µ ∈ (−1,0].

Together with Proposition 2.18, this statement covers what is claimed in Theorem 0.2 .

Now let X be a symplectic ruled 4-manifold (S2×T 2,ωλ), [ωλ] = T +λS, λ ∈ (0,+∞).

Lemma 2.24 (cf. Lemma 2.13). JA ⊂ J (X,ωλ) for every λ ∈ (0,+∞).

Proof. The proof is straightforward once we observe that we can rescale a symplectic

form and inflate it along a curve in class T . I left the details to the reader with an easy

heart. �

For completeness of exposition, we now give without a proof an analogue of Lemma

2.15 for the spin case, though we do not need it for the sequel.

Lemma 2.25 (cf. Lemma 2.15). J−2k ⊂ J (X,ωλ) iff λ ∈ (k,+∞).

Going back to the proof of the theorem, we note that the isomorphisms π1(JA) →

π1(J (X,ωλ)) and π1(JA) → π1(J ) are induced respectively by the inclusions JA ⊂

J (X,ωλ) and JA ⊂ J . Both these isomorphisms are equivariant with respect to the
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natural action of Diff(X). Therefore, it follows from Lemma 2.16 that π1(Diff(X)) →

π1(JA) is epimorphic, and so is π1(Diff(X))→ π1(J (X,ωλ)). This finishes the proof for

the spin case.

2.8. Appendix: a note on Diff0(S2×̃T 2). As a byproduct of §2.2, one can prove the

following interesting (and simple) statement on the topology of the diffeomorphism group

of S2×̃T 2.

Proposition 2.26. Let X be diffeomorphic to S2×̃T 2. Take some point p ∈ X and

consider an evaluation map evp : Diff0(X)→X given by

evp : f → f(p).

Then evp∗ : π1(Diff0(X)) → π1(X) is a monomorphism with the cokernel isomorphic to

Z2⊕Z2.

Proof. It follows from Suwa’s model, see §2.2, that the group Diff0(X) contains a 2-torus

T such that the restriction of evp to T induces the monomorphism evp∗ : π1(T )→ π1(X)

with π1(X)/evp∗(π1(T )) ∼= Z2⊕Z2. In other words, evp∗(π1(T )) contains every element

that is divisible by 2. Thus, it remains to show that every element of the image of

evp∗ : π1(Diff0(X))→ π1(X) is even.

Suppose, contrary to our claim, that there is a family ht : I → C(X,X), h(0) = h(1) =

id, of continuous maps from X to X such that the loop α : I →X, α(t) := ht(p) gives rise

to an odd element of π1(X). Without loss of generality, we assume that [α] ∈ π1(X) is

prime.

Let β : I →X be a path with β(0) = β(1) = p such that [α], [β] generate π1(X).

Define a map H : S1×X →X to be H(t,x) := ht(x), t ∈ S1, x ∈X.

Let π : X → T 2 be a ruling, and let γ := π(β), q := π(p).

We now consider the restriction of H to S1×π−1(γ), and denote it by the same letter

H. Note that S1×π−1(γ) is diffeomorphic to S2×T 2. We claim that the induced map

H∗ : πk(S
1×π−1(γ))→ πk(X) is an isomorphism for every k > 0.

Indeed, it is evident that H∗ is isomorphic for k = 0.

To see H∗ is isomorphic for k = 1, we observe that the inclusion

i : S1×β→ S1×π−1(γ)
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induces an isomorphism of π1, and so does the composition H ◦ i; this is because H(S1×

p) = α, H(0×β) = β.

To see H∗ is isomorphic for k > 1, we observe that the inclusion

j : 0×π−1(q)→ S1×π−1(γ)

induces an isomorphism of πk, k > 1, and so does the composition H ◦ j; this is because

H maps the 2-sphere 0×π−1(q) homeomorphically onto π−1(q). By using the homotopy

exact sequence for the bundle π : X → T 2, the interested reader will be able to verify that

the inclusion π−1(q)→X leads to the isomorphisms πk(π−1(q))∼= πk(X), k > 1.

Then H : S2 × T 2 → S2×̃T 2 induces a weak homotopy equivalence, thus, by virtue

of Whitehead’s theorem, inducing a homotopy equivalence between S2×T 2 and S2×̃T 2.

These manifolds, however, are not homotopy equivalent, since they have non-isomorphic

cohomology rings. This contradiction finishes the proof. �

3. Exotic symplectomorphisms

Recall that it was conjectured by McDuff and Salamon that every symplectomorphism

of a geometrically ruled surface that is smoothly isotopic to the identity is isotopic to the

identity within the symplectomorphism group. Inspite of this conjecture, which is very

likely to be true, there are many 4-manifold for which forgetful homomorphism (0.1) is

not injective. For example, if Σ is a smooth Lagrangian sphere in X, then there exists a

symplectomorphism TΣ : X → X, called symplectic Dehn twist along Σ, such that T 2
Σ is

smoothly isotopic to the identity. However, the following theorem due to Seidel asserts

that T 2
Σ is not symplectically isotopic to the identity provided thatX is sufficiently generic,

see [Sei2].

Theorem 3.1 (Seidel). Let (X,ω) be a closed simply-connected minimal symplectic 4-

manifold that is neither rational nor ruled. Suppose that dimH2(X,Q)> 3; then for every

Lagrangian sphere Σ⊂X, the squared Dehn twist T 2
Σ is not symplectically isotopic to the

identity.

Moreover, it was shown by Evans [Ev] that it is possible for iterated and composed

Dehn twists to form a sophisticated and interesting symplectic mapping class group.
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Theorem 3.2 (Evans, [Ev]). Let X be a rational surface diffeomorphic to CP2 #5CP2.

Then there exists a symplectic form ω on X such that

π0Symp
∗(X,ω)∼= π0Diff

+(S2,5),

where Diff+(S2,5) is the group of orientation-preserving diffeomorphisms of S2 fixing 5

points.

This being said, a little is known about the existence of non-trivial symplectomor-

phisms (smoothly but not symplectically isotopic to the identity) for 4-manifolds. There

are plenty symplectic 4-manifolds which do not admit Lagrangian spheres, yet they are

believed to have non-trivial reduced symplectic mapping class groups.

In my joint work with Shevchishin [S-S] we introduced and studied a new class of

symplectomorphisms which we call elliptic twists. We showed that not only Lagrangian

(−2)-spheres but also symplectic (−1)-tori give rise to certain elements in symplectic

mapping class groups and we considered examples for which these new elements were

proved to be of infinite order.

Let (X,ω0) be a symplectic 4-manifold which contains a symplectically embedded torus

C ⊂ X of self-intersection number (−1). Assume C is oriented in such a way that∫
C
ω0 > 0. Then, by using Gompf’s symplectic sum, one can construct a new symplectic

form ω on X such that
∫
C
ω 6 0. In our joint paper with Shevchishin [S-S] we introduced

an ω-symplectomorphism EC : (X,ω)→ (X,ω) which we call the elliptic twist along C.

A careful reader might noticed that a symplectic S2×̃T 2 may contain a symplectic

(−1)-torus, and so may admit an elliptic twist for a suitable symplectic form. What

was shown in the previous subsection was the triviality of this elliptic twist. This was

an “unfortunate” example where an elliptic twist turns out to be symplectically trivial.

Surprisingly, this phenomemon seems to be exceptional and it disapperes after one blow-

up stabilization.

Theorem 3.3. Let Z be S2×̃T 2 #CP2, then there exist a symplectic form ω on Z and

three (−1)-tori C1,C2, and C3 in Z such that the elliptic twists ECi
are well-defined and

none of them is symplectically isotopic to the identity. Moreover, each symplectomorphism

ECi
has infinite order in the reduced symplectic mapping class group.
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Note that Z ∼= S2×̃T 2 #CP2 contains no Lagrangian spheres. This is due to homological

obstructions. Thus it is impossible in principle for ECi
to be decomposed into Dehn twists.

The rest of the section is devoted to prove this theorem.

The section uses the concepts and technical results developed in the previous section,

so it cannot be read independently.

3.1. Elliptic twists. We start with a symplectic 4-manifold (X,ω) which contains an

embedded symplectic torus C of self-intersection number (−1), [C]2 =−1.

We choose an appropriate ω-tamed almost-complex structure J∗ for which the torus C

is pseudoholomorphic. One can think of J∗ as a point of the subspace D[C] ⊂ J (X,ω)

of those almost-complex structures which admit a pseudoholomorphic curve in class [C].

In what follows, we refer to D[C] as the elliptic divisorial locus for the class [C]. The term

divisorial locus is taken from the fact that the subspace D[C] in some neighbourhood

of J∗ locally behaves as a submanifold of real codimension 2 of J (X,ω) provided the

J∗-holomorphic curve C is smooth, see e.g. [Iv-Sh-1].

Further, we shall say that an almost-complex structure J∗ satisfies the wall-crossing

property if

i) there exists a small 2-disc ∆⊂ J (X,ω) which intersects D[C] transversally at J∗,

ii) there exists a cohomology class ξ ∈ H2(X;R), such that
∫

[C]
ξ 6 0 and such that every

J ∈∆\{J∗} is tamed by some symplectic form θJ with the cohomology class [θJ ] = ξ.

One observes that all the forms θJ , J ∈ ∆\{J∗}, are deformation equivalent to each

other through symplectic forms of cohomology class ξ. With this understood, one applies

Moser’s theorem to show that the forms θJ , J ∈∆\{J∗}, are isotopic to each other.

Let us use the parameter t for the points on the boundary ∂∆ of the disc ∆ and J(t)

for the structure parameterized by t ∈ ∂∆. We thus have ψ(θJ(t)) = J(t), where ψ is

defined in (0.6). Set θ := θJ(0). Obviously, the space J (X,θ) does not contain J∗, as well

as no other points of D[C], but it does contain ∆\{J∗}. Therefore the loop J(t), which

is a boundary of the disc ∆, is locally non-contractible in J (X,θ) and potentially gives

certain element in π1(J(X,θ)) which does not lie in the image of the homomorphism ν∗

from the fundamental diagram (0.9).
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Therefore, the symplectomorphism EC := ∂(θJ(t)), which is well-defined up to symplec-

tic isotopy, may give a nontrivial element in π0(Symp∗(X,ω)). We call EC the elliptic

twist along C.

3.2. When do elliptic twists occur? In order to study elliptic twists, we better have

examples of 4-manifolds where the wall-crossing property can be easily verified. Here is a

series of such 4-manifolds.

Let X be a symplectic 4-manifold containing an embedded symplectic torus C of self-

intersection number 0, i.e. [C]2 = 0. Choose a tamed almost-complex structure for

which C is pseudoholomorphic, so C becomes a smooth elliptic curve. We then deform

this structure slightly to make it integrable in some tubular neighbourhood of C, and

assume that a sufficiently small neighbourhood of C has an elliptic fibering with C being

a multiple fiber of multiplicity m> 1.

Let g : ∆→ X be a holomorphic embedding of a small complex 2-disc ∆ into X such

that g(∆) intersects C transversally at a single point P . Choose a complex coordinate t

on ∆ such that g(0) = P . Consider the product ∆×X and the embedding h : ∆→∆×X

for which h(∆) is the diagonal of ∆×g(∆).

We now define a 3-fold Z to be the blow-up of ∆×X along h(∆). There is a natural

mapping Z→∆×X →∆, where the first arrow is the contraction map, while the second

one is the projection map. Because of this, our 3-fold Z forms a complex-analytic family

Zt, t ∈∆, of small deformations of Z0, where Z0 is X blown-up at the point P .

Let Et be the exceptional (−1)-curve in Zt, and let σt : Zt→X be a map that contracts

Et to a point Qt ∈ X, g(t) = Qt. We denote by E the homology class of the exceptional

lines Et, which is the same for each t ∈∆. Since C is a multiple fiber, there are no curves

in homology class [C] passing through Qt, provided t is nonzero. However, since C has

the multiplicity m, for each t 6= 0 there exists a unique elliptic curve in homology class

m[C] such that it does pass through Qt.

We thus claim that:

i) Z0 contains a unique smooth elliptic curve in homology class [C]−E, which is the

strict transform of the curve C in X, and
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ii) Zt, t 6= 0, contains no elliptic curves in homology class [C]−E. However, what Zt

contains is a smooth elliptic curve Cm in homology class m[C]−E, which is the strict

transform of a certain elliptic curve in X.

Now let D[C]−E be the elliptic divisorial locus for [C]−E. The manifold Z0 corresponds

to some point J0 ∈ D[C]−E, as well as the family Zt corresponds to some 2-disc Jt, t ∈∆,

which intersects D[C]−E transversally at the single point J0.

To see J0 satisfies the wall-crossing property it is needed to construct a family θt, t ∈

∆−J0, of cohomologous symplectic forms on Z such that Jt is θt-tamed and
∫

[C]−E θt 6 0.

We construct them as follows: let ω be some symplectic form on Z0 which is taming

the almost-complex structure J0. Clearly, the almost-complex structures Jt are ω-tamed

for |t| small enough. We have
∫

[C]
ω > 0, but

∫
[C]−E ω > 0, and so the form ω should be

changed.

Every Zt, t 6= 0, contains the smooth elliptic curve Cm, which is in class m[C]−E.

Thus the negative inflation technique can be used to deform ω to be a form θt such that∫
m[C]−E

θt = ε for ε > 0 arbitrary small.

Recall that the negative inflation deformation does not violate the taming condition for

Zt, and it is being performed in a small neighbourhood of the curve Cm, so it does not

affect the symplectic area of the curve C, see [Bu]. We thus have∫
[C]−E

θt = ε− (m−1)

∫
[C]

ω (3.1)

and hence if we take m sufficiently large, we can make the area of the class [C]−E as

negative as desired.

3.3. Rational (−1)-curves. Let (Z,ω) be a symplectic ruled 4-manifold diffeomorphic

to S2×̃Y 2#CP2. Here we study homology classes in H2(Z;Z) that can be represented by

a symplectically embedded (−1)-sphere. Given a symplectically embedded (−1)-sphere

A, it satisfies

[A]2 =−1, c1([A]) = 1. (3.2)

A simple computation shows that there are two homology classes satisfying (3.2), namely,

[A] =E and [A] = F −E.

The following lemma will be used in the sequel often without any specific reference.
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Lemma 3.4. Let (Z,ω) be a symplectic ruled 4-manifold diffeomorphic to S2×̃Y 2#CP2.

Then for every choice of ω-tamed almost-complex structure J , both the classes E and

F −E are represented by smooth rational J-holomorphic curves.

Proof. Given an arbitrary ω-tamed almost-complex structure J , the exceptional class

F −E is represented by either a smooth J-holomorphic curve or by a J-holomorphic

cusp-curve A of the form A=
∑
miAi where each Ai stands for a rational curve occuring

with the multiplicity mi > 1. Clearly, we have

0<

∫
Ai

ω <

∫
A

ω. (3.3)

Because c1(F −E) = 1, there exists at least one irreducible component of the curve A,

say A1, with c1([A1])> 1.

Note that spherical homology classes in H2(Z;Z) are generated by F and E. Hence,

we have [A1] = pF − qE, which particularly implies [A1]2 = −q2 6 0, with an equality iff

[A1] = pF . But the latter is prohibited by (3.3) because∫
F−E

ω > 0. (3.4)

Therefore, we have [A1]2 6 −1. Further, one may use the adjunction formula to obtain

that A1 is a smooth rational curve with [A1]2 = −1 and c1(A1) = 1. Note that it is not

possible for A1 to be in the class F −E because of (3.3). Hence, we have [A1] =E.

Take another irreducible component, say A2. If A2 does not intersect A1, then [A2] =

pF , which contradicts (3.3). Thus A2 intersects A1, positively. Hence, [A2] = pF − qE

for q positive. The same argument works for the other irreducible components A2,A3, . . .

of the curve A. But note that [A2] · [A3]< 0, and hence there are no other components of

A, except A1 and A2. We thus have m2[A2] = F − (m1 + 1)E for m1,m2 > 1. The class

F −(m1 +1)E is prime, and hence m2 = 1. Further, this class cannot be represented by a

rational curve, which can be easily checked using the adjunction formula. We thus proved

the lemma for the class F −E; the case of E is analogous. �

This lemma leads to the following generalization of Theorem 2.8 for ruled but not

geometrically ruled symplectic 4-manifolds.

Lemma 3.5. Let (Z,ω) be a symplectic ruled 4-manifold diffeomorphic to S2×̃Y 2#CP2,

and let J be an ω-tamed almost-complex structure. Then Z admits a singular ruling given

by a proper projection π : Z→ Y onto Y such that
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i) there is a singular value y∗ ∈ Y such that π is a spherical fiber bundle over Y − y∗,

and each fiber π−1(y), y ∈ Y −y∗, is a J-holomorphic smooth rational curve in class F ;

ii) the fiber π−1(y∗) consists of the two exceptional J-holomorphic smooth rational curves

in classes F −E and E.

Proof. By Lemma 3.4 our manifold Z contains a unique smooth J-holomorphic rational

curve E representing the class E, and a unique smooth J-holomorphic rational curve E ′

representing the class F −E.

Denote by S the union of the curves E and E ′. To prove the lemma it suffices to

check that the complement Z − S to the singular curve S in Z is fibered by smooth

J-holomorphic rational curves of class F .

Choose any point P ∈ Z−S. Take a C0-small perturbation J̃ of J which is integrable

a small neighbourhood U(S) of the curve S and such that S remains J̃-holomorphic; the

structures J and J̃ coincide away from U(S), and the neighbourhood U(S) can be chosen

small enough to not contain the point P .

Let X be the blow-down of E from Z. To finish the proof we check that X contains

a unique smooth pseudoholomorphic curve in class F that pass through P . But that is

what Theorem 2.8 states. �

3.4. Straight structures. Let Z ∼= S2×̃T 2#CP2 be a complex ruled surface, and let E

be a smooth rational (−1)-curve in E ∈ H2(Z;Z). The blow-down of E from Z, which is

a non-spin geometrically ruled genus one surface, will be denoted by X. The surface Z is

said to be an affine surface if X is biholomorphic to the surface XA, see subsection 2.2.

Let p ∈ X be the image of E under the contraction map. Recall that XA contains

the triple of bisections, which are smooth elliptic curves in class B ∈ H2(X;Z). The

surface Z is called straight affine surface if there is no bisection passing through p in X.

In other words, a straight affine surface contains a triple of smooth curves in homology

class B, while a non-straight affine surface contains a smooth elliptic (−1)-curve in class

B −E ∈ H2(Z;Z). We remark that it follows from Theorem 2.3 that straight affine

surfaces can be characterized as those for which there exists a smooth elliptic (−1)-curve

in homology class 2B−E ∈ H2(Z;Z).

Let π be the ruling of X, and let S be the fiber of π that pass through p. When Z

is affine, there are three bisection Bi ⊂ X, each of which intersects S at precisely two
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distinct points. The following result was established in subsection 2.2, when Suwa’s model

for XA was described.

Lemma 3.6. There exists a complex coordinate s on S such that the intersection points

Bi∩S are as follows:

B1∩S = {0,∞} , B2∩S = {−1,1} , B3∩S = {−i, i} . (3.5)

We then claim

Lemma 3.7. There exists a complex-analytic family Zs of affine surfaces depending on a

parameter s ranging over CP1 such that for s equals one of these exceptional values

{0,∞} , {−1,1} , {−i, i} ,

the surface Zs is not a straight affine surface, while for other parameter values, Zs is

straight affine.

Proof. Let X be a ruled surface of the XA complex type. Choose any fiber F of the

ruling of X. Now consider the complex submanifold F×CP1 ⊂X×CP1, and denote by S

the diagonal in F ×CP1. We construct Z as the blow-up of X×CP1 along S. The 3-fold

Z forms the complex-analytic family Z→ S that was claimed to exist in the lemma. �

The notion of the straight affine complex structure can be generalized to almost-complex

geometry as follows. Choose a tamed almost-complex structure J ∈ J (Z). We will

call J straight affine, or simply straight, if each J-holomorphic representative in class

B ∈ H2(Z;Z) is smooth. Clearly, the space of straight structures Jst(Z) is an open dense

submanifold in J (Z). Instead of J (Z) or Jst(Z) we write J and Jst for short. This

definition of the straightness is motivated by the following lemma the proof of which is

left to the reader because it is similar to the proof of Proposition 2.5, (but the modified

version of Theorem 2.8 given by Lemma 3.5 should be used).

Lemma 3.8. Let (Z,ω) be a symplectic ruled 4-manifold diffeomorphic to S2×̃T 2#CP2,

and let J be an ω-tamed almost-complex structure. Then every J-holomorphic represen-

tative in class B is either irreducible smooth or contains a smooth component in one of

the classes T+−kF , B−E.
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Similarly to Proposition 2.5 this lemma leads to a natural stratification of the space J

of tamed almost-complex structures. Namely, this space can be presented as the disjoint

union

J = Jst +DT− +DB−E + . . . ,

where DT− and DB−E, which are submanifolds of real codimension 2 in J , are the elliptic

divisorial locuss for respectively the classes T− andB−E; we denoted by “+” the disjoint

union. Here we omitted the terms of real codimension greater than 2, because they do

not affect the fundamental group of J .

Coming to the symplectic side of straightness, we claim that if a symplectic form ω on

Z satisfies both these two period conditions∫
T−

ω < 0,

∫
B−E

ω < 0, (3.6)

then J (Z,ω)⊂ Jst. Moreover, a somewhat inverse statement holds, at least for integrable

structures.

Lemma 3.9. Every complex straight affine surface Z has a symplectic form which tames

the given complex structure on Z and satisfies the period conditions. Moreover, given

a compact connected family Zt (for example, a path) of straight affine structures, the

cohomology class of a symplectic form can be chosen to be the same for each complex

structure from the family.

Proof. We first check that a complex straight affine surface Z has a taming symplectic

form θ such that θ satisfies the period conditions.

If Z is affine then it is the surface XA ∼= S2×̃T 2 blown-up once. Since XA admits a

symplectic structure which satisfies the first period condition, then so does Z. Further,

the second period condition can be achieved by means of deflation along a smooth elliptic

curve in class 2B−E; such a curve indeed exists thanks to the straightness of Z.

Let K be the parameter space for our family Zt, t ∈K, and let I ⊂K, I = {t1, t2, . . .}

be a countable dense subset of K.

We proved that there exists a set of symplectic forms θI parametrized by I, so that θti ,

ti ∈ I tames the corresponding Zti and satisfies the period conditions.

Let Uti ∈K be a sufficiently small neighbourhood of ti such that for each t ∈ Uti

θti tames the complex structure in Zt.
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Clearly, the set Uti , ti ∈ I forms an open cover of K. Since K is compact, one take a finite

subcover Uti , ti ∈ I ′.

The forms θI′ are not necessarily cohomologous because they may have different inte-

grals on the homology class E. Set εti :=
∫
E
θti , ti ∈ I ′, and ε := minεti . We now deflate

(Zti , θti) along the homology class E to get
∫
E
θti = ε. Thank to this deflation the forms

θI′ become cohomologous and still do satisfy the period conditions.

Finally, set θ̂(t) :=
∑

I′ ρti(t)θti , where the functions ρti = ρti(t) is a partition of unity

for the finite open cover Uti , ti ∈ I ′ of K. What remains is to verify that Zt is tamed by

θ̂(t) for every t ∈K. Pick some t∗ ∈K, then there are but finitely many charts Ut1 , . . . ,Utp
that contains the point t∗ ∈K. That is why θ̂(t∗) = ρt1(t

∗)θt1 + . . .+ρtp(t∗)θtp . Since each

of θt1 , . . . , θtp tames Zt∗ , then so does θ̂(t∗). �

3.5. Refined Gromov invariants. In this subsection, we work with an almost-complex

manifold (Z,J) equipped with a straight structure J ∈ Jst, i.e. every J-holomorphic

curve of class B ∈ H2(Z;Z) in Z is smooth. We also note that such a curve is not

multiply-covered, because the homology class B is prime. The universal moduli space

M(B;Jst) of embedded non-parametrized pseudoholomorphic curves of class B is a

smooth manifold, and the natural projection pr : M(B;Jst) → Jst is a Fredholm map,

see [Iv-Sh-1, McD-Sa-3]. Given a generic J ∈ Jst, the preimage pr−1(J) is canonically

oriented zero-dimensional manifold, see [Tb] where it is explained how this orientation is

chosen. Further, the oriented bordism class of pr−1(J) does not depends on any particular

choice of J ∈ Jst. Therefore the degree of pr can be defined to be equal to Gr(B).

It is stated by Corollary 2.4 that Gr(B) = 3, and hence Z contains not one but sev-

eral curves in class B. Once we restricted almost-complex structures to those with the

straightness property, the following modification of Gromov invariants can be proposed:

given the image G of a certain homomorphism Z2→ H1(X;Z), instead of counting pseu-

doholomorphic curves C such that [C] = B, we will count curves C such that [C] = B

and the embedding i : C ↪→ X satisfies Im i = G. The definitions of Gromov invariants

Gr(B,G), moduli spaceM(B,G;Jst), and so forth are completely analogous to those in

“usual” Gromov’s theory.

Suppose J is an integrable straight affine structure, then the complex surface (Z,J)

contains precisely 3 smooth elliptic curves C1, C2, and C3 in homology class B. We

denote by Gk the subgroup of H1(X;Z) generated by cycles on Ck; these subgroups Gk
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are pairwise distinct, as it can be deduced, for example, from Suwa’s model of XA, see

subsection 2.2.

It is clear now that the spaceM(B;Jst) is disconnected and can be presented as the

union

M(B;Jst) =
3⊔

k=1

M(B,Gk;Jst). (3.7)

We define the moduli space of bisections to be the fiber product

M3B = {(m1,m2,m3) | mk ∈M(B,Gk;Jst), pr(m1) = pr(m2) = pr(m3))} .

Similarly toM(B;Jst), the moduli spaceM3B is a smooth manifold equipped with the

projection pr :M3B → Jst, which is a smooth map of degree one. We close this section

by stating an obvious property of the projection map that we shall use in the sequel.

Lemma 3.10. The projection map pr :M3B→Jst is a diffeomorphism, when is restricted

to integrable straight affine complex structures.

3.6. A cocycle on M3B. The map ν : Diff0(Z)→Jst defined by

Diff0(Z)
ν−→J (Z,ω) : f → f∗J, (3.8)

can be naturally lifted to a map Diff0(Z)→M3B. Indeed, take a point m ∈M3B, which

is a quadruple [J,B1,B2,B3](m) consisting of an almost-complex structure J(m) ∈ Jst on

Z and of the triple of smooth J(m)-holomorphic elliptic curves B1(m), B2(m), and B3(m)

in Z. Then one can define

Diff0(Z)
ν−→M3B : f → [f∗J,f(B1),f(B2),f(B3)]. (3.9)

Here we construct a cocycle Λ ∈ H1(M3B;Q2) such that this homomorphism

π1(Diff0(Z))
ν∗−→ π1(M3B)

Λ−→Q2 (3.10)

is the null-homomorphism.

To start we consider the tautological bundle Z ∼=M3B×Z overM3B whose fiber over

a point m ∈M3B is the almost-complex manifold (Z,J(m)).

It was claimed in Lemma 3.4 that every almost-complex manifold (Z,J(m)) contains a

unique smooth rational (−1)-curve S(m) in class F −E. Thus one can associate to Z an

auxiliary bundle S whose fiber over m ∈M3B is the rational curve S(m).



45

Note that each Bi(m) intersects S(m) at precisely 2 distinct points denoted by Pi,1 and

Pi,2. Hence we can mark out 3 distinct pairs of points (Pi,1,Pi,2), i = 1,2,3 on each fiber

S(m) of S.

Besides that, every (Z,J(m)) contains a unique smooth rational curve E(m) in class

E. The curve E(m) intersects S(m) at precisely one point, say Q(m). This point Q does

not coincide with any of the point Pi,1,Pi,2, because J(m) is assumed to be a straight one.

Therefore S can be considered as a fiber bundle over M3B whose fiber is the rational

curve S(m) with 7 distinct marked points, partially ordered in such a way that the first

six points form the three ordered pairs, points inside every pair are not ordered, and the

last point is of number seven.

One more fiber bundle, or better to say, a covering, we work with is the bundle N

whose fiber over m ∈ M3B consists of the six points Pi,1(m),Pi,2(m), i = 1,2,3, so N is

a covering space of the covering group G := Z2⊕Z2⊕Z2. This covering is not necessary

trivial, i.e. it is possible for N to have a monodromy along certain loop inM3B.

Let p : M̃3B →M3B be the Galois covering, so the pullback p∗N has no monodromy.

Then the bundle S̃ := p∗S can be considered as a fiber bundle over M̃3B whose fiber over

m ∈ M̃3B is the rational curve S(m) with 7 marked points, distinct and ordered.

Denote by S̊ the punctured projective line CP1−{0,1, i}. We now construct a map

λ : M̃3B → S̊ as follows: choose m ∈ M̃3B, and consider the corresponding fiber S(m) of

the bundle S̃. Let Pi,1,Pi,2, andQ be the corresponding marked points on S(m); then there

is a unique complex coordinate s on S(m) such that s(P1,1) = 0, s(P2,1) = 1, s(P3,1) = i.

We set λ(m) := s(Q).

The following obvious property of λ will be used soon.

Lemma 3.11. The map λ is invariant w.r.t. to the natural action of Diff0 on M̃3B.

Now choose a basis for H1(S̊;Q) ∼= Q2 consisting of two small loops going respectively

around the points s= 0 and s= 1. One can think of the induced map λ∗ : H1(M̃3B;Q)→

H1(S̊;Q) as a Q2-valued 1-cocycle on M̃3B.

In order to get an element in H1(M3B;Q2) we average the cocycle Λ ∈ H1(M̃3B;Q2) over

the action of G on M̃3B. We keep the notation Λ for this new element in H1(M3B;Q2);

the statement below follows from Lemma 3.11

Corollary 3.12. Imν∗ ⊂ KerΛ.
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3.7. Loops in Jst. Here the group π1(Jst) will be proved to contain infinite order el-

ements; the elements to be presented will not lie in the image of the homomorphism

ν∗ : π1(Diff0(Z))→ π1(Jst).

The first ingredient we use is the complex-analytic family Zs, s ∈ S, where S ∼= CP1,

given by Lemma 3.7. The surface Zs satisfies the straightness property for all but finitely

many s ∈ S, see subsection 3.4; there are these six exceptional values

{0,∞} , {−1,1} , {−i, i} ,

for which the corresponding surface Zs violates the mentioned property. These exceptional

surfaces, which are affine but not straight affine, are of interest for us because they contain

a smooth elliptic curve of class B−E, and hence they will correspond to the points of

the elliptic divisorial locus DB−E.

Choose a closed path s(t) ∈ S avoiding the exceptional values. Since S ∼= CP1 is

simply-connected, there exists a disc ∆ which bounds s(t); note that, in general, such a

disc cannot be mapped into S in such way to avoid the exceptional points.

Since ∆ is the disc, the family Zs is smoothly trivial when is restricted to ∆. Once a

trivialization for, say Zs(0), is chosen, one can map ∆ into the space Jst by extending the

trivialization for Zs(0) to the trivialization for the family Zs over ∆; note that such an

extension is not unique, though all possible extensions are homotopic to each other. We

also note that if the mapping of ∆ into S was chosen to be transversal to the exceptional

values of s, then the constructed mapping of ∆ into Jst would be transversal to the elliptic

divisorial locus DB−E. Denote by J(t) the loop in Jst which bounds ∆.

Recall that there is a smooth map pr :M3B→Jst of degree 1, see subsection 3.5. Since

J(t) consists of integrable structures, the preimage m(t) := pr−1(J(t)) is a loop inM3B,

see Lemma 3.10. The key property we need is:

Lemma 3.13. If a loop J(t) is homotopic to zero in Jst, then m(t) is homologous to zero

inM3B. In particular, we have Λ(m(t)) = 0.

Proof. Let ∆ be a disc which bounds J(t). By Theorem 1.5 we can arrange that ∆ is

transverse to pr, and the preimage pr−1(J(t)) is a smooth orientable surface that bounds

m(t). �

This lemma together with Corollary 3.12 imply
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Lemma 3.14. If J(t) ∈ Imν∗, then Λ(m(t)) = 0.

Now set s(t) = εeit, where ε > 0 small enough, and consider the corresponding loops

J(t) ∈ Jst and m(t) ∈M3B. To compute Λ(m(t)) we note that m̃(t) := p−1(m(t)) ∈ M̃3B

consists of eight distinct closed curves; one of them is

(P1,1(t),P1,2(t), P2,1(t),P2,2(t), P3,1(t),P3,2(t), Q(t)) = (0,∞, 1,−1, i,−i, εeit).

with respect to some trivialization of the bundle S.

We divide these curves into two groups:

m̃1,k(t) = (0,∞, . . . , εeit), m̃2,k(t) = (∞,0, . . . , εeit), k = 1, . . . ,4.

For each k we have that λ ◦ m̃1,k(t) ∈ S̊ is a small simple closed path going around the

point z = 0, while λ ◦ m̃2,k(t) ∈ S̊ is a small path around z = ∞. For the homology

class [λ ◦m1,k] ∈ H1(S̊;Q) we have [λ ◦m1,k] = (1,0) with respect to the chosen basis for

H1(S̊;Q), while [λ◦m2,k] ∈ H1(S̊;Q) clearly vanishes. It follows that

Λ(m(t)) 6= 0.

If s(t) was given by

s(t) = 1 + εeit or s(t) = i+ εeit,

then a similar argument would work to prove that Λ(m(t)) 6= 0.

3.8. Let’s twist again. Here we outline the proof of Theorem 3.3, referring the reader

to the previous subsections for details.

We start with a symplectic 4-manifold Z diffeomorphic to S2×̃Y 2#CP2 for which the

symplectic mapping class group mapping class group will be proved to contain elliptic

twists.

Let X be a complex surface biholomorphic to XA, see subsection 2.2. By Theorem 2.3

we know that X contains a triple of smooth elliptic curves C1,C2, and C3 in homology

class B ∈ H2(X;Z), which are bisections of the corresponding ruling. Therefore, the

procedure given in subsection 3.2 can be applied to prove the existence of elliptic twist

for X#CP2.

In subsection 3.7 the corresponding three loops, say JC1 ,JC2 , and JC3 , are constructed

as loops contained in the space Jst of the straight almost-complex structures. We then

prove these loops do not lie in the image of ν∗ : π1(Diff0(Z)) → π1(Jst), see subsection

3.7. Because these loops consist of integrable structures, it follows from Lemma 3.9 there
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exists a symplectic form, say θ, such that JCi
∈ J (Z,θ) and the inclusion J (Z,θ) ⊂ Jst

holds.

Since the inclusion J (Z,θ) ⊂ Jst is equivariant w.r.t. to the natural action of Diff0(Z)

on these spaces, it follows that JCi
do not lie in the image of ν∗ : π1(Diff0(Z))→J (Z,θ).

Therefore the elements ψ(JCi
) are not in the kernel of ∂ : π1(J (Z,θ))→ π0(Symp∗(Z,θ))

and the theorem follows.

4. Spin Lorentzian cobordisms

This section studies necessary and sufficient conditions for the existence of cobordisms

between closed smooth manifolds of arbitrary dimensions such that the structure group

of the cobordism is Spin(1,n)0, where the subscript indicates the connected component

of the identity. The reader is invited to look at Milnor’s book on characteristic classes

[Mil-St] for basics on cobordisms. The results of this section have appeared in my recent

joint work with Torres [S-T].

4.1. Preliminaries. A cobordism is a triple (M ;N1,N2) that consists of a smooth com-

pact (n+ 1)-manifold M with non-empty boundary ∂M = N1 tN2, where N1 and N2

are smooth closed n-manifolds. The cobordism relation splits manifolds into equivalence

classes, which are called cobordism classes. The cobordism class of a manifold N is usually

denoted by [N ]. The set of cobordism classes of n-manifolds ΩO
n is an abelian group with

respect to the disjoint union operation [N1] + [N2] = [N1]t [N2]. The zero of the group is

simply the class of an empty manifold. We also have ∂(N × I) = N tN , which implies

that every element of the group is of order 2. The group ΩO
n is called the nth unoriented

(co)bordism group.

Cobordism relation can be extended to manifolds equipped with some additional struc-

tures, which leads to new important groups for the manifolds theory; the most known of

them are:

i) Oriented cobordism group ΩSO
n . Here we say that two oriented closed n-manifolds N1

and N2 are cobordant if there is an oriented (n+1)-manifoldM with non-empty boundary

∂M = N1tN2, where N2 is for N2 with the orientation reversed. Hence, [N ] = −[N ] in

ΩSO
n . The group ΩSO

n is much more interesting than ΩO
n simply because elements of ΩSO

n

generally do not have order 2, i.e. [N ] 6= [N ].
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ii) Spin cobordism group ΩSpin
n . Let ξ be an oriented real rank n vector bundle over

a manifold M . The bundle ξ has a spin structure if it admits a trivialization over the

1-skeleton of M that extends over the 2-skeleton. A spin structure is a homotopy class

of such trivialization. Denote by spinξ the set of all spin structures of ξ. It is known

that the group H1(M ;Z2) acts transitively and, if rankξ > 1, freely on the spinξ, see e.g.

[Law-Mich, Sc].

If ε is a trivial line bundle over M , then there is a natural mapping

spinξ→ spinξ⊕ ε (4.1)

given by sending a trivialization x1, . . . ,xn to x1, . . . ,xn,v, where v is a non-vanishing

section of ε that agrees with the given orientation of ε; note that v is unique up to

homotopy. It is known that (4.1) is equivariant with respect to the action of H1(M ;Z2)

and hence it is one-to-one.

A spin manifold will mean a manifoldM , together with a spin structure on the tangent

bundle TM . We denote by spinM the set of such spin structures. If M is a manifold

with boundary, then every spin structure onM can be restricted to N∂M . Indeed, if TM

is spin, then so is TM |∂M . By using an outward-pointing trivialization we decompose

TM |∂M = T∂M ⊕N∂M/M , where T∂M is the tangent bundle of ∂M , and N∂M/M is the

normal bundle of ∂M inside M ; the latter bundle is a trivial line bundle. Therefore one

can map

spinM → spin∂M.

by applying (4.1).

However, it is not true that a spin structure on ∂M can be extended to be a spin

structure on the whole M . This gives rise to a new cobordism relation. We say that two

oriented spin closed n-manifolds N1 and N2 are cobordant if there exists a spin manifold

M such that ∂M =N1tN2 and the spin structure M agrees with the given structures on

N1 and N2. This new requirement is somewhat restrictive; for instance, ΩSO
0 = ΩSpin

0 = 1,

while ΩSO
1 = 1 and ΩSpin

1 = Z2.

iii) Complex cobordism group ΩU
n . A naive approach to define the cobordism relation

between complex manifolds fails because the manifold-membrane M is odd-dimensional

and hence is not complex. That is why the notion of a complex structure will be weaken, a

stably almost-complex structure on a manifoldM will be defined to be an almost-complex
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structure on TM ⊕ εk. The notion of complex cobordisms can now be easily defined for

stably complex manifolds. We will not go into the details here.

The cobordism theory was one of the most significant and central part of topology in

the twentieth century; many mathematical works should be mentioned here, e.g. [And,

Buch, N1, N2, Q, W1] and the references therein.

4.2. Problem statement. Following [Cham] and [Rein], we define Lorentzian and spin

Lorentzian cobordisms as follows. Define a Lorentzian cobordism between closed smooth

n-manifolds N1 and N2 to be a quadruple ((M ;N1,N2),g) that consists of i) a cobordism

(M ;N1,N2), ii) a nonsingular Lorentzian metric (M,g) with a timelike non-vanishing

vector field v; this can be expressed by saying that M is time-orientable, and iii) we want

the boundary ∂M =N1tN2 to be spacelike, i.e. (N1,g|N1) and (N2,g|N2) are Riemannian

manifolds, where g|Ni
is for the restriction of g to Ni. Clearly, having a non-vanishing

vector field v such that v is interior normal on N1 and exterior normal on N2 is necessary

for being Lorentzian cobordant. It turns out that this condition is also sufficient, see

[Yod-1]. In the presence of such non-vanishing vector v, one defines a Lorentzian metric

by

g(ξ,η) := gR(ξ,η)− 2gR(ξ,v)gR(η,v)

gR(v,v)
, (4.2)

where (M,gR) is some Riemannian metric. It is easy to see that v is timelike with respect

to the given Lorentzian metric. Further, one can use the hypothesis of transversality of v

at the boundary to show this boundary is Riemannian, see [Yod-1].

The tangent bundle TM of an orientable and time-orientable spacetime M splits as

follows

TM ∼= ξ⊕ ε,

where ε⊂ TM is a trivial line subbundle spanned by v and ξ ∼= TM/ε. It is evident that

ξ|∂M ∼= T∂M ,

where T∂M is the tangent bundle to ∂M . Therefore if ξ has a spin structure, then so does

T∂M . If ξ has a spin structure we shall say that M admits a Spin(1;n)0-structure. Given

this definition of Spin(1;n)0-structure, it is easy to see that a Spin(1;n)0-structure on

an orientable and time-orientable n-manifold M induces a canonical spin structure on its

boundary. This gives rise to a somewhat new cobordism relation.
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A Spin(1;n)0-Lorentzian cobordism, or, simply, a spin Lorentzian cobordism between

two spin manifolds N1 and N2 is a Lorentzian cobordism ((M ;N1;N2);g) such that TM/ε

admits a spin structure this structure agrees with the given spin structures on N1 and N2.

It is easy to conclude from what we discussed here that the following holds

Proposition 4.1. Closed spin manifolds N1 and N2 are spin Lorentzian cobordant iff

they are spin cobordant and Lorentzian cobordant.

The problems to be considered in this section are the classification problem for n-

manifolds up to Spin(1,n)0-Lorentizan cobordism and the computation problem for the

corresponding cobordism groups. The classification problem was studied by several physi-

cists and mathematicians, see e.g. [G-H-1, G-H-2, Rein, Sor, Yod-1, Yod-2]. However,

it seems there is no complete solution to this problem achieved so far. The purpose of

this note is to give a more or less satisfatory criterion for two spin manifolds to be spin

Lorentzian cobordant.

Theorem 4.2. Let N1 and N2 be closed spin n-manifolds. They are Spin(1,n)0-Lorentizan

cobordant iff they are spin cobordant and

i) nmod2 = 0, χ(N1) = χ(N2);

ii) nmod8 = 7, nothing else is required;

iii) nmod8 = 1,3,5, u(N1) = u(N2), where by u(N) we denote the Kervaire semichar-

acterisitc of a manifold N

u(N) =

(n−1)/2∑
i=0

βi(N)mod2,

where βi(N) is the ith Betti number of N .

Corollary 4.3. There exists a spin manifold M with boundary ∂M = Sn equipped with a

non-vanishing vector field transversal to the boundary iff nmod8 = 7.

It is important to emphasize that the question whether or not two spin manifolds are

spin bordant is solved, see [And] for a complete answer.

The case n even is due to Sorkin [Sor] and Reinhart [Rein], while the case n odd was

partially treated by Gibbons and Hawking [G-H-1] for 3-manifolds, but, as we shall see,

their approach perfectly works for other dimensions. The proof of Theorem 4.2 is given

in the following section.
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4.3. Classification. Here the coefficient group for homology cycles is assumed to be Z2.

We refer the reader to [St, Pr] for Steenrod’s squares discussion. See [Mil-St] on Wu’s

classes.

Let (M ;N1,N2) be a spin cobordism between N1 and N2, and we set n := dimNi. The

following cases will be considered separately.

i) n= 2k. It was observed by Sorkin [Sor], see also [Rein], that a cobordism (M ;N1,N2)

is Lorentzian iff χ(N1) = χ(N2).

ii) n = 8k+ 7. Again, it was shown in [Rein, Sor] that (M ;N1,N2) is Lorentzian iff

χ(M) = 0. We now want to modify (M ;N1,N2) to make χ(M) = 0 but keep M spin.

To this end, we simply go from M to M#HP2k+2#kTn+1 to increase χ(M) by 1

and to M#HP2k+2#(k+ 1)Tn+1 to decrease χ(M) by 1. Note that HP2k+2 is spin and

χ(HP2k+2) = 2k+ 3. To justify these changes of the Euler characteristic we recall that

the Euler characteristic of a connected sum of (n+ 1)-manifolds M1 and M2 is given

by χ(M1#M2) = χ(M1) +χ(M2)−χ(Sn+1). Note also that the connected sum of spin

manifolds inherits a spin structure from the summands.

iii) n= 8k+ 1,8k+ 3,8k+ 5. We first prove a few lemmas.

Lemma 4.4. Let M be a closed spin 2m-manifold, mmod4 6= 0. Then the cup product

pairing ∪ : Hm(M)⊗Hm(M)→ H2m(M) is skew-symmetric.

Proof. Let us consider the map Hm(M)→ H2m(M) : x→ x2. If we work with Z2 as coef-

ficient group, then this map is linear. Since the cup product Hm(M)⊗Hm(M)→ H2m(M)

is non-degenerate for M closed, it follows that there exists a unique “characteristic” class

vm ∈Hm(M) such that x2 = x∪v. This class is called the mth Wu class. It was shown by

Hopkins and Singer [Hop-Sin] that vm = 0 if mmod4 6= 0 for M spin. Hence x2 = 0. �

Lemma 4.5. Let M be a closed spin 2m-manifold with boundary, mmod4 6= 0. Then the

cup product pairing ∪ : Hm(M,∂M)⊗Hm(M,∂M)→ H2m(M,∂M) is skew-symmetric.

Proof. Let us denote ∂M by A. Again, we need to prove that x2 = 0 for every x ∈

Hm(M,A). It is known, see e.g. [Ker], that the pairing Hm(X,A)⊗Hm(X)→ H2m(X,A)

is completely orthogonal . A pairing is completely orthogonal means that either of the first

two groups involved is isomorphic to the group of all homomorphisms of the other into
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the third. Thus one can conclude that there exists a unique class sm ∈ Hm(M) such that

x2 = x∪ s for every x ∈ Hm(M,A).

Let P be the manifold obtained by matching together two copies of M along the copies

of A, and let i : M → P be the natural inclusion. It was proved by Kervaire [Ker] that

sm = i∗vm, (4.3)

where vm is the mth Wu class of P . The manifold P is spin, provided M is spin. By

Lemma 4.4 vm = 0 and hence sm = 0. �

The following lemma was proved by Gibbons and Hawking [G-H-1] for m = 2, and by

Geiges [Gei] for m= 3. Note that the proof of Geiges works not only form spin 6-manifold

M but also for an arbitrary 6-manifold with boundary. The proof for the general case

is essentially the same as for m = 2,3, but it is given below for completeness of the

exposition.

Lemma 4.6. Let M be a closed spin 2m-manifold with boundary, mmod4 6= 0. Then

χ(M) +u(∂M) = 0mod2.

Proof. Let us denote ∂M by A. Now consider the pair exact sequence

0→ H0(M,A)→ H0(M)→ H0(A)→ . . .→ Hm(M,A)→ Hm(M)→ . . . , (4.4)

and define W to be the image of H2(M,A) → H2(M) under the last homomorphism, so

we have

0→ H0(M,A)→ H0(M)→ H0(A)→ . . .→ Hm(M,A)→W → 0. (4.5)

Because of exactness, the alternating sum of the dimensions of these vector spaces over

Z2 must vanish.
m∑
i=0

dimHi(M,A) +
m−1∑
i=0

dimHi(M) +
m−1∑
i=0

dimHi(A) +dimW = 0. (4.6)

A more careful computation, taking in account the Poincaré duality isomorphism Hi(M)∼=
H2m−i(M,A), will tell

χ(M) +u(A) +dimW = 0. (4.7)

Since the pairing Hm(X,A)⊗Hm(X)→ H2m(X,A) is completely orthogonal, it follows

that the restriction of Hm(X,A)⊗Hm(X,A) → H2m(X,A) to W is non-degenerate. By

Lemma 4.5 the latter form is skew-symmetric. Hence the dimension of W is even. This

finishes the proof. �
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We now go back to prove part iii) of the theorem. The “only if” part follows from Lemma

4.6. Assume that N is a spin Lorentzian boundary, ∂M = N . Since N is a Lorentzian

boundary, it follows that χ(M) = 0. Then apply Lemma 4.6 to conclude u(N) = 0.

To prove the “if” we observe that χ(M) is even, provided u(N1) +u(N2) = 0. In order

to make χ(M) be equal to zero, we modify M to

i) M#pTn+1#q(S2×HP2k) for n= 8k+ 1;

ii) M#pTn+1#q(S2×S2×HP2k) for n= 8k+ 3;

iii) M#pTn+1#q(S2×HP2k+1) for n= 8k+ 5.

The exceptional case n= 1 is left to the reader.

4.4. The group structure. The set Ln of Spin(1,n)0-Lorentizan cobordism classes of

manifolds is an abelian group w.r.t. to the disjoint union operation. This was mentioned

but not proved in the introduction.

Proposition 4.7. Ln is an abelian group.

Proof. It is clear that Ln is an abelian semigroup, so the only nontrivial thing to check

is the invertibility property. Let N be a spin closed n-maniolfd. Then there exists a spin

structure on N such that [N ] + [N ] = 0 in ΩSpin
n . We claim that there exists an integer p

such that [N ] + [N ] +p[Sn] = 0 in Ln, see Theorem 4.2 .

i) If n is even, then set p := 2χ(N).

ii) If n is odd, then [N ] + [N ] = 0 in Ln because u(N tN) = 0. Here p= 0.

Therefore the desired inverse is given by [N ] +p[Sn]. �

Let Kn be the group defined by the exact sequence

0→Kn→ Ln→ ΩSpin
n → 0. (4.8)

Here is a simple corollary of the main theorem.

Corollary 4.8. K2k
∼= Z, K8k+7 = 0, and for the other dimensions this is Z2. In each

case, the group is generated by the sphere.
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4.5. The ring structure. The multiplication given by the Cartesian product gives rise

to the (commutative) ring structure on cobordism classes. We denote the spin cobordism

ring by ΩSpin
∗ and the spin Lorentzian cobordism ring by L∗. Let K∗ be a ring defined by

the sequence

0→K∗→ L∗→ ΩSpin
∗ → 0. (4.9)

Here is one more corollary form Theorem 4.2 .

Corollary 4.9. The ring K∗ is a product ring

K∗ =Keven
∗ ×Kodd

∗ ,

where Keven
∗ is a commutative ring generated by x0,x2, . . . with the multiplication given by

x2px2q := 2x2p+2q, and Kodd
∗ is commutative ring generated by x1,x3, . . ., where 2x2p+1 = 0,

x8k+7 = 0, and the multiplication is trivial. Here xi is the cobordism class of Si.

Proof. Let M be a closed manifold of even dimension, and let N be a closed manfiold

of odd dimension. Suppose that both M and N are spin boundaries, then the product

M ×N is a spin Lorentzian boundary. This follows from Theorem 4.2 and Lemma 4.10

below. Further, the equalities x2px2q− 2x2p+2q = 0 and x2p+1x2q+1 = 0 follows from the

formula χ(N1×N2) = χ(N1)χ(N2) and Theorem 4.2 . �

The following lemma gives a tool to prove the statement above.

Lemma 4.10. LetM be a closed manifold of even dimension, and let N be closed manifold

of odd dimension. Then

u(M ×N) = u(N)χ(M)mod2.

Proof. Set 2m := dimM , 2l+1 := dimN , and βp,q := βp(M)βq(N), where βi is as usual

for ith Betti number. Recall that u(M ×N) is

u(M ×N) =
∑
i6m+l

βi(M ×N).

Combining this with the Künneth formula we get

u(M ×N) =
∑
i6m+l

∑
p+q=i

βp,q.

Write this sum as follows:∑
i6m+l

∑
p+q=i

βp,q =
∑
p>m

p+q6m+l

+
∑
p=m
q6l

+
∑
p<m

p−q>m−l
p+q6m+l

+
∑
q6l

p−q6m−l−2
p+q6m+l

+
∑
q>l

p−q6m−l−2
p+q6m+l

.
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Using Poincaré duality βp,q = βm−p,q, βp,q = βp,m−q one can show that∑
p>m

p+q6m+l

=
∑
p<m

p−q>m−l
p+q6m+l

and
∑
q>l

p−q6m−l−2
p+q6m+l

=
∑
q6l

p−q6m−l−2
p+q6m+l

.

Here we illustrate the above equality for n= 9, m= 4, see (4.10).
β00 β01 β02 β03 β04 β05 β06 ∗ ∗ ∗
β10 β11 β12 β13 β14 β15 ∗ ∗ ∗ ∗
β20 β22 β22 β23 β24 ∗ ∗ ∗ ∗ ∗
β30 β31 β32 β33 ∗ ∗ ∗ ∗ ∗ ∗
β40 β41 β42 ∗ ∗ ∗ ∗ ∗ ∗ ∗

 (4.10)

It follows that

u(M ×N) =
∑
p=m
q6l

= βm(M)
l∑

q=0

βq(N)mod2.

On the other hand, we have

u(N)χ(M) = χ(M)
l∑

q=0

βq(N).

By Poincaré duality χ(M) = βm(M)mod2. This finishes the proof. �
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